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Synopsis

Algorithms for system identification applying

throughout Fast Fourier Transform (FFT) to the major

calculating operations are introduced.

It is shown that by using data of about as twice

length as system settling time and by truncating the

incorrect correlation functions resulting from them,

errors owing to finiteness of data can be avoided. It

is shown that so as to suppress the effects owing to

statistical fluctuation of input data or output noise,

superposition of data in frequency domain is effective,

and a~so the damping terms of poles or zeros can be

effi~iently evaluated by utilizing the phase change of

the spectra of the impulse response sequence.

The proposed method can be efficiently applied to

relatively higher order systems or relatively rapidly

time-variant systems because of high accuracy and high

speed processing of FFT. Moreover, it needs not to

assume the order of the system a priori, and yields a

reasonable lower order approximating system in itself.

I. Introduction

In the problem identifying the impulse response of a linear system

, it is well known that correlation methods or least square error

methods have advantages that a random signal can be utilized as an
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identification signal and the effect of noise is to be suppressed

considerably. In the higher order system, however, they have disad­

vantage in the data processing.

In these cases, Fast Fourier Transform (FFT) [1,3J seems to be a

strong weapon. But, it seems to be used very little in system identi­

fication.

Recently, M.J.Corinthios [lJ has designed a special-purpose ma­

chine for FFT and has shown that FFT can be effectively utilized for

system identification as an application of his machine. It is the

identification method which searches poles and zeros of an unknown

linear system when its impulse response sequence are given. Identifi­

cation of the damping terms of poles or zeros, however, are unsatis­

factorily dealed with. Moreover, the cases are scarcely discussed

which identification input signals are not impulsive signals.

In this paper, the following two-stage identification method is

proposed which uses FFT in almost major data processing. And some

difficulties in which yield are discussed.

First stage: Estimation of the impulse response with a correla­

tion method using the input-output data of the unknown system which

has a random signal as an input signal.

Second stage: Estimation of the poles and the zeros using the

impulse response sequence.

And some examples are illustrated with computer simulations in

order to prove the effectiveness of the proposed method.

n. Problem and an Outline of the Approach

relation of the discrete-time linear

Input

Fig_ 1

Generally, the input-output

system which is stable, sta­

tionary and has an obser­

vation noise, is approxi­

mately represented as the

following (1) using the

finite impulse response

{fk\ kf:!! (c.f. Fig. 1)

Disturbance

Unknown dn
~---!~.+J-=--'"

System { f k } Output Observed

Yn Output wn

Discrete-time Linear System

n N-l f . u
U k=O k n-k

y + dn n

n 0, 1, 2,

n = 0, 1, 2, ..

(La)

(1. b)

(I.e)
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where un' Yn' wn and d n are the n-th time input, output, observed out­

put and observation noise, respectively~ And N represents the set {O,

1,2, ... ,N-l}, and *T is the transpose of *

Let the pulse transfer function F(z) of the system (1) be (2.a)

and let the poles I set /\ and the zeros I set" be (2. b) and (2. c) ,p q
respectively.

F(z) = {mn-
l

(l ~ q .. Z-l)J/{TI (l - Pi. z-l)) (2.a)
j=O J i=O

1\ ~ {PO' PI' ., Pn-l} (2. b)

/\q ~ {qo' ql' ., qm-d (2.c)
It is the purpose of this paper to throw light upon the difficul-

ties and the effectiveness of the case which introduces FFT as an

algorithm estimating the finite approximate impulse response f
N

and

identifying the poles I set 1\ p and the zeros I set /\ q of the pulse

transfer function F(z).

The merit of the proposed method which first, estimates f N and

next, identifies Ap and /\q of F(z) using FFT algorithm, is 1) to be

needless to assume the order of the unknown system a priori, 2) to

estimate the some principal parts out of /\ and 1\ in accordance
p q

with the reliability of the input/output data, and 3) to obtain a high

accuracy estimate for even a considerably high order system with short

time for the sake of simplified computational operation owing to FFT.

Whereas, in the operations with FFT, it is indispensable to devise

so as to avoid the errors resulting from cyclic data processing.

In the following sections, the above problem is discussed in the

first stage and the second stage, separately .

