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Synopsis

A new waveform analyzer based on the Walsh trans­

form is developed and is applied to a real-time fil­

tering of fast pulse signals, and the linear filter­

ings of time signals through the Walsh transform is

discussed.

The analyzer converts a solitary waveform during

16 ps into the 16 Walsh amplitude spectra in a hy­

brid manner: it has the sequency band from 62.5 kZps

to 500 kZps. The spectra are parallelly held during

16 us by analog integrators, while serially disp­

layed by the CRT, and one of them is digitally read

out. The spectra of the test waves are measured with­

in the error rate of several per cent.

The analyzer is applied to the correlative de­

tection of the photoelectric pulse signals in a gas­

spectroscopic system using a pulse laser, and there

composes the matched filter, which is useful for mea­

suring the signals superposed by Gaussian noises with

a high accuracy.

For the real-time filtering of fast signals, the

arithmetic convolution and the frequency power spec­

tra are approximated using the complex Walsh trans­

form. These approximations are of practical use in

16 or 32 dimensions. Then, the matched filters for
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pulse peaking are given by the approximate convolution and by the

dyadic convolution.

1. Introduction

Spectral analysis of signal waveforms is one of the basic signal

processings, which contributes to character extraction and filtering

of signals and any other purposes. A spectrum of a signal waveform

is mathematically expressed as the inner product of the waveform and

the orthogonal function. In this case it is desirable that the function

has the adaptability to both electronic circuits and physical systems.

Recently, the frequency spectral analysis by the sinusoidal functions

is executed on the digital real-time processor l ), where the fast Fou­

rier transform (FFT) drastically reduces the number of multiplica­

tions but the frequency in the real-time execution remains in audio

band because of time consumption of each multiplication.

In the pulse appliances such as the radar, the laser-radar (lidar)

and the sonar, or in the general fast-signal systems, the real-time

spectral analysis may be executed by the simpler orthogonal functions.

The Walsh orthogonal functions take only two values ±l and the multi­

plications in the Walsh transform are replaced with additions and sub­

tractions 2 ). Therefore, the fast Walsh transform (FWT) is more quick­

ly computed than the FFT and utilized for the computer processings

of voice and picture signals. The Walsh spectrum representation of

the ordinary or arithmetic convolution, however, presents so compli­

cated aspect 3), that the application of the non-modified Walsh trans­

form to the filtering described as the arithmetic convolution offers

few advantages, and that the real-time Walsh spectrum analyzer was

not developed for the general ~ignal processing until recently.

With the intent to approximate the arithmetic convolution using

the modified simple and quick Walsh transform, we develop a new Walsh

waveform analyzer, which transforms a near-video pulse signal during

16 ~s into 16 Walsh amplitude spectra in real time not with the FWT

but with the pulse-width modulation4 ). We utilize it for the correla­

tive detection of photoelectric signals in a spectroscopic system

using a pulse laserS). And we' discuss the Walsh filtering of the

ordinary signals in the time-invariant system6). Thus, the real-time

spectral processing can be accelerated by the Walsh transform.
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2. Walsh Functions and Walsh Transform
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Walsh function, the complete orthogonal function taking +1 or -1

value, was created by J.L. Walsh in 1923. His original function can

be expressed by Rademacher function {R(2ms); R(S+lh=R(S), m=O,I, ... ,

n-U as 7)

(1)

where S is independent variable within [0,1) and the order{IiO,l, .. ,

2n -l} has the binary representation I=(In_l' ... ' 1m, ... , II' 1 0 );

1m EO {O, I} and «l denotes addition modulo 2 or exclusive OR. Equation

(1) is rewritten by even Walsh function cal(i,S) and odd Walsh func­

tion sal(i,S) of Pichler's definition as follows 2 ,8):

sal(i,s)=wal(2i-l,s)=cal(i-l,s)cal(1,s)

cal(i,s)=wal(2i,S)= nrrl{cal(2m,S )}
m=l

i
m } ( 2 )

where cal(2m,8)=R(2m+ l S)R(2mS) and sal(2m,8)=R(2m8). In Fig.l the

first 16 Walsh functions are illustrated. The number of 1/2 zero­

crossings within the interval 0~8<1 is the sequency i which is defin­

ed by H.F. Harmuth 9). The sal and cal functions,comparable to sine

and cosine functions, are generally defined for the sequency ~ of

real number. Now, let 8 be the time variable tiT normalized by the

time base T [second] , and then the non-normalized sequency is ~=~/T

[ZpSi zero-cross per second]. In actual signal processing, however,

the sal-cal functions of integer sequency or the wal functions are

used.

