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Parameters characterizing the structure of confined Yukawa system are es-
timated for ‘dusty plasmas’, clouds of charged macroscopic particles formed
near the boundary between plasma and the sheath and levitated by nega-
tively biased electrode. When we have dust particles with different ratios
of charge to mass, they form a two-dimensional Yukawa mixture or sep-
arate two-dimensional one-component Yukawa systems, depending on the
charge density in the sheath and number density of dust particles. In order
to provide a basis for numerical simulations on Yukawa mixtures includ-
ing Coulombic case, we summarize mathematical expressions necessary for
molecular dynamics.

Part I Characteristic Parameters for Mixtures

1 Introduction

Physics of dusty plasmas, assemblies of macroscopic particles immersed in plasmas, have at-
tracted keen interest of researchers as an important practical problem in plasma processes of
semiconductor manufacturing and also as a subject of basic statistical physics.[1] Observation
of crystal-like structures in dusty plasmas|2, 3, 4, 5] have added a new example to the classical
Coulomb lattice which was predicted more than sixty years ago.[6]

In our recent works,[7, 8, 9, 10, 11, 12, 13] we have regarded dust particles as 1nteract1ng via
the isotropic repulsive Yukawa potential

g7:2-exp(—m"), : (1.1)

where —q is the (negative) charge on a dust particle, and trapped in a one-dimensional potential
well of the form )

Vert(2) = -2—k22. (1.2)
We have analyzed the phase diagram for the structure of this confined Yukawa system by molec-
ular dynamics simulations and theoretical approaches.
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As for the interaction between dust particles, it has been pointed out that there exists an
anisotropic interaction coming from the ion flow in the sheath.[14, 15, 16, 17] The most important
result of this anisotropic potential may be the phenomenon of alignment of dust particles along
the z-direction often observed in experiments. There also exist, however, experiments where such
alignment is not apparent[3] and we may have the cases where the isotropic part of interaction
potential plays the central role to determine the overall structure in z-direction, even if the
configurations in the zy-plane relative to adjacent layers are affected by the anisotropic part.

Defining the mean distance between dust particles a by

1
a = W (1.3)
from the surface number density of dust particles Ng, we express the strength of screening by
surrounding plasma by a parameter

= Ka. (1.4)
We have also introduced a parameter n defined by
72 (1/2)ka?
n= —2"(/2—) (1.5)
¢*/a

to describe the relative strength of mutual repulsions and the confining potential. Structures at
low temperatures are determined by a competition between these two forces and are expressed
as a phase diagram in the (£, 7n)-plane.[9]

It has been found in experiments that the radius of dust particles of the same kind appearing
in plasma processes has rather small dispersion. There may be the cases where different kinds
of macroscopic particles coexist in plasmas and their separation is necessary. In this part, we
clarify the origin of the one-dimensional confining potential and discuss various possibilities of
structures for mixtures of Yukawa particles.

2 Parameters Characterizing Confining Potential

We consider the case where our dusty plasma is formed above a horizontal plane electrode
which is wide enough to regard the system under consideration as one-dimensional. A typical
example of environment of our dusty plasma is shown in Fig.l. Dust particles are under the
vertical gravitational field and are levitated by the electric field between the negatively biased
electrode and the bulk part of plasma.

Let us assume that the density of charges in the sheath (except for those of dust particles)
is given by engspeqtn, € being the elementary charge, and is nearly constant in the domain where
dust crystals are formed. When we take the z-axis in the opposite direction to the gravitation,
the gravitational and the electrostatic potentials for a dust particle of mass m and charge —q is
written as mgz and as 2wgen peq.in 2?2, respectively. Thus dust particles are in the potential well
(z<0)

Bexi(2) = 2T qen heatn?® + mygz = 27qen pean(z — 20)* + const, (2.1)

where | mg g m ;
= — = — — <0 ‘ 2.2
% 47rqenshea,th 47rensheath q ( )




Structure of Yukawa (Dusty Plasma) Mixtures

In this case, k = 4mgengpeqn and 7 is calculated as

_ (e [ sheatn
7) NI )

n

—~
B2
E)

p—

When we have only one species of dust particles, the structure at low temperatures is completely
determined by parameters £ and 7. In the case where there are two or more species of dusts, we
have to also take the dependence of 2y on species into account. We thus define a parameter § by

20

§=_2_

1 mga g m
a 2 27‘-qensheatha2 457rensheatha q

(2.4)

to represent the separation in z-direction: The equilibrium position which is proportional to the
charge to mass ratio ¢/m is compared with the mean distance a.