.
III. Estimation in the First Stage

-- Estimation of f N from input/output data --

III -1 Foundation of Estimation

In the estimation of the impulse response tN' the correlation

technique is effective when the observation noise and the edge effects

owing to the finiteness of data are taken into consideration.

Now, when (1) is valid with sufficient accuracy, the output

sequence influenced by {uJ k~~ is only {yJ k~2N. Therefore, the cross

-correlation function between the input and the output can be calcula­

ed as follows. [3J By the way, the auto-correlation function of the

input can also be calculated in the quite same manner.
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And, k~O is what are carried out the k-times replacements for the

each element of ~O .

As (3) requires a number of calculating operations, it is neces~

sary to devise in order to save the number of operations.

Let's explain the method using FFT as a device for the sake of it.

Now, (3) is represented as (7) in the vector form.

,... 1
1r2N = IT· r· y 2N

where

. .,

(7)

(8)

(9)

And, since all the later than n-th element of U2N have the errors

owing to cyclic data processing, these elements can not be utilized

so as to estimate t N" Hereafter, the mark I_' is put to the variables

which involve these kind of errors.

Let the Discrete Fourier Transform (DFT) matrix with 2N data

points be D2N . And so, DFT of (7) is expressed as (10).

D2N· 1r 2N
1
IT D2N · r· Y2N

where 1 1 1 1

1 1 2 2N-lw w w
D2N

..

1 2N-l 2N-2 1w w w

w ! exp( i·27r/2N ) i ~ ,,[:l

(10 )

(ll)

Well, the relation (12) is valid. (Proof in Appendix I)

(12)
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Let DFT of r 2N and Y2N represent R2N and Y2N,respectively.

then, (10) is rewritten as (13).

And

37

where

/\ (UO
*

~ diag( * * *) DOO , DOl , . , D02N- l ) (14 )

* ~ )* * * * )TVA D2N uNO ( DOO , DOl , . , D02N- l (15 )

And, ( )* represents the complex conjugate of ( ).

Well, on account of the later than N-th element of w2N ' all the

elements of R2N have the error of the meaning '~'. Therefore, R
2n

can

not be utilized for the purpose of estimting f
N

if they were still

what they are. In order to obtain the right DFT ~N of r N in (4), it

is necessary for the data processing as (16) to be carried out.

(16 )

where, trunc { *}N represents the first N terms of *.

From the above discussion, it is shown that the calculation of RN
in (16) requires only twice DFT and once IDFT (Inverse DFT) with 2N

data points and once DFT with N data points.

In the same manner, DFT QN of the auto-correlation function vector

qN of the input can be obtained in (17).

where

Q2N ~ D2N "q2N

U
2N

~ D
2N

"U
2N

)T
., uN_I' uN' ... , u 2N- l

(18)

From RN and QN' DFT FN of f N is obtained in the form (20) which is

the division of each element of ~N and QN·

(20)

(21)

In the practical estjmation of F N, it is necessary that Qk ~ a
kE~ are valid with sufficient margine, respectively and that the

effect of the observation noise is diminished.
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These will be d~scussed in the following section.

Let us give a definition that we shall use in the following.

<Definition>

When for a suitable _ ( O<~<l ) and Q
N

in (17), (22) is valid,

we call the input sequence {uk}k~2N to be· practically sufficiently

general (PSG).

(22)

III -2 Practical Estimation

The practical estimation method is almost same as the estimation

foundation in Ill-l as the outline, except that a suitable superposi­

tion of data is required in order to satisfy the condition PSG and to

dimini~h the effect .of the observation noise.

The superposition of data in the step of~2N and Q2N in (13) and

(18) is most effective on the points of the number of calculating

operations and the effect of the superposition.

Well, the procedure is explained as follows.
;:=:: ;::: **First,to calculate R2N and ~2N in (13l and (18) , respectively.

- = ~ -Second, to obtain RN and QN regarding R2N and Q2N as ~2N and Q2N
in (16) and (17), respectively. And last, to estimate F N in (20).

iR2N

1 M-l
kA( *1\1' .2: mUO ). m'W2N

m=O

1 M-l
~'A( *~2N M'L mUO ). mU2N

m=O

where

m'f12N
! D . ( m'*'2N + mcl 2N )

2N

*(13 )

(18 )

M represents the number of the superposition.

Such effects of the superposition for PSG and the observation

noise shall be discussed in the following.

III -3 The effect of the superposition

m
Let a gaussian white noise s~quence with zero mean be lUk~k~~,

mEM and let the DFT of them be{U~}, ke~, mEM ( M : the number of the

superposition). Moreover, let the real part and the imaginary part
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of

i)

of uk
m

be x km and Ykm (kE=!'l, mE!'i), respectively.

Since the data processing of DFT is a linear transformation, these

{Xkm ' Ykm } k~!'l, mc;:!'i can be considered as random variables being

subject to a gaussian distribution N( 0 , (1"2) assuming that {uk} is a

gaussian sequence with zero mean as the above assumption.

Now, let us consider the following three kinds of superposition

{ Ukm} .
mthe superposition in the form of the absolute value of Uk

:ii)

ill)

the superposition in the form of the sqare of the absolute
m

value of Uk

the superposition in the form of the complex variable uk
m in

itself

The statistical properties are shown in Table 1.

Table 1. The comparison among three kinds of

superposition in their statistical properties

kinds of
mean variance

superposition

i) 1 L M-li + jYkml (.[if.12 ).(J2 ( 2/fll).(J""2Iii m=O x km

:ii) 1 ZM-li +. 12 2·([2 (4.(J"4) 1MIii m=O x km JY km

ill) IlzflJ-l ( + ° )1 (.(jf12M).(J""2 (2/flJ).(J""2Iii m=O x km JY km

where U m = x + JOy
k km km k N M N ( 0 , "..2)_, m ~, xkm ' Ykm v

both i) and li) , the mean

only the variance decreases

ill) , both the mean and the

to M as M increases.

From this table, it is shown that in

value is constant with respect to M and

in inverse proportion to M, whereas, in

variance decrease in inverse proportion

The method of the superposition discussed in III -2 is regarded as

*the superposition of li) and ill), because both the first term of (13)
.' *and (18) are approximately regarded as the superposition of :ii) , and

*both the real part and ~he imaginary part of (l/N)'I\(mUO) °mD2N in

the second term of (13) are considered as a gaussian sequence with

zero mean and a finite variance assuming that {uk) and {dkt are
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mutually independent. Therefore, it is obvious that in this case,

the effect of the observation noise decreases in inverse proportion

to M.

*Moreover, since (18) is approximately regarded as the superposi-

tion of ii), the condition PSG is effectively improved.

On the other hand, in the method which the direct superposition of

Uk and Yk are carried out, both the effect of the observation noise

and the condition PSG are scarcely improved, because their superposi­

tion are regarded as those of iii).

IV. The Second Stage Estimation

- The Estimation of I\p , /l. q

IV-l The Foundation of the Identification

The foundatifn of the identification is to utilize the fact that

the absolute value of the pulse transfer function F(z) has a positive

(negative) directional peak value at a pole (zero) of F(z) in the z­

plane. In the following, sd as to~implify the description, let us

discuss only the estimation of some poles of 1\ .
p

Now, let the z-transform of the IDFT f N of FN estimated in the

first stage be FN(z) in (23).

where, f N 4 ( f O' f l , ... , f
N

_
l

)T .

The relation between F(z) in (2) and FN(z) in (23) can be described

as follows.

where, zk ~ exp ( ([' + i·k·21t/N ) ; 0" ~ 0 , k E-!,! •

(24)

(25)

In other words, there is the relation that FN(z) does. approximate­

ly equal to F(z) only at zk defined in (25). Therefore, it is possi­

ble to estimate any element of A orA using FN(z) with accuracy ofp q
zk ( frequency resolution: 21t/N ).

As W in (25) diminishes (i.e., ~ is negative and the absolute

value ofW increases), however, the accuracy of (24) becomes poor and

poor. Therefore, it is necessary to begin with the estimation of the

pole (zero) whose ~ is nearest to zero in the poles (zeros) corre-
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sponding to the sequence {fk3 kE~ , and to eliminate the estimated

pole (zero) from the sequence {fk~ k~~ in turns.

And also, let zk in the case ~ = 0 be zOk (k~~). Then, there is

the relation that FN(zOk)=F k (where F k is the k-th element of FN).

IV-2 The Practical Identification

Z-p1ane

-1

Contour on Z-plane

-1
-+-+--IE-;L..,;..+--+~Re

Fig. 2

When we evaluate the value of FN(z) at zk of (25) in the z-plane,

it is convenient for us to investigate it along both a constant damp­

ing contour formed in a concentric circle and a constant frequency

contour formed in a radial line segment as Fig.2. 1m

In the following, when a pole p is 1

represented as p = r ·exp(i·e ), we callp p
the estimate of ep one of the phase term

and the estimation of r p one of the damp­

ing term, respectively.

In the contour Q), we have only to

calculate (26). Since this is the DFT of

igk~ k~~ , the number of calculations

equals to one of once DFT with N data

points. And from this spectrum, it is possible to estimate, the phase

term e . (frequency resolution : 2~/N)
p

(26)

Where,

gk ~ fk·exp( -k'<r) k(;~, 0- = const. (27)

ZOj ~ exp( i·j·27C/N , jE~ , i ~.;-::l. (28)

On the other hand, in the contour GD which is necessary in order

to estimate the damping term r p , there is no peak in the spectrum

FN(Z~j) , because the calculations of (23) at Z~j in (29) are those of

summation over the terms multiplied by only real values, respectively.

Z<l"'j = exp( (Jj + i·m·21t/N ) ; m = const., j Eo f:.

( L : arbitrary, i.e., independent of N

Therefore, it is necessary to make use of the phase information in

order to estimate the damping term.

Let us discuss the estimation of the damping term using the phase

change in two special cases as follows.
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i) The case which a pole is sufficiently separated from other poles

and (30) is approximately valid.

:7 " N-l -1 kFN(z) = 2.1 (z)·~ k=O (p.z ) (30)

where ll(z) is the contribution from poles and zeros except for the

pole p.

Moreover, let the phase of FN(z) be ~(z) and generally, let the

phase of A represent arg {A\. Then, ~(z) is written as (31).

(31)

In this case, the following theorem can be obtained. (The proof

is given in Appendix II.)

<Theorem 1 >
Assuming :that' (30) is valid, when we compute the change of P(z)

along the contour <D near the pole p, (32) is obtained.

m < 0 r > r
. d fj e=fJp p

(32)

~ > 0 r< r
d e=e pp

where, z ~ r· exp( i·e) , p .. r . exp( i·e p ) .
. p

According to this theorem, we can exactly estimate the damping

term r p in theory.

ii) The case which two adjacent poles are on the same phase (fre­

quency resolution : 2~/N) with being sufficiently separated from other

poles and (33) is approximately valid.

(33)

By the discussion similar to the case i), the following theorem

is obtained. (The proof is given in Appendix III . )

<Theorem 2 >
Assuming that (33) is valid, when we compute the change of sP(z)

along the contour Q;) near the two poles PI and P2' (34) is obtained.

d'P(z)1
d.8iB=8p

< 0
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d fj)(Z)! > 0 > > (34)d e (1 =e
p

r l r r 2

dd (Z)! < 0 r l > r 2 » r
p

where, Z ~ r· exp( i·e), Pj r j O exp( ioep ) ; j=1,2 , r l ;> r 2 .

Therefore, the procedure is necessary with which we begin with the

estimation of the most outside pole and after eliminating it from the

sequence {fk~k~~, we estimate the next outside pole again.

W_ell, though we don't think that by considering only the above two

cases, all the cases have been investigated out or possible to be

identified, we think that any more complicated judgement is needless

considering 2n/N frequency resolution.

JV-3 Identification Algorithms

Identification algorithms through the first stage and the second

stage discussed in the above sections are represented as Fig.3.

A

Identification of damping terms

phase characteristics

yes

Pole/zero cancellation

Evaluation of F(z)

on constant frequency contour

on const~nt damping contour

no

Oata truncation of Ci2N , 1r2N--> qN' rN

Perform N-points OFT on a.N, rN
to evaluate QN' RN

Calculation of Cl2N' r 2N by 2N-points
Inverse-OFT

Iterative superposition of Q2N' R2N

Perform 2N-points OFT on input/output

sequences UN' U N

,.. ,...
Calculation of Q2N , R2N

F(k) R(k)/Q(k) • ]( e: N Fig.3 Identification

Algorithms
Identification of impulse response

byN-points Inverse-OFT

A



44 Masahiro KANEDA

V. Computer Simulations

As an illustration the amplitude and phase of constant-damping

transforms and impulse responses obtained from input/output data for

the following two systems are shown in Fig. 4 - 6.

Ex-l) The case of the third order system whose the pulse trans­

fer function is (35).

F(z) = z-3/{Cl - Pl z-l)'(l - P2 z-l).(l - P2* z-l)}

P1 = O. 980 , p 2 = 0.960. e xp ( i·1l/4 )

Ex-2 The case of the ninth order system whose the pulse trans-

fer function is (36).

(36 )

{Pi\ {0.980, (0.970,45°), (0.950, 30a
), (0.940, 60°),

(0.920, 80°) 1
{qj\ = {(0.930, 35°), (0.900, 50°), (0.830, 70°))

where, (rj' 9 j O) represents rj-exp ( !i-ej
O).

As an identification input signal a pseudo gaussian random se­

quence is used, and as an, observation noiseano~hef pseudo gaussian

random sequence being' independent of the input sequence is added to

the output. The ratio of the noise to the input in standard deviation

is set as 0.1. And it is set that the number of sample points 2N =
512 (or 2N = 256) and the number of superposition M = 5 (or M = 10).

Fig.4 shows the impulse responses resulting from the finite appro­

ximate pulse transfer function estimated in the first stage identifi­

cation. Fig.4 (a) and (b) are one of the case SiN ratio = 0.0 and one

of the case SiN ratio = 0.1 for the third order system (Ex-l), respec­

tively. And Fig.4 (c) and (d) are those for the ninth order system

(Ex-l), respectively.

These figures show that at about (2N/3)-th sample time, impulse

response sequences are sufficiently settling, and in consequence (1)

are sufficiently satisfactory.

By the way, it is confirmed that Fig.4 (a) and (c) differ very

little from the true responses, respectively.

Next, the second stage identification based on these results will

be shown.
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Fig.5 shows the amplitude and the phase of constant-damping trans­

forms for the finite approximate pulse transfer function FN(z) in the

case of (Ex-l). The row axis is scaled in angular 8 and its full

scale is (-21(, +2]t). Fig.5 (a) and (b) are one of the case SiN

ratio = 0.0 and SiN ratio = 0.1 with the damping term r O = 1.0, re­

spectively. From these figures, the phase term 8 p can be read as ~/4.

As an illustration for estimation of the damping term r p ' Fig.5 (c)

and (d) are shown. From these figures, inversion of the phase at the

origin, i.e., ep = 0 can be observed, but on the neighbourhood ~/4 no

inversion of the phase can be seen.

From these facts and theorem 1, we can judge as r l (Pl=0.980<r 2
, where rl=0.978 (Fig.5(d)) and r2=0.982 (Fig.5(c)). That is to say,

we can estimate the damping term r p of Pl as the mean value between

one of the pre-inversion and one of the post-inversion.

Fig.6 shows the amplitude and the phase of constant-damping trans­

forms for the ninth order system (Ex-2). Fig.6 (a) - (d) explain as

like facts as Fig.5 (a) - (d).

Judging from the above discussions and figures, it is thought that

fully satisfactory results have been obtained with only five times' or

ten times' superpositions for considerably high order systems.

VI. Conclusion

In this paper, we have proposed an identification algorithm using

FFT from first to last in the major operations to identify a linear

discrete-time system with input/output data.

The proposed method is essentially one of identification methods

in frequency domain because FFT algorithm is employed. Though gener­

ally, it has been thought that it is very difficult to identify the

damping terms of the system poles or zeros, it has been shown that the

damping terms are possible to be identified as well as the phase terms

with the accuracy corresponding to frequency resolution by using the

phase characteristics. Moreover, it has been shown that as a device

so as to reduce the effects of the observation noise and the statisti­

cal fluctuation owing to finiteness of data, a kind of superposition

in frequency domain using the correlation functions is effective and

favourable in data processing.