For analog or digital Walsh processors, the logical expression

of Walsh functions may be useful. By the mapping function of one­

to-one correspondence {Xi +1=X(O), -l=X(l)} , cal' and sal, of logi­

cal Walsh functions are expressed as follows 8 ):

cal' (i,S)=X- l {cal(i,S)}
n-2
LEll i m cal' (2m,8)

m=O

sal' (i,8)=X- l { sal(i,8)}= cal'(i-l,S)G>sal'(1,8)

where x-I and L«l denote inverse mapping and summation modulo 2

respectively.

( 3 )



166 Yoshihiro TANADA and Hiroya SANG



Walsh waveform analyzer and Walsh filtering 167

The Walsh series of any waveform is ended in the first N=2n

terms with computation facilities. A waveform F(8) at the time inter­

val (0,1) is expanded in a series by the first N Walsh functions as

follows:

N-l
F(8)= L a. wal(i,8)

i=O l

( 4 )

where a. is the Walsh amplitude spectrum, represented by the Walsh
l

transform:

( 5)

The value of the approximate waveform F(8) at k68 28«k+l)68 (68=1/N,

k=O,l, ..• ,N-l) is expressed by substituting Eq. (5) to Eq. (4) as the

following average value:

( 6 )

N-l
f

k
= ~IF(~){ L wal(i,8)wal(i,~)}d~

i=O

= ! f(k+l)68F(~)dW

M kM

~
fr ~F(e)~

fo V F(e)

==00----
o

and a. are illust­
l

rated.

In Fig.2 F(8), F(8)

~ time 8

(a) Walsh expansion of a waveform.

a,
ao

ON-I

N-(

---'>' order

(b) Walsh amplitude spectra.

Fig.2 \valsh transform of a waveform by the

first N \'Jalsh functions.
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Thus, the Walsh inverse transform and the Walsh transform take the

following discrete forms of Eqs.(7) and (8) respectively

( 7 )

a.=
1

N-l
M L f kwal(i,8 k )

k=O
(8 )

where 8
k

= 8; k68~8«k+l)6e. In computer execution of these trans­

forms, the FWT argorithm is usually adopted.

3. A Palsh v,aveform Analyzer for Signals of Near-Video Band

3.1 Principle

For fast and simple execution of the Walsh transform on hard­

ware, we adopt an operation method based on the pulse-width modula­

tion4). The principle of th~ method is explained according to Fig.3.

~he input waveform F(e) is averaged at every interval of 68, to be
F (e) •

o

F(G) ~ ~
7 ~

fk-t - +E

.E LJe =1__:f:;..:.:.k__======fk=:+(=====--

--E
I
o
J

o
I
o
(

o

Ne --1 Dk- f-_Il-
woJc-c e) I--

-1 DK- Ut DCk+I)i-

Fig.3 Operation scheme of the hybrid analyzer.
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The average value fk(lfkl~E) is piled up to the positive value fk+E,

and then it is converted to the pulse width

Dk+=KlI8(l+fk/E) (9)

where O<K~1/2. Thus, the pulse width to the reverse value -f
k

is

given by the complement operation

D =K~e(l-f /E)=2K~e-Dk- k k+ (10 )

The pulse trains Po and Ne consist of the pulses of D
k

+ and Dk _ res­

pectively. Now, the calculation of Eq. (8) is divided into two parts

of multiplication and summation or integration. The multiplication

is carried out as follows. The logical Walsh function wal' (i,e)

picks exclusively the pulse element out of the pulse train Po or Ne

at every interval. The logical expression of this relation is

a. = P wal' (i, e) V N wal' (i, e)
~ 0 e

where the pulse width at e=e
k

is

Dk = K~e{l+(fk/E)wal(i,ek)}

(11)

(12)

