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Synopsis

Algorithms for system identification applying
throughout Fast Fourier Transform (FFT) to the major
calculating operations are introduced.

It is shown that by using datavof about as twice
length as system settling time and by fTruncating the
incorrect correlation functions resulting from them,
errors. owing to finiteness of data can be avoided. It
is shown that so as to suppress the effects owing to
statistical fluctuation of input data or output noise,
superposition of data in frequency domain is efféctive,
and also the damping terms of poles or zeros can be
efficiently evaluated by utilizing the phase change of
the spectra of the impulse response sequénce.

The proposed method can be efficiently applied to
rélétively higher order systems or relatively rapidly
time-variant systems because of high accuracy and high
speed processing of FFT. Moreover, it needs not to
assume the order of the system a priori, and yields a

reasonable lower order approximating system in itself.

I. . Introduction

In the problem identifying the impulse response of a linear system
, it is well known that correlation methods or least square error

methods have advantages that a random signal can be utilized as an
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identification signal and the effect of noise is to be suppressed
considerably. In the higher order system, however, they have disad-
vantage in the data processing.

In these cases, Fast Fourier Transform (FFT) [1,3] seems to be a
strong weapon. But, it seems to be used very 1little in system identi-
fication.

Recently, M.J.Corinthios [1] has designed a special-purpose ma-
chine for FFT and has shown that FFT can be effectively utilized for
system identification as an application of his machine. It is the
identification method which searches poles and zeros of an unknown
linear system when 1its impulse response sequence are given. Identifi-
cation of the damping terms of poles or zeros, however, are unsatis-
factorily dealed with. Moreover, the cases are scarcely discussed
which identification input signals are not impulsive signals.

In this paper, the following two-stage identification method is
proposed which uses FFT in almost major data processing. And some
difficulties in which yleld are discussed.

First stage: Estimation of the impulse response with a correla-
tion method using the input-output data of the unknown system which
has a random signal as an input signal.

Second stage: Estimation of the poles and the zeros using the
impulse response sequence.

And some'examples are illustrated with computer simulations in

order to prove the effectiveness of the proposed method.
II. Problem and an Outline of the Approach

Generally, the Ilnput-output relation of the discrete-time linear
system which is stable, sta-

tionary and has an obser- Disturbance

. . 1 . a
vation noise, is approxi Unknown D :
mately represented as the Input System { f} } | Output Observed
following (1) using the u, Y, Output w_
finite impulse response
{fk} keN . (c.f. Fig. 1) Fig. 1 Discrete-time Linear System

_ N-1 . =

y, = =0 Fi Yk ;n=20,1,2, ... (1.a)

W=y, +d ;s n=20,1, 2, . .. (1.b)

£,=(foy £y v oo, £ T (1.c)
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where u W and dn are the n-th time input, output, observed out-

s Yo
put andnobsgrvation noise, respectively. And N represents the set {O,
1,2,...,N-l}, and #T is the transpose of ¥,

Let the pulse transfer function F(z) of the system (1) be (2.a)
and let the poles' set ’«p and the zeros' set /\q be (2.b) and (2.c),

respectively.

m=1 n-=1
) ={ T - apa AT - p-2h) (2.2)
=0 1=0
Ao #{pgs 1> - - s Py} (2.1)
/\q & {q09 q]_) LA ) qm—l} (20)

It is the purpose of this paper to throw light upon the difficul-
ties and the effectiveness of the case which introduces FFT as an
algorithm estimating the finite approximate impulse response fN and
identifying the poles' set /\p and the zeros' set /\q of the pulse
transfer function F(z).

The merit of the proposed method which first, estimates fN and
next, identifies /\p and /\q of F(z) using FFT algorithm, is 1) to be
needless to assume the order of the unknown system a priori, 2) to
estimate the some principal parts out of /\p and /\q in accordance
with the reliability of the input/output data, and 3) to obtain a high
accuracy estimate for even a considerably high order system with short
time for the sake of simplified computational operation owing to FFT.

