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SYNOPSIS

This paper presents an optical-waveform synthesizer as one

of the applications of optical bistable devices. This device is

advantageous in terms of faster operation in which width of each

pulse obtained is down to the order of subnanosecond, because this

device employs both GaAs- and Si-optoelectronic switches as

photodetector . Optical pulse shaping as a preliminary experiment is

also described.

I. INTRODUCTION

Devices for optical signal processing have recei ved much attention and advanced a lot

recently.(1) On the future aspect of their applications, however, it is too early to make

definite remarks. Among those devices, optical bistable devices have been greatly

investigated and are expected to be one of the most important elements to realize an'

optical computer. For, as one of the applications of these devices, optical multi vibrators

or optical pulse generators can be constructed. Optical bistable devices (OBO's) are

roughly classified into two groups by the type of feedback. One is all-optical or

"intrinsic" type of OBO's, and the other, "hybrid" type. Intrinsic devices generally employ

a Fabry-Perot resonator containing a nonlinear medium inside, and optical feedback is gi ven

to the medium. Hybrid ones are based on the principle that electric signals proportional to

optical ones are fed back to an electrooptic crystal which shows nonlinear refraction. In both

cases, some kind of feedback is necessary for optical bistability. Hybrid OBD's can be applied

as optical functioning devices to optoelectronic systems where optical signals co-operate with

electric ones. Intrinsic devices have the advantage in fabricating systems dealing with

pure-optical signals. And by using small sized semiconductor-intrinsic devices, ultra-fast
'h' I d 'bl (2)SWltc mg e ements are expecte paSSl e.
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In this paper, we present high-speed-hybrid devices which work as optical-waveform

synthesizer. Further applications are open to compose optical multi vibrators. These devices

employ GaAs- and Si-optoelectronic switches as photodetector, that gives the devices faster

operation compared with conventional hybrid devices with photodiodes as detector. As a

preliminary experiment, we performed optical-pulse shaping by using optical pulses from a

dye laser (pulse width ",3ns) as a light source and Si OE switches only without GaAs ones.

2. OPTICAL-WA VEFORM SYNTHESIZER

2.1 Device Schematic and Principle

Figure 1 shows a schematic of the waveform synthesizer introduced in Chap. 1. This

device employs two electrooptic modulators which are controlled by a Si optoelectronic (OE)

switch and a GaAs OE switch, respectively. The modulator controlled by the Si OE switch,

called MOD. 1, produces a step-wise optical pulse P, (tl with a rise-time on the order of
l.n

picosecond and a pulse width of approximately 100 nanosecond because a carrier lifetime in

Si is on the same order.(3) The optical pulse P. (tl is incident on the modulator controlled
l.n
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Fig. 1 Optical-Waveform Synthesizer with GaAs- and Si-Optoelectronic Switches.

by the GaAs OE switch, MOD.2. The GaAs OE switch is triggered by the transmitted optical

pulse P (t-T) delayed by the optical fiber. Suppose that at time t =0, a picosecond op­
t

tical pulse triggers the Si OE switch. Then, P. (tl can be written as
l.n

Pin(tl =P U(tl (1)

where u(t) denotes a unit step function. In time interval O<t<T ,MOD.2 is in a transparent

state owing to an off-state of the GaAs OE switch, and P (tl is in the "high" state. At t=T,
t

P t (t-T) triggers the GaAs OE switch, that makes the MOD.2 opaque, and P (tl falls into the
t
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"low" state. That means at t=2T, P (t-Tl transits to the "low" state, and the GaAs OE
t

switch follows on account of the shorter carrier lifetime in GaAs (::: 100ps(4\ Hence, P
t

(tl

comes up to the ''high'' state again, and those switching actions go on. Therefore, the

transmitted optical power P (tl is roughly represented by the expression
t

Pt(t) = P [U(tl - U(t-T) + U(t-2T)- U(t-3T) + U(t-4T) - ••••• (2)

which is synthesized of the incident optical power.

2.2 "Auston"-Type Optoelectronic Switches

Since optoelectronic switches are basic elements to construct the optical-waveform

synthesizer, this section mentions optoelectronic switches. As shown in Fig. 2, OE switches

are in the microstripped transmission-line configuration. These switches were first

investigated much by Auston.(5) So OE switches in Fig. 2 are sometimes called "Auston"-type

OE switches. OE switches can generate a high-power electric pulse with a rise-time of less

than 10 ps(5) on being triggered by a picosecond optical pulse. Therefore, these switches are

very useful for the systems where ultra-fast switching is required such as measuring systems

for picosecond optical pulses.
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Fig. 2 "Auston"-Type Si Optoelectronic Switch.

