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Abstract — The demand pattern for most perishable products 
varies during their life cycle in the market. These variations 
must be properly reflected in inventory management in order to 
prevent unnecessary stock-out or excess inventory with 
associated increase in cost. In this paper, a multi-period 
economic order quantity (EOQ) model for managing the 
inventory of perishable items having varying demand pattern is 
presented. The model was formulated using a general ramp-type 
demand function that allows three-phase variation in demand 
pattern. These phases represent the growth, the steady and the 
decline phases commonly experienced by the demand for most 
products during their life cycle in the market. The model 
generates replenishment policies that guarantees optimal 
inventory cost for all the phases. Numerical experiments and 
sensitivity analysis were carried out to demonstrate the 
suitability of the model for a wide range of seasonal products.  
Result of the experiments revealed that the points at which 
demand pattern changes are critical points in managing 
inventory of products with ramp type demand. 

I. INTRODUCTION 
Perishable items are those items having a maximum 

usable lifetime e.g. foodstuff, human blood, photographic 
films, etc. Fresh produce, meats and other foodstuffs 
deteriorate gradually and become unusable after certain times. 
In drugs stores, medicines have fixed shelf lives while whole 
units of blood, photographic films are typical examples of 
items with limited useful life times. The maximum usable 
lifetime may be fixed, in which case the items become 
unusable at the end of a fixed period e.g. human blood. 
Lifetime for some products is assumed to be a random 
variable with its probability distribution represented by 
gamma, Weibull, exponential or any other distribution pattern. 
Due to its important connection with commonly used items in 
daily life, inventory modeling for perishable items continues 
to receive considerable attention among researchers.  

Demand is a very important component of the inventory 
system, as the inventory problem will not exist without it.  
The nature of the demand determines the nature of model that 
will be developed to solve an inventory problem. The demand 
may be static or dynamic throughout the lifetime of the 
product or the system. Static demand are of rare occurrence in 
practice as demand for products often vary with several 
factors like time, price, stock etc. Some perishable products 

are also seasonal in nature and demand for them exhibit 
various pattern during the season. 

 Ghare and Shrader [1] was the first to extend the classical 
EOQ formula to perishable items, wherein a constant fraction 
of on hand inventory is assumed lost due to deterioration. 
Subsequent works incorporated time varying demand patterns 
in modeling. Dave and Patel [2] developed the first perishable 
inventory model with dynamic demand in form of linear 
function of time. Sachan [3] and others improved Dave’s 
model by relaxing the no shortage assumption and assume 
complete backlogging of shortage and equal replenishment 
period. Later Hariga [4], Chang et al [5], and others 
introduced a general continuous log-concave demand function 
in place of the linear trend to cater for items with other forms 
of time dependent demand functions. However, the demand 
pattern in these models is unidirectional and not suitable for 
products whose demand pattern changes with time. 

An Inventory model that caters for varying demand 
patterns was first proposed by Hill [6]. The model comprised 
a time dependent demand pattern that is a combination of two 
different types of demand in two successive time periods over 
the entire time horizon. This pattern, called ramp-type pattern, 
was observed by Wu [7] to be common in the case of new 
brand of consumer goods coming to the market. The demand 
rate for such items increases with time up to certain time and 
then ultimately stabilizes and becomes constant. Wu [7] 
developed a single-period EOQ model inventory for items 
that deteriorates at a Weibull rate, using ramp type demand 
rate. 

The ramp type pattern was also found to be useful for 
seasonal products whose demand varies with the season. 
Thenceforth, several researchers have worked to develop 
inventory modeling for items having ramp type demand 
patterns. The works of Mandal and Pal [8], Wu [7], and Deng 
et al. [9] are notable contributions in this direction. Skouri et 
al [10] extended the frontiers of inventory models with ramp 
type demand by introducing a general ramp type demand 
pattern whose variable part is any positive function of time. 
All the ramp type models mentioned above, however, 
considered only a two-phase variation in demand patterns. 
This represents only the growth and the stable phases of 
demand. 
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In real life, the demand for some products does not remain 
stable forever. It usually begins with increasing trend, attains 
a peak and becomes steady at the middle of its life cycle in 
the market, and finally decreases with time towards the end 
the cycle.  This pattern is ramp-type in nature and has been 
observed to apply to many perishable items as well as 
seasonal items like fruits, fish, winter cosmetics, etc. (see 
Cheng and Wang [11]). Recently, Panda et al [12] observed 
that demand of seasonal products (fruits, e.g., mango, orange, 
etc., sea fish) over the entire time season is three folded. At 
the beginning of the season it increases, in the mid of the 
season it becomes steady and towards the end of the season it 
decreases and becomes asymptotic.  

