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SYNOPSIS

.New estimation method of the optimum relaxation

factor for the successive overrelaxation method (SOR)

is proposed, and the efficiency of the new method is

surveyed through a number of numerical experiments.

This method can a priori determine the value of the

factor by using only the topological properties of the

problem, and it is valid for a sparse set of linear

equations obtained by using the five-point difference

scheme for any rectangular area with arbitrary boundary

conditions. The experiments clarify that the method

can estimate good approximate value of the factor.

1. INTRODUCTION

Though the iterative methods for a large sparse set of linear

equations require the minimum amount of memory neccessary for storing

only the nonzero elements, their execution-time neccessary for the

computations is generally longer than the direct methods which are

based on the elimination method. But, it is also well known that the

successive overrelaxation method (SOR) which is one of the iterative

methods can oftenly save its execution-time for a large amount comparing

to that of the Gauss-Seidel method (GS) which is also another iterative

one. For this saving of the computation time so-called the relaxation

factor, w, used in the SOR method must be appropriately determined, and
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(3)
l( 7T 7T-2 cos - + cos - )n m

a number of methods are already proposed[l, 2].

For linear systems with a certain property this relaxation factor

is expressed as function of the spectral radius of the SOR matrix, and,

therefore, the problem to determine the optimum value of the factor is

replaced by how to search the spectral radius. Since the spectral

radius is governed by the maximum eigenvalue of the SORmatrix, the

optimum value, W t' is exactly determined for a linear system obtainedop
by using the five-point difference scheme for following problem;

Seek a function u{x,y) continuous in R+S, which is twice continu-

ously differentiable in R and which satisfies

a2 u a2 u . .
~ + ~ = G{x,y) ln R, and (I)

u (x, y) =g (x, y) on S (2 )

, where G{x,y) and g{x,y) are contimuous functions defined in Rand S,

respectively, where R is the interior and S is the boundary of the unit

square 0 < x < 1, 0 < Y < 1.

In this case the spectral radius is strictly obtained as following

equation;

, where n (=l/hl ) and m (=1/h
2

) are the number of subdivisions along

x and y axes, respectively. (hI and h
2

are, therefore, the width of

one subdivision along x and y axes, respectively.) But, (3) is valid

only for above case, and the determination of the spectral radius is

generally very difficult. For example, if the boundary condition, i.e.

(2), is replaced by

u (x, y) = g (x, y) on SIC S ( 4 )

, then (3) cann't estimate the spectral radius for this case strictly.

According to the theoretical study on the convergence rate of the

Gauss-Seidel method the convergence rate is directly related to the

spectral radius. On the other hand, one of the authors of this paper

has already proposed an estimation method of the convergence rate of

the GS method for any rectangular area subdivided by the five-point

difference sheme. Since the estimation method is valid for problem

with any type of boundary conditions, that is, it can be applied, for

example, for a rectangular area supported at. one edge, the introduction

of this estimation method to the calculation of the spectral radius

directly leads to the proposal of a new estimation method of w t [3].op
The main purpose of this paper is the proposal of a new estimation

method of the optimum relaxation factor for the SOR method valid for

any linear system obtained by the five-point difference scheme applied



Optimum Relaxation Factor for the SOR Method

for a rectangular area.

In Chapter 2 the relations between fundamental iterative proce­

dures including the GS and SOR methods are explained, and in Ch.3 a

new estimation method of the relaxation factor is obtained by using

the concepts presented in the preceding chapter. The efficiency of

the method is examined through a number of numerical experiments, and

the results are presented in Chapter 4.

2. SUCCESSIVE OVERRELAXATION METHOD

Let

A u = b (5)

be a large sparse set of linear equations directly obtained by using

the five-point difference scheme for the problem presented in the

introduction, that is , (1) and (4). Then, A is possitive-definite

and symmetric.

From the i-th equation of (5) we obtain

U.
1

b. ­
1

i-I N
I a .. u. - L a .. u. )/a ..

j~l 1J J j=i+l 1J J 11
(6)

, where a
ij

, u i and b i are the elements of A, u and b in (5), respect­

ively.

By giving an appropriately selected initial value for u, namely'

u(O), (6) gives a new solution vector, u(l). By repeting this

d (k+l). d f 11 .proce ure u 1S expresse as 0 oW1ngi

(7 )u~k+l)
1

i-l . (k) N (k)
b. - \' a .. u . - L a .. u . ) / a ..