For a typical case of dust particle with the charge ¢ = 10%e and my = 107'%kg = 10719,
parameters 7 and ¢ are given by

10%\ / Nsheath 1mm=2\ */?
~ 10 ( . ) .
g 0% x < q ) 10%cm~3 Ng ' (2.5)

56110 » 100 <fl)< Ns >U2 10%em™ (2.6)
- (q mo/ \1mm~=2 Msheath | '

Values of these parameters are shown in Fig.2.

According to the values of 7 and 6, we have four cases. When 1 >> 1 and 6 < 1, the Yukawa
mixture forms a two-dimensional system or the two-dimensional Yukawa mixture. When n > 1
and § > 1, we have separated two-dimensional Yukawa systems, each being composed of one
species. When n <« 1 and § < 1, we have a mixture of Yukawa particles with finite thickness.
When n < 1 and 6§ > 1, we have two separate one-component Yukawa systems with finite
thicknesses. These cases are illustrated in Fig.3.

As shown above, mixtures of Yukawa particles are expected to have a rich class of structures
at low temperatures. When the axis of temperature is taken into account, their behavior may be
even more interesting. One of powerful methods for the analysis of these classical systems is the

large scale molecular dynamics simulation. In the next part, we give mathematical basis of such
a simulation which is now in progress.
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Fig.1. Dusty plasma confined near the boundary of sheath and plasma bulk.
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Fig.2. Values of characteristic parameters 7 and 6.
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Fig.3. Structures of confined Yukawa mixture.
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Part II Molecular Dynamics
3 Formuiation for Yukawa Mixtures

In this part, we summarize some mathematical expressions for molecular dynamics of mixtures
of Yukawa particles. Our system is composed of particles 1 = 1,2,..., N with mass m; and charge
g; interacting via the Yukawa interaction

gig;v(r) (3.1)
where 1
v(r) = ;exp(—nr). (3.2)

As external conditions, we consider two cases: (1) Three-dimensional system with constant
volume or under constant pressure, and (2) The system confined in one direction with constant
volume or under constant pressure in remaining two directions. In the first case, we impose
periodic boundary conditions in three directions and in the second, in two directions. In order to
reduce the effect of boundary conditions on dynamics of the system, we include the deformation
of fundamental vectors of periodicity in our formulation.[18, 19]

4 Dynamics for Microcanonical Ensemble

We here summarize molecular dynamics for the microcanonical ensemble. In what follows, the
dot denotes the time derivative as
df ()

fo) = 5 (4.1)

In order to impose the periodic boundary conditions, we express the coordinates of a particle as
r=h-x (4.2)

in the case of periodic boundary conditions in three dimensions. Here h is a 3 X 3 tensor composed
of fundamental (column) vectors a,b, and c as

h = (a,b,c), (4.3)
and the volume of our unit cell is given by
Vo = det h. (4.4)

For Yukawa system with two-dimensional periodicity {P} in the zy plane, we define h as a
2 x 2 tensor and express the coordinate '

r=(R,z) (4.5)

or
r=R+z2 (4.6)

as

R=h-X, (4.7)
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Z being the unit vector in the z-direction. The area of the cross section of the unit cell in zy-plane
is given by

4.1 Dynamics with fixed periodic boundaries

We first consider the simplest case where the vectors representing the periodicity are fixed.
The Lagrangian is given by the standard form as