In Fig. 2, on the top of the Si substrate, two Al electrodes are evaporated, and they

are opposite across a small gap. The back plane is uniformly evaporared with Al to make the

ground plane. When the gap is irradiated with an intense-visible-laser pulse, that causes

photoconducti vity near' the surface of the substrate, giving ultra-fast switching. The

schematic for GaAs OE switch is the same as one in Fig. 2, and switching speed is also on

the same order .(6) However, fall-off characteristics of Si switches are much slower than

those of GaAs ones by the reason of the difference of the carrier lifetimes.

Figure 3 indicates the oscillograms of the response of Si OE switch triggered by light

from a dye laser (eastimated pulse width :::3ns) pumped by the N2 laser. In those oscillograms,

the rise-time is limited by the bandwidth of the oscilloscope used (lOOMHz). The practical

rise-time can be evaluated as less than 330 ps from the experiment mentioned in Chap. 3.
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Fig. 3 Response of the Si Optoelectronic Switch with the Gap Width 0.8mm

and Incident Energy of the Laser on the Gap of Approximately 20 ]JJ.

Fig. 3 (b) is the Ten Times Magnified Version of the Part Marked *
in Fig. 3 (a). A Bias is the Pulsed Bias of -640 V.

2.3 Analytical

In this section, calculated characteristics of the device in Fig. 1 are described. A

trigger by a picosecond optical pulse to the Si OE switch at t=o produces a step-wise

optical pulse P. (t). Suppose P. (t) is represented by the waveform in Fig. 4. In Fig. 4, t= = r
denotes the rise-time of MOD.I. The transmitted optical power P (t) is given by the

t
follo-.ying set of the three equations:

vet)

G(t)

1
- p. (t) [1 + COS (11 (a+V(t)/v »]

4 1n 11

L
t

en 1 -(t-T)/To-- (lle+]Jh)-- P (t-T)e dT
h\l r 2 0 t

(3)

(3) ,

(3) , ,

where a is a bias retardation factor, V ,a half-wave voltage, V ,a bias voltage, Z ,a
11 B 0

characteristic impedance of the transmission line (50 ohms), G (tl. a conductance across the

gap of the GaAs OE switch, ]J +]J ,a sum of electron and hole mobilities in GaAs ( "'10000

cm2IV- s), r , a gap width, and ~, a carrier lifetime in GaAs ( '" lOOps). Equation (3) iso
evaluated in Fig. 5 with r = 10 ]Jin and wavelength of optical source 0.5 ]Jm.
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Fig. 4 Supposed Waveform of the Incident Pulse Pin(t).
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Fig. 5 Calculated Characteristics of the Optical-Waveform Synthesizer.

In Fig. 5, as parameter, we take the pulse height of the incident power Pin' the optical bias

retardation factor· a, the delay time of the optical fiber T , and the rise-time of the

MOD.I, or t .r
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3. OPTICAL-PULSE SHAPING

3.1 Experimental Setup

Figure 6 shows the experimental setup for optical-pulse shaping whose configuration is

the same as that of the device in Fig. 1. However, only Si OE switches are invol ved in Fig.

6. Figure 6 also includes an optical-pulse-waveform monitor composed of the same elements

as those in the pulse shaper (principle of the monitor is described in Section 3.2). The more

specific configuration of the optical-pulse shaper is given in Fig. 7. A half-wave voltage of

the modulator in the pulse shaper is about 200 V for wavelength A of 0.46 \.I m. Electrooptic

modulators used are Pockels' cells consisting of LiTa03' controlled by the Si OE switch. As

a light source, we employed a dye laser pumped by the N
2

laser. Take Pin (t) as a laser pulse

from the dye laser. The beamsplltter devides P, (t) into the incident pulse P. (t) on the
In lnc.

pulse shaper and the trigger pulse P . (t) to the waveform monitor. The delayed .trans-
trlg.

mitted pulse P (t-T) turns on the Si OE switch I, that causes the opaque state in the
tran.

modulator, and since the carrier lifetime is much longer than the pulse width invol ved here

(width of the pulse from the dye laser "3 ns « 100 ns), the "on" state of the Si OE switch

continues long after P. (t) goes through the modulator. Hence, the incident optical pulselnc.
P. (t) is shaped into the pulseP (t) with the pulse width of approximately T. The use
lnc. tran.

of a GaAs OE switch instead of the Si one can make a pulse train with the width T for each

pulse because of the much shorter carrier lifetime.

