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Electrochemistry of Redox Reaction

III. On the Kinetic Equations for Chronoamperometry

* **Tsutomu OHZUKU and Taketsugu HIRAI
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SYNOPSIS

A basic kinetic equation of potential-step chrono­

amperometric current-time curve controlled by the rates

of diffusion and electron transfer for a simple one­

electron charge transfer reaction was given and various

features of current-time curves were deduced from a

theoretical treatment. The current-time equations for

reversible and irreversible electron transfer processes

appear as special cases with limited conditions of the

equation reported in the present paper. And a

potential-step chronoamperometric method to determine

kinetic parameters from a current-time curve was proposed

therefrom. The extension of a basic kinetic equation

to more general multistep charge-transfer process

was also considered.

1. INTRODUCTION

In the previous papers l ,2) , we have dealt with the kinetic equations

on the steady-state polarization voltage-current curves for a rotating

disk technique and the potential-time curves for a chronopotentiometric

technique from a unifying point of view.
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There have been many excellent treatments on the potential-step

chronoamperometric current-time equations for various electrode
3-10)processes • However, it seems to be not adequate to apply the

equations directly to the kinetic studies of redox reaction partly

because the equations are only valid under the restricted conditions

and partly because the direct determinations of the kinetic parameters

such as the apparent exchange current density and the transfer coef­

ficient are hardly attainable from the equations.

In this paper, we have considered a general potential-step chrono­

amperometric current~time relationship without any restricted conditions

with respect to the kinetics of charge transfer, in which the equations

for reversible and irreversible electron transfer process appear as

special cases.

2. THEORY OF THE METHOD

In the case of a single elementary charge transfer reaction

Ox + e :t Red (1)

which involves two soluble species, neglecting the double layer effects,

the current-voltage characteristics under the potentiostatic condition

may be represented by1)

J(t) = J;. [CR(o,t).exP{~~(Ec - EO)} - Co (O,t).exp{-(l ;Ta)F(Ec - EO}}] (2)

where J~ is the apparent standard exchange current density in A.cm- 2 ,

J(t) is the current density in A.cm- 2 as a function of time, t is the

time in seconds elapsed after the beginning of electrolysis, EC is the

controlled electrode potential with respect to reference electrode

( V vs.RE ) and EO is the standard electrode potential in V ( vs.RE )

for the reaction (1), while CR(O,t) and Co(O,t) are the surface

concentration of the species Red and Ox, respectively, in mo1es.cm- 3as

a function of time.

In order to derive a potential-step chronoamperometric current-time

equation, the surface concentration of Red and Ox must be obtained by

solving Fick's equation for linear diffusion under the following

initial and boundary conditions,

Co(x,t) c~, CR(x,t) = C~ at t 0 (3)

CO(x,t) = CO for x -+ co
R

(4)
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J (t)
acO(x,t)

-FDO( aX ) x=O =
aCR(x,t)

FD ( )
R ax x=o at t > 0 (5)

where C~ and cg are the concentrations of the species Red and Ox,

respectively, in moles cm- 3 in the solution of bulk.

Combination of eqs.(2) and (5) gives the boundary conditions for

potential-step chronoamperometry

ac
O

(x, t)
( ax )x=o == (6)

aCR(x,t)
( ax )x=o := (7)

at t > 0, with

(8)

(9)

(10) •K =
DR

DO

By taking the Laplace transforms of the Fick's equation and the

boundary conditions ((4), (6), and (7» and solving the second-order

ordinary differential equations under the given'initial and boundary

conditions, and then returning to the functions CR(x,t) and Co(x,t)

and substituting them into eq.(2) with x = 0, finally one has

J(t) _
--:T -

o
[
OaF 0 {(l

CR'exp{R¥(EC - EO)} - cO'exp -

•exp (A 2trerfc (A It)

- a) F (E - EO)}J
RT C

(11)

with

S
J O [1 aF 1 (l-a)F ]-. -exp{ -(E - EO)} + -exp{ - (E - EO)} (12)
F lOR RT C I5Q RT C
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3. NATURE OF THE FUNCTION exp(A2t).erfc(AIE)

Since the shape of current-time curve was indicated to be simply

determined by the function exp(A 2t).erfc(AIE) because the bracket in

eq.(ll) was constant under a given condition, it is necessary to

understand the nature of the function.