. N m;.
L{{ri 0:}) = 2 <t = U({rs}), (4.9)
i=1
where U({r;}) is the potential energy
R ‘
U({r:}) = 5 Z igio(|rs — 1)), (4.10)
(i)
and we have naturally
r; = h-x;. (4.11)
Equations of motion are given by
d (oL aLc
5 (5) - =0 (412)
. & 9
miﬁri = —-—é;: (413)
The momentum is defined by
pi = m;r; (4.14)
and the Hamiltonian is given by
H= Z S Pi P U({ri)). (4.15)
We have the conservation of total energy in the form
d
EH 0. (4.16)

4.2 Dynamics with deformable periodic boundaries

4.2.1 Periodicity in three dimensions

A method to take the deformation of fundamental vectors of periodicity is to rewrite the
Lagrangian into the form([18]

m;

£({xi % 0, B) = 3 20 Gk U(h,{xi})+—2—/Tr [ 4], (4.17)
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where

G=h'"h.

(4.18)

The positive parameter W corresponds to the mass of the frame of coordinates. The value of W
is arbitrary in principle but to be optimized in practice. In this case, velocities are defined by

ViEh'Xi.

The equations of motion are given by

d(ocy _oc
dt axz X; -
and
i oL _ oL _0
dt \Ohog) Ohap
or
d d 0
mZZEG . Exi —-a;C—ZU
and 2
Wgﬁh =00

Tensors 1 and o are given respectively by

1 1 ri; —p)(ry —p) v (|ry; —
N=— m;(h-%;)(h-x%;) — = q:q ! L
Vo {Zz: ) 21_722;5]) ]E |rij — p! d\r;;
1 pp v (p)
o= -7 () 3 2220
2V, Zz: pZo P Op
and .
c=VW (ht)
The momenta are defined by
P: = miG X;
and '
p=Wh,

and the Hamiltonian is given by

H=Y 5

The conservation of Hamiltonian is written as

d
EH—O

Zm,

i+ Ulh, (i) + Tk - ).

pl) 4 M,
- p|

(4.19)

(4.20)

(4.21)
(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
(4.27)

(4.28)

(4.29)

(4.30)
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4.2.2 Periodicity in two dimensions

In this case, h, G, and ¢ are 2 x 2 tensors defined similarly to the case of three-dimensional
periodicity. The Lagrangian is given by

,C({Xi,zi,X,-,z"i},h,F\):Z 2X .G-X; +Z iz — (h,{Xi,zi})+—I/;iTr [ht-h] . (4.31)

Velocities in two dimensions are defined by

Equations of motion are given by
d (oL oc
2 <5f> -2 =0, (4.39)
Ly - or _ 4.34)
dt 8z1 azi Y ( )
and a(oc\ oL
dt (3ilaﬁ) " Bhas 39
. d_ d d
d? 0
i Ll (4.37)
and
d? n

Here N and o are defined by

1 : g R'j—P Rz‘j—P ov lrij’"P
nzs—o{;mi(h-xi) (h-Xz)—— > qijz [rij)—(P| ) 8(|rz-j—P|D}+”°’

1](%#])
(4.39)
1 PP O
and )
o=5 (). (4.41)

5 Dynamics with Deformable Periodic Boundaries under External
Pressure

The external pressure p..(t) is taken into account by adding

- pext(t) deth - _pez‘t(t)% (51)
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to the Lagrangian. The Lagrangian is then written as
~rr 3 N\ Y_“m‘t.- Tr/ I'4 N Wm I+ v 7aN 1 a4t I 2
L{xixi}hht) = =% 6% = Uh, {x:}) + 5-Tr [0+ h| = pege(¢) det h. (5.2)
Equations of motion are given by
d (oL\ oc
7 (—;) o 0 (5.3)
and a(oc\ @
L
. - =0 .
&t aha) Ghag (5.4)
. d_ d 0
m,a—zG . axi = —E)ZU (55)
and
a2
W:i-ﬁh = [ = peas(] - 0. (5.6)
The momenta are defined by
pi = mG - X; (5.7)
and '
pu = Wh, (5.8)
and the Hamiltonian is given by
— 1 -1 1 t
H= Z o (671 ) Pt Ulh, {x:)) + g Tr(p’ ) + pese(t) det h. (5.9)
In this case, the conservation of Hamiltonian is written as
d d
Ly — qoth Lpeut) (5.10)