Whereas, in the operations with FFT, it is indispensable to devise
so as to avoid the errors resulting from cyclic data processing.

In the following sections, the above problem is discussed in the

first stage and the second stage, separately.

ITT . Estimation in the First Stage
— Estimation of fN from input/output data —

IIT -1 Foundation of Estimation

In the estimation of the impulse response fN’ the correlation
technique is effective when the observation noise and the edge effects
owing to the finiteness of data are taken into consideration.

Now, when (1) is valid with sufficient accuracy, the output
sequence influenced by {u} keN is only {y}ke2N. Therefore, the cross
—-correlaticon function between the input and the output can be calcula-
ed as follows. [3] By the way, the auto-correlation function of the

input can also be calculated in the quite same manner.
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_l,,. T :
T = Fkno Yen ; ke (3)
s T
rN - ( PO, P]_," L ] I.N"l ) (4)
where ‘
4 T
uNO = ( uo’ ul’ e s ey uN_l, O, e e« ey O ) (5)
ygN £ ( yO’ yl, L yN-lv’ yN’ L | -y2N_l )‘L (6)

And, kpNO is what are carried out the k-times replacements for the
each element ofuho.
As (3) requires a number of calculating operations, it 1s neces-
sary to devise in order to save the number of operations.
- Let's explain the method using FFT as a device for the sake of it.

Now, (3) is represented as (7) in the vector form.

~ 1 v
S (7)
where
Toy = (Tgo Tysov 5 Tyas Oye Tners o0 Ton-l ) (8)
- T 7
M * Cglygs %02« © +» 2n-1%0 )

And, since all the later than n-th element of u2N have the errors
owing to cyclic. data. processing, these elements can not be utilized
s0 as to estimate fNa Hereafter, the mark 'a' is put to the variables
which involve these kind of errors.

Let the Discrete Fourier Transform (DFT) matrix with 2N data
points be D2N‘ And so, DFT of (7) is expressed as (10).

Do Eay = ¥ Dol Yoy | ’ (10)
where 1 1 1 1
B 2Nl
Doy 2 (11)
L ,2N-1 2N-2 !

w4 exp(i-2m/2N) ; 1 241

Well, the relation (12) is valid. (Proof in Appendix I)

S -1 % _
FDoy™™ = Doy - AUy (12)
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~ [ad
Let DFT of Pox and Yox represent RZN and YZN,respectively. And
then, (10) is rewritten as- (13).

~ 1 * '

Ry = 5AU, ) Yoy (13)
where

¥ . . * ¥ ¥
Ay 2 diag( Uy s Uy s o o - oy Upopog ) (14)
¥, * * R ¥ T
Up = (Doytyg ) = (Ugg s Uppos o v s Ugpyy ) (15)
*
And, ( ) represents the complex conjugate of ( ).

Well, on account of the later than N-th element of FZN’ all the
elements of E2N have the error of the meaning '~'. Therefore, ﬁ2n can
not be utilized for the purpose of estimting fN if they were still
what they are. 1In order to obtain the right DFT RN of ry in (4), it
is necessary for the data processing as (16) to be carried out.

= . -1
Ry = Dy-trunc { D, "1 &, } (16)

where, trunc {*}N represents the first N terms of ¥,

From the above discussion, it is shown that the calculation of RN
in (16) requires only twice DFT and once IDFT (Inverse DFT) with 2N
data points and once DFT with N data points.

In the same manner, DFT QN of the auto-correlation function vector

qN of the input can be obtained in (17).

= 3 _l~ v
QN DN trunc {DZN Q2N N (17)
where

~ . 1 *.

Q * Doy = § AU, ) Ugy (18)

Uy = Doy oy

- i T

Uon = ( Ugs Ups » = =5 Up 95 Uys + = =5 Ugy g ) (19)

From RN and QN’ DFT FN of fN is obtained in the form (20) which is

the division of each element of RN and QN.