Approximation of the function can be done for large and for small

value of AlE 11) . For small value of AlE, erf(AIE) can be expanded

to the following series

erf (AlE) 2 ~ (-1) n (AlE) 2n+l }
r="rr {AlE + L

Y /I n=l (2n + l)n! (13)

and consequently

exp(A2t) 'erfc(AIE) (14)

can be obtained.

Conversely, for large value of AIt, eXP(A 2t)'erfc(AIE) can be

represented as

exp(A2t) 'erfc(Avt)

_l_{_l_
fi Ait

1 + + (_l)n-l 1·3·---' (2n - 3)} (15)
2 (Avt) 3 2n- l • (AlE) 2n-1

Since the series in eq.(15) does not converge, one should take finite

terms of the series.

Figure 1 shows the nature of the function exp(A 2t).erfc(AIE).

Curve (a) is obtained by calculating the sum of the terms up to 11th

term in eq.(13) combined with eq.(14). Curves (b) and (c) are obtained

by calculating the sum of the terms up to 5th and 4th term, respective­

ly, in eq.(15) as an approximation. The solid line in Fig.l indicates
the values calculated from eq.(14) with the results of the computer­

assisted numerical integration on erf(AIE) , which was confirmed by the
numerical table12).

According to Fig.l, if one takes the Il-terms sum in eq.(13) combined

with eq.(14) as an approximation for the function, it gives precise

values of the function for 0 to 1.5 in AlE , and if one takes the 4­

terms or 5-terms sum in eq.(15), the approximation is fairly good for

the values of AlE greater than 2.

Further approximation can be done under the more restricted con­

ditions. For the value of AlE less than 0.02, the terms in eq.(13)

except the first term can be dropped and consequently one can take
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Fig.l The nature of the function exp(A 2t).erfc(AIt)

Solid line from eg. (14) combined with the results of the

numerical integration on erf(AIt)

Dashed line (a) from the sum up to 11th term in eg. (13)

Dashed line (b) from the sum up to 5th term in eg. (15)

Dashed line (c) from the sum up to 4'th term in eg. (15)

2 2AItexp(A t)'erfc(AIE) = 1 - ~
liT

for AlE < 0.02 (16)

as an approximation for the function.

On the other hand, the second term to n th term in eg.(15) can be

dropped for the value of A/tgreater than 4 and then one can take

as an approximation.

for Av't > 4 (17)
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4. POTENTIAL-STEP CHRONOAMPEROMETRIC CURRENT-TIME CHARACTERISTICS

(18)E
e

Since the function exp(A 2t).erfc(AIt) was known, one can figure

out the potential-step chronoamperometric current-time characteristics

from eq. (11) •

Before electrolysis, the bracket in eq.(ll) should be zero and

consequently the electrode potential Ee before electrolysis can be

calculated to be °
RT CR

EO - -In-­
F CO

°Equation (18) is the another expression of the condition (3).

When the step function signal of voltage EC is imposed on the system

at t = 0, the current will begin to flow with the relationship of

eq. (11) •

By introducing eq. (16) for the value of Alt less than 0.02, one

obtains

J(t) = [CO {CLF(E E)·} CO. {_(l-CL)F(E -EO)}]
JS R'exP RT C - ° - ° exp RT C

°
(19)

for t < 0.0004

A2
(20)

where A is given by eq.(12).

In eq.(19), when one of the terms in the bracket is much greater

than the other, one of the terms can be dropped and then eq.(19)

becomes

for

( 21)

(24)

or

for

J (t) = _cO.JS. {_(l - CL)F(E _ E )}'[l- 2AltJ° ° exp RT C ° ITf

°RT CR-In--
F CO

°

(23)

The right hand sides of the equations (22) and (24) correspond to

the electrode potential Ee before electrolysis as was given in eq.(18).
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Equations (19), (21), and (23), which are formally the same as
described by Delahay5,6) , Gerischer and Vielstich7), indicate that

the straight lines can be observed in the J(t) vs. It plots under the

condition t < O.0004/A2 and consequently one can easily determine the

kinetic parameters J; and a.

For an another extreme case, by introducing eq.(17) for the value

of A/t greater than 4, one obtains

J (t) = [

(25)

for t > 16
7"

(26)

In eq.(25), when I EC - EO I
reduces to the following simple

o
F.CR• v-o; 1

J(t) = _.......,;,,~.....:.;..._

liT It

» RT/aF, RT/(l-a)F, the equation

expressions

(27)

or

(29)(1 - a) F] 2- exp(- RT ·n) exp(A t).erfc(AIt)

J(t) =
-F·CO.ID":"o 0 1

liT • It (28)

These equations are sometimes refered as the Cottrell equation3).

Equations (25), (27), and (28) mean that the J(t) vs. l/It plots

give a straight line for t > 16/A2 and the diffusion coefficient DO

and/or DR can be obtained therefrom.

Although equations (19), (25) and their derivatives are important

relationships on chronoamperometry, they only cover the part of the

current-time curves, that is, major part of the current-decay curves,

O.0004/A 2 < t < 16/A2 , still remains void.

Although it is possible to figure out current transient by using
800eq.(ll) for any J o ' CR' CO' a, EC' EO' DR' and DO' it is convenient

to consider the following case.

Putting cg = C~ = C, DR = DO = 0, and EC - EO = n, equations (11)
and (12) become

J(t) [ aF
-8- exp(RT· n)
Jo'C

with
J8 .
o [aF (1 - a) F ]A = F ID . exp (RT •n ) + exp (- RT . 11 ) (30)
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The conditions cg = c~ and DO = DR are not serious limitations

because cg = c~ can be fulfilled under an experimental condition and

because the values of DR = DO are the same order of magnitude in an

ordinary solution.

Since exp(A2 t ). erfc(AIt) is unity at t = + 0 in eq. (29), the current

at t = + 0 corresponds to that of no mass transport effect.

The effect of transfer coefficient on the current-applied voltage

characteristics at t = + 0 was shown in Fig.2. Figure 2 indicates

that one can easily determine J~ and a if the current at t = + 0 can

be obtained.

The effects of the apparent standard exchange current density J~

and applied voltage-step n on current transient were shown in Figs.3

and 4.

On the same time scale, J~ and n affect the shape of the current­

time curves as were illustrated in Figs.3 and 4. It should be noted

that the shape of the current-time curve is the same with respect to

v
-1 5 L_u

O

.L
1

LlLJLLJLLJLl..J......IO......l......l......l......l--l-l-'--'~:"'-'

I

5

u
tf)O..,--0-.., -5

Fig.2 The effect of transfer coefficient on the shape of the zero-time

current-overvoltage curves. T = 298 oK

a : (a) 0.1, (b) 0.3, (c) 0.5, (d) 0.7, and (e) 0.9
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the time factor Aft as was indicated in eq.(ll) and that the current

transient with respect to real time t highly depend on the values of
S

J O' EC' DO' and DR'

5. SIGNIFICANCE OF THE EQUATION ON DETERMINING KINETIC PARAMETERS

Since the shape of the current-time curve is simply determined by

the function exp(A 2t).erfc(AIt) and the absolute value of the current

is controlled by the factor

S [0 { a.F 0 (1 - a. l F JJ o' CR·exp RT (EC - Eol} - Co·exp { - RT (EC - Eol}

according to the analytical results of eq.(lll, the following rapid

estimation of J~ and more precise determinations of the kinetic

u
V') 0.,-

oO~L--L--L--....J'----J'----J'----JL-...JL-...J-.J

0.5 1.0
t I sec

Fig.3 The effect of the apparent standard exchange current density
on the shape of current-time curves

n
s
= 0.24 V, a. = 0.5, T = 298 oK, D = lxlO-5 cm2.sec- l •

J o : (a) 0.1, (b) 1, (c) 2, (d) 4, (e) 10 and (f) 20 A'cm- 2 •

83
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parameters would be possible.