3.2 Principle of Waveform Monitoring

The shaped optical pulse P (t) has the pulse duration on the order of
tran.

subnanosecond. Hence, special equipment is required to monitor the waveform of P (t) •
tran.

We constructed the monitoring system comprising of the LiTa0
3

Pockels' cell and the Si OE

switch. In this section, the principle of the monitor is gi ven. The pulse P . (t), after
trlg.

going through the optical delay T, triggers the Si OE switch, that gives the gated pulse

P (t) U(t-T) as the output pulse P (t,T) , where U(t) is the unit step function.
tran.· out

Changing the value of T from TO to TO +(N-l)LiT by the increm~nt of LiT gives a train of

N-pulses P (t,To+iLiT) ,(i =O,I .... ,N-l). The pulses P (t,To+illT) are converted into
out out

electric signals and integrated to become v.;. which is proportional to energy of P (t, TO
~ out

+ i!:>.T) , or

V.
1--

(4)

In Fig. 8, oblique-lined areas correspond to Tti. Cross-oblique-lined areas correspond to ~-

v.;·+l· Hence, ( V.- V. I)/!:>.T is approximately proportional to the sampled value of P
t

(t-
~ 1-- 1--+ ran.

TO) at t=TO + (i+1/2) LiT if the condition
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Fig. 6 Configuration of the Experimental Setup.
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Fig. 7 Detailed Illustration of the Pulse shapero
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dP (t-,o)
tran.

dt t=To+(i+l/2)Ll,

p «i+ll Ll,) - P (ill,)
tran. tran. (5)

holds where i= 0,1,2,••.• ,N-2.

a 'a t

Fig. 8 Principle of Waveform Monitoring.

3.3 Experimental Results

Figure 9 indicates the experimental results: (a) and (b) are the sampled waveform of

the shaped optical pulse P (t)j(a)' and (b)' are that of pre-shaped optical pulse P, (t).
tran. lnc.

In Fig. 9 (a), the optical delay time T is taken as about 930 ps, and in Fig. 9 (b), T '" 600

ps.The time resolution in the pulse monitoring, or IlL, is 330 ps. The Si OE switch I is off

when t < T ,and at t=T ,the OE switch turns on. The "on" state continues for about 100 ns
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on account of the 100-ns-carrier-lifetime in Si. Since the width of the optical pulse involved

here is approximately 3 ns, the Pockels' cell controlled by the Si OE switch works as a linear

optical gate. In Fig. 9 (a) and (a)', the Si OE switch I turns on at a time when the majority

of energy of P. (t) passes through the pulse shaper. Hence, it is difficult to see whether
~nc.

P. (t) is shaped or not. In Fig. 9 (b) and (b)', however, the incident optical pulse P. (t)
~nc. ~nc.

has enough power before and after the turn-on time of the Si OE switch I, or T: it is clear

that the optical pulse shaper works.
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Fig. 9 Experimental Results.

3.4 Discussion

In Fig. 3, the response of the Si OE switch measured by an oscilloscope (l00 MHz) is

giYen. Since the rise-time of the switch is limited by the bandwidth of the oscilloscope,.

nothing definite about the rise-time is known from Fig. 3. In this section, the rise-time of the

switch is estimated from the results of Section 3.3. In Fig. 9 (b), the negati ve-slope portion

with heavy solid line is determined by the rising characteristic of the Pockels' cell in the

pulse shaper which is controlled by the Si OE switch L Therefore, the rising response of the

Si OE switch I causes the negative slope in Fig. 9 (b). By measuring this negati ve slope, the
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rise-time of the switch can be evaluated. Given Fig. 9 (b), a fall-off time in the region with

hea vy solid line is 330 ps which is the time resolution of the monitor. Hence, the rise-time of

the Si OE switch is, at least, estimated to be less than 330 ps.

4. CONCLUSIONS

We have describe~ the optical waveform synthesizer with utilizing both GaAs- and

Si-optoelectronic switches. The characteristic prospect of this device is faster operation.

(From the numerical calculations, a train of pulses with a pulse width for each pulse on the

order of subnanosecond can be obtained from this synthesizer.) As a preliminary experiment,

optical-pulse shaping with Si OE switches was done, and the rise-time of the Si OE switches

was evaluated to be less than 330 ps from the results in the case of illumination of a laser

pulse from the dye laser on the gap of the switches. It is expected that the use of a

small-gap-width-optoelectronic switch and low-half-wave-voltage modulator enables us to

demonstrate the optical-waveform synthesizer with the use of a cw laser.
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