F,. = R/Q, ; ke N (20)

lis

F )T

T R

Fy 0> F (21)

In the practical estimation of FN’ it is necessary that Qk ¥ 0 ;

ke N are valid with sufficient margine, respectively and that the

effect of the observation noise is diminished.
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These will be discussed in the following section.

Let us give a definition that we shall use in the following.
< Definition > _

When for a suitable o ( 0<¥k<1 ) and QN in (17), (22) is valid,
we call the input sequence {uk}kégg to be.practically sufficiently
general (PSG).

min ]Q, ) > of+*d mean | Q | (22)
min 9] 2 {keN Loy 1} o ,

11T -2 Practical Estimation

The practical estimétion method is almost same as the estimation
foundation in III -1 as the outline, except that a suitable superposi-
tion of data is required in order to satisfy the condition PSG and to
diminish the effect of the observation noise.

The superposition of data in the step of ﬁéN and 62N in (13) and
(18) is most effective on the points of the number of calculating
operations and the effect of the superposition.

Well, the procedure is explained as follows.

First, to calculate E2N and 62N in (132* and (iS)*, respectivsly.

Second, to obtain RN and QN regarding EZN and Q2N as ﬁ2N and QEN
in (16) and (17), respectively. And last, to estimate FN in (20).

= 1 M-1 1 % *

Boy = w52 §AC o ) oFox (13)
m=0
M-1

= 1 1 N

Con = w FAC U ) (Boy (18)
m=0

where

IS
o

Won = Doy C p¥oy + oy ) >

M represents the number of the superposition.

Such effects of the superposition for PSG and the observation

noise shall be discussed in the following.
IIT -3 The effect of the superposition
) m
Let a gaussian white noise sequence with zero mean be {ukskeﬂ,.

meM and let the DFT of them be{U]}, keN, méM ( M : the number of the

superposition ). Moreover, let the real part and the imaginary part



System Identification Using Fast Fourier Transform 39

of Ukm be Xpm and Viem (keﬂl,rneM), respectively.

Since the data processing of DFT is a linear transformation, these
{ka, ykm} keN, meM can be considered as random variables being
subject to a gaussian distribution N( O, a?) assuming that {uk} is a
gaussian sequence with zero mean as the above assumption.

Now, let us consider the following three kinds of superposition
of {u,M}

i) the superposition in the form of the absolute value of Ukm

i) the superposition in the form of the sgare of the absolute
value of Ukm

ifi) the superposition in the form of the complex variable Ukm in
itself

The statistical properties are shown in Table 1.

Table 1. The comparison among three kinds of

superposition in their statistical properties

kinds of mean variance
superposition

D % X mol am * 39 k| WT/2ya? | (2/m)0?

1) § Znco] % * | 2-q°2 (u-gy/m

1) [§ 5000 vy | WE/ana? | 2rmya®

m _ . . p)
where Uk = Xy IV k N, m M, Xyeme Yim N(CO,qad")

From this table, 1t -is shown that in both 1) and 1i) , the mean
value 1is constant with respect to M and only the variance decreases
in inverse proportion to M, whereas, in 1ii), both the mean and the
variance decrease in inverse proportion to M as M increases.
Thevmethod of the superposition discussed in III -2 is regarded as
the superposition of i) and i), because both the first term of (13)*
and’(lé)* are_approxiMately regarded as the superposition of i) , and
bot@ the real part'and'ghe imaginary part of (l/N)yﬂ(mUO*)-mDZN in
the second term of (13) are considered as a gaussian sequence with

zero mean and a finite variance assuming that {uk} and {d,} are
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mutually independent. Therefore, it 1s obvious that 1in this case,
the effect of the observation noise decreases in inverse proportion
to M.

