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The batch chemical reaction is chosen as the process model to be optimized
and the rate constants are functions of pressure only, as the reactions are assumed
to occur isothermally. The time optimal control problem considered here means
to determine the minimum time path from the given initial compositions to
desired final compositions by manipulating the process pressure. A gradient
method or a steepest-ascent method is applied to determine the control variable
program by using the high speed digital computer. Numerical solutions are
presented for the following three cases: (1) no constraint on the operating
pressure ...... open and matched terminal constraint. (2) constraint on the
operating pressure ...... open terminal constraint. (3) constant operating pressure
...... open terminal constraint.

(1)

§ 1. Introduction

During the past decade, there has a remarkable
development in optimization techniques which
can be applied to the problem of optimal design
and control. The most useful techniques are
dynamic programming, quasilinearization me­
thod, Pontryagin's maximum principle and gra­
dient methods.

The chemical process is one of the most
complicated and multivariable system and has
essentially nonlinear characteristic. The classi­
cal method of the calculus of variations can not
solve such complex optimization problems even
by using a digital computer, because it results in
a two-point boundary value problem for a set of
nonlinear ordinary differential equations. The
maximum principle also can not avoid this com­
putational difficulties. Dynamic programming
has the disadvantage of the "curse of dimension­
ality" and can be applied to the system of only
three state variables. The gradient method is a
systematic and rapid computation technique to
obtain numerical solutions of complex optimiza­
tion problems l )2). This method is applied to
solve the optimal control problem of the batch
reaction process. This problem has been solved
by the calculus of variations3) and dynamic
programmingi) but the gradient method has
advantage in numerical computation over other
methods.

§ 2. Gradient Method

Recently, Kelley5) and Bryson6) have deve-
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loped the gradient method or the steepest-ascent
method to solve the two-point boundary-value
problems in the calculus of variations. The de­
tails of the gradient method are available in the
literature in Refs 2 and 3 and the results of Bry­
son are outlined here. We desire to determine
the control variable program a (t) in the interval
to~t~tl so as to maximize

if> = if> [X(t/), tl ],
subject to the constraints

~~ = f [x(t), a(t), t J, (2)

'!r="!r[X(t/), tl ] =0, (3)

to and x(to) given, (4)

tl detemined by Q=Q[X(t/), tl ] =0 (5)

where ¢ is the performance index and is a
known function of X(t/) and tl, x(t) is an n­
vector of state variables, f is an n-vector of
known functions of x(t), aCt) and t, aCt) is an
m-vector of control variables, 'I/r is a p-vector of
terminal constraint functions and !J = 0 is the
stopping condition.

This is the problem of Mayer in the calculus
of variations. The gradient method procedure
starts with a nominal control variable program
aCt) and determines the change in the control
variable program oa(t) that gives maximum
increase in the performance index function for a
given value of the integral

(dS)2= ft,aaT (t) W-1(t)aa(t)dt, (6)
j to
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Where

G= (:~),

(17)

I Final conditions

kg=1.2594

Xl = - klxl+ ksX2 ,

.%-2 = k1x1- (k2+kg)X2 ,

(14)

(15)

xa=k2X2' (16)
where XI, X2 and X3 represent the concentration
of XI, X 2 and X3 respectively and kJ, k2 and ka
are the rate constants of the reaction. The reac­
tions are assumed to occur isothermally. There­
fore, the rate constants are functions of pressure
pet) only and given by

k1=1.000 X po. 6,

k2 =5XIO-4 Xp2,

where X2 is the desired product. The equations
of this process are given

We consider the time optimal control problem
to determine the minimum time path from the
given initial compositions of xOl, x02, xOa to the
desired final compositions of x{, X2f , Xa f by
manipulating the pressure. Numerical solutins
were obtained for the following three cases,

1) no constraint on operating pressure' --_.. X2

only is fixed (open terminal constraint) and, XI,

X2 and X3 are fixed respectively (matched termi·
nal constraint).

2) constraint on operating pressure ...... open
terminal constraint.

3) constant operating pressure-· .. "open termi­
nal constraint.
The initial and final conditions of state variables
are

(9)

(10)

iJ=(aQ_aQf )
at ax '

d;' = -F(t)J.
dt

with boundary conditions

while simultaneously changing the terminal
quantities by desired amounts. A new control
variable program is obtained as

aNEW(t) =aow(t) + traCt) (7)

The process is continued until no further useful
improvement can be made. The small perturba­
tions can be expressed as follows:

traCt) = ± W-GT (J.<po - J.",o 1",,,,-11,,,'1')

[
(dS)2- d 'l/rTI",,,, -ld,yJ/2

X 1 I l' -1
'1''1'- '/1'1' I",,,, 1",'1'

+W-1GTJ."'OI",,,,-ld.y, (8)

f
tf

Irp'l'= J.<pOTGW-1GTJ.",odt,
to

J
tf

I",,,, = J."'OT GW- 1GT;'",o.dt,
to

1",,,,= rtf l",d'GW-1GTJ.",odt,
Jto

A is an n-vector of influence functions, the La­
grange-multiplier functions and the solution of
the adjoint differential equations

§ 3. Approach to the Problem Solution

(19)

(18)

x/=0.60000

x!=O.29765

xl=O.10235

x/=open
x!=0.29765

xl=open

XOI =0.88000

x02=0.11365

XOg=0.00635

The performance index for the time optimal
control problem is

jtf
if> = - dt= -(tf-tO)

to

(11)

§ 3. System Model and Statement of
Problem

If there is no terminal constraint 'IJr = 0, Eq, (8)
is reduced to the following simple form

()a(t) = ± W-1GT(t~l/2 (12)

We choose the following batch reaction as the
system model3)

k1 kg
X1~X2--X3

k2

(13)

The stopping condition is

Q=X2-X!=x2-0.29765=0

The terminal constraint is

'0/= Xl - x/=Xl- O. 60000= 0

(20)

(21)
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pressure is obtained after 8 and 11 iterations
respectively. The results of computations are
tf=2. 7481 x 10-2 and Xfl =0.64258 in Fig. 1.
tf=2. 7481 x 10-2 and Xfl =0.64252 in Fig. 2.

