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Numerical Analysis of a Model for Isolated Hydrogen Bond
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Large isotope effects have been observed in various kinds of hydrogen
bonded ferro/antiferroelectrics. In clarifying their origin, thermodynamic
properties of the hydrogen bond are of essential importance. Two numerical
methods are applied to analyze the model for isolated hydrogen bond at finite
temperatures and the results of excited energy levels of proton or deuteron
are examined. It is found that the second excited state is not far enough
from the first excited state to be neglected discussing the thermodynamic
properties of hydrogen bond especially in their ordered states.

1. INTRODUCTION

The hydrogen bond may be one of the most important agents constructing structures of large
molecules related to life including DNA. The nature of the hydrogen bond, however, is still not
completely clear and is the subject of both theoretical and experimental studies. Large isotope
effects observed in hydrogen bonded ferro/antiferroelectrics are expected to provide us with a
key to understand the physics of the hydrogen bond.

We have proposed a simple dimer model for isolated hydrogen bond[1-3], analyzed numerically
its isotope effect, and compared the results with experiments. This model dimer consists of an
electron and a proton or a deuteron sitting on the line connecting two heavy ions with positive
charges. The total charge of a dimer is assumed to be neutral.

Constructing a simple cubic lattice composed of many model dimers, we have investigated the
difference in the ground state between hydrogen bonds with proton and those with deuteron.
The adiabatic approximation and variational method are applied and the dipole approximation
is adopted for the interaction between dimers. Molecular field approximation is used to determine
the magnitude of dipole moment in the lattice. There are three characteristic parameters in this
model lattice: The mass of the proton (or deuteron) in a dimer, the hydrogen bond length or the
distance between two large ions in a dimer, and the lattice constant of this model cubic lattice.

The phase diagrams with respect to hydrogen bond length and lattice constant have been
calculated at 0K[4,5]. Upon deuteration of hydrogen bonds, remarkable isotope effects have
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been found in the transition temperature from the paraelectric to the antiferroelectric phase in
agreement with reported experimental results[6-11].

To investigate the behavior of this model lattice at finite temperatures we have to compute
the energies of excited states. In this paper, we compare the results of two methods of numerical
computation of the excited states, the variational method and the finite element method, and
determine the phase transition temperatures using four higher energy levels obtained by latter.

2. NUMERICAL ANALYSIS AND RESULTS
2.1 Variational Method ‘
The Schrédinger equation to be solved is
(He + Hpja + Haipole)¥ = EV. (1)

The first term on the left hand side is the Hamiltonian for electron and the second and third
terms are the Hamiltonian for proton or deuteron, where we describe the interactions with other
dimers as the dipole-dipole interaction.

We first adopt the adiabatic approximation to obtain the electronic potential in the hydrogen
bond. The wave function is then written as

v = ¢e¢p/d: (2)

where ¢, is the wave function for electron and ¥,/4 is the wave function for proton or deuteron.
The energy states of the electron as the function of the position of proton (or deuteron) work as
the adiabatic potential on the hydrogen bond. The values of the bottom and central barrier of
these potentials with respect to hydrogen bond length Ry are listed in Appendix 1. We assume
the charge of a proton to be 0.5¢ (—e is the electronic charge) throughout this work.

We next solve the Schédinger equation for proton or deuteron in this electronic potential. We
put the hydrogen bond parallel to the z-direction, and assume that the proton (or deuteron)
moves one-dimensionally. In our variational method, we take the superposition of two Gaussians
1o(2z) as a trial function of the ground state. There are four variational parameters, Aq, Az, Ag
and zg:

7,[10(z) = fl]_e_)‘o(z_zo)2 + A2e—)\o(z+zo)2. (3)

Another two functions, ¥;(z) and (z), are used as the trial functions for the first excited state
with four variational pa-ameters ’

¢1(Z) = .Ble_'\l(‘z'zl)2 + Bze/\1(2+z1)2, (4)
and the second excited states with five variational parameters
Pa(z) = Cle—z\z(z—zg)2 n Cze_’\zzz + C3e_>‘2(z+z2)2_ .

To calculate higher excited states with high accuracy, however, we need much more variational
parameters; for example, we may take one more new parameter X, for the second excited states
and write the wave function as

Po(z) = Cre™?2C %) L Cpe=X?® 4 Cge=del@+22)? ©)
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instead of (5). Higher excited states naturally require more variational parameters and accord-
ingly more complicated procedures to normalize and diagonalize wave functions. Therefore it
may be impossible to obtain higher-than-third excited states. Some examples of parameters fo

wave functions of the forms (3), (4) and (5) are listed in Appendices 2 and 3.

T

2.2 Finite Element Method

In order to obtain higher excited states for proton or deuteron, the finite element method (FEM)
may be one of useful methods. Since the wave function for proton or deuteron is one-dimensional,
the formulation of FEM is quite straightforward. The one dimensional FEM provides us with
as many eigen values and the eigen functions as the number of the elements. We divide the
hydrogen bond length into 100 elements and adopt the linear basis functions.

The lowest three energy levels obtained are listed in Table I and II in comparison with the
results of the variational method. In the latter, the trial function (5) is used to obtain the second
excited energy. As can be seen in Appendix 1, the adiabatic potential has a profile of single
minimum when the hydrogen bond length is less than about 4.8a.u. (2.540A) in this model.
The proton (or deuteron) therefore has no other place to sit than the center of the bond. The
variational calculation with two or more Gaussian functions then encounters with some difficulties
to minimize the energy especially in higher excited states. In also the region of large hydrogen
bond lengths, our variational method can not find the minimum of energy.

We show the lowest five energy levels for proton and deuteron in the hydrogen bond with
and without interactions with other dimers in Figs.1 and 2, respectively. The lattice constant is
assumed to be 2R,. Some examples of wave functions are illustrated in Fig.3.

We have a good agreement between the results obtained by different methods for small Ry and
for lower energy levels. The variational method, however, can be used to discuss the properties
of hydrogen bond only at very low temperatures.

Table I. Lowest three energy levels (in Ryd.) of isolated hydrogen
bond with proton obtained by variational method and FEM.

Ro(a.u.) | variational ¢ FEM ¢o | variational e, FEM ¢; | variational ¢, FEM ¢,
4.8 -0.138389 -0.138389 -0.136107 -0.136105 -0.129958 -0.133198
4.9 -0.136639 -0.136640 -0.134686 -0.134686 -0.129350 -0.132018
5.0 -0.134897 -0.134898 -0.133279 -0.133479 -0.128569 -0.130831
5.1 -0.133172 -0.133176 -0.131892 -0.131895 -0.127659 -0.129633
5.2 -0.131483 -0.131492 -0.130538 -0.130545 -0.126705 -0.128417
5.3 -0.129858 -0.129877 -0.129230 -0.129240 -0.125657 -0.127166
5.4 -0.128335 -0.128373 -0.127981 -0.127997 -0.124432 -0.125857
9.5 -0.126958 -0.127020 -0.126807 -0.126829 -0.122982 -0.124471
5.6 -0.125762 -0.126830 -0.125718 -0.125745 -0.121432 -0.123026
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Fig.1 Lowest five energy levels of proton dimer obtained by FEM.
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Fig.2 Lowest five energy levels of deuteron dimer obtained by FEM.



Numerical Analysis of a Model for Isolated Hydrogen Bond 47

L5 T Ls
| A A - | ‘ _{
00 V/ \\/ , /\V /\
L 4 - -
-1.5 -1.5
-2.5 0.0 2.5 -2.6 0.0 2.6
1.5 L5
) \/ /\ 00 \//\\//\
-1.5 -1.5
-2.5 0.0 2.5 -2.6 0.0 2.6
1.5 1.5
0.0 /\\//\ 0.0 /\v//\
— - - ~
-1.5 -1.5
-2.5 0.0 2.5 -2.6 0.0 2.6
1.5 T 1.5
0.0 o \/f\
i 7 i T
1.5 -1.5
2.5 0.0 2.5 -2.6 0.0 2.6
1.5 1.5
L /\ 1 - .
0.0 0.0 -
-1.5 -1.5
2.5 0.0 2.5 -2.6 0.0 2.6

Fig.3 Wave functions of proton and deuteron in hydrogen bond by FEM.
Left column: Proton with Ry = 5.0 a.u. and a = 2R,.
Right column: Deuteron with Ry = 5.2 a.u. and a = 2Ry.
(With increasing order in energy from bottom.)
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Fig.5 Transition temperature obtained from lowest two energy levels.
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Fig.6 Transition temperature obtained from lowest five energy levels.
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Table II. Lowest three energy levels (in Ryd.) of isolated hydrogen
bond with deuteron obtained by variational method and FEM.