Moreover, since (18)* is approximately regarded as the superposi-
tion of ii), the condition PSG is effectively improved. -

On the other hand, ih the method which the direct superposition of
Uk
and the condition PSG are scarcely improved, because their superposi-

and Yk are carried out, both the effect of the observation noise
tion are regarded as those of iii).

IV. The Second Stage Estimation
— The Estimation of /\p , /\q —

IV-1 The Foundation of the Identification

The foundatipn of the identification is to utilize the fact that
the absolute valﬁé of the pulse transfer function F(z) has a positive
(negative) direct{onal peak value at a pole (zero) of F(z) in the z-
plane. In the following, so as to_simplify the description, let wus
discuss only the estimation of some poles of A_.

Now, let the z-transform of the IDFT fN of FN estimated in the
first stage be FN(z) in (23).

& N-1 -k
Fy(z) & k=0 Tk 2 (23)
2 T
where, fN 2 ( fos T1o « o o s Ty )

The relation between F(z) in (2) and FN(z) in (23) can be described
as follows.

Fz,) ¥ Fy(z,) | (24)

where, z, L exp( ¢+ 1k2/N ) 3 ¢¢ 0, keN . (25)

In other words, there 1s the relation that FN(z) does, approximate-
1y equal to F(z) only at Zy defined in (25). Therefore, it is possi-
ble to estimate any element of A (H’Aq using FN(z) with accuracy of
zZ, ( frequency resolution : 2I/N ).

As ¢ in (25) diminishes (i.e., ¢ is negative and the absoclute
value of ¢ increases), however, the accuracy of (24) becomes poor and
poor. Therefore, it is necessary to begin with the estimation of the

pole (zero) whose ¢ is nearest to zero in the poles (zeros) corre-
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sponding to the sequence {fk} keN , and to eliminate the estimated.
pole (zero) from the sequence {f § keéN in turns.
And also, let 2, in the case ¢ = 0 be 20k (keN). Then, there is

the relation that FN(ZOK)=FK (where F. is the k-th element of FN).

k

IV-2 The Practical Identification

When we evaluate the value of FN(Z) at z, of (25) in the z-plane,

it is convenient for us to investigate it algng both a constant damp-
ing contour formed in a concentric circle and a constant frequency
contour formed in a radial line segment as Fig.2. A Im

In the following, when a pole p is 1 Z-plane
represented as p = rp-exp(i-ep), we call
the estimate of’ep one of the phase term
and the estimation of rp one of the damp-
ing term, respectively.

In the contour () , we have only to
calculate (26). Since this is the DFT of
{gk} kéN , the number of calculations
equals to one of once DFT with N data Fig. 2 Contour on Z-plane

points. And from this spectrum, it is possible to estimate the phase

term Gp . (frequency resolution : 2%/N)
_ S7N-1 -k _ N~-1 -k .
Fy(zi) = 23420 fic 2y =23 o By 205 3 Jel (26)
where,
8y 4 fk-exp(—k-d‘) ; keN , ¢
zg; 2 exp( 1J-2T/N) , JeN , 1 1. (28)

On the other hand, in the contour @) which is necessary in order

const. ‘ (27)

to estimate the damping-term r. , there is no peak in the spectrum
FN(Z¢j) , because the calculations of (23) at Zvj in (29) are those of

summation over the terms multiplied by only real values, respectively.
Zey = exp(c"j + im-2%/N ) ; m = const., j&€L (29)
(L : arbitrary, i.e., independent of N )

Therefore, it is necessary to make use of the phase information in
order to estimate the damping term.
Let us discuss the estimation of the damping term using the phase

change in two special cases as follows.
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i) The case which a pole is sufficiently separated from other poles
and (30) is approximately valid.

F(z) = 3,(2) 2% 08 (pez™h)S (30)

where Zl(z) is the contribution from poles and zeros except for the
pole p.