Therefore the value of the reaction time is
proved to be minimum and this policy is optimal.
The value of dS is determined by choosing ap(t)
in Eq. (6) as P(t)/1O and kept constant during
the computations. If ap(t) is too large to give
the more unsuccessful results in some trial than
the preceeding one, the value of ap(t) is auto­
matically scaled down to ap(t)/2 in each trial
and this procedure is repeated until the success­

ful result is obtained. The computing time for
the one iteration is about 40 sec. on KDC-l
(HITAC-I02). The saving in the reaction time

for the nominal path is (to-t8)/to=5% in Fig. 1
and (to-tll)/tll=28% in Fig. 2.
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Figure 1. Succecsive approximations to optimal operating pressure,
terminal constraints open.

Fguire 2. Successive approximations to optimal operating pressure,
terminal constraints open.
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The adjoint differential equations are

~)/ =k1(Al-).2)

~~2 = kSU2- AI) + k2().2- ).s),

d).s=O
dt

The boundary conditions on the adjoint variables
are

§ 4. Results and Discussion

4-1 No constraint on operating
pressure

When there are no terminal con­
straints 1fr=0, the optimal control
variable program can be obtained
by using Eq. (12). We take the sub­
stantially different operating pres­
sure p= 100 and 200 as the nominal
path. Figs. 1 and 2 show the app­
roach of the control veriable from
the nominal path to the minimum
time solution. From these Figures.
it is clear that the same operating

To begin with successive improvement process,
a nominal control variable program P(t) is chosen
and the terminal time tf is deter-
mined by Eq. (20) using the initial
conditions. The adjoint equations
are integrated backward with the
boundary conditions Eq. (25) and
19'9', 1</,9' and I<p</, are computed along
the nominal trajectory. Using the
given value of dS and the desired
terminal condition changes d1fr, ap(t)
can be calculated from Eq. (8) and
the new control variable program
PNEW(t) is obtained by Eq. (7).

If (dS)2_d1frT I-l</,</,d1fr is negative,
d1fr are automatically scaled down
to make this quantity vanish. The
process is repeated until the termi­
nal constraint 1fr = 0 is satisfied and
the square of the gradient (19'9'-

I</'9'TI</,</"l1</,9') tends to zero.
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As compared with the result without inequality
contsraint on the operating pressure, the reac­
tion time is somewhat long and the increase in
the time is only (2.7513-2.7487)/2.7487=0.1%.
It follows that inequality constraint on the ope­
rating pressure has quite small effect on the
reaction time in this batch reaction process.

4-3 Constant operating pressure
The problem treated here is the time optimal

control by constant operating pressure. The
gradient method is modified to obtain the con­
stant control variable in other paperS). However,

(26)
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Figure. 3 Successive approximations to optimal operating pressure, ma­
tched terminal constraints.
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Figure 4. Successive approximations to optimal operating pressure,
matched terminal constraints.
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This inequality constraint has no term of the
state variables and the adjoint differential equa­
tions is same as Eq. (10). Fig. 5 shows the app­
roach of the control variable to the optimal one.

Figs. 3 and 4 show the app­
roach of control variable on
successive iterations from the
nominal path of p= 150 and 200
to optimal one in the problem
where there is a terminal const­
raint. The small perturbations
opt!) is computed from Eq. (8)
and it is necessary to scale down
oP(t) and dS simultaneously. In
this example, oP(t) is scaled
down to oP(f'/2 for the one fai·
lure of some trial and dS is
scaled down to dS/2 for the two
consecutive failures of trials.
When[(dS)2_d-tTJ-lq.q.d-tJis ne·
gative and d-t is determined to
make this quantity vanish, oP(t)
is never scaled down. This case
is the iteration No. 1 in Fig. 3.
As shown from Figs. 3 and 4,
the good agreement is obtained
on the final operating pressure
starting from the different nomi­
nal path.
The results of computations are
t,=2. 9029 X 10-2 and
XI' = 0.59941 after 14 iterations

in Fig. 3.
t,=2.9029xlO-2 and
X'I = 0.59955 after 24 iterations

in Fig. 4.

4-2 Constraint on operating
pressure

Chemical process usually in­
volve inequality constraints on
control variables. Recently, Bry­
son presented the computation
procedure by the gradient me­
thod to solve the optimization
problem with inequality const-
raints on the function of the control and/or
state variables1). The details of this method
will not be shown here.

We consider the following inequality const­
raint on the operating pressure in the time opti­
mal control problem
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Figure 5. Successive approximations to optimal operating pressure with

inequality constraint, terminal constraints open.
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Figure 6. Successive approximations to optimal constant operating pres­
sure, terminal constraints open.
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the constant operating pressure can be deter­
mined by using the values of aa(t) in each itera­
tion as follows;

(Jam = I::(Ja(t)dt / I::dt = ( l::W-1GT J.~adt )

X [dS/(t,-to)(I~~)l/2J (27)

Figs. 6 and 7 show the approach of the constant
operating pressure to optimal one and the final
results of computations are
t,=2.786 X 10-2, P=128.41 and X'I =0.64621
in each experiment.
As compared with the result of varying operat­
ing pressure, the increase in the reaction time
is only 1. 8 % and the deviation of XI' results in
0.5%. It follows that control by the constant
operating pressure is a good and simple method
for the time optimal control of this batch reac­
tion process with open terminal constraints.
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