5.1 Dynamics with Constant volume

The condition of constant volume is realized by adjusting the external pressure so as to keep
the volume constant. When the Yukawa system reduces to the Coulomb system without the
charge neutrality, the existence of inert rigid background is assumed and this condition is of
essential importance.[19]

In the case of three dimensional periodicity, the external pressure is given by

_ Tr(o*-N-0) = (W/Vo)Tr(o* - h-ot-h)

Peat(t) = (ot o) : (5.11)

In the case of two-dimensional periodicity, V; is replaced by So.
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6 Dynamics at Constant Temperature with Deformable Periodic
Boundaries under External Pressure

In order to simulate the canonical ensemble, we introduce a variable s and consider the dy-
namics of a virtual system and then map virtual variables to real ones.[20, 21] The Lagrangian
of the virtual system £, is given by

m; 4.

Lo({x:,%:},h, b, s, 8,t) = Z—s X; - G-)'c,'-{—%sz’l“r [ﬁ‘-ﬁ}

+ -g—éz — U(h,{%;}) = pext(t) deth — gkgT In s. A(6.1)

Here @ is the mass related to the heat reservoir. Though the value of () does not affect the
results so far as one follows the dynamics for a sufficiently long time, it needs to be optimized
for practical purposes.

Equations of motion are given by

d d 0 d
2 p— —Y = — —_ S . Pppe— ¥
s$°m; dtG dtxz 8in 258m;G dtx“ (6.2)
2Wd—Zh n- W -o—2 'Wih 6.3
di? - Dext g 88 PR ( . )
d? 2 | T g
'J't-z- = '; {Z——S Xz G- Xz -—2—5 Tr [h . h} - j‘):kBT . ’ (64)
The momenta are defined by
P: = S2m,’G . ki, (65)
= s?Wh, (6.6)
and
Ps = Qsa (67)

and the Hamiltonian is given by

H=Y

The conservation of Hamiltonian is written as

-1 pi) P+ UM {x:})+ —= —I—ngTlns + Dezt(t) det h. (6.8)

Tr(u )+ L2
ARG 20

23m

d
E'H det h dpezt(t) (6.9)

The dynamics of our virtual system is completely determined by these equations.
We now map variables in the virtual system to real variables by the relations

¢ di
ar = 3t / (6.10)

X; = X4, (6.11)
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Xy = = (6.12)
S

h" = h, (6.13)
and .
- h

h =2, (6.14)

When g = 3N + 9+ 1 —1, N being the number of particles in the unit cell, the average of
real variables taken over uniform intervals of the virtual time follows the canonical distribution.
When g = 3N +9 — 1, the average of real variables taken over uniform intervals of the real time

follows the canonical distribution. The subtraction of unity comes from the conservation of the
volume det h.

In the case of periodicity in two dimensions, the degrees of freedom accompanying particles are
2N and those related to deformation of fundamental vectors are 4. We set ¢ = 2N +44+1 -1
or g =2N +4 — 1, according to the method of time average.
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Appendix

A Ewald-Type Formulae for Yukawa Lattice Sum

We here describe some Ewald-type expressions for lattice sums[22] in the Yukawa system with
three- or two-dimensional periodicity. In order to take the deformation of fundamental vectors,
we calculate the pressure tensor in addition to interaction energy and force.[7]

A.1 Interaction energy

A.1.1 Periodicity in three dimensions

We rewrite the Yukawa potential into

o(r) = -i—exp(——m“) = % (/OG +/:) dpexp <—r2p2 - %) , (A1)

and Fourier-transform the long-range part of the lattice sum:

2 v(lp—r)

p

([ [ et )

Zp: ﬂp_l——rl {exp (klp —r|) erfc <G|p 4 Q%)
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+ exp(— mlp—rl)erfc(G’lp—rl 2G>}+_1_Zg4-+7-r > xp(——g;G2 +1ig - r>(A2)

Here {g} is the reciprocal lattice. The interaction energy between the particle ¢ and its own
images or the Madelung energy of lattice {p} is given by ¢?¢¢ where

