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SYNOPSIS

A finite element approach to the calculation of nonlinear
sound propagation is proposed. Under the assumption of a weak
nonlinearity, a linearized one-dimensional equation is considered.
The equation is discretized in space, and is then solved for time
by using Newmark-,8 integration scheme, in which a numerical
damping is devised. Some numerical demonstrations are made
for the nonlinear sound propagation of a single-shot pulse in air.
It is shown that the shock wave propagation is stably and
accurately simulated by the introduction of the numerical
damping.

1. Introduction
A parametric acoustic array and a shock wave are some of the interesting examples

in sound waves of nonlinearity. These phenomena are mainly caused from the nonlinear
waveform distortion as sound speed depends on the sound pressure. It is, therefore,
important to analyze the waveform distortion in nonlinear sound waves.

There are two main methods to calculate the acoustic nonlinear distortion. One is a
time domain method and the other is a frequency domain method. In the time domain
method, the waveform distortion is calculated as a sound wave progresses over a small
spatial interval in the time domain. A finite difference methodl) is known as a typical
numerical approach to the time domain method as it is widely used to solve general
differential equations. It has an advantage of providing direct discretization capability,
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but hard to cope with a field of arbitrary boundary shape. Another numerical method
for time domain2.3) is the method in which the waveform is geometrically calculated. In
this method, the waveform distortion of a plane wave can easily be obtained without
solving the wave equation because the changes in the pressure waveform are
geometrically calculated simply by taking the dependence of sound speed on the sound
pressure into account. It cannot be used for two or three-dimensional problems because
it does not include the diffraction effect. On the other hand, the frequency domain
method4.5) uses a Fourier analysis. In the frequency domain method, the waveform is
expanded into a Fourier series and a set of coupled wave equations are numerically
solved for each frequency components. Then the waveform is obtained by the inverse
Fourier transformