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Synopsis

This paper desls with the stress-strain curves of
single crystal and polycrystal considering the work-
hardening and the anisotropy which is due to the
difference of workhardening on each slip system.

The results obtained are summarized as follows:
1) The equations of workhardening on each slip system
are derived according to the dislocation theory.

2) And it is found that the stress-strain curves of
Cu single crystal and polycrystal calculated by using
the workhardening equation with proper coefficients
agree well with the experimental wvalues.

1. Introduction

Recently, it has been possible to analyze the stresses and the
strains of the complicated shaped bodies appling to finite element
method. It is known that this method has a good accuracy when the
body is devided to small elementé”and the equations between the
stresses and the strains are well known as Hooke's law in elastic
deformation. But,in plastic deformation, the phenomena in which the
stress-strain curves are changed by preworkézgre not yet explained
completely, therefore, the equations in the region of plastic defor-
mation cannot be represented in good accuracy. So the equations be-
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tween the stresses and the strains in plastic deformation have to be
made clear, for analyzing the stresses and strains in plastic defor-
mation of the complicated shaped body.

Generally, the all metals for practical using are polycrystal and
the mechanism of plastic deformation is the slip as single crystal.
Although the behavior of the plastic deformation of single crystal is
well known in crystallography and the dislocation theorf? the proper-
ty of polycrystal differs from the average one of single crystal be-
cause a grain in polycrystal is affected by the neighbouring grains.

In this paper, the equations between the stresses and strains of
single crystal and polycrystal are studied mainly considering the an-
isotropic workhardening.

2. Theoretical analysis and results

2.1 Workhardening in slip deformation

Plastic deformation of metal occurs by the movement of dislo~
cations. The obstacles for moving dislocation are impurities,alloy-
ing elements,Peierls-Nabarro force and the other dislocations,etc.
Since the obstacles on the wnrkhardening must increase with defor-
mation, the main factor is considered the interaction with the other
dislocations. Fig.l shows the

relation between moving dislo- °
°‘~Forestdiﬂocuﬁor o
|0

Ny '

cation on a slip plane and

forest dislocations which inter- °
sect with this slip plane and °
which are obstacles to this mov- ¥ N
ing dislocation. Force on the i '
dislocation line of length 1 is

given as (t-ro)bl under Fig.1l The shape of moving dislo-
applied shear stress <t in the cation affected by the forest
slip direction on the slip of dislocations

plane,the frietional stress T

and Bergers wvector b. And this force must overcome the force ¥
for cutting the obstacles in order that the dislocation can pass

through the forest dislocations. Therefore the minimum applied

stress for movement of the dislocation is as follows:
F Q)

T=To+"b—l . (1)

Also, when the dislocation moves among the dislocations of the
same slip system, maximum force in a unit dislocation length subject-

3)
ed by other dislocations is mb2/8m(1-p)h, as in Fig.2.
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Therefore, in order that the dislo-

cation can pass through the dislo-
1
cations, the applied stress needs _L____T_
at least s e Q
- Ab Moving dislocation
LT T G PT) - (@) L Slipplane
1
where ( and | represent shear mod-
ulus and Poisson's ratio respectively.
Consequently, the average Fig.2 Relation between the mov-
= B ing dislocation and other
values 1 Kl/‘<f% or h K2/.//0P sie1
are often adopted in order to esti- slocations on the same slip
mate the flow stress where/Qf and plane

f% represent the density of forest

dislocations and the density of dislocations on the parallel slip
plane respectively, and K1 and K2 are constants that are nesarly 1l.
So, from eq.(l) and eq.(2), following equation is obtained:

2
r=r+r+/Ub 3

o K;b 81K, (1-D)h -

But 1 has the distribution and there exists 1 which is longer than 1.
Therefore, the dislocation can move even when the stress which is
less than that given in eq.(3) is exerted.