Moreover, let the phase of FN(Z) be %P(z) and generally, let the
phase of A represent arg {A} . Then, %P(z) is written as (31).

- N-1 -1.k
Pla) = arg{Z ()} + arg(ZX 55 (pz7hH¥) (31)
In this case, the following theorem can be obtained. (The proof
is given in Appendix II.) '

{ Theorem 1 >‘

Aséuming that (30) is valid, when we compute the change of %(z)
along the contour C) near the pole p, (32) is obtained.

dP(=z) .
_dnaz 6=6p < 0 ;T D> ry
() (32)
a Z ) .
'TT__-9=6p >0 y r< rp

where, 2z 2 r.exp( i-8) , p & rp-exp( i-ep)
According to this theorem, we can exactly estimate the damping
term rp in theory.
ii) The case which two adjacent poles are on the same phase (fre-
gquency resolution : 2MW/N) with being sufficiently separated from other
poles and (33) is approximately valid. h

O T T A P (33)

= " N-1 1
FN(Z) = 22(2){ k=0 ( pl_p2

By the discussion similar to the case 1), the following theorem
is obtained. (The proof is given in Appendix III .)
< Theorem 2 >

Assuming that (33) is valid, when we compute the change of PL(z)
along the contour () near the two polesbpl and P55, (34) is‘obtained.

dd (z) 0=6 < 0 ;T > l,,l> I’2
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ddye(Z) 5=p > 0 3 T 2T >, (34)
p .
o}
2 -, S0 s oy
where, z 2 r.exp{( 1-9), Py = rj-exp( iep) 5 j=1,2 , ri>r, .

Therefore, the procedure is necessary with which we begin with the
estimation of the most outside pole and after eliminating it from the
sequence {fk}keg, we estimate the next outside pole again.

Well, though we don't think that by considering only the above two
cases, all the cases have been investigated out or possible to be
identified, we think that any more complicated judgement 1is needless

considering 2®/N frequency resolution.
V-3 Identification Algorithms

Identification algorithms through the first stage and the second

stage discussed in the above sections are represented as Fig.3.

Begin @

1

Perform 2N-points DFT on input/output Evaluation of F(z)
sequences UNO' UZN' YZN on constant damping contour
]
~ Pl N
Calculation of QZN’ RZN Evaluation of F(z).

I | on constant frequency contour

Identification of damping terms

no @ by phasc characteristics

yes Pole/zero cancellation

~~ —
Iterative superposition of QZN’ RZV

Calculation of a}N' ?EN by 2N-points
Inverse-DFT yes

I

Data truncation of EEN, TEN-'> Qyr Iy

]

Perform N-points DFT on qN, rN
to evaluate Qy, Ry
]

F(k}) = R(k)/Q(k) , keN Fig.3 Identification

| Algorithms
Identification of impulse response

other peak ?

by N-points Inverse-DFT

®
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V. Computer Simulations

As an 1llustration the amplitude and phase of constant-damping
transforms and impulse responses obtained from input/output data for
the following two systems are shown in Fig.l -6.

( Ex-1 ) The case of the third order system whose the pulse trans-
fer function is (35).

F(z)

23/{(1 - p; N - p, 27D - pz* z"H} (35)
p, = 0.980 , p, = 0.960-exp( -&/4 )

( Ex-2 ) The case of the ninth order system whose the pulse trans-
fer function is (36).

R(z) = { frl (1 - q, z‘1>}/{_19fl (1 -p; =} (36)
j= i=

{p,} = {0.980, (0.970, 45°), (0.950, 30°), (0.9%0, 60°),
(0.920,'800)} N
{a,} = {(0.930, 35°), (0.900, 50°), (0.830, 70°)}

where, (fj, 930) represents rj-exp( ii'9j°).

As an identification input signal a pseudo gaussian random se-
quence is used, and as an observation noise another. pseudo gaussian
random sequence being independent of the input sequence is added to
the output. The ratio of the noise to the input in standard deviation
is set as 0.1. And it is set that the number of sample p01nts 2N =
512 (or 2N = 256) and the number of superposition M = 5 (or M = 10).