Ry(a.u.) | variational e, FEM g, | variationale;, FEM ¢; | variationale, FEM e,
4.8 -0.138715 -0.138715 -0.137243 -0.137240 -0.133367 -0.135390
4.9 -0.136920 -0.136920 -0.135702 -0.135700 -0.132258 -0.134033
5.0 -0.135134 -0.135135 -0.134179 -0.134179 -0.131148 -0.132675
5.1 -0.133374 -0.133377 -0.132687 -0.132690 -0.130023 -0.131312
5.2 -0.131669 -0.131680 -0.131243 -0.131248 -0.128836 -0.129929
5.3 -0.130070 -0.130095 -0.129866 -0.129875 | -0.127484 -0.128496
5.4 -0.128636 -0.128678 -0.128576 -0.128591 -0.125913 -0.126988
5.5 -0.127401 -0.127437 -0.127391 -0.127409 -0.124287 -0.125447
5.6 -0.126317 -0.126341 -0.126315 -0.126334 -0.122572 -0.123973

2.3 Thermodynamical Analysis

The electric dipole moment of a dimer is calculated from charge distributions of electron and
proton (or deuteron) using their wave functions. We calculate expectation values of dipole
moment at 0K self-consistently and obtain the phase diagrams with respect to hydrogen bond
length and lattice constant as shown in Fig.4. The phase boundaries are determined by the
condition whether the dipole moment is finite or not.

In the area (a) in Fig.4, (u)q = O for the hydrogen bond both with proton and with deuteron at
0 K. The lattice in this area is in the paraelectric state. When Ry increases and/or a decreases and
the lattice is in the area (b) in Fig.4, the expectation value of (u)? (dipole moment of hydrogen
bond with deuteron) becomes finite but we still have (u)f (dipole moment of the hydrogen bond
with proton) = 0: Thus only the lattice with deuteron dimers is in the antiferroelectric state. In
the area (c), the lattice both with proton dimers and with deuteron dimers have finite values of
{u)o. The existence of a wide area (b) indicates the large isotope effects in phase transition of
hydrogen bond.

We calculate the magnitude of average dipole moment at finite temperatures (u)r from the
thermal average of positions of electron and proton (or deuteron) on the hydrogen bond by
using five lowest energy states. The thermal average of dipole moment vanishes at the transition
temperature.

The transition temperature is plotted as a function of Ry for various values of lattice constant
in Figs.5 and 6. The transition temperatures in Fig.5 are calculated from the lowest two energy
levels obtained by variational method and those in Fig.6 are derived from five levels by FEM.
A large difference between two results indicates the inaccuracy of the treatment based on the
variation with two levels for this hydrogen bond model. Some examples of the magnitude of
dipole moment at 0K are listed and illustrated in Appendix 4.
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3. CONCLUDING REMARKS

We have examined two numerical processes to analyze the nature of hydrogen bond. It is found
that the second excited state is not far enough from the first excited state to be neglected when
we discuss the thermodynamic properties of hydrogen bond, especially in their ordered states.
More thermodynamical analyses such as entropies and heat capacities are now going on and will
appear elsewhere.
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Appendix 1. Adiabatic Potential
Table Al. Adiabatic potential (in Ryd) produced by an electron and two ions.

Ro (a.u.) RO (A)

Minimum value at the bottom | Barrier height from the bottom

4.8
4.9
5.0
5.1
5.2
5.3
5.4
5.5
5.6

2.540
2.593
2.646
2.699
2.752
2.805
2.858
2.910
2.963

-0.13933500
-0.13738188
-0.13555032

- -0.13390034

-0.13241242
-0.13106955
-0.12986028
-0.12876275
-0.12777210

0.0
0.0000030
0.0001433
0.0004804
0.0009939
0.0016655
0.0024823
0.0034208
0.0044742
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Appendix 2. Wave Function Parameters for Proton

Table A2-1. Parameters for proton wave function in the ground state.

Ro (a.u.) /\0 V4 A]_ A2
4.8 3.579 0.2770 0.563008 0.563008
4.9 3.348 0.3101 0.572553 0.572553
5.0 3.133 0.3516 0.585030 0.585030
5.1 2.941 0.4042 0.601382 0.601382
5.2 2.788 0.4709 0.622474 0.622474
5.3 2.694 0.5541 0.647868 0.647868
5.4 2.697 0.6547 0.674488 0.674488
5.5 2.867 0.7718 0.695769 0.695769
5.6 3.320 0.8988 0.705457 0.705457

Table A2-2. Parameters for proton wave function in the first excited state.