1 L 1J J 1J J 11j=l j=i+l

uJk) for j < i in (7) may be replaced by uJk+l), because uJk+l)

already obtained at the i-th stage. Then,are

b. ­
1

i-l
L

j=l

(k+l)a . .u. -
1J J

. N (k)L a . .u. )/aiij=i+l 1J J
(8)

(7) and (8) are the Jacobi and the Gauss-Seidel methods, respectively.

Let D, E and F be the main diagonal, strictly lower and strictly

upper triangular matrix of A, respectively. That is,

A = D - E - F (9 )

Then, the J and GS methods are rewritten as followings;
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(k+l)
u

(k+l)
u

(10)

(11)

By using the GS method we obtain ulk +l ) as following;

a .. u(k+l)
11 1 b. ­

1

i-l (k+l) N (k)L a"u. - L a"u.
j=l 1J J j=i+l 1J J

(12)

. (k+l)
Then, the (k+l)st approximate Solut1on, u i ' is defined as

(k+l)u.
1

u~k) + w { u~k+l) _ u~k)}
111

( 1 - w )u~k) + wu~k+l)
1 1

(P)

, where w is a relaxation factor by proper determination of which the

rate of convergence is acceralated.

The substitution of (13) to (12) yields to

(k+l)a . . u.11 1
(k) i-l (k+l)

a . . u. + w{ - L a . .u.
11 1 j=l 1J J

(k)+ b. - a . . u. }
1 11 1

N (k)La . .u.
j=i+l 1J J

(14)

The matrix expression of (14) is given as following;

u(k+l) = I - wL )-l{ ( 1 - w )1 + wU }u(k)

+ w( I - wL )-lD-lb (15)

(14) and (15) are the general form

of the point successive overrelaxation method (SOR). Note that if

we set w = 1 in (15), then (15) coincides with the expression of the

GS method, i.e. (11).

Following matrices in (7), (8) and (15),

B D- l ( E + F )

C D - E )-IF

p I - wL )-l{ ( 1 - w ) I + wU' }

(16 )

(17)

(18)

are called as the point Jacobi, point Gauss-Seidel and point successive

overrelaxation. matrix, respectively.

It is obvious that all of these iterative methods are expressed

as following;
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u(k+l) = Mu(k) + g (19)

35

, where M indicates B, C or P, and g is the second term of above three

equations, i.e. (10), (11) or (15). Then,

Mk - l + Mk - 2 + + M2 M + I )••. + g (20)

, where I is a unit matrix.

Here, we introduce the definition of a matrix norm expressed as

following;

II M II sup
x~O

II Mxll
II xII

(21)

vector norm equal to the length of the vector x,

In above expression IIMII is the spectral norm of

, where II xII is a

i.e. (Llx.1 2 )1/2.
1

the matrix, M.

By introducing (21) into (20) we obtain that if IIMII < 1, then

for k ~ 00 the solution vector u(k) tends to a convergent vector

presented by

u (I - M ) -lg (22)

That is, if UB II, II C II or II P II < 1, then above three iterative methods

converge to a strict solution vector, and the value of the matrix norm

decides the number of iterations neccessary to obtain the convergent

solution with sufficient accuracy.

Let's assume to solve the model problem in Ch.l by using above

three iterative methods. Actually the number of iterations of the

Jacobi method required to achieve a specific degree of convergence is

twice time of that of the GS method[2], and the number by the saR
method for optimally selected relaxation factor oftenly decreases till

few percent of the number of iterations of the GS method. These

differences depend on the value of the matrix norms of three convergent

matrices, i.e. (16), (17) and (18). This suggests that as a so~ver

of a large sparse set of linear equations the saR method is sufficiently

effective, rational and economical comparing to the direct method like

the Band Solver or the Skyline Solver, because the saR method requires

only nonzero elements of the original matrix, A, and the memory size

is not influenced by the elimination ordering and also by the configu­

ration of the original system. Moreover, it is very tough for the

calculation error which gives important effect to direct methods.
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3. DETERMINATION OF OPTIMUM RELAXATION FACTOR

In preceding chapter it is shown that the characteristics of the

convergence of any iterative method is governed by the spectral norm

of the convergence matrix. Especially, in case of the SOR method the

norm depends on the value of the relaxation factor, and in order to

acceralate the convergence ratio the norm must be minimized by

appropriate selection of the factor. The main purpose of this chapter

is the proposal of the estimation method of the factor for any sparse

set of linear equations which is obtained by use of the five-point

difference scheme for any rectangular area.