Integrating the durations of the truth value 1 in the hybrid signal

a. and subtracting the excess duration NK~e=K gives the quantity
~

proportional to the Walsh amplitude spectrum ai. The real spectrum

is given by

N-l N-l
a.= ~(-K+ L D )=-E+~ L D
~ K k=O k Kk=O k

( 13)

In case that each pulse width Dk can be converted intr the number of

pulses enough to attain accuracy, accumulator (rightly named to be

digital intergrator) executes the integration. Otherwise in case of

high-speed analyzing, the analog serial adder (a sort of analog in­

tegrator) which takes the initial value -E and the conversion coeffi­

cient E/(KT) converts the hybrid signal ai into the analog amplitude

ai. In either case, the most striking feature of this method is to

execute the multiplication on digital circuit, and it can make the

compact or large-scale analyzer.

Another method of the hybrid computation based on the FWT is

reported by J.W.Carl and R.V.Swartwood lO ), but it renders the real­

time processing incapable because of using many analog devices such

as sample holders, adders and switches.
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3.2 Prototype Analyzer

Table 1 Specifications of the analyzer.

16

l6~s

l6~s

Required

62.Skzps-SOOkzps

Accepta!Jle

-lV-+1V

Acceptable

l6MHz

Analyzing time T

Holding time

Spectral number N

Repetitive waveform

Sequency band

Waveform amplitude f
k

Trigger pulse

Clock frequency

Single-shot waveform

The equipment in

trial, for the appli-

cation to the detection

of fast pulse signals,

analyzes the waveform

during l6~s into the

16 Walsh amplitude spec­

tra: it has the sequency

band from 62.5 kzps to

500 kzps. The specifi­

cations are listed in

Table 1. The external

appearance and the sche­

matic diagram of the ana- ____________..L- _

lyzer are shown in Figs.4

and 5 respectively. The input wave­

form starts to be analyzed by an ex­

ternal trigger pulse. The conversion

of the average value f
k

into the time

width Dk+ is executed alternately

in two channels, on each side of

which the following process is re­

peated eight times: the input vol­

tage waveform is integrated during

the first lps interval and the integ-

rator output f ( If I < E =lV) is held
k k-

during the next SOOns interval while

compared with the saw-tooth wave

to be the pulse width Dk+ (K=1/4)and

the integrator output returns to

zero in the third SOOns interval.

Rearranging the two pulse trains

from the channels, the multiplier

yields the 16 pulse trains {a. ;i=O,l
l

, ... ,1S} according to Eq. (11).

The analog serial adder with the in­

itial value -1 V and the conversion

Fig.4 External appearance

of the analyzer.
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coefficient 1/4 V!l-tS converts the trains {a.} into the 16 Walsh am­
1

plitude spectra {a.;i=0,1,···,15}at 16us after triggering, and the
1

spectra are held during the successive 16us interval while they are

displayed by the CRT and one of them is converted into the pulse

number at the rate of 100 l/V by the numerator.

3.3 Performance

The performance of the analyzer is tested by reading the output

values to several solitary and continuous waveform inputs. In this

case the repitition rate of the trigger pulse is 1.4 kHz asynchronous

with the 16 MHz clock frequency. Fig.6 shows the oscillograms of the

operating signals at the various parts of the analyzer where a syn­

chronous 125 kHz cosine wave cos 4nt/T (V) is the test waveform.

Table 2

These oscillograms prove the good operating of the analyzer. Table

2 shows the analyzed and the computed va-

(b) Odd spectra.tra.

Oscillogram of the spectra of an

asynchronous 217.5 KHz,2V p-p

sinusoidal wave. (a) Even spec-

0.000

0.000

0.637

0.000

O. a lI­

0.0 {

0.03

0.7 S­

0.03

0.03

0.02 0.000

O.2q 0.26 q... Fig.7

0.03 0·000

0.03

0.02 O. 000

Analyzed Computed

values (V) values

Q2 0.03

lues of the spectra of the cosine wave.
The spectra of cos 4nt/T.

Fig. 7 shows the oscillogram of the disp-

layed spectra where an asynchronous 217.5

kHz, 2 V peak-to-peak sinusoidal wave is

the test waveform. The maximum value of
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Fig.6 Oscillograms of the operating signals on the analyzer.