An inventory model for deteriorating seasonal products 
with three time periods classified as time dependent ramp-
type function was developed by Panda et al [12]. Unlike 
previous ramp type models, this model allows a three-phase 
variation in demand patterns over time horizon. It however 
restricted the variation of demand during the growth and the 
decline phase to be of the same type. It also assumed that 
demand variation is an exponential function of time. These 
restrictions are not realistic in many inventory situations. The 
demand pattern during the growth and the decline phase may 
be different. Likewise the exponential increase/decrease in 
demand has been noted to be too high and may not be realistic 
in some real market situations.  

In this paper, we develop a multi-period inventory model 
for perishable items using a general ramp-type pattern that 
allows three-phase variation in demand. The model relaxes 
previous unrealistic restrictions by allowing variations in 
demand patterns during the growth and the decline phase of 
demand. A general continuously increasing/decreasing 
function of time is used for the growth/decline phase of the 
ramp-type demand pattern to make the model suitable for 
different classes of perishable items with time dependent 
demand.  The model seek to extend the works of Deng et al. 
[9] and others by considering three-phase variation in demand 
instead of two-phase variation that neglects the decline phase 
of demand. It also extends the model of Panda et al [12] by 
allowing variation in demand pattern during the growth and 
decline phase of demand.  These are necessary extensions to 
enable the model suit some real life demand situations.  

II. MODEL ASSUMPTIONS AND NOTATIONS 
The following assumptions and notations are used in 

formulating the models: 
1) A constant fraction ( θ ) of on-hand inventory 

deteriorates per unit time. 
2) Replenishment rate is infinite. 
3) Shortages are not allowed. 
4) No repair or replacement of deteriorated items 

during the period under review.  
5) Inventory holding cost (H), replenishment cost (S), 

and cost of deteriorated items (P) are known and 
constant during the horizon. 

6) The inventory level at any time (t) during the ith 
replenishment period is Ii(t) 

7) The Length of the ith replenishment period and order 
quantity (Ti, and Qi) varies along the cycle. 

8) The system has several replenishment periods during 
the horizon. 

9) Demand rate f (t) is a general time dependent ramp-
type function of the form:  
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The function g(t) can be any continuously increasing function 
of time, while h(t) is any continuously decreasing function of 
time in the given interval. Parameters ‘a’ and ‘b’ represent the 
parameter of the ramp type demand function. The pattern f (t) 
is as depicted in Fig. 1. 
 
           f(t) 
 
 
 
 
 
 
               0                a                        b               t 

Figure 1. The Ramp type demand pattern.  
 

III. MODEL FORMULATION 
The inventory system consists several replenishment 

periods. Each period begins with full inventory and ends with 
zero inventory level. During the ith replenishment period, 
consumption due to demand and deterioration brings the 
inventory level to zero at the time Ti. Replenishment occurs at 
time Ti and the cycle repeats itself. The objective is to 
determine the replenishment schedules and order quantities 
(i.e. Ti, and Qi) for the first and all other subsequent periods 
by minimizing the total inventory cost per unit time for each 
replenishment period. Fig. 2 shows a typical schedule. 

 
          Inventory 
    level 
 
 
 
 
 
       0      1        3                                                   time 
Figure 2. Variation of inventory level with time.  
 
During a replenishment period the demand pattern will 

fall into any of the following categories: 
1. Constant demand pattern: In this case demand pattern 

does not change during the period. The demand 
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function is a single function throughout the period.  

2. Demand stabilization pattern: Demand pattern 
changes from increasing to a constant pattern during 
the period. This is depicted in Fig. 2 at point ‘a’.   

3. Declining demand pattern: Demand pattern changes 
from constant pattern to declining pattern. This is 
depicted in Fig. 2 at point ‘b’. 

4. Single period pattern: In this case both stabilization 
and decline of demand occurs during the same 
period. This is commonly encountered when a single 
replenishment is to be made to cover the entire 
horizon. The Demand pattern changes twice during 
the period.  

The analysis of the system under these cases is considered 
below. 
 

Case 1: Constant demand pattern. 
The demand function, f (t), in this case may be a constant or 
an increasing/decreasing function of time. The equation of the 
inventory system for any replenishment period under this case 
is given by:  

( ) ( ) ( ) .0,0 ii
i TttftI
dt

tdI
≤≤=++θ                                   (1) 

Since the inventory level is zero at time Ti, then Ii(Ti) = 0.                  
The solution to Eq. (1) above is given by Eq. (2) thus: 
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T
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Total number of units in inventory during the ith 
replenishment period is given by ( ) ,0 dttII iT

iI ∫=  while total 
number of units that deteriorate is given by  .ID II θ=  
The total inventory cost per unit time under this case (TC1i) is 
given by: 
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Using Eq. (2) and the expression for II above in Eq. (3), 
gives the general expression for the total inventory cost per 
unit time in this case.  
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The first condition for minimizing total inventory cost per 

unit time (TC1i) is given by .01 =
i

i
dT

dTC  Applying this 

condition to Eq. (4) above gives:                                            
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Solving Eq. (5) with the appropriate demand function 
gives the optimal length of the ith replenishment period, Ti

*, 

provided 0
2

1
2

>
i

i

dT

TCd  at the minimum point.  

The optimal order quantity (Q1i
*), obtained using Eq. (2), is: 

( ) .
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0
*
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Case 2: Demand stabilization pattern. 
The equation of the inventory system in this case is as given 
below:  
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Solution to Eq. (7) with the boundary condition Ii(Ti) = 0 and 
Ii(a-) = Ii(a+) is given by: 
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The total number of units carried in inventory during the 
period is given in Eq. (9) below.  
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a
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Total number of units that deteriorate is given by 
      .ID II θ=            (10) 
The total inventory cost per unit time (TC2i ) is given by: 
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Substituting the expression for II in Eq. (11) followed by 
some simplifications gives the expression for the total cost 
per unit time below. 
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Simplifying Eq. (12) and differentiating with respect to Ti 
gives Eq. (13) below: 
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The necessary and sufficient condition for minimizing total 

inventory cost per unit time, TC2i , is 02 =
i

i
dT
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0
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using Eq. (13) gives: 
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Differentiating Eq. (13) with respect to Ti, and using the 
first optimality condition stated in Eq. (14) above, we have 
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But g(a) > 0, and 0
*
>iTeθ for all Ti. It therefore follows 

from Eq. (15) above that 0
2

1
2

>
i

i

dT

TCd . All conditions for a 

minimum value of TC2i are thus, satisfied and Eq. (14) gives 
the optimal value of Ti

*. The optimal order quantity, obtained 
using Eq. (8), is shown below. 
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Case 3: Declining demand pattern. 
Demand pattern for the product changes from a constant 
value and begin to decrease with time during this phase. 
Equation of the system is represented in Eq. (17) below. 
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The boundary conditions are Ii(Ti) = 0 and Ii(b-) = Ii(b+). The 
solution to Eq. (17) is given by: 
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The total number of units carried in inventory during the 
period is given in Eq. (19) below.  
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Using similar procedure as in case 2, the expression for 
the total cost per unit time is given below. 
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This expression is presented in a simplified form in Eq. (22). 
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Applying the first condition for minimizing total inventory 
cost per unit time (TC3i ) to Eq. (22) gives: 
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Solving Eq. (23) gives the optimal length of the ith 

replenishment period (Ti
*), provided 0

2
3

2
>

i

i

dT

TCd  at the 

minimum point. The optimal order quantity (Q3i
*), obtained 

from Eq. (18) is as given below. 
( ) ( ) .

*

0
*
3 dtthedtageQ iT

b
tb t

i ∫∫ += θθ                                       (24) 

Case 4: Single period pattern. 
This is when change in demand pattern occurs twice 

during a replenishment cycle. The equation of the system in 
this case is given by Eq. (25) below: 
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The solution to Eq. (25) with the boundary conditions; 
Ii(Ti) = 0, Ii(b-) = Ii(b+), and Ii(a-) = Ii(a+) is given by: 
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The total number of units carried in inventory during the 

period is given by: 
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The total inventory cost per unit time (TC4i ) is given by: 
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As in Case 3 above, the expression in Eq. (28) can be 
simplified as shown in Eq. (29) below. 
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Applying the first condition for minimizing total inventory 
cost per unit time (TC4i ) to Eq. (29) gives: 
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Solving Eq. (30) gives the optimal length of the ith 

replenishment period (Ti
*), provided 0

2
4

2
>

i

i

dT

TCd  at the 

minimum point. The optimal order quantity (Q4i
*), obtained 

from Eq. (26) is as given below. 
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With the above equations, the optimal length of all 
replenishment periods and their corresponding cost and order 
quantities can be obtained throughout the horizon. A summary 
of the result is presented below: 

(a). Replenishment period with no change in demand 
pattern: 
Optimal length of period, Ti

*, is given by Eq. (5). 
Optimal inventory cost during period is TC1i

* (Eq. (4)). 
Optimal order quantity is Q1i

* (Eq. (6)). 
    (b). Replenishment period with change in demand pattern 
(increasing to constant): 
Optimal length of period, Ti

*, is given by Eq. (14). 
Optimal inventory cost during period is TC2i

* (Eq. (12)). 
Optimal order quantity is Q2i

* (Eq. (16)). 
    (c). Replenishment period with change in demand pattern 
(constant to decreasing): 
Optimal length of period, Ti

*, is given by Eq. (23). 
Optimal inventory cost during period is TC3i

* (Eq. (22)). 
Optimal order quantity is Q3i

* (Eq. (24)). 
    (d). Replenishment period with double change in demand 
pattern (increasing - constant - decreasing): 
Optimal length of period, Ti

*, is given by Eq. (30). 
Optimal inventory cost during period is TC4i

* (Eq. (28)). 
Optimal order quantity is Q4i

* (Eq. (31)). 

IV. SOLUTION ALGORITHM 
To find the optimal replenishment schedules, costs, and order 
quantities over the entire time horizon, the following simple 
algorithm outline the procedure to follow. All replenishment 
periods are solved using the procedure for Case 1 except at 
the change points when demand pattern changes.   
 
Step 1: Determine all the optimal values (Ti

*, TC1i
*, Q1i

*) for 
the first and subsequent replenishments using Eq. (5), Eq. (4) 
and Eq. (6) with appropriate demand function. 
Step 2: Check for change points by comparing two successive 
values of t (i.e. ti and ti+1).  (Note: ti+1 = ti + Ti, t0 = 0). 
 
Step 3: If ti < a and bta i ≤< +1 . Move a step backward and 
recalculate the optimal values (Ti

*, TC2i
*, Q2i

*)  for the period 
using Eq. (14), Eq. (12) and Eq. (16). 
 
Step 4: If bta i ≤<  and ti+1 > b, Move a step backward and 
recalculate the optimal values (Ti

*, TC3i
*, Q3i

*) for the period 
using Eq. (23), Eq. (22) and Eq. (24). 
 

Step 5: If ti < a and ti+1 > b, Move a step backward and 
recalculate the optimal values (Ti

*, TC4i
*, Q4i

*)  for the period 
using Eq. (30), Eq. (28) and Eq. (31). 

V. NUMERICAL EXPERIMENTS 
Two sets of experiments were conducted using numerical data 
to analyze the model behavior, and demonstrate its suitability 
for application to seasonal products. The numerical data for 
the experiments, presented below, were adapted from the 
models of Panda et al [12] and Cheng and Wang [11] 
involving perishable seasonal products. 
Numerical data for Experiment 1:  

 ( ) ( ) ( ) ( ) ( ){ }[ ].,,exp γγμμ tHttHttbAtf −−−−=   

.80$;300;03.0;3;2.1 orderperSAyearsyears ===== θγμ
.01.0;2$;10$ === bunitperHunitperP  

( )μ,tH and ( )γ,tH , are Heaviside functions.  

Numerical data for Experiment 2:  
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The demand functions, f (t), above represents single cases of 
the general ramp type model presented in this paper. The 
variable part of the general ramp function is represented by 
exponential function in experiment 1, and by a linear function 
in experiment 2. The numeric data were applied to the model 
one after the other, following the algorithm outlined earlier, 
and the result generated are shown in Table 1 and Table 2.   
 