Let M be one of the convergence matrix, i.e. B, C and P. Then,

the spectral radius of a matrix, M, is defined as

8(M) = max IAI (23)
A E 8

M

, where 8M is the set of all eigenvalues of M[2] .

Since the convergence matrices are positive-definite in our object­

ive problem, then S(M) is equal to the maximum eigenvalue of M. That

is, (23) is replaced to following equation;

8 (M) (24)

According to [2], the value of the relaxation factor which is

optimum in the sense of minimizing P is given by

2w =

where S(B) is the spectral norm of the Jacobi method.

By considering

8(C) = S(B)z'

, then (25) is rewritten as following;

(25)

(26)

w = 2

1 + (1 - S(c»1/2
(27)

(25) and (27) suggest that if the spectral radii of the point Jacobi

and the point GS matrices are obtained, the optimum value of w for P

is calculated.
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The case of the model problem presented in Ch. 1 is a good

example where wopt can be a priori estimated by using (25). But,

the estimation method of the spectral radius of B, i.e.(3), is valid

only for the case of the boundary condition (2), and, therefore, for

the other cases where only a part of u on the boundary is given as (4)

and the others are not prescribed, the estimation of S(B) by using (3)

is not valid.

Assume the bending problem of a rectangular plate-like structure.

If the plate is fixed at four edges which surround the plate, the

estimation of Amax ' and, therefore, that of wopt ' is strictly obtained

by using (3) and (25). But~ for the other boundary conditions, above

estimation cann't be directly applied.

Let £(n) and £(m) be error vectors after nand m iterations of

the GS method applied to (5) • That is,

£ (n) (n) - uu
(28)

£ (m) (m) - uu

, where u is a strict solution vector. For n > m, we assume follow-

ing relation for these two error vectors;

From (20),

II£(n)11
II £ (m) Ii

1
10 (29)

11£ (n)" = II C£ (n-I) II ~ II C II II £ (n-1) \I

~ II cl1 2 II £ (n-2) 'II

~ II c II n-m II £ (m) II

Substitution of (30) into (29) leads to following expression.

S(C}n-m = II cll n-m ~ 10-1

(30 )

(31)

Since C is a convergence matrix, the spectral radius, S(C), is

less than 1. Then, from (31) we can obtain cIT (= n - m ) which

satisfies following equation;

S(C) = o.ll/cIT (32)
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Then, the substitution of (32) into (27) leads to following new

expression of w;

w = 2
1 + ( 1 _ a.l l / CIT ) 1/2

(33 )

(33) indicates that if cIT which is the number of iterations neccessary

for raising the accuracy by one figure is given, then w is easily

estimated.

On the other hand, Taniguchi and Kanei proposed following

equation for the estimation of cIT which is valid for the problem in

Chapter 1[3];

cIT k( 2k 2 + k + 1) B2

4 ( k+l ) ( k 2 + I )
(34)

,'where k and B are the ratio of two

edges (H/B and the width of the

rectangular area, respectively.

(See Fig.l) Then, the substitution

of (34) into (33) gives the final

form to estimate w t'op

Fixed edges

w = 2

4 (k+l) (k 2 +l)

l+(1_a.lk (2k
2
+k+l)B

2
)1/2

(35)

H

L;-----_B__J
Model ProblemFig.l

(35) indicates that wopt is estimated

when the topological properties of the

problem area are presented. That is,

(35) is a new a-priori estimation

method of w top
The boundary conditions for a

rectangular area are fundamentally

classified into following five types;

Type 1 All u for 8 1 , S2' 8 3 and S4 are prescribed.

Type 2 u for three edges are prescribed.

Type 3 u for adjacent two edges are prescribed.

Type 4 u for opposite two edges are prescribed.

Type 5 u for only one edge are prescribed.
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The estimatiop method of cIT by [3] is to estimate the number of

iteratio~s, cIT, for a rectangular area with Type 1 boundary condition

(H*B) which is obtained from original rectangular area (H'*B') of the

other boundary condition type by following procedure.

(See Fig.2-a)

If H' ~ B', then set H = H'+B'

1). Type 1 Boundary Condition

Set H = H' and B = B', and

apply (35).

2). Type 2 Boundary Condition

If H' < B', then set H = 2*H'

(See Fig.2-b)

Type 3 Boundary Condition

B=B'
~

H'
HII II

II II

H ' II II
II ..
h II

-''-- ~--~-:.::..-:.-::.-:.-----~
(a)

H'

B=B'

Fig.2 Treatment of Type 2 B.C.