#o = lim [Zvup ) - v(rﬂ
p

= I%ézo 21 {exp (kp) erfc (Gp + 2—§> + exp (—kp) erfc (Gp - %)}

i ( >_,2_ L
Zg +/c2 ( 0 >+/cerfc 5C ﬁGeXp ~107 ) (A.3)

The interaction energy U is thus given by
1, X,
U = “Zqz%z |rw pl)+§¢02%’
i=1

1#]

1
= ; 9i4; Z m {exp (k|ri; — p|)erfc (Glr” p| + 2@)

+exp<—n!rz~j—p|>erfc(Gfr” pl- o=}

27 1 g2 + k2 .
+%gguwﬁm(-4m S e i 7o)

(Z; qz> g':;éo 2p {exp (p) erfe <Gp + 2_§> + exp (—kp)erfc (Gp _ £ >}

2G

4 (; qg) [ﬁ exte(55) = =Gy ({&%)] (A

A.1.2 Periodicity in two dimensions

For Yukawa system with two-dimensional periodicity {P}, we have

2 (P —r)

P
= ; 2]P1_ {exp (w[P —r{)erfc <G‘P —rl+ ZG)

+ oo =t 11~ )

K- R
SO % \/ﬁ—_ exp(l )

<exp(\/ K? + k?z)erfc( Azg i + Gz)

K2 2
+ exp(—VEK? + n2z)erfc(—l‘—mii ~ Gz)> : (A.5)
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Here {K} is the two-dimensional reciprocal lattice and Sy is the area of the unit cell in two
dimensions. The interaction energy between the particle 7 and its own images or the Madelung

e fL”’ i SN S  PEVILIS & » 1 LIUC. S, U N A E
€nergy o1 two-dilinensionai tattice 1L 5 18 given by ¢, ¢o where

= lim (S o(P i) = v(r)}

= > 21P {exp(ch)erfc (GP + 5@) + exp(—«&P)erfc (GP - ﬁ')}

P#O
VEK? 4 K2 2 K2
Z\/W rfc( o ) + kerfc (26’) ——\/-;_F-Gexp (—@> . (A.6)

The interaction energy U is given by

U = Zqijz (Iri; = P) + %(Z%)

2#1

= Zqzqyzm);_r

{exp(nIP—ri'Derfc <G|P ri;| + )
1;6] ] ! ’ 2G

iJl
+ exp (—&[P — ryj|) erfc <G|P —rijl - %>}

T 1
—— 5 g:¢; S ———exp(iK - Ry,
+250%qu; T el i)

NG
X (exp(\/ K? + k%z;)erfc (%— + Gzij>

JIT L 2
+ exp(—V K? + £2z;)erfc <—-—{}§5tf— - Gzz-j))

(Z ql> dl— 5P {exp(nP)erfc (GP + ﬁ) + exp(—&P)erfc (GP - 55)}

2

b3 (Z qf) [/{ erfe (5% ) - —\;_;T-Gexp (-Z’Z;—Qﬂ . (A7)

A.2 Force

A.2.1 Periodicity in three dimensions

We first note that
—?——U ht .- 9 —U. (A.8)
ox;, or; '

The second factor is calculated as

0

—1; —p)
A Z%Z——————

3(#0) P |er p|3
x |35 (1 = slei; = pl) exp (slri; = plerfe (Glri; = p| + 5=

1
+

5 (1-+ ol = pl) exp (—slr — perte (Gl = pl = 575)
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2 k2
+\7—;G|ru—P!eXP (——G2]r” pl* - 4G2>]

A g g%+ K? :
—zvoq, > g exp (— ez ZJ: g; exp(1g - Tij)| - (A.9)

A.2.2 Periodicity in two dimensions

For Yukawa system with two-dimensional periodicity {P = h - N}, we have

) , 0
ax U =" 5l (A.10)

o (R, —R; - P)
BRZU - szq_y; |I‘i]'—P|3

1
X 5(1 — k|ry; — P|) exp (s|r;; — P|)erfc (G|r” P|+ 2G)
1
+§ (1 + &lri; — P|)exp (—«|r;; — P|)erfc (G|r” P|- 2G>
+2 Glr; — Plexp [—GPr; — PP —
o P v 4G
s K .
TS Y Ve 2 v oK Ry
JEZ T r2
(exp(\/ﬁ2 + k2z;; )erfc( ——7— Kt w + Gz;)