(a) Input waveform. (b) Even seguency amplitude spectra (inverted). (c) Averager output of

the first channel (see Fig.5(d)). (d) Saw-tooth wave (see Fig.5(f)). (e) Po (see Fig.5(k)).

(f) wal' (4,t/T). (g) a4. (h) The fifth output of the serial adder. The scales of (a) to (d)

and (h): 2 ].ls/div.,l V/div. The scales of (e) to (g): 2 ].ls/div.,5 V/div. """w
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each fluctuating spectrum is represented by

(15)

(14)

,
j

1
i=1,2,···,B

i=1,2,··· ,8

i=O , 1, ... ,7

i=O,1,···,7

i=l, 2 , ... ,8

i=O , 1, ... ,7

acc(i)=

acs(i)=

a (i) =
sc

J1cal(i,8)cos2nv8d8
o
Jl cal(i,8)sin2nv8d8
o

Jlsal(i,8)cos2nw d8
o

a (i)= Jlsal(i,8)sin2n~Od8
ss 0

8 =t/T,v=T/Ts=3.48 (T=16~s, 1/Ts=217.5kHz)

la (i) I =!a 2 (i)+a 2 (i)c max cc cs

la (i) I =!a 2 (i)+a 2 (i)s max ss sc
where

Table 3 shows the com-

puted maximum values. Table 3 The maximum sequency amplitude spec-
The above and the othel: tra of an asynchronous sinusoidal ,,,ave
results show that the sin 2nvt/T (v=3. 48) .
spectra are measured

within the error of se- ,( j O,c(O Ima.x. (. I '
I CAs C,l) l'l1\oJX

veral per cent of the

maximum amplitude 1 V 0 O.OQ1 O.OGj7

and that the sequency '\ 0.042 2 0.040

resembles to the fre-
2 O. 1'11 3 0.203quency.

This method has the 3 o.46Q 4- 0.44'1

characteristics that
4 O.3SQ S o. 3~?-

the processing is fast
j

and the hardware corn- S O.ig II b 0.155

pact and the aliasing 6 0.032 II 'i 0.034-
not caused.

7 O.07Cf II S 0.074-

4. Applications of the Analyzer to Filtering of Pulse Signals

4.1 Correlalive Detection

In this section the analyzer is applied to the correlative detec­

tion of the photoelectric pulse signals in a gas-spectroscopic system

using a pulse laser 5). A model of the correlative detector e.g. the

box-car integrator or the lock-in amplifier mostly used in such a sys­

tem is shown in Fig.B. Let the time functions f(t), r(t) and h(t) be

an input signal, an input noise and the weighting function respective-
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Output
ut Multi- Inte-

plier
,

grator)+((t)
,

Weighting 1, (x)
Function

gger Function

Generator

f(t

Tri

Inp

Fig.8 A model of the correlative detector.

ly, the output in response to the single-shot input is given by the

correlation integral

g= ~ f~{f(t)+r(t)}h(t)dt (16)

where T is the time base as before. The functions f(t), ret) and

h(t) are approximately expressed by the Walsh series as

f (t) '"
15 t 15 t
L ai wal (i, T ), ret) '" L di wal (i'T)

bO bO

h(t) '"
15 t
L ci wal (i, T

i=O

(17 )

where

10 fT
ci = T 0 h(t) wal (i, ¥) dt (18)

Using Eg. (17), Eg. (16) is approximately expressed as

15 15
g '" L aici + L diC ii=O i=O

(19)

Thus, the detector model of Fig.8 can be modified to the Walsh

processing model shown in Fig. 9.
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t
4.0+

Coput Walsh Outpu

Waveform Q., + d... C, Summing
"-

or
Amplifier /'

+ ret) .
CJAnalyzer .

al.l-l +d"-i
CN - 1

igger i0

In

Tr

f(t)

Fig.9 The correlative detector using the Walsh

waveform analyzer.

The weighting function of the box-car integrator or the lock-in ampli­

fier is, for example, h(t)= 16[u(t-k~t)-u{t-(k+l)~t}] (k=O,l,"',15)

or h(t)= wal (I, tiT) respectively, and they are rather fixed.