Fig.4 shows the impulse responses resulting from the finite appro-
ximate pulse transfer function estimated in the first stage identifi-
cation. Fig.4 (a) and (b) are one of the case S/N ratio = 0.0 and one
of the case 3/N ratio = 0.1 for the third order system (Ex-1), respec-
tively. And Fig.4 (c) and (d) are those for the ninth order system
(Ex-1), respectiveiy.

These figures show that at about (2N/3)-th sample time, impulse
response sequences are sufficiently settling, and in consequence (1)
are sufficiently satisfactory.

By the way, it 1s confirmed that Fig.4 (a) and (c) differ very
little from the true responses, respectively.

Next, the second stage identification based on these results will
be shown.
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Fig.5 shows the amplitude and the phase of constant-damping trans-
forms for the finite approximate pulse transfer function FN(Z) in the
case of (Ex-1). The row axis is scaled in angular § and its full
scale is (-2, +2/k) . Fig.5 (a) and (b) are one of the case S/N

ratio = 0.0 and S/N ratio = 0.1 with the damping term r, = 1.0, re-

spectively. PFrom these figures, the phase term 6p can ge read as &/4,

As an illustration for estimation of the damping term rp, Fig.5 (e)
and (d) are shown. From these figures, inversion of the phase at the
origin, i.e., ep = 0 can be observed, but on the neighbourhood &/U4 no
inversion of the phase can be seen.

From these facts and theorem 1, we can judge as r1< p1=0.980<r2
, where r1=0.978 (Fig.5(d)) and r2=0.982 (Fig.5(c)). That is to say,
we can estimate the damping term rp of p, as the mean value between
one of the pre-inversion and one of the post-inversion.

Fig.6 shows the amplitude and the phase of constant-damping trans-
forms for the ninth order system (Ex-2). Fig.6 (a) -~ (d) explain as
like facts as Fig.5 (a) - (d).

Judging from the above discussions and figures, it is thought that
fully satisfactory results have been obtained with only five times' or
ten times' superpositions for considerably high order systems.

VI. Conclusion

In this paper, we have proposed an identification algorithm using
FFT from first to last in the major operations to identify a linear
discrete-time system with input/output data.

The proposed method 1s essentially one of identification methods
in frequency domain because FFT algorithm is employed. Though gener-
ally, it has been thought that it 1s very difficult to identify the
damping terms of the system poles or zeros, it has been shown that the
damping terms are possible to be identified as well as the phase terms
with the accuracy corresponding to frequency resolution by using the
phase characteristics. Moreover, it has been shown that as a device
so as to reduce the effects of the observation noise and the statisti-
cal fluctuation owing to finiteness of data, a kind of superposition
in frequency domain using the correlation functions is effective and
favourable in data processing.

It is thought that the proposed algorithm is applicable to the
identification of the higher order systems because it has high speed

and high accuracy in operations being inherent in FFT.
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transforms for the third order system (Ex-1): (a),(b); with

constant damping r

Amplitude spectra and phase spectra of constant-damping

= 1.0, (e¢),(d); close to a system's pole.
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Fig.6. Amplitude spectra and phase spectra of constant-damping
transforms for the ninth order system (Ex-2): (a),(b); with
constant damping r = 1.0, (c¢),(d); close to a system's pole.
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( Appendix I ) Proof of (13)

- *
Considering D2N 1. (1/2N)-D2N s the transformation is thus
-1 .1 *
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where /\(UO*) = diag( U *(O),UO*(l), .. .,UO*(zN-l)). Q.E.D.
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( Appendix II ) Proof of (32) in Theorem 1

Let us rewrite the assumption (31).
P(z) = arg{Z ()} + arg{3IV25 (p-s7HHE} (31)

Tn order to evaluate the change of ¢ (z) in the vicinity of z = p,
since the first térm of (31) can be regarded as a constant, it is suf-
ficient to consider only the second term.

