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Synopsis

This paper deals with the stress-strain curTes of

single crystal and polycrystal considering the work­
hardening and the anisotropy which is due to the
difference of workhardening on each slip system.

The results obtained are summarized as follows:
1) The equations of workhardening on each slip system
are derived according to the dislocation theory.
2) And it is found that the stress-strain curves of

eu single crystal and polycrystal calculated by using
the workhardening equation with proper coefficients
agree well with the experimental values.

1. Introduction

Recently, it has been possible to analyze the stresses and the
strains of the complicated shaped bodies appling to finite element
method. It is known that this method has a good accuracy when the

(I)
body is devided to small elements and the equations between the
stresses and the strains are well known as Hooke's law in elastic
deformation. But,in plastic deformation, the phenomena in which the

(2)
stress-strain curves are changed by preworks are not yet explained
completely, therefore, the equations in the region of plastic defor­
mation cannot be represented in good accuracy. So the equations be-
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tween the stresses and the strains in plastic deformation haTe to be

made clear. for analyzing the stresses and strains in plastic defor­
mation of the complicated shaped body.

Generally. the all metals for practical using are polycrystal and
the mechanism ~f plastic deformation is the slip as single crystal.
Although the behaTior of the plastic deformation of single crystal is

13 )
well known in crystallography and the dislocation theory. the proper-
ty of polycrystal differs from the aTerage one of single crystal be­
cause a grain in polycrystal is affected by the neighbouring grains.

In this paper. the equations between the stresses and strains of
single crystal and polycrystal are studied mainly considering the an­
isotropic workhardening.

2. Theoretical analysis and results

Fig.l The shape of moving dislo­
cation affected by the forest
of dislocations

Moving dislocatIOn

0..-... Forest dislocation
1+'

o

2.1 Workhardening in slip deformation
Plastic deformation of metal occurs by the movement of dislo­

cations. The obstacles for moving dislocation are impurities,alloy­
ing elements,Peierls-Nabarro force and the other dislocations,etc.
Since the obstacles on the w0rkhardening must increase with defor­

mation, the main factor is considered the interaction with the other
dislocations. Fig.l shows the
relation between moving dislo­
cation on a slip plane and
forest dislocations which inter­
sect with this slip plane and
which are obstacles to this mov­
ing dislocation. Force on the
dislocation line of length 1 is
given as (T-To)bl under
applied shear stress T in the
slip direction on the slip
plane,the frietional stress TO

(1)

of the
subject-

and Bergers Tector b. And this force must overcome the force
for cutting the obstacles in order that the dislocation can pass
through the forest dislocations. Therefore the minimum applied
stress for mOTement of the dislocation is as follows:

F (3)
T=TO+ bl·

Also, when the dislocation moves among the dislocations
same slip system, maximum force in a unit dislocation length

2 (3)
ed by other dislocations is jUb /8rr(1-~)h, as in Fig.2.
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Therefore, in order that the dislo­
cation can pass through the dislo­
cations, the applied stress needs

at least

.. = (2)

where p and y represent shear mod­

ulus and Poisson's ratio respectively.
Consequently, the average ~ig.2 Relation between the mov-

values l=K / n;: or k=K /~ ing dislocation and other
1 if 2 r'

are often adopted in order to esti- dislocations on the same slip

mate the flow stress where)?f and plane

;Op represent the density of forest
dislocations and the density of dislocations on the parallel slip
plane respectively, and Kl and K2 are constants that are nearly 1.
So, from eq.(l) and eq.(2), following equation is obtained:

b
2

T = T +l + )J (3)
o Kl b 8TTK2 (1-lJ)h.

But 1 has the distribution and there exists 1 which is longer than 1.
Therefore, the dislocation can move even when the stress which is
less than that given in eq.(3) is exerted.

Let's assume that the dislocations are distributed at random in
the grain. So, the probability density ~ which (li_l+li)/2 is 1 is

(4)

where K
3

is constant, and from the definition of the probability
density

Further, let the number of the nodes between the moving dislocations
and the forest dislocations be n, and the density of the moving dis­
locations are obtained as:

The incremental shear strain dY is

dY = nj:.dS.~dl ,

Ie

(6)

(7)
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where lc represents the smallest value of 1 that the moving disloca­

tion passes through, and from eq.(l)

(8)

and ds represents the area which the dislocation sweeps after it

passes through one node and is considered to be in proportion to vl

( v is the velocity of moving dislocation) or 12 in according to

strain rate. Substituting eq.(4), eq.(6) and eq.(8) into eq.(7) and

putting x=)K,4 1 ,

dY • K"b?"Vf;~ x
2

exp(-x
2

)dx. (ds K"Vl) (9)

b(,c-'o)

dY = ~K~ r;)K
3
f

f
x'exp(-x2 )dX .