Let's assume that the dislocations are distributed at random in
the grain. So, the probability density « which (li_l+li)/2 is 1 is

_ 2
a = 2K3f?1exp(-K3/%1 ), )
where K3 is constant, and from the definition of the probability

density o
fad1=1. (5)

(o]

Further, let the number of the nodes between the moving dislocations
and the forest dislocations be n, and the density of the moving dis-
locations are obtained as:

/Z = /[nl,adl = ni . (6)
0

The incremental shear strain 4Y is

(-]
ay = n/b.ds.adl , (7)

. lc
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where 1c represents the smallest value of 1 that the moving disloca-
tion passes through, and from eq.(l)

by
1, =%+ =) (8)
c b(Tc’To) s
and ds represents the area which the dislocation sweeps after it
passes through one node and is considered to be in proportion to vl
( v is the velocity of moving dislocation ) or 12 in according to
strain rate. Substituting eq.(4), eq.(6) and eq.(8) into eq.(?7) and

putting x=,/K3 Pf 1 ,

oo
2 2
ay = X,b N am) -x")dx . = K,vl
" /%v F/R }% x“exp(-x")dx ( as 4V ) (9)

b(rc—ro)

oo

b?/Kif%)xaexp(-xe)dx. (ds = K512) (9")
T -1
c o

_2Kcb

ay =
K3/Fr

dY is expressed as the function of (TC—TO) by integrating eq.(9), and
the relation between 4Y and (TC-TO) is shown in Fig.3, and the result
in eq.(9') is very close to that in eq.(9).

This curve is approximated to the one point chain line in Fig.>

except low strain rate and high strain rate.

F/K
TC—TO =———6§F‘f (%+Oc5) . (10)

Yut, eenerally, the distribution of dislocations are not always at
random and they often tangle or pile upﬁJThe relation is therefore
expressed qualitatively as the broken line and is approximated to the
two point chain line except low strain rate and high strain rate, as

in Fig.3.
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And the approximate equation is:

T -1y = ( }‘:Y +B)R/7 (11)

where A and B are constants and the relation between 4dY and (TC-TO)

in any distribution of dislocations is approximated by determining
proper A and B. The relation when 1=1 in the dislocation theory as
described before coincides when A=o in eq.(11). And all cases are
represented by eq.(1ll).

,ﬁ is the unknown value,but it can be written approximately:

fa T PYAR, (12}

where p and g are constants which change by materials.

Substituting eq.(12) into eq.(11),

s v = ( _AdY

¢ o p+q/%+B ) R (13)

Until now, the Primary slip system and one other sliv system are
considered. But there are 12 slip systems in face- centered cubic
metal and 48 in body-centered cubic metal., So, the general case must
be considered. Let the density of dislocations on j th slip system
be /% and k th slip system be active. The dislocations on each slip
system interact each other, but the force of interaction is different
by the combination of slip systems. So, the three equations are

obtained as follows:

TE = Tt ( éig/7+ B ). Z H 3427‘ (14)

e Ai;/%+ B )./é;ﬁ;}}%. (15)
H a

- (éig‘;p B >.<<31ij/3>3/2/<%—‘;§5>. (16)

Since it is reported that the density of dislocations £ is in
proportion to the shear strain Yj by experiments of single crystal
and polycrystal, the shear stress-shear strain equations are as:

Kk
rk=r+(—“dl———+B>ZHkJ—“ (17)
% prg(YHY )
0J
Kk 2av¥
T rge (— 24— B /TR (T ). (18)
p+a(Y T +Y _ L) 3

0Jd
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k
Tg = Tt ( ———AQ%————- + B ). (z:HkJ(Y3+YOJ))5/2
p+Q(Y +YOJ) J
H (Y ,+Y )
ki J o’
/(LG ol (19)
- ’
3 J
where Yoj is the strain into which the density of dislocations at

the initial state is converted and ij is a constant depended on k th
and J th slip systems.