Let this term be gﬁ(z). Then, gﬁ(z) is represented as (II-1).

N .
1 -q.exp(i-N(G_ -6))
P.(8) = arg{ P } (I -1)
1 - q-exp(i-(ep -8))
where z 2 r.exp(i-8) , p 2 rp-exp( i-5p ) , g & rp/r . (IT ~-2)

Well, since the phase difference (5p-—5) is given by k-( 2Z/N)
(k: integer ), exp( i-N-( Sp-ﬁ) ) equals to one. Therefore,

. - N ! .
$q () =argi 1-gq }=tan’1 ( _a-sine (I -3)
1 - g-exp( i-a) 1 - g-cosx
where X 2 Qp -6.
dg),(()() ;{Q"(COSO( -a) &‘0052@(“) (1T
= -5)
d (1 -qg-cosx )2 ! -

Putting o = 0, (II-6) is obtained.

d f(x) _ a1 -qa) _ 1 (I -6)

Considering (II-4), (I -6) and the above discussion, (II-7) is
obtained.

agl ~ 4% - . 4% < © for g<1
E?I5=5p 16166, W&=0 5 5 pon g w1 (I -7)
: . Q.E.D.

( Appendix IIT ) Proof of (34) in Theorem 2

Considering the phase of (33) as 1like as (31), (33)' is obtained.
' N-1 1 k+1 k+ -k
$2) = are{Z ()} + arg{31L0G (e T - 0, M 33

By the discussion similar to Appendix I, (III -1) is obtained.
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) (-1 e (1 - gy |
g)l( ) = arg{ ) Z (1 < qj'exp( 1.(9 _5)7} (111 ~1)
where
z & rexp(i8), P, B rj-exp( i'Bp), qj 2 rj/r 3 3 = 1,2. (111 ~2)
By transforming (III -1) as well as in Appendix ITI , we have (IIT -3).
a, - a, exp( i-&)
o - 1 2 -
q)l( ) al’g{ (1 - ql, eXp( i.“))(l - q2.exp( j_.a))} (HI 3)
where o 2 9p -6,
a N N
al =(P]:(l_q1 ) - rg'(l_qZ )}/(rl_r2) EY
a N . N
ay #fryay(1-a.) - vy (l-a, )}/ (ry-ry) . (III -4)
Moreover, letting g, 2 a,/a;, s, £ ., S1s S, £ 1, we have (III -5).
_ 5 -1 qj sing
?1(0() = Zj=0 sj'tan (l—w) (IIT -5)

Let the first, second and last term of (III -5) be 5(11(0(), §1J2(0()
and §()3(O(), respectively. Then, in the like manner of induction of
(IT -5) in Appendix II , we can obtain (III -6).

Ag(x) _ 57 2 s { j - (cos ~94 ) }coszsé (IIT -6)
a4 o -3 §=0 "jl (1 - q coso()
Putting o = 0, (III-7) is obtained.
d% (K ) <7 2
dq o jo=0 ~ 3 5=0 Sj.qj/(l - qJ) (IIT -7)

Now, assuming that a4 and as nearly equal to one, respectively,

the following approximate equations can be utilized.
Nefi-a-apifri-wa-an 5512 (TIT -8)

Arranging (IITI -7) with (III -4) and (III -8), we have (IIT -9).

dSo,(o() ~ 1
lo( =0~ (1= q)d -q,) ~ . (T -9)

In the similar manner to Appendix II , within which (TI -8) is allowed,

the following relations can be obtained.

dS"(@)ia 5, = dd'fl’,(aﬁ)|9=5
D

<0 for (1>q;>q,)
- d%(d)lo( -0 >0  for (a;>1 »a,) (III -10)

<0 for (q129,> 1)
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