,:Pf ft(, -, )
c 0

( ds (9' )

(10), -,
c 0

dY is expressed as the function of ('c-'o) by integrating eq.(9), and

the relation between dY and (TC-T
O

) is shown in Fig.3, and the result

in eq.(9') is very close to that in eq.(9).
This curve is approximated to the one point chain line in Fig.,

except low strain rate and high strain rate.

F)K3f f KdY
b (j'mv+o.5)

~ut, ~enerally, the distribution of dislocations are not always at

random and they often tangle or pile up~)~~e relation is therefore

pxpressed Qualitatively as the broken line and is approximated to the

two point chain line except low strain rate and high strain rate, as

in Fig.3.

0.5~
0.4

~0.3

t
~ 0.2

Fig.3 Relation between the

shear strain and the

flow stress

0.1

o 1.0 2.0 10
b( 'tc - te)/F.Ikij
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And the approximate equation is:

53

l' -1'
C 0

(ll)

where A and B are constants and the relation between dY and (1' -1' )
C 0

in any distribution of dislocations is approximated by determining

proper A and B. The relation when 1=1 in the dislocation theory as

described before coincides when A=o in eq.(ll). And all cases are

represented by eq.(ll).

~ is the unknown value,but it can be written approximately:

~ = p+qJi, , (12)

where p and q are constants which chan~e by materials.

Substituting eq.(12) into eq.(ll),

l' -1' = ( AdY +B ) F1j5;
c 0 p+qfi, f

Until now, the Primary slip system and one other sliD system are

considered. But there are 12 slip systems in face- centered cubic

metal and 48 in body-centered cubic metal. So, the ~eneral case must

be considered. Let the density of dislocations on j th slip system

be f and k th slip system be active. The dislocations on each slip
J

system interact each other, but the force of interaction is different

by the combination of slip systems. So, the three equations are

obtained as follows:

1'k
k

l' + (AdY + B ) •~ Hkj;j?j . (14)
c 0 p+q;;

P J

1'k
k

l' + (AdY + B ) .IL; Hkjfj . (15)c 0 p+q;p
J

k k 3/2 Hkj Jj
l' l' + ( ~~qp, + B ).(~Hkjfj) I(r, F ), (16)c 0 p J j j

Since it is reported that the density of dislocations Jj is in

nroportion to the shear strain Y. by experiments of single crystal- J
and polycrystal, the shear stress-shear strain equations are as:

k Adyk
).~ Hk/Y j+Yojl' + ( + Bl'

p+q(yk+y .)c 0

oJ

1'k Adyk
l' + ( + B ).1>;. Hk/Y j+YOJ)'c 0 p+q(yk+y .)

oJ J

(17)

(18)
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+ B ). (L;Hkj(Yj+YOj»3/2
J

(20)

Adyk
.. + ( --..:=;'-----

o p+q(yk+yOj )

/(L:Hkj(Yj+YOj) )
j F j ,

where Y . is the strain into which the density of dislocations at
oJ

the initial state is converted and Hkj is a constant depended on k th

and j th slip systems.

2.2 The stress-strain curves of single crystal

Let the coordlnate 0-xl x2x
3

be in crystal axis and let the direc­

tion cosines of the coordinate axis X. which is fixed on the specimen
l k

be ( li,mi,ni ) ( i=1,2,3). And the resolved shear stress.. on the

k th slip system is related to the applied stress 0ij as:

k \\ k k k k k k
.. = ~ ~(l'Pl+m·ql+n.rl)(l ..p~+m·q2+njr2)o'j

. l l l 0'- J l,
i J

where ( pr,qr,rr ) and ( p~,q~,r~ ) are the normal direction of slip
nlane and slip direction of k th slip system.
And the comnonents of strain in plastic deformation are expressed as

follows:

(21)

where dyk is the incremental shear strain of k th slip system.

In the slip systems that ..k in eq.(20) reaches the value ..~, the

slip occurs, and in another slip systems, the slip does not occurs.

