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This paper investigates the relation between error distribution and predictive order of minimum mean
abusolute error predictors(MMAE predictors) designed for lossless coding of grayscale images. Design of
MMAE predictors reduces to the linear programming problem. Letk be the number of coefficients in a
predictor(predictor order), we imagine that predictor orderk may have a distribution shaping effect. Main
purpose of this paper is to ensure thatk has such an effect.

1 INTRODUCTION

Recent years have seen an increased level of research in
lossless image compression, in addition to lossy compres-
sion. Lossless image codings are required and desired in
certain applications such as medical and satellite imagings
and digital archiving of cultural heritages. Since the predic-
tive coding scheme enables us to predict each pixel one by
one and rather precisely in aid of adaptation, many lossless
coding schemes employ prediction.

For lossless image coding based on prediction, the cod-
ing performance depends largely on the efficiency of pre-
dictors. Many lossless image coding formats use minimum
mean square error predictors(MMSE predictors)[1][2][3], but
MMSE predictors are susceptible to edges(the big transition
part of the brightness value) in images. So Hashidume et
al.[4] have proposed minimum mean absolute error predic-
tors(MMAE predictors)[4] which are robust to edges. [4]
says that using MMAE predictors the accuracy of prediction
is enhanced and entropy of prediction is reduced.

This paper investigates the relation between error distri-
bution and predictor order of MMAE predictors designed for
lossless image coding. Design of MMAE predictors reduces
to the linear programming problem. Letk be the number of
coefficients in a predictor(predictor order), at leastk predic-
tion errors become0. Thus, we imagine that predictor order
k may have a distribution shaping effect. Main purpose of
this paper is to ensure thatk has such an effect.
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In this paper, we define the fitting degree of actual predic-
tion error distribution and the modeling distribution(Laplace
distribution) in terms of the redundancy(the difference of real
entropy and model entropy), and measure the redundancy
changing the value ofk. Then we found that the optimum
k appears to minimize the redundancy.

2 MINIMUM MEAN ABSOLUTE ERROR
PREDICTOR

When we denote the current pixelpi’s valueB(pi), the
predicted valuêB(pi) is calculated by

B̂(bi) = θT
i · a, (1)

whereθi = [B(pi1), B(pi2), · · · , B(pik
)]T is the local cau-

sal area(support region) vector ofpi (see Fig. 1 in the next
page) anda = [a1, a2, · · · , ak]T is the vector of prediction
coefficients forpi. When we denote the set of pixels in cod-
ing areaR = {pi|i = 1, 2, · · · , S}, a problem to design
a MMAE predictor forR can be written as a mathematical
programming problem as follows:

Minimize
a

‖ e ‖1 =
∑

pi∈R

|ei|

subject to e = B − B̂,

e = [e1, e2, · · · , eS ]T ,

B = [B(p1), B(p2), · · · , B(pS)]T ,

B̂ = [B̂(p1), B̂(p2), · · · , B̂(pS)]T ,

B̂(pi) = θT
i · a (for i = 1, 2, · · · , S),

a = [a1, a2, · · · , ak]T .

(2)
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Fig. 1: Pixels of support region(k = 20). The position of
pixels in support region is defined by the Manhattan distance
from the current pixel.

The absolute part of the objective function makes this
problem difficult to solve. So, we transcribe theith element
of the vectore as

ei = e+
i − e−i , e+

i
>= 0, e−i >= 0, (3)

and boil down this problem to a linear programming prob-
lem. In the same way, transcribingaj which is thejth ele-
ment of the prediction coefficientsa, the problem (2) can be
rewritten as a linear programming problem as follows:

Minimize
a

1T · e+ + 1T · e−

subject to B̂ + e+ − e− = B,

e+ = [e+
1 , e+

2 , · · · , e+
S ]T >= 0,

e− = [e−1 , e−2 , · · · , e−S ]T >= 0,

B = [B(p1), B(p2), · · · , B(pS)]T ,

B̂ = [B̂(p1), B̂(p2), · · · , B̂(pS)]T ,

B̂(pi) = θT
i · (a+ − a−)

(for i = 1, 2, · · · , S),
a+ = [a+

1 , a+
2 , · · · , a+

k ]T >= 0,

a− = [a−
1 , a−

2 , · · · , a−
k ]T >= 0,

1 = [1, 1, · · · , 1]T .

(4)

This problem could be solved by a linear programming
method such as the simplex method or the interior-point met-
hod. In this paper, we employ Barrodale’s method[5] which
is based on the simplex method. Also, our lossless coding
scheme employs the classfication-based technique[3]: each
divided block(8 × 8 pixels) of a image is classified to select
an appropriate linear predictor based on a MMAE criterion
from C different kinds of predictors, and each predictor is
optimized for each class of blocks.

Table 1 lists the entropy of whole prediction errors for
each the standard image[4]. The definition of the entropy is
shown in section 4. From Table 1, we can see that all of the
Entropy of MMAE is smaller than MMSE. Thus, the predi-
ciotn accuracy of MMAE predictors is better than MMSE
predictors.