It is thought that the proposed algorithm is applicable to the

identification of the higher order systems because it has high speed

and high accuracy in operations being inherent in FFT.

45
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Fig.6. Amplitude spectra and phase spectra of constant-damping

transforms for the ninth order system (Ex-2): (a),(b); with

constant damping r = 1.0, (c),(d); close to a system's pole.
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( Appendix I Proof of (13)

Considering D2N- l

r -1.D 2N =

*( 1/2N ) ·D 2N ' the transformation is thus

*Uo (2N-l)

., U
O
*(2N-l)w-(2N-l)

* -1., Uo (2N-l)w

* * * *where !\(U
O

·) = diag( Uo (0), Uo (1), ... , Uo (2N-l) ). Q.E.D.
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Appendix ll) Proof of (32) in Theorem 1

Let us rewrite the assumption (31).

In order to evaluate the change of <p (z) in the vicinity of z = p,

since the first term of (31) can be regarded as a constant, it is suf­

ficient to consider only the second term.

Let this term be <;Pl (z). Then, epl (z) is represented as (II -1) .

{
l-qN.exP(i'N.(B -6»J'f (e) = arg p (II -1)

1 1 - q. exp ( i' (e - e) )
p

(ll -3)q·sinO<

1 - q.cosO(

, q ~ r p/r . (ll -2)

is given by k· ( 27C/N )

one. Therefore,

where z ~ r.exp( i·e) , p ~ r . exp( i·e)p p

Well, since the phase difference (e
p

- e)

( k: integer) , exp ( i· N· (e - e» equals to. p

y\ (0<) = arg f
l

1 - qN } = tan- l

( q. exp ( i'ot)

where eX ~ e - e.
p

d <fiCo< )
d 0(

~ {q. (cos ()( - q )2 toea s 2 <P, (0( )
( 1 - q. c a sO<) ~

(ll -5)

Putting 0( = 0, (ll -6) is obtained.

q.(l - q)
(l _ q)2

1

1 - q
(II -6)

Considering (II -4), (II -6) and the above discussion, (ll -7) is

obtained.

Considering the phase of (33) as like as (31), (33) I is obtained.

By the discussion similar to Appendix ll, (III -1) is obtained.
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(III -1)
( ) j -1 ( N
-1 . r. 1 - q. ) }

J J
(1 - q.·exp( i'(61 -19))

J p

(III-3)

where

z ~ r.exp( i·8) , Pj ~ rj.exp ( :i:e p )' qj ~ r/r ; j = 1,2. (III -2)

By transforming (III -1) as well as in Appendix II, we have (III - 3) .

arg { a l - a 2 exp( i·o( ) }
<fl(O<) = (l - ql·exp ( i'OC))(l - q2·exp( i'OC»

(III -4)

Moreover, letting qo ~ a 2/a l , So ~ -1, sl' s2 • 1, we have (III -5).

co (cX) =" 2 s .tan-l ( qj sino< )
.) 1 L~ j=O j 1 _ q. cosoc (III -5)

J

Let the first, second and last term of (III -5) be !/I 1 (o(), !/J2(o()

and ifJ
3

(o(), respectively. Then, in the like manner of induction of

(II -5) in Appendix II, we can obtain (III -6).

d <j,( 0<) = "7 .2 s .{qj' (cosO( -qj). }.cos2~ j (0( ) (III -6)
d 0( L~ J =0 J (l - q .. co son

J

Putting ()( = 0, (III -7) is obtained.

(III -7)

(III -9)

Now, assuming that ql and q2 nearly equal to one, respectively,

the following approximate equations can be utilized.

q/ {l - (l - qj)}N':;r 1 - N·(l - qj) j = 1,2 (III -8)

Arranging (III -7) with (III -4) and (III -8), we have (III -9) .

d'Y,(o()\ _ 1 -1
do< 0(=0 - (1 - ql)O - q2)

In the similar manner to Appendix II , within which (III -8) is allowed,

the following relations can be obtained.

d'fJ(8)\ ~d~(e)1
d e e=ep d 8 e=op

= _ dg:(o( )\
d 0< 0(=0

< 0

>0
<0

for (l >ql >q2)

for (ql> 1 ;;..q2)

for (ql> q2> 1)

(III -10)

Q.E.D.