Therefore, following condition can be obtained:

when

when

or
(22)

2.3 Comparison between the calculated results and the experimental
results in single crystal

Even if any equation of eq.(17), eq.(18) and eq.(19) is used as

the approximate equation of workhardening, the stress-strain curves

can be represented by choosing the suitable values of A, B, p, q and
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Hkj • For example, the results calculated by using eq.(17) are report­
ed.

centered cubic metals, the
effect of the coefficients
must be known.
Fig.5 shows the shear stress­
shear strain curves when Hi is
changed. When Hi becomes
larger, the gradient of the

18 20

H:1=6500
H:J= 800
Po =05xlO-g

'" ~=75
" H,=100

Calculated value

== Experimental value

after Mitchell

I
~'-----:---;:C---8:'---;1"'O-"'12'---"'14-"16~"'18"-~20

Shear strain .,.

Mitchell

a
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2
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.6f LJ: 5l
~ I
~ 4r..
13
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2 ,~
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L
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Fig.4 Comparison between calculat­

ed flow stress and experimental

one of Cu single crystal after

Fig.5 The effect of Hi on the re­
solved shear stress-shear strain
curve

Parameters A and B which indicate the distribution of dislocation
and the density of moving dislocations are not completely made clear

Therefore the coefficients must be determined by comparison with

experimental data in single crystal, although ,Hk , can be determined
(5") J

from the value reported by many workers.

And AHkj/p are classified into
the following three groupes,

that "is, Hi' H2 and H,.

Hi is the coefficient which
represents the interaction of

dislocations on the same slip
plane, H2 is the coefficient
depended on the combination of
slip planes in which Lomer­
Cottrell dislocations are

formed, and H, is the other
coefficient.
And the coefficients of Cu

single crystal are obtained as
follows by comparison with the
experimental values which was

(6)
measured by Mitchell in the

two orientations in the stere­

agraphic triangle in Fig.4.

B = 0 , q = 0

Y = 0 5xlO-9o •
Hl = 100 Kg/mm2

H2 =6500 Kg/mm2

H,= 800 Kg/mm2 .
In order to obtaine the stress­
strain curves of other face
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H,=100
K.J=800
PO=a5xl(r9

o 2 4 6 8 10 12 14 18
Shear strain ./.

Fig.6 The effect of H2 on the

resolved shear stress-shear

strain curve

w

first sta~e becomes larger and

the strain becomes less. But

the gradient of the second

stage does not change so much.

Fig.6 shows the shear stress

shear strain curves when H2 is

changed. H2 affects mainly

the gradient of the second

stage. When H2 becomes larger,

the gradient of the second

stage becomes larger.

Fig.? shows the shear

stress-shear strain curves when

H,is changed. This also exerts

an influence upon the ~radient

H,= lOa
Hz=6500
)'0 =0.5xl0-9

2 H,= 100
~=6500

H:r 800

024 6 8 ro D 14 ffi m w
Shear strain "to

Fig.? The effect of H, on the

resolved shear stress-shear

strain curve

o 2 4 6 8 10 12 14 16 18 20
Shear strain "to

Fig.8 The effect of ~ on the

resolved shear stress-shear

strain curve

of the second stage.

Fig.8 shows the effect of ~, and ~o controls the yield strength

and the length of the first stage.

Considering the effect of each coefficient described above, the

more suitable coefficients can be obtained although they interact

each other.
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2.4 Effect by neighbouring grains

Effect by neighbouring grains have to be made clear, in order to

know the deformation behavior of each grain in polycrystal, but it is

not so easy to solve this problem. Therefore the following a few
models are considered for deformation.

In order to solve eq.(20) and eq.(21), 6 components must be known

as a boundary condition in 12 components of 0ij and d€ij. But, gen­

erally, these values in a grain are unknown. Therefore it is assum­

ed that the strains of each grain are equal to the mechanical strains

of specimen in according to Taylor's model~) However, if there are

given components in stresses and strains, their values are used as

boundary conditions instead of the above assumption.

a) In the case that tri-axial stress is applied in specimen, boundary

conditions are as follows:

where dEij is the mechanical strain of specimen.

b) In the case that plane stress is applied in specimen:

(24)

Substituting these conditions and solving eq.(20) and eq.(21),

unknown components of stresses and strains in a ~rain affected by

neighbouring grains are determined.