Table 1. Result of Experiment 1 

n Ti
* ti Ti

* .TCi
* Qi

* 
1 0.477726 0.477726 159.367 144.696
2 0.476595 0.954321 159.368 145.041
3 0.484719 1.439040 165.273 149.768
4 0.476387 1.915427 159.620 145.680
5 0.476387 2.391814 159.620 145.680
6 0.476387 2.868201 159.620 145.680
7 0.631701 3.499902 279.920 156.223
8 0.479092 3.978994 159.872 145.433
9 0.480239 4.459233 159.490 145.086

 
Table 2.  Result of Experiment 2 

n Ti
* ti Ti

* .TCi
* Qi

* 
1 0.958606 0.958606 172.128 119.210
2 0.943793 1.902399 172.655 121.360
3 1.032352 2.934751 456.016 150.720
4 0.946432 3.881183 176.313 124.250
5 0.813461 4.694644 278.257   92.560
6 0.938850 5.633494 177.406 126.120
7 0.942438 6.575932 177.332 125.620
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VI. DISCUSSION AND SENSITVITY ANALYSIS 
Experiment 1 demonstrated the application of the model 

to perishable seasonal products with exponential ramp-type 
demand while experiment 2 shows the suitability of the model 
for products with trapezoidal demand. From the tables of 
result above, it can be observed that the values of optimal 
costs and order quantities for replenishment periods are 
generally close except at points where there is a change in 
demand pattern (e.g., n=3 and 7 in experiment 1, and n=3 and 
5 in experiment 2 ). This shows that these points are critical 
points that must be well noted in managing inventory of 
perishable products with ramp type demand.  

The result shown in Table 1 is the same with that obtained 
by Panda et al [12] when the time horizon is not fixed except 
at one of the change points (n=7). The difference in result at 
this point is believed to be due to a computational error on the 
part of Panda et al [12]. For further analysis of the model 
behavior, the result of a sensitivity analysis carried out based 
on the most critical replenishment period in the first 
experiment is shown in Table 3 below.  
 
Table 3. Sensitivity analysis based on Experiment 1 

Parameters % Change 
in value of 
parameters 

% Change in 
Cost 

% Change 
in Order 
Quantity 

θ  -25 -1.68 +7.87 
-50 -3.33 +15.72 
+25 +1.70 -7.91 
+50 +3.44 -15.86 

A -25 -10.73 -16.27 
-50 -21.47 -33.79 
+25 +10.73 +15.60 
+50 +21.46 +30.78 

P -25 -1.40 +1.23 
-50 -2.80 +2.52 
+25 +1.40 -1.16
+50 +2.80 -2.25 

H -25 -9.33 +9.77
-50 -18.67 +25.55 
+25 +9.33 -6.69 
+50 +18.66 -11.58 

S -25 -14.27 -9.47 
-50 -28.54 -19.77 
+25 +14.26 +8.82 
+50 +28.53 +17.11 

 

VII. CONCLUSION 
The EOQ model developed in this paper generates optimal 

replenishment schedules and order quantity for perishable 
products having ramp type demand. The model extends the 
works of Deng et al. [9] and others by considering three-
phase variation in demand instead of two-phase variation. It 
also extends the model of Panda et al [12] by allowing 

variation in demand pattern during the growth and decline 
phase of demand.   

Application of the model to perishable seasonal products 
with different demand patterns showed that it is suitable for a 
wide range perishable and seasonal products. The sensitivity 
analysis showed that the model is sensitive to changes in 
demand rate (A), inventory holding cost (H), and 
replenishment cost (S) while its sensitivity to deterioration 
rate (θ ), and cost of deterioration (P) is low. This indicates, 
among other things, that the demand rate is an important 
factor in the model. It was also shown that the change points 
of demand pattern are critical points that must be well noted 
by managers in using the model.  

Optimal replenishment policy generated by the model will 
assist inventory managers in ensuring minimum inventory 
costs for a wide range of perishable items. Consideration of 
shortages and partial backlogging of demand are 
recommended future works to further extend the application 
of the model.  
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