As was indicated by eq.(ll), real time current response only depends

on the value of A which is independent of the concentration of cg and

c~, i.e., rapid decrease in current means large value of A and

conversely slow decrease means small value of A as were illustrated

in Fig.3 and 4.

According to eq.(12), the value of A is mainly influenced by J~

under a given experimental condition. Consequently, if one has

well-defined current-time curves, one can determine DR and DO from

eqs.(27) and (28) and also determine J~ and a by using a curve-fitting

method based on eqs.(ll) and (12) after estimating J~ and a from

eq.(19) and its relatives.

In the present study, the double-layer charging effects was not

15 -

u
1/)010--,-

5

e

0.5
I sec

1.0

= 50 A.cm- 2 , D = lxlO-5 cm2.sec-l •

(c) a•09, (d) O. a6 and (e) a.a3 V.n

The effect of applied voltage-step on the shape of current­

time curves.
o Sa = 0.5, T = 298 K, J o

(a) 0.15, (b) 0.12,

Fig.4
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considered. If the effects existed in an electrode system, one should

have an initial spike in the current-time curve. The large value of

J~, however, also gives an initial spike in the curve even without

any double-layer charging effect as was demonstrated in Fig.3.

The difference between them is the value of the current at t = + 0,

that is, one is an infinite current and the other is a finite current

as was illustrated in Fig.l. Further considerations is out of

purpose in this paper, which will appear in a separate paper describing

experimental results together with the network analysis of the system

including an experimental cell and a potentiostat.

6. EXTENSION OF THE EQUATION TO MULTISTEP CHARGE TRANSFER REACTION

For a hypothetical n-step reaction with consecutive n-electrons

transferl ,2)

Ox + e

(32)

( 31)

I + e + Red (Eon' ct. , JS )m(n-l) + n· On
J

by solving the Fick's equations under the corresponding initial

and boundary conditions to eqs.(3), (4), (6), and (7), the potential­

step chronoamperometric current-time characteristics may be repre­

sented as

with
A-+F/DR ( 33)

- ct.o)Go}
~ ~

where

n n
exp { L ct... G 0 + L (1 - ct..) Go}

i=l ~ ~ i=2 ~ ~
A=-----:;--";....;;'-----.~r__'''------;:------n 1 k-l k

L -S- exp { L ct. 0 • G 0 + L (1
k=2 J i=l ~ ~ i=2

Ok

(34)

and
B

n k-l
L +exp{ L ct.. 'Go +

k=2 J i=l ~ ~
Ok

(35)
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with

(36)

where EC is the controlled electrode potential, J(t) is the current

density as a function of time, while ai' EOi ' and J~i are the transfer

coefficient, the standard electrode potential and the apparent standard

exchange current density, respectively, for the elementary step i.

It was assumed that Ox and Red were the diffusing species and the

intermediate did not diffuse away from an electrode surface.

Before electrolysis, i.e., J(t) = 0 at t ~ 0, equation (32) becomes

°RT CRE = EO - -In- (37)
nF CO

with °
E =

°
1 n-. L E .
n i=l o~

Equation (37) represents the equilibrium potential before electro­

lysis for the reaction Ox + ne- ~ Red.

When J S
o ..~ » J O

S which corresponds to the consecutive electro-
~, ~T'" m

chemical reaction with single rate-determining step, the current-

time curves for oxidation and reduction processes may be given by

° S n
J(t) = n.cR·Jom·exp{.L Gi - (1 - a

m
)G

m
}.exp(t; 2

t >Oerfc(t;/t)
~=m (38)

for

or

°RT CREC » EO - -In-­
nF CO

°
J(t) = -n.coO.JS .exp{a.G

Om m m

m
- I Gi } ·exp (t;2 t )oerfc (t; IE)

i=l
(39)

for

with

°RT CR-In-­
nF CO

°
n

S exp{ L G.
J~m • [ i=m ~

- (1 - a )G }m m
+

m
exp{a·G - L G.}

m ~ i=l ~ J (40)