3 ERROR DISTRIBUTION

We encode the error image (the difference of the orig-
inal image and prediction image) using the entropy coding
for lossless image coding. Thus, we need event probabilities

Table 1: Entropy(bits/pixel) of prediction errors only. This
table indicates that the prediction accuracy of MMAE pre-
dictors is better than MMSE predictors.

Image MMSE MMAE
airplane 3.675 3.618
baboon 5.731 5.693
balloon 2.714 2.643

barb 4.123 3.969
barb2 4.398 4.302

camera 4.048 3.967
couple 3.428 3.386
goldhill 4.304 4.242

lena 4.353 4.295
lennagrey 3.968 3.913
peppers 4.277 4.224
Average 4.092 4.023

of prediction errors. But if we encode it using actual event
probabilities, the additional information will be increased,
because when we decode, we need to use the same event
probabilities as those of encoding. On the other hand, if we
model actual event probabilities, and encode errors using the
model event probabilities, the additional information will be
negligible, because it is only the scale parameter to deter-
mine model event probabilities. So, it is important to know
the shape of the error distribution.

3.1 Modeling of The Error Distribution

In general, the prediction error distribution is a mixture
distribution of some different scale parameters. In order to
effectively tackle this problem, we divide the prediction er-
rors into some groups by modeling. For classified groups, we
may obtain the high coding performance by assigning differ-
ent encoders.

In this papers, we use the modeling method called con-
text modeling.

3.2 Context Modeling

A parameterUi of a current pixelpi is defined as follows:

Ui =
6∑

j=1

1
dij

|eij |, (5)

where the pixelpij is the pixel in the local causal area given
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Fig. 2: Region of pixels for the context modeling.
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in Fig. 2, anddij
is the Manhattan-distance between it and

the current pixelpi.
Because the correlation between parameterUi and vari-

anceσ2 of the prediction error of the current pixelpi is very
strong[4], we divide into some groups for the prediction error
using a parameterU in cotext modeling.

We use values called threshold when we divide into some
groups. So, we prepare thresholds as follows:

Th0 <= Th1 <= · · · <= ThN−1,

whereN is the number of groups. Specifically we clas-
sify the prediction errors intoN groups by the parameterU .
Futhermore, we optimize those thresholds in order to mini-
mize the information value of pixels. So, we need to estimate
the information value of the prediction error. The informa-
tion value of the prediction error of a current pixel is defined
as follows.

Since the pixel values and the predictive values of graysc-
ale are in the range between0 and255, the possible values
of a prediction error are bounded between−255 and 255.
Therefore, when the predictive valuêB(pi) of the current
pixel pi and it’s quantization groupgi are given, the condi-
tional probability of the prediction errorei is defined as

Prgi(ei|B̂(pi), gi) =
Prgi(ei|gi)∑255

x=−255 Prgi(x|gi)
, (6)

wherePrgi(x|gi) is given by Probability Density Function
(PDF)f(x) as

Prgi(x|gi) =
∫ x+0.5

x−0.5

f(ξ)dξ, (7)

with zero location(mean) parameter. Using (6), the informa-
tion value of the prediction errorei is defined as

Ji = − log2 Prgi(ei|B̂(pi), gi). (8)

Using (8), we optimize those thresholds to minimize in-
formation values of the prediction error.

3.3 Shape of Distribution

Error distributions of the prediction error of all quantiza-
tion groups might become either a Gauss or Laplace distribu-
tions. On the other hand, the measured in a classified groups
might have a different distribution.

In case of the design of predictor using MMSE, we de-
sign it so as to make large prediction errors small. As a result,
very small prediction errors are disturbed. Thus, the distri-
bution will be close to a Gauss distribution and the coding
performance will be improved assuming the error distribu-
tion is Gaussian. So, we expect that when we estimate the
information value of the MMSE error, Gaussian distribution
will be good selection for model PDF.

On the other hand, in case of the design of predictor using
MMAE, we resort to a linear programming using Barrodale’s

Table 2: The Laplacian and the Gaussian function.

Laplacian Gaussian

PDF 1
2be

− |x−µ|
b

1√
2πσ

e−
(x−µ)2

2σ2

location
parameter

µ = median
i

(xi) µ =
Pn

i=1 xi

n

scale
parameter

b =
Pn

i=1 |xi−µ|
n σ =

√
Pn

i=1(xi−µ)2

n

method. As a result, at leastk prediction errors become 0 and
the predictors are designed so as to become as many as pos-
sible near 0[5]. Thus, the error distribution will be close to a
Laplace distribution and the coding performance will be im-
proved assuming the errors have a Laplace distribution for
the design of predictor used MMAE. So, we can expect that
when we estimate the information value of the MMAE er-
ror, Laplacian distribution will be good selection for model
PDF. From the above discussion, it is advantageous to ap-
proximate an actual distribution by Laplace distribution in
MMAE coding.