2.2 The stress-strain curves of single crystal

Let the coordinate O-xlxzx3 be in crystal axis and let the direc-
tion cosines of the coordinate axis Xi which is fixed on the specimen
be ( 1i’mi’ni > ( i=1,2,3 ). And the resolved shear stress Tk on the
k th slip system is related to the applied stress Oij as:

k _ \ k k k k k k
T o= Z:Lf(lip1+miql+nirl)<13p2+qu2+njr2)cij \ (20)
i J
where ( p%,q%,r{ ) and ( pg,qg,rg ) are the normal direction of slip
vlane and slip direction of k th slip system.
And the comvonents of strain in plastic deformation are expressed as
follows:
_ 1 k k k k k k
dsij = 2%;((lipl+miql+nirl).(ljp2+qu2nnjr2)
k
k k k k k k
+(1jp1+qul+njrl).(lip2+miq2+nir2))dY s (21)
where dYk is the incremental shear strain of k th slip system.
In the slip systems that rk in eq.(20) reaches the wvalue TE, the
slip occurs, and in another slip systems, the slip does not occurs.
Therefore, following condition can be obtained:

k

avk y o , when T = T, , or

(22)

I
oOR ON

aym = 0, when tk {1

2.3 Comparison between the calculated results and the experimental
results in single crystal

Even if any equation of eq.(17), eq.(18) and eq.(19) is used as
the approximate equation of workhardening, the stress-strain curves

can be represented by choosing the suitable values of A, B, p, q and
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Hka' For example, the results calculated by using eq.(17) are report-

ed.

Parameters A and B which indicate the distribution of dislocation

and the density of moving dislocations are not completely made

clear

Therefore the coefficients must be determined by comparison with
experimental data in single crystal , although-ij can be determined

from the value reported by many workers.

Shear stress ute
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Shear stress

r
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3
e+ (Calculated value
2 . b —-- Experimental value |
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Fig.4 Comparison between calculat-

ed flow stress and experimental
one of Cu single crystal after
Mitchell
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Fig.5 The effect of Hl on the re-
solved shear stress-shear strain

curve

And Aij/p are classified into
the following three groupes,
that is, Hl’ H2 and HB'
Hl is the coefficient which
represents the interaction of
dislocations on the same slip
vlane, Hy is the coefficient
depended on the combination of
slip planes in which Lomer-
Cottrell dislocations are
formed, and H5 is the other
coefficient,
And the coefficients of Cu
single crystal are obtained as
follows by comparison with the
experimental values which was
measured by Mitchelf)in the
two orientations in the stere-
ographic trisngle in Fig.4.

B=0,q=0

Y, = 0.5x1077

H1= 100 Kg/mm2
H2=6500 Kg/mm2
H3= 800 Kg/mmz,

In order to obtaine the stress-
strain curves of other face
centered cubic metals, the
effect of the coefficients

must be known.

Fig.5 shows the shear stress-
shear strain curves when Hl is
changed. When H1 becomes
larger, the gradient of the
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first stage becomes larger and
the strain becomes less. But
the gradient of the second

stage does not change so much.

Fig.6 shows the shear stress

shear strain curves when H2 is
H2 affects mainly
the gradient of the second

changed.
stage. When H2 becomes larger,
the gradient of the second
stage becomes larger.

Fig.? shows the shear
stress-shear strain curves when
Hais changed. This also exerts
an influence upon the gradient
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Fig.8 The effect of /% on the

resolved shear stress-shear
strain curve

Fig.8 shows the effect of , 3and controls the yield strength
(o) o g

and the length of the first stage.

Considering the effect of each coefficient described above, the
more suitable coefficients can be obtained although they interact

each other.
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2.4 Effect by neighbouring grains

Effect by neighbouring grains have to be made clear, in order to
know the deformation behavior of each grain in polycrystal, but it is
not so easy to solve this problem. Therefore the following a few
models are considered for deformation.

In order to solve eq.(20) and eq.(21), 6 components must be known
as a boundary condition in 12 components of oij and dsij‘ But, gen-
erally, these values in a grain are unknown. Therefore it is assum-
ed that the strains of each grain are equal to the mechanical strains
of specimen in according to Taylor's modelT) However, if there are
ziven components in stresses and strains, their values are used as
boundary conditions instead of the above assumption.

a) In the case that tri-axial stress is applied in specimen, boundary

conditions are as follows:

degy = AE , (23)

i3
where dEi is the mechanical strain of specimen.
b) In the case that plane stress is applied in specimen:

k]

=0, de,, = dE de,, = dE,,

933 = %23 = 9132 11 11 ,

de,, = dE (24)

12 12 -

Substituting these conditions and solving eq.(20) and eq.(21),
unknown components of stresses and strains in a grain affected by

neighbouring grains are determined.