H

B', and apply (35).

B ' , and apply (35).

and B

and B

3) •

(See F~g.5-b)

and apply (35). (See Fig.5-a)

If H' ~ 4*B, then set H = 4*B

(See Fig.4-a)

If H' ~ 4*B', then set H =

4*B' and B = B' , and apply

(35). (See Fig.4-b)

5). Type 5 Boundary Condition

Set B = 2*B ' . If H' > 4*B,

Note that in above procedures "B"

is the length of the shorter edge,

and "H" is the longer one of the

trarsformed rectangular area.

In order to estimate cIT B

and H may be introduced in (34).

II
II
II

"II..
II
II

I....
II

"II..
II
II
II

II II
II II

-,--!.1-===::!J
(b)

H=4B

(a)

B' B' J
='=- - - '= ,1

II
H' II

II
II

II II
II II

H II II
.. II

,---,l.b===== =:: == == ==== =-dJ
Fig.3 Treatment of Type 3 B.C.

B=B' B=B'
-~ ~ -r-

fl'

4B'

B

Fig.4 Treatment of Type 4 B.C.

H

..
H=H

2*B I,

2*B', and apply (35).

B', and apply (35).

then set H = H' and B

and B

and B

If H' > 4*B', then set H H'

Set H = 2*H' and B = 2*B', and

apply (35). (See Fig.3)

Type 4 Boundary Condition4) •
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-B' B' -1
......-c.====.:;n

II
II
II
/I
II
II
II
II
II
II
II
II..

L- ,=,,=""_-:..-..: ~I

(a)

4. NUMERICAL EXPERIMENTS

Since the estimation of oIT

by (34) includes less than 10%error,

the influence of this error to the

value of the estimated optimum H=H

relaxation factor must be examined.

This numerical experiments are done

by the comparison of w-values by

substituting oIT and 1.1*eIT into

(34) .

As obvious from the results

B

4B'

B

H' D=~~

II
II
II
II
II =4B
II
I

Case oIT A woptmax

1 50 0.9550 1.6550

55 0.9590 1.6632

2 100 0.9772 1. 7378

110 0.9793 1.7484

3 200 0.9886 1.8067

220 0.9896 1. 8148

. 4 500 0.9954 1.8730

550 0.9958 1.8786

5 1000 0.9977 1. 9085

1100 0.9979 1.9125

6 2000 0.9988 1. 9344

2200 0.9990 1.9373

7 5000 0.9995 1.9580

5500 0.9996 1.9599

8. 10000 0.9998 1. 9701

11000 0.9998 1.9715

Treatment of Type 5 B.C.

Table 1 Influence of oIT to W

(b)

Upper row for oIT

Lower row for 1.loIT

Note

summarized in Table 1, the difference

between wOIT and wl.leIT is large

for small value of oIT. But, for

the case where oIT is small, total
Fig.5

amount of iterations for the

approximate solution is small, and,

therefore, the difference does not

give important effect to the

actual iterative computation.

On the other hand, we recognize

that for cases of rather large eIT

the difference between wOIT and

wl.leIT becomes small.
In order to survey the influence

of this difference to the number of

iterations a number of test examples

must be actually solved by using

the SOR method. Test examples

treated in this chapter are const­

ructed by following procedure;

We consider two-dimensional area R

surrounded by S which are rectangular

o < x < a, 0 < y < b where for some

h > 0 the quantities a/h and b/h

are integers, namely NGl-l and

NG2-1, respectively.

For any value of h such that

a/h and b/h are integers, we have
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the difference equation

4u(x,y) - u(x+h,y) - u(x,y+h) - u(x-h,y) - u(x,y-h) = 0

(36)

for any interior nodal point, (x,y). For a node on S which is con­

nected to the boundary the difference equation is obtained by equating

one or two terms between the second and fifth in (36) to zero. For

nodes on S which are not connected to the boundary the difference

equation is obtained by replacing the coefficient of the first term

by "3" or "2" and deleting one or two terms between the second and the

fifth in (36) for the edge and the corner node, respectively. That

is, for an edge node we have, for example,

~J

3u(x,y) - u(x+h,y) - u(x,y+h) - u(x-h,y)

, and for a corner node we obtain, for example,

2u(x,y) - u(x+h,y) - u(x,y+h) = 0

o (37)

(38)

Unit load is applied for all nodes in the area, R U S.

procedure we obtain a set of linear equations

A u = b

By this

(39)

where A is a (NG1*NG2) * (NG1*NG2) coefficient matrix, and b is a unit

vector.

As the boundary conditions five types which are explained in

preceding chapter are considered, and for each type several test

examples are appropriately selected and used for the experiments. A

part of the results are presented in Appendix.

From these results we may conclude that the new estimation method

of the relaxation factor can guess rather good value of w, even though

the estimation of oIT includes about less than 10% of error, and, there­

fore, this method is valid for engineering problems.

5. CONCLUDING REMARKS

In this paper a priori determination of the relaxation factor for

the successive overrelaxation method is proposed, and the accuracy of

the estimated values is examined through a number of numerical

experiments. The results show that the estimated values of w ~ are
Opl.

near the true optimum even though it includes some error, and we may
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conclude that the new method is sufficiently valid for engineering

problems. Especially, since the proposed method can treat any problem

with various types of the boundary conditions and it is a method of

the a priori determination of the relaxation factor, it is more valid

comparing to other methods presently in use.

In order to improve the accuracy of this estimation method we

may improve the estimation of cIT, and for this purpose more numerical

experiments for the estimation of cIT must be continued.

At present, new method is valid only for a set of linear equations

obtained from the five-point difference scheme applied for a rectangular

region, and, therefore, its extension for any finite element mesh system

for a rectangular region and, furthermore, for any region without

constraints of the boundary configuration is required.
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APPENDIX RESULTS OF NUMERICAL EXPERIMENTS

In tables following symbols are used;

NGI Number of nodes on vertical edge

NG2 Number of nodes on lateral edge

cIT Number of iterations estimated by (34 )

dIT Actual number of iterations by the experiment

IT Total number of iterations by the experiment

ITO Total number of iterations by the GS method

ITl Total number of iterations by the SOR method for estimated w
opt

IT2 Total number of iterations by the SOR method for true w
opt

w
opt Relaxation factor estimated by (35 )
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H' Length of the vertical edge of the rectangular area

B' Length of the lateral edge of the rectangular area

H Length of the longer edge obtained by the procedure in Ch.3

B Length of the shorter edge obtained by the procedure in Ch.3

k Value of H/B

Table 2

Number of Iterations for Type 1 Boundary Condition

43

k=41/31
NGl=40 H'=41

NG2=30 B'=31

OIT=f(k)B2=290

H=41

B=31

wopt=1.835 D
dIT ITw

10-1 10- 2 10- 3 10- 4 10- 5 10- 6 10-7

1. 00 260 286 285 284 285 285 285 1970

1. 81 55 23 23 22 23 23 23 192

1. 82 52 20 20 20 20 21 20 173

1. 83 50 17 16 16 17 17 17 150

1. 84 49 19 5 9 18 11 17 128

1. 85 47 25 2 15 16 10 19 134

1. 86 53 20 2 18 14 19 18 144

1. 87 58 15 9 20 15 21 8 146

ITl/ITO=IT2/ITO=0.065

Table 3

Number of Iterations for Type 2 Boundary Condition

k=99/20NGl=10 H'=10

NG2=100 B'=99

OIT=f(k)B 2=180

B=20

H=99

wopt=1. 797

dIT ITw
10-1 10- 2 10-3 10-4 10-5 10-6 10-7

1. 00 160 195 192 189 189 188 188 1301

1.77 41 24 22 22 20 20 19 16a

1. 78 40 21 22 20 19 17 18 157

1. 79 38 20 21 19 16 15 15 144

1. 80 36 19 19 18 16 10 8 126

1. 81 34 18 17 18 17 19 7 130

1. 82 32 20 20 20 20 15 8 135

1. 83 35 22 19 20 20 14 14 144

ITl/ITO=IT2/ITO=O.097
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Table 4

Number of Iterations for Typ2 2 Boundary Condition

k=111/11
NG1=100 H'=100

NG2=10 B'=11

oIT=f(klB2=57

H=lll

B=ll

Wopt=1. 668 D
dIT ITW

10-1 10-2 10- 3 10-4 10- 5 10-6 10-7

1. 00 47 56 57 56 57 56 57 386
1. 64 20 20 11 11 11 11 11 85
1. 65 19 11 10 10 11 10 11 82
1. 66 19 10 10 10 10 10 10 79
1. 67 19 9 10 9 10 9 10 76
1. 68 18 9 10 9 9 10 9 74
1. 69 18 9 9 9 10 11 10 76
1. 70 18 9 9 10 11 11 11 79