2.5 The stress-strain curves of polycrystal

Polycrystal consists of many grains and there exist grain bound­

aries between them. The strength in a grain is determined by the

method described as above. The strength of their boundaries are how-
It)

ever not determined although many works and theory are reported. But

the volume of grain boundary is not so larger than that of grain.

Therefore the effect of grain boundary can be neglected even if they

are so different from the strength of grain.

Representating the relation between the coordinate O-xl x 2 x
3

and

O-X1X2X
3

, ~, e and ~ are introduced. That is, ~ is an angle between

xl axis and the projective direction of Xl axis on the plane x
l

x
2

, e
is an angle between xl axis and the projective direction of Xl axis

on the plane x l x 3' and ~is an angle between X2 axis and the normal

of the plane which contains both x
3

axis and Xl axis.
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O"i/ ¢,8,¥'), dE: ij ( ¢,8,'f) and f( ¢,8,'Y) represent the stresses,

the strains of a grain having this of grains having this orientation,

respectively. In this f( ¢,e,~), the change of area on a spherical

surface devided by d¢ and de with ¢ and 8 in integrating the follow­

ing equations is taken into account.

So, the average stresses (S .. ) and strains (dE .. ) are written
lJ lJ

:ciS follows:

S i j = fff 0" i / ¢, 8 ,'f ). f ( ¢ , e, 'r) d yrd~de .

dEij = JJJdE ij ( ¢,8,'r ).f( ¢,8,'i' ) difdIDd8. (26)

that the compressive residual

stress come into existence on

the surface layer of plastic

elongated specimen is explained

qualitatively because the sur­

face layer is in plane stress

condition.

B

Trl-aXiOlstresscord,!lan

Plane stress condition

- Expenmental",\JI ue
atter KC1luma

Calculated va Iue

2 L. 5
PlastiC stnaln %

o

5

15

20

"10b

2.6 Comparison between the calculated results and the experimental

results in polycrystal

The stress-strain curves of polycrystal in the tri-axial stress

condition and in the plane stress condition are calculated by using

the same coefficients that is used in the calculation of eu single

crystal. The calculated values agree well with the experimental

values, 3S shown in Fig.9. Where the experimental values are obtain-
I'l)

ed by Konuma 3nd are converted

into C/T
O

by mUltirlyin~ t~e

measured yield stress by

3.08/a •y
Black dots in Fig.9 repre-

sent the calculated values in

the plane stress condition.

And the stress in the plane

stress condition are less than

that in the tri-axial stress

condition. Therefore the fact

Fig.9 Comparison between the cal­

culated stress-strain curve and

the experimental one of Cu poly­

crystal after Konuma
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3. Discussion

resolved shear stress-shear

I
- I

I

\\\7\\1

-----~,-;~1

Shear stroln

Influence of A on

strain curve

i

~I
~V
I

Fig.lO

The stress-strain curves of Gu at the room temperature are appro-

ximated well when both B ~nd q are zero as described before. The

effect of A, E, P and q are discussed.

Anproximate eq.(3) which i8 used often in studies of the dislo­

cation theor~ is the equation Dutted A 0 in eo.(14). Fig.lO shows

t~e schematic stress-strain curve when A O. When H2 HI' secondary

slip system does not act as shown by the solid line. When H2 HI'

there is an inflection point and the secondary slip system begins to

act at this point as shown by the broken line.

Let A be constant and the value B

be changed. As in Fig.ll, the

broken line represents the dia­

gram when B = O. And the gradi­

ent of easy glide become larger

at the end of easy glide become

larger when B becomes larger as

shown by the solid line.

wnen p = 0, q I 0, the stress

become lower just after yield

point and the length of easy

glide is long as shown by the

solid line in Fig.12.

Shear stram

P~D QID
PID Q~D

PID Q;D

:::; i / f'

l~~~=-:=--~/-~.~-----=..-"'./

Shear strOIn

Fig.ll Influence of B on

resolved shear stress-shear

strain curve

Fig.l2 Influence of p and q on

resolved shear stress-shear

strain curve
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On the contrary, when p I ° and q = 0, there is no drop in stress
after yield point as shown by the broken line in Fig. 12. And when
p I ° and q 1 0, the diagram becomes near to the broken line because
q;p is nearly zero in the early stage, and then becomes near to the
solid line because q/P becomes large when deformation is large as
shown in Fig. 12.
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