Ro(a.u.) )\1 Z1 B1 Bg
4.8 4.359 0.4540 0.774198 -0.774198
4.9 4.138 0.4911 0.760672 -0.760672
5.0 3.993 0.5356 0.745842 -0.745842
5.1 3.831 0.5852 0.734230 -0.734230
5.2 3.678 0.6409 0.724991 -0.724991
5.3 3.654 0.7061 0.716540 -0.716540
5.4 3.587 0.7757 0.711872 -0.711872
5.5 3.657 0.8518 0.708866 -0.708866
5.6 3.710 0.9298 0.707686 -0.707686

Table A2-3. Parameters for proton wave function in the second excited state.

Ro (a.u.) )\2 z9 Cl Cz 03
4.8 14.79 0.890 -0.675004 0.301773 -0.675004
4.9 15.29 0.890 -0.675075 0.301243 -0.675075
5.0 15.68 0.890 -0.639289 0.429916 -0.639289
5.1 14.68 0.930 -0.620371 0.482049 -0.620371
5.2 13.39 0.985 -0.593493 0.545425 -0.593493
5.3 12.01 1.051 -0.549455 0.630891 -0.549455
5.4 10.44 1.133 -0.479131 0.736616 -0.479131
5.5 8.65 1.235 -0.373915 0.849771 -0.373915
5.6 6.79 1.357 -0.247248 0.937829 -0.247248
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Appendix 3. Wave Function Parameters for Deuteron

Table A3-1. Parameters for deuteron wave function in the ground state.

Ry(a.u.) Ao 20 A, A,
4.8 4.530 0.2416 0.560897 0.560897
4.9 4.182 0.2778 0.572708 0.572708
5.0 3.862 0.3263 0.589382 0.589382
5.1 3.594 0.3921 0.612868 0.612868
5.2 3.426 0.4806 0.644042 0.644042
5.3 3.446 0.5941 0.677966 0.677966
5.4 3.867 0.7310 0.701504 0.701504
5.5 4.688 0.8606 0.706766 0.706766
5.6 5.196 0.9561 0.707083 0.707078

Table A3-2. Parameters for deuteron wave

function in the first excited state.

Ro(a.u.) /\1 21 Bl Bg
4.8 5.420 0.3966 0.781711 -0.781711
4.9 5.172 0.4398 0.760387 -0.760387
2.0 4.942 0.4893 0.742810 -0.742810
5.1 4.684 0.5471 0.729545 -0.729545
5.2 4.616 0.6176 0.717795 -0.717795
2.3 4.616 0.6971 0.711123 -0.711123
9.4 4.657 0.7820 0.708298 -0.708298
9.5 4.878 0.8706 0.707324 -0.707324
0.6 5.186 0.9571 0.707136 -0.707136

Table A3-3. Parameters for deuteron wave function in the second excited state.

Ro (a.u.) )\2 29 Cl Cg 03
4.8 24.50 0.723 -0.659382 0.363343 -0.659382
4.9 22.55 0.761 -0.6505651 0.393779 -0.650551
5.0 20.64 0.805 -0.635429 0.440288 -0.635429
5.1 18.60 0.860 -0.609119 0.509141 -0.609119
5.2 16.38 0.929 -0.559915 0.611702 -0.559915
5.3 13.75 1.021 -0.468118 0.750210 -0.468118
5.4 10.64 1.145 -0.318984 0.893065 -0.318984
5.5 7.89 1.285 -0.185724 0.965441 -0.185724
5.6 6.25 1.401 -0.128948 0.983791 -0.128948
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Appendix 4. Dipole Moment at Low Temperatures
Table A4-1. Dipole moment (in debye) of proton at 0 K.

Ro(a.u.) a= 2R0 a = 25R0 a= 3R0
4.8 0.0 0.0 0.0
4.9 0.0 0.0 0.0
5.0 0.0 0.0 0.0
5.1 0.169525 0.0 0.0
5.2 0.263214 0.108045 0.0
3.3 0.322448 0.266510 0.163086
0.4 0.368239 0.335955 0.306339
5.5 0.406819 0.383959 0.369603
5.6 0.440813 0.422812 0.413203

Table A4-2. Dipole moment (in debye) of deuteron at 0 K.

Ry(a.u.) a=2R, a=25R, a = 3R,
4.8 0.0 0.0 0.0
4.9 0.0 0.0 0.0
5.0 0.141761 0.0 0.0
5.1 0.239911 0.107050 0.0
5.2 0.300106 0.250347 0.183675
5.3 0.346833 0.309741 0.294183
5.4 0.386391 0.363520 0.350836
5.5 0.421346 0.402928 0.393491
5.6 0.452965 0.437531 0.429863
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Fig A4. Dipole moment of proton and deuteron at 0 K.