2G
2 2
+ exp(—VEZ + /c?zij)erfc(—————szc;Hi = Gzi]-)> , (A.11)
and
- 0 U =& Z qJZ 3
0z; ](# Ir,J - P[

X -2— (1 — klrij — P|) exp (x|r;; — P]) erfc (G|r” P| + 2G>
1
+5 (1+ rlri; = Pl exp (~+lry; - Pl)erfe (Glriy — P - =)

2 K2
+ﬁG|1‘n’ — Plexp (—Gzlrij ~ P~ Z‘é‘;)]
s .
—5 %22 9% exp(iK - Ryj)
o K

2G

VEI T 2
—exp(—vVK?+ nzzij)erfc(hz—cjm - G’zi]-)) . (A.12)

VEI L 2
X (exp(\/ﬁx2 + &2z erfo( ———— Lt + Gzij;)
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37
A.3 Pressure tensors
A.3.1 Periodicity in three dimensions
We here give Ewald-type expressions for tensors related to the deformation of unit cell:
Z(r~p) (r — p) Ov(jr — p|)
>  Ir—pl dlr — p|
(r—p)(r—p)[1
= D5 (L sl Bl exp (sl —pl e (G -1+ )
+5 (L slr = pl) exp (~xlr = pl) erfc (Glr — p| - 5=
2 2 2 K
+ﬁG1P—P|€XP —Gr—pl"~ =
8 1 g+ K2 g +Kk?
s (e (e
4r 1 @+ K
R (‘ e ““)’ (A18)
PP Ju(p)
pro P 0P
pPpjl
= — — 1 —kp)exp (k erfc(G +—)
I;Jpg{Q( ) exp (kp) Pt og
+2 (14 rp) exp (- )f<G &)+2G Gt
— K - — — — —_— —
5 p) exp (—xp)erfe ( Gp — 5= NG pexp 107
87 1 g* + Kk? g% + K?
i 1 -
47 1 g% + K?
—l= — . Al4
Vbzg:f-l-fcze}(p( 4G* > ( )
The tensor 1 is thus given by
(rij —p) (ri; = p) v (|ri; — p|)
ol = m; (h-%;) (h-x;) — ; L + VI
° Z ) ?;;‘Z%Z Iri; — pl dri; — pl o
= Zmi h'Xi h'Xi)
(riy —p)(ri; —p)J1 ( >
= (1 —kjr; — i — fc { Gr;
5 oy $ R T 1 i pl) s ol ol e (G~ + 5
+5 (1 + ey = pl) exp (—slri; = pl)exfe (Glri; = pl — 5

2 5 K2
+ﬁGlri]’ —plexp ("Gzlrn’ -pl° - E)}
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(Z qz> > pp{ (1 — kp) exp (rp) erfc (Gp+ 20)

i pro P’

1 2
—{—5 (1 + &p)exp (—kp) erfc (Gp - ———) + —-Gpexp ( G*p® — L)}

2G) T /= G
47 1 92+K2 g2+
7 Zgg(g 7 ( e R 1) exp ( Ye: ) Zqzq] exp (ig - Ti;)
27 1 g* + K?
+IV()- ; 92 + /€2 eXp <.— 4G2 > Z‘hq] eXp (Zg rZ]) (A.15)

A.3.2 Periodicity in two dimensions

For Yukawa system with two-dimensional periodicity {P} we have

> (r—P) (r — P) du(jr — P|)

T r — P O|r — P|
r—-P)(r—-P)
S {2u_nh_PDap(u_PDaﬁ<Gu—Pp+ﬂJ

+%(1+/€|r~P|)eXP( KlP"Pl)effC(Glr“Pl ZG)