2.5 The stress-strain curves of polycrystal

Polycrystal consists of many grains and there exist grain bound-
aries between them. The strength in a grain is determined by the
method described as above. The strength of their boundaries age how-
ever not determined although many works and theory are reported. But
the volume of grain boundary is not so larger than that of grain.
Therefore the effect of grain boundary can be neglected even if they
are so different from the strength of grain.

Representating the relation between the coordinate O-x112x5 and
o-xlxexa’ #, 8 and ¥ are introduced. That is, @ is an angle between

x4 axis and the projective direction of Xl axis on the plane x e

x
. 172

is an angle between X4 axis and the proJective direction of Xl axis
on the plane xle, and ¥ is an angle between X2 axis and the normal

of the plane which contains both x3 axis and Xl axis,
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oij( 2,6,Vv), deij( ¢,8,¥ ) and f( »,8,¥ ) represent the stresses,
the strains of a grain having this of grains having this orientation,
respectively. In this f( ¢,0,y), the change of area on a spherical
surface devided by d¢ and dO with @ and 6 in integrating the follow-
ing equations is taken into account.

So, the average stresses (Sij) and strains (dEij) are written

as follows:
Sij = ff[cla( ¢,9o‘f’ )of( ¢18o\{/) dydeds . (25>

dE.lj= “stij( 2,8,V ).r( 2,8,y ) aydeds . (26)

2.6 Comparison between the calculated results and the experimental
results in polycrystal

The stress-strain curves of polycrystal in the tri-axial stress
condition and in the plane stress condition are calculated by using
the same coefficients that is used in the calcuvlaticn of Cu single
crystal. The calculated values agree well with the experimental
values, as shown in Fig.9., VWhere the experimental values are obtain-

ed by Konumg)and are converted

into 0/10 by multirlyine the

) measured yield stress by
20 5.08/0y.
L Black dots in PFig.9 repre-
s . sent the calculated values in
the plane stress condition.
G And the stress in the plane
810 stress condition are less than
y - hﬁmyﬁ;mwe that in the tri-axial stress
. Coiculated value condition. Therefore the fact
Y. o Tn-axol stress condition trat the compressive residual
» Plone siress condition stress come into existence on
the surface layer of plastic
0 2 L 6 8

Plastic strain % elongated specimen is explained

s N . qualitatively because the sur-

7ig.9 Comparison between the cal- R

. face layer is in plane stress

culated stress-strain curve and L
. condition.

the experimental one of Cu poly-

crystal after Konuma
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3, Discussion

The stress-strain curves of Cu at the room temperature are appro-
ximated well when both B and q are zero as described before. The
effect of A, B, p and q are discussed .

Aoproximate eq.(3) which is used often in studies of the dislo-
cation theory is the equation putted A = O in eq.(14). Fig.1l0 shows
0. When H2 Hl’ secondary
slip system does not act as shown by the so0lid line. When H2 Hl’
there is an inflection point and the secondary slip system begins to

act at this point as shown by the broken line.

T.et A be constant and the value B
I be changed. As in Fig.ll, the
\

the schematic stress-strain curve when A

broken line represents the dia-
gram when B = 0. And the gradi-
ent of easy glide become larger
at the end of easy glide become

Shear stress

larger when B becomes larger as
shown by the solid line.

I When p = 0, q # O, the stress
Shear strain become lower just after yield

Fig.10 Influence of A on point and the length of easy

resolved shear stress-shear glide is long as shown by the

strain curve solid line in Fieg.l2.

—— p=0 G0 1
b0 90 |
—— Pt q#0 |

Shear stress
Shear stress

Shear strain Shear strain
Fig.ll Influence of B on Fig.1l2 1Influence of p and q on
resolved shear stress-shear resolved shear stress-shear

strain curve strain curve



60 N. Hosokawa and Y. KODERA

On the contrary, when p # O and g = O, there is no drop in stress
after yield point as shown by the broken line in Fig. 12. And when
p # 0 and g # O, the diagram becomes near to the broken line because
Q4 is nearly zero in the early stage, and then becomes near to the
so0lid line because q/% becomes large when deformation is large as
shown in Fig., 12.
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