Generally, an appropriate weighting function can bring the optimum

detection, where it is simpler for the hardware to weight the ampli­

tude spectra {Ci } than to generate the time function h(t).

Thus, the optimum detector for the photoelectric pulse signals

in the spectroscopic system is constructed with the Walsh waveform

analyzer in the following manner. In this case, the signal has the

known waveform, and the noise the white-normal distribution, so the

signal-to-noise ratio of the detector output is related to the Sch­

warz's inequality

15

( I
i=O

15
I I

i=O

15
~ l

i=O
a~ ICE"
~ ~ (20 )

describes the ensemble mean of the noise power spectrum d~
~

i (0, I, .•. 15). The signal-

where d~
~

and takes the same value for every order

to-noise ratio has the maximum when

that is

c. = Kwa.
~ ~

Kw = constant ( 21)

h(t) = Kwf(t) (22)

The optimum detector takes the weighting spectrum of Eq.(21), and

this detector is one of matched filters.

The practical system for detecting the photoelectric pulse sig­

nals consists of a pre-amplifie~the matched filter, an A-D converter,

an accumulator and a personal computer, and can measure the mag­

nitude of the pulse signals on the resonance absorption in the rare­

fied N02 gas and the Raman scattering from the atmospheric N2 gas,

with a high accuracy especially owing to the matched filter.
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4.2 Convolution Filtering

In this section the convolution filterings of time signals us­

ing the Walsh transform are discussed 6) The waveforms F(S), H(S)

and G(S) isolated at the time interval [0, 1) are expanded in the

Walsh series to be P(S), H(S) and G(S) of which spectra are ai'

c i and b i ' respectively. Now, these waveforms are assumed to repeat

with the period 1. If F(S) is an input to the dyadic-invariant- -system with the impulse response H(S), then the output G(S) is re-

presented by a finite dyadic convolution:

(23)G(S)

S~S =
k

represented by

N-l _
~S L F(Sk)H(S$Sk)

k=O

where ~S =l/N, N=2n ,Sk = {S; k~S ::S«k+l)~e, k=0,1, .... ,15'},

S = {S; lM::S«.t+l)M, Q. =0,1, •• ,,15} and the dyadic shift-
M (l ~k) . The Walsh amplitude spectrum of G(S) is simply

b. =
~

(24 )

-Likewise, the output G(S) from the time-invariant system is repre-

sented by a finite arithmetic convolution

. N-l
(;(S) = M L P(Sk)H(S-Sk) (25)

k=O
The spectrum of this output G(S) presents a complicated form as fol-

lows :

b. =
~

N-l N-l
I;' I;' a c y.

p~o q~o p q ~pq
( 26)

where Yipq is the expansion coefficient of an arithmetically-shif­

ted Walsh function 3);

(27)
N-l N-l

L L y. wal(i,elwal(p,Sk)
i=O p=O ~pq

In this case the calculation of the spectra {bi } needs (N2+2)/3

multiplications and additions.

For a compact approximation to the arithmetic convolution, we

define the complex Walsh functions as

W(O,S) = 1 , W(N/2,S) = sal(N/2,S) }
W(i,S) = {cal(i,S) + jsal(i,S) }/12 (28)

j2= -1, Iii = 1,2,···,N/2-1
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and a pair of the complex Walsh transforms as

F(8)

A(i)

NL2
=! A(i)w(i,8)
i=- (N/2-1)

N-l_ *
= ~8 L F(6 k )W (i,6k )

k=O

( 29)

( 31)

where the asterisk denotes the conjugate complex. G(8) and H(6)

also take B(i) and C(i) respectively. Thus, the output from the

time-invariant system is approximated by
_ N/2
G(8) L A(i)C(i)W(i,0)W(i,8) (30)

i=-(N/2-1)

where A(i)·C(i)·W(i,O) = B(i) is the sequency amplitude spectrum

and IA(i) j2·IC(i) 1
2= IB(i) 1

2 , the sequency power spectrum. The

approximation error of the arithmetic convolution is given by the

square of the Hilbert-Schmidt'g norm of the difference between the

ideal output H(8-8k ) and the approximate output

A N/2 *
H(8-6 k ) = I C(i)W (i,8

k
)W(i,0)W(i,6)

i=-(N/2-1)

when the time-invariant system receives the impUlse input delayed

by 6k . On the other hand, the approximation error of the frequency

power spectrum is given by the square mean of the difference between

the absolute value 1 C' (i) I of the frequency amplitude spectrum and

the absolute value Ic (i) lof the sequency amplitude spectrum.