+§%GW—PMKP<(F““PP 4;J}

4 oo 1 g% + Kk? g2+ r*
+SOZ/_oodgzgg(2 P ( Ye? +1>exp(— Yer +ig-r

K
2 S 1 g + K
NEESY A - | |
S(,% —oogg2+/chXp< eZ +ig-r], (A.16)
where
and
gg = KK + ¢, K5 + ¢, 5K + ¢%33. (A.18)

The equation of motion for h is related to the 2 x 2 part of the above tensors:

(R-P)(R-P)0uv(r—P|)

XP: r — P| Jlr — P|
(R—P)(R-P)[1
- -SSR {Eﬂ—ﬁh—Ppr(h—PDaR(Qr—PL+%J

+%(1+/~:|r—P|)exp( k|r — P|) erfc (GIr—P| G)

2 2 2 K
+ﬁG’|r—P|exp( Glr — P — 4G’2)}

4 o 1 @tk @ e
= KK 1 - -
g Tk (S e (- e
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1 g +Kr
,~|_51—0-K/ dg, pan 2exp( e —i—zg.r)

= P)R-P)fL — klr— P|)exp (k|r = Pl) e -
= - BT S0 sl P exp (el - P et (61— P+ 15 )

+% (1 + &lr — P|) exp (—&|r — P|) erfc (Glr - Pl- 2G’)

2
2 G[r——PIexp( G*r - PJ]* — 4G2>}

+7—7;
1 VE? 2
‘+‘:;L Z KKW exp(iK . R) [(1 -V K? + K/QZ) exp(\/ K2 + :‘*4222:)(31‘3&3(—'—IXz—G_*‘i + Gz)
0

VET I 2
+(1 4+ VE?+ k2z)exp(—V K2 + mzz)erfc(——%—é-_i — Gz)

"2 2 "2 2
+_2_\/1’& + K exp(_Ix + K _ G2?)
Nz G 4G?

v/ K2 2
50 g \/m—zexp (‘K-R) [exp(\/ K? +_K2z)erfc(% + Gz2)
VE? 2
+ exp(— mz Jerfc(——rn— { + Mo G’z)} _ (4.19)

Here we have used the relations
24 k2

-5:;/_00 49: 5 P (— 107 +zg-r>
N7EES)
exp(:K - R) {exp(\/ K2+ /ezz)erfc(% + Gz)

T 1
So VE? + 2
/KZ 1 =2
+exp(—VK?+ /ﬁi’z)erfc(———@?é—t—ﬂ— - Gz)] ; (A.20)

and

4 foo 1 g* + k? P4k
S0 /‘°° - (97 + &%) < e 1) P <_ iz 8T

1 BT
T _)3/2 exp(zK - R) [(1 ~VEK?*+ k?2)exp(VK? + & Z)erfc(2_G+K_ + Gz)

T S (K2 + K2
+(1 4+ VE? + #%2) exp(—\/jr(z-}~—f€2z)erfc(—Kgcj_—l62 — Gz)
+% KZ; ~ exp(—-Kj;C-;"€2 - Gzzz)} . (A.21)
The tensor related to the Madelung energy is similarly calculated as
PP 9v(P)
P oP

P#0
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40
PP (1 .
- ::4 '}5?3‘{5(1 — kP)exp(kP)erfc (G’P + 55)
#0
3 kP)exp erfc g 7 exp e
4 o0 1 g2+ 52 92 + /{2
= dg. KK _
+So %:/—.-00 g (g2 + /‘52)2 ( 4:G2 + 1) exp ( 4G2
2 o0 1 g% + K2
—l= dg,——— _
S0 ;/—w T ( ez )
PP |1 .
= - PZ#:O 755—{5(1 — kP)exp(kP)erfc (GP + -2—§>
+l(l + &P) exp(—«&P)erfc (GP — _’f_) 4+ -—?—GPex _G2p? _ _f_z__
2 p 2G ﬁ P VeZ
,/ 2 2 2 2 2 2
+2£’ZKK,—L— erfc(—l-{—-+—ﬁ) + 1 VK 4k exp(—K + K )
So 'K (K2 + £2)3/2 2G 3 G 162
9 )
RS S SN % Sl .l (A.22)
S0 K VE? +? 2G
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