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Synopsis

The dynamic form factor and the dispersion relation

of the plasma oscillation of two-dimensional classical

systems of electrons with ordinary Coulomb interaction

are obtained by numerical experiments in the domain of
1/2 2the plasma parameter 2.24_~r=('TTn) e /T~70.7, where

n, e, and T are the areal number density, the electronic

charge, and the temperature in energy units, respectively.

1. Introduction

The possibility to s~ppress one of three degrees of freedom of elec­

trons by using surface bound states on some dielectric materials has

made two-dimensional systems of electrons available for experiments as

one component plasmas under almost ideal conditions [1]. With the num­

ber density easily changed by applying external electric field perpen­

dicular to the surface, they have both the properties as systems of

charged particles which interact via the ordinary (l/r) Coulomb poten­

tial and those originating in two-dimensionality of motions of their

particles.

As the dielectric material the liquid helium has been used: In

this case electrons in these systems obey classical mechanics and sta­

tistics under most of experimental conditions [2]. These two-dimensional

classical electron liquids are characterized by the dimensionless plasma

parameter r or £ defined by
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1/2 1/2 2f=(s/2) =(nn) e /T, (1.1)

where n, e, and T are the areal number density, the electronic charge,

and the temperature in energy units, respectively.

As well as real experiments on the surface of liquid helium numer­

ical experiments have provided useful information on the properties of

these systems [3,4,5J. In previous numerical experiments, however,

static or thermodynamic properties have been mainly investigated and

experimental information on dynamic properties seems to be still in­

sufficient. We here report some results of numerical experiments on

dynamic properties of these systems in the domain of the plasma parameter

2.24<f<70.7. (1. 2)

two-dimensional systems of

We summarize briefly

details will be given else-

We make dynamical simulations of these

electrons by the molecular dynamics method.

numerical processes in what follows; their

where [6J.

In order to cope with the long range nature of the Coulomb inter­

action we impose the periodic boundary condition on our system and the

hexagonal symmetry is taken as the periodicity for the sake of consist­

ency with possible formation of the Wigner crystal [3,5J. The number

of independent particles is taken to be 81 which has been shown to be

sufficient in the domain of our experiments [4J. For the domain of

higher density, larger number of independent particles may be necessary

in order to avoid spurious effects due to interference between oscilla­

ting long tail of the pair correlation function and the periodicity.

From initial configurations taken to be the two-dimensional lattice

or a random configuration, equations of motions are numerically inte­

grated for a sufficiently long time compared with typical time scales

of fluctuations. In the process of numerical integration the force

acting on each electron is calculated by the method of Ewald. We

discard initial parts of simulations to remove effects of initial con­

ditions observing that the system has relaxed to thermal equilibrium

within the discarded initial part from behaviors of kinetic and corre­

lation energies.

The accuracy of numerical integrations are examined by conserva­

tion laws of energy and momentum. The total energy is conserved with

errors less than 0.05% in each step of cime and through the whole

experiment less than 4% (f=2.2), 0.2% (f=7,22) or 0.04% (f=50,71).
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The total momentum is conserved with negligible errors compared with

those in energy conservation.

2. Dynamic Form Factor and Dispersion Relation of Plasma Oscillation

Longitudinal properties of many body systems are most clearly

shown in the dynamic form factor S(k,w) defined by

00

S(~,w)=(1/2TI)J dt<Pk(t)P_k(t=O»exp(iwt),
_00

where Pk(t) denotes the density fluctuation

(2.1)

Pk(t)= ~exp[-i~·~i(t)]
l

(k#O) (2.2)

and < > the statistical average. The dynamic form factor is related

to the longitudinal part m2Cl (k,w) of the fluctuation spectrum of the
2 -

momentum density m ~(~,w) as

(2.3)

where m is the mass of an electron,

00

~(~,w)=(1/2TI)J dt<gk(t)g_k(t=O»exp(iwt),
_00

gk(t)= ~[d~i(t)/dt]exp[-i~·~i(t)],
l

(2.4)

(2.5)

(2.6)

We show in Fig.l the behavior of the dynamic form factor for

several values of the wave number and the plasma parameter. Though

the value at each ~ and w is rather noisy, we see that for small wave

numbers the dynamic form factor is dominated by the contribution of

the collective mode, the plasma oscillation, and its relative impor­

tance reduces with the increase of the wave number. As the plasma

parameter increases, the range of existence of this peak structure

extends to larger wave numbers.

This observation is more clearly shown in the dispersion relation

in Fig.2 obtained from the dynamic form factor as the position and the

full width at half maximum of the peak.

Simulations are made for durat:ions of 10 (f=7.1) to 15 (f=2.2) times
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Fig.2. The dispersion relation of the plasma oscillation of two-dimensional

classical electron liquids. vertical lines indicate full widths at

half maximum of peaks of S(~,w). Eq.(2.7) with 0=0 and with 0 given

by known thermodynamic quantities are shown by thin and thick (or

dotted when the term with 0 is not small) lines.
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the typical period of plasma oscillation for k=(nn) 1/2 without in­

cluding discarded initial parts of about a qgarter of them.

It has been shown that in the limit of long wavelengths the dis­

persion relation is given by [7]

w (k) ;;;'w
p

(k) [He (k/k
D

) ] ,

W
p

(k)=(2nne2k/m)1/2, k
D

=2nne2/T,

o
Here cp ' c v ' XT ' and XT are the specific heat at constant pressure, the one

at constant volume, the isothermal compressibility of our system, and

that of the ideal gas, respectively. Eq. (2.7) with 0=0 and with 0

calculated from known thermodynamic properties [4] are plotted in Fig.2.

Since we have used the periodic boundary condition, our experiment

does not give the dispersion relation of the plasma oscillation in the

limit of very long wavelengths which are comparable with the period

and we have no theoretical results which can be applied strictly

in the domain of the wave number of our experiments. We see, however,

the predictions of Eq. (2.7) inthe limit of long wavelengths are con­

sistent with the results of our experiments.
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