Accordingly, equation (32) with eqs.(33) to (36) may be more

general expression than eq.(ll) for the potential-step chronoampero­

metric current-time curves.
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CONCLUDING REMARKS

In order to bridge the gap between theoretical electrochemistry

and electrochemical engineering, we have dealt with the basic kinetic

equations for the electrochemical reactions of soluble redox species

and partly succeeded to bridge the gap between them to give the

kinetic equations on determining kinetic parameters,i.e., rotating

disk technique, chronopotentiometric technique and chronoamperometric

technique.

The basic concept of the series of treatments is the consideration

on a unifying kinetic equation without assuming any rate-determining
step from which the kinetic equations assuming a rate-determining step

appear as special cases. Therefore, the basic kinetic equations

in this paper and the previous papers may be applicable to the

prediction on the characteristics of electrochemical redox reaction.
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APPENDIX Derivation of equation (11)

equations on CR(x,t)

differential

boundary condition

(A-l)

(A-2)CR(x,s)

By taking the Laplace transforms of the Fick's

and CO(x,t) and solving the second~order ordinary

equations under the initial condition (3) and the

(4), whose solutions are
CO

BleXP(-!D: ·x) + sO

CO
B

2
eXp (-! s .x) + 2...

DR s

where CO,R(x,s) is the transform of the function CO,R(x,t), Bl and B2
are the constants to be determined, and s is the parameter resulting

from the transformation.

Since variables in the right-hand side of eq.(2) are independent

of each other, AO and AR defined by eqs.(8) and (9) are independent

of time t, consequently one can take the Laplace transforms of eqs.(6)

and (7) without any ambiguity due to the dependent variables.

Differentiating eqs.(A-l) and (A-2) with respect to x and putting

x = 0, and then substituting them into the transforms of eqs.(6) and

(7), and finally by solving the two linear equations, the constants

Bl and B2 can be obtained ;

B =1
A

s(x + ,IS) (A-3)

A/IK' (A-4)

with
A (A-S)

(A-6)

By taking the inverse transforms of eqs.(A-l) and (A-2) with Bl and

B2 given by eqs.(A-3) and (A-4), one obtains

CO + ~ {erfc(
x A 2 x + A/t)}Co(x,t) = 2,1Dot ) - exp(-=- .x + A t) .erfc(

2/DOt° 100

(A-7)

CO A x A + A2t) 'erfc( x + AlE)}CR(x, t) = Ii< {erfc ( - exp(--.x 2/DRtR K'A 2/DRt vDR
(A-8)
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Putting x = 0 in eqs.(A-7) and (A-8), and then putting them into

eq.(2), one finally obtaines eq.(ll).

Thus obtained final solution eq.(ll) does not have any ambiguity

due to the dependent variables during the mathematical operations.

LIST OF SYMBOLS
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J (t)

JS
o

Current density as a function of time ( A.cm- 2 )

Apparent standard exchange current density based on 1 mole.cm- 3

as a standard ( A-cm- 2 )

Apparent standard exchange current density for i th step

charge transfer reaction ( A-cm- 2 )

Controlled electrode potential with respect to reference

electrode ( V )

Standard electrode potential with respect to reference electrode

in equation for electrode reaction ( V )

Standard electrode potantial with respect to reference electrode

for i th step electrode reaction ( V )

Transfer coefficient ( - )

a i Transfer coefficient for i th step charge transfer reaction (-)

C. (x, t) Concentration of species i at location x as a function of
1 -3

time (moles-cm )

Concentartion of species i in the solution of bulk (moles.cm- 3)

Diffusion coefficient of diffusing species i ( cm 2. sec-l )

Time ( sec )

x Distance from electrode surface ( cm

s Parameter resulting from the Laplace transformation ( - )

T Temperature ( oK )

F Faraday's constant ( couloequiv- l )

R Gas constant ( joul-mole-l.deg-l )