3.4 Distribution Shaping Effect

For design of predictor using MMAE, we know at least
k prediction errors become 0. In addition,k is inevitably re-
lated to the accuracy of prediction, because this is the number
of pixels in the support region. If we design predictors using
a smallk, the number of“0”prediction errors is decreased,
and the accuacy of prediction is also decreased. Thus, the
error distribution will become as shown in Fig. 3-(a). On the
other hand, if we design predictors using a largek, the num-
ber of“0”prediction errors is increased, and the accuacy of
prediction is also increased. Thus, the error distribution will
become as Fig. 3-(c).

From the above discussion, we imagine that predictor or-
derk may have a distribution shaping effect and that the cod-
ing performance will be improved by shaping the error dis-
tribution as Fig. 3-(b) using this effect.

(a) k : small (b) k : pertinence (c) k : large

Fig. 3: Distribution shaping effect of predictor orderk. The
coding performance may be improved by shaping the error
distribution using this effect.
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4 SIMULATION

To ensure that predictor orderk has a distribution shaping
effect, we executed computer simulations.

When we design predictors, the number of predictor class
C and the number of iterations for block classification are
important parameters. However, in order to prevent confu-
sion, we fixC = 16 and the number of iterations is chosen
10 in our computer simulation.

We defined a fitting degree of model distribution(Laplace
distribution) to actual prediction error distribution in terms
of the redundancy(the difference of real entropy and model
entropy) and measured the redundancies, changing the value
of k for several test images in Fig. 4.

(a) ”airplane”(512 × 512) (b) ”baboon”(512 × 512)

(c) ”camera”(256 × 256) (d) ”couple”(256 × 256)

(e) ”lena”(512 × 512) (f) ”lennagrey”(512 × 512)

(g) ”peppers”(512 × 512)

Fig. 4: Test images used in simulation.

The entropy of prediction errorsI is calculated as fol-
lows. When we denote the prediction errore’s event prob-
ability pg(e) (e = −255,−254, · · · , 255) in a groupg, the
entropyIg of a groupg is calculated as

Ig = −
255∑

e=−255

pg(e) log2 pg(e). (9)

Then, when we denote the groupg’s event probabilityPg,
the average entropyI is calculated as

I =
N∑

g=1

PgIg. (10)

The model entropy of prediction errorsI ′ is calculated as fol-
lows. When we denote the prediction errore’s modeled event

probabilityqg(e) (e = −255,−254, · · · , 255) in a groupg,
the entropyI ′g of a groupg is calculated as

I ′g = −
255∑

e=−255

pg(e) log2 qg(e), (11)

wherepg(e) is the event probability of the prediction error
e. Then, when we denote the groupg’s event probabilityPg,
the average model entropyI ′ is calculated as

I ′ =
N∑

g=1

PgI
′
g. (12)

BecauseI = I ′ when modeling is perfect, the real entropyI

is always smaller than the model entropyI ′;

I <= I ′.

Thus, the smaller the the redundancy(= I ′ − I), the closer
those distributions are to each other.

Simulation results are shown in Fig. 5 in the next page.
In Fig. 5, we can see that images may be divided into two cat-
egories by the redundancy tendency. Redundancy of images
in one category is increased in proportion tok like ”cam-
era” and ”lena”, and that in the other category is decreased
like ”airplane”, ”baboon”, ”couple”, ”lennagrey” and ”pep-
pers”. Considering the vertical scale of figure, we can also
see that this effect is more notable for small size images than
for large size images. For some subimage of each category,
error distributions in some quantization group when redun-
dancy is maximum or minimum are shown in Fig. 6 in the
next page. Fig. 6-(a) and Fig. 6-(b) are the distributions of
”camera” and ”couple”, respectively.

In Fig. 6-(a), we can see that the model distribution is
close to an actual distribution whenk is small. On the other
hand, in Fig. 6-(b), we can see that that is close to an actual
distribution whenk is large. Thus, when we encode images
which have the similar characteristics as ”camera”, small or-
derk prediction selection will be preferred. To the contrary,
when we encode images which have the similar characteris-
tics as ”couple”, the largek will be preferred.

5 CONCLUSION

From Fig. 5 and 6, we see that predictor orderk has a
distribution shaping effect, and the coding performance will
be improved using the optimalk. However, the reason for
rippling phenomena of Fig. 5 is under consideration.

As the future work, we are due to investigate the coding
simulation using this effect. Also, when we design predictors
using largek to use this effect, we should devise the method
to reduce side information of predictors.
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(a) ”camera” and ”couple”(256 × 256) (b) ”lena” and ”peppers”(512 × 512)
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Fig. 5: Simulation results. We see that images may be divided into two categories by the redundancy
tendency. Redundancy of images in one category is increased in proportion tok and that in the other
category is decreased.
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Fig. 6: Error distributions(”camera” and ”couple”). We can see that there are the actual distribution is close
to the model distribution whenk is large and it is close to the model distribution whenk is small.
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