From calculating their errors for some waveform examples, it is

concluded that the approximations to the arithmetic convolution and

the frequency power spectrum are of practical use in the dimension

N=16 or 32 where the latter approximation is better than the former.

The intermediate use of Eq.(31) gives the following, relation

between the autocorrelation function and the sequency power spect-

rum:

N/2-1
1VHH (6) = 2 I IC(i) 12cal (i,8)

i=O } ( 32)

which is compared with the Wiener-Khintchines theorem.

The dyadic-invariant system and the approximate system to the
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time-invariant system can be utilized as the matched filters in the

pulse appliances such as the radar, the lida1~ and the sonar. Assum­

ing that a white Gaussian noise superposes o~ a pulse signal, the

matched filter which gives the maximum signal-to-noise ratio to the

output pulse at 6 = l/J takes its spectrum as

C(i) = KIA*(i)W*(i,O)W*(i,l/J) (33)

based on the approximate system or as

(34)

based on the dyadic-invariant system where KI and K2 are constant.

Fig.IO shows the general filter using the Walsh transform i.e.

the sequency filter. The fast Walsh waveform analyzer and synthe­

sizer, or the fast A-D and D-A converters and the fast microcomputer

may quickly execute the above-mentioned filterings.

Walsh h'alsh
,.....

Fee) Spectra ;\Taveform G-(e-<jJ)
\\Taveform

l\Teighter Synthe-
Analyzer sizer

Fig.IO The sequency filter.

s. Conclusion

The high-speed and simple Walsh waveform analyzer has been

newly developed and has been applied to the detection of the photo­

electric pulse signals in the laser-spectroscopic system. And the

linear filtering of time signals using the Walsh transform has bepn

studied. The real-time sprectral analysis can be more quickly ex­

ecuted by the Walsh transform than by the Fourier transform and the

Walsh processor can be applied to the pulse appliances such as the

radar, the lidar and sonar or to the general fast-signal systems.

Acknowledgement

We would like to thank Prof. Jun-ichi Ikenoue of Kyoto Uni­

versity for his continuing guidance and helpful advice. We wish to

thank our seminar staffs for their e,~perimental assistances.



180

References

Walsh waveform analyzer and Walsh filtering

(1) M.Tokoro, H.Mori, N.Kaneko, M.Shimada, S.Uchida and H.Aiso:

"Fast Fourier transform by hardware", Trans. IECE of Japan,

58-D (1975), 9, 578.

(2) H.F.Harmuth: "Transmission of information by orthogonal func­

tions", Springer Verlag (1972), 22.

(3) Y.Tanada and H.Sano: "Walsh spectra of time-shifted waves",

Trans. IECE of Japan, 57-D (1974), 8, 503.

(4) Y.Tanada and H.Sano: "A hybrid Walsh Waveform analyzer", Trans.

~ECE of Japan, J59-D (1976), 2, 101.
I ------

(5) H.Sano, Y.Tanada, R.Koga and T.Ono: "Method of narrow pulsed

laser light detection applied to the monitoring of air pollutions",

J.Illum. Eng. Inst. of Japan, 61 (1977), 3, 159.

(6) Y.Tanada and H.Sano: "Linear filtering of time signals using

the Walsh transform", Trans. IECE of Japan, J6l-A (1978), 6, 596.

(7) R.B.Lackey and D.Meltzer: "A simplified definition of Walsh

functions", IEEE Trans. Comput., C-20 (1971), 2, 2ll.

(8) H.Sano and Y.Tanada: "Logical Walsh functions", Trans. IECE of

Japan, 56-D (1973), 9, 531.

(9) H.F.Harmuth:"A generalized concept of frequency and some appli­

cations", IEEE Trans. Inf. Theory, IT-14(1968), 375.

(10) J.W.Carl and R.V.Swartwood: "A hybrid Walsh transform computer",

IEEE Trans. Comput., C-22 (1973), 7, 669.