IT1/ITO=0.200 IT2/ITO=0.192

Table 5

Number of Iterations for Type 2 Boundary Condition

NG1=30

NG2=40

OIT=536

H'=30 H=60

B'=41 B=41

W t=1. 877op

k=60/41

dIT ITW
10-1 10- 2 10- 3 10-4 10- 5 10-6 10- 7

1. 00 480 532 531 531 531 531 532 3668

1. 85 78 34 34 34 34 34 34 282

1. 86 72 29 30 30 30 29 30 250

1. 87 66 24 25 24 24 25 24 212

1. 88 62 16 14 16 25 18 19 170

1. 89 70 8 19 18 27 17 18 177

1. 90 72 13 20 26 22 20 20 193

1.91 72 22 21 28 28 17 25 213

IT1/ITO=IT2/ITO=0.046
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Table 6

Number of Iterations for Type 3 Boundary Condition

45

NG1=10

NG2=100

oIT=190

H'=10 H=200

B'=100 B=20

Wopt=1. 802

k=200/20=10

W dIT
IT

10-1 10-2 10-3 10-4 10-5 10- 6 10-7
1. 00 161 195 195 194 194 193 193 1325
1. 77 42 23 23 22 22 21 20 173
1. 78 41 21 22 20 21 19 18 162
1. 79 40 19 20 20 18 17 16 150
1. 80 38 19 . 19 18 17 13 12 136
1. 81 37 18 18 18 17 13 12 133
1. 82 36 18 17 18 18 20 11 138
1. 83 35 18 21 19 21 17 12 143

IT1/ITO=0.103 IT2/ITO=0.100

Table 7

Number of Iterations for Type 3 Boundary Condition

NG1=30

NG2=40

oIT=1090

H'=30 H=80

B'=40 B=60

W t=1. 912op

k=80/60

dIT ITW
10-1 10-2 10- 3 10-4 10-5 10 6 10 7

1. 00 974 1076 1076 1076 1076 1076 1076 7430

1. 88 126 58 58 58 58 58 58 474

1. 89 114 50 51 50 51 50 50 416

1. 90 101 42 42 42 42 42 42 353

1. 91 88 30 30 31 30 30 31 270

1. 92 76 34 27 26 30 27 21 241

1. 93 88 27 39 25 36 30 33 278

1. 94 99 38 39 33 41 33 33 316

IT1/ITO=0.036 IT2/ITO=0.032
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Table 8

Number of Iterations for Type 4 Boundary Condition

NG1=10 H'=9 H=244 k=244/61=4

~ ~NG2=60 B'=61 B=61

oIT=1619 w t=1.927Op

dIT ITw
10-1 10-2 10- 3 10-4 10- 5 10-6 10-7

1. 00 1366 1649 1649 1649 1650 1649 1649 11261

1. 90 172 74 74 74 74 74 74 616

1. 91 154 62 63 63 62 63 62 529

1. 92 133 50 50 49 50 49 50 431

1. 93 110 28 24 17 53 37 29 298

1. 94 107 36 45 30 44 32 41 335

1. 95 118 46 58 35 39 51 48 395

1.96 154 50 43 76 64 53 50 490

ITl/ITO=IT2/ITO=0.026

Table 9

Number of Iterations for Type 5

NGl=50

NG2=50

oIT=4353

H'=19 H=400·

B'=50 B=100

w t=1. 955op

k=4

Boundary Condition

o
dIT ITw

10-1 10-2 10-3 10-4 10-5 10-6 10-7

1. 00 3755 4594 4593 4594 4594 4593 4594 31317

1. 940 298 120 120 121 120 120 120 1019

1. 950 239 88 87 88 87 88 88 765

1. 951 232 84 84 84 84 83 84 735

1. 952 225 80 80 80 80 80 79 704

1. 953 218 76 75 76 75 76 76 672

1. 954 211 71 70 71 71 71 71 636

1. 955 203 65 65 66 65 65 65 594

1. 956 194 59 58 58 57 57 57 540

1. 957 186 52 46 40 37 72 63 496

1. 958 176 43 31 90 55 46 41 482

1. 959 169 34 88 50 42 62 65 510

1. 960 163 73 56 44 65 60 43 504

1. 970 226 51 95 73 83 45 83 656

1. 980 308 127 103 117 114 97 140 1006

1. 990 636 216 214 225 225 214 269 1999

ITl/ITO=0.019 IT2/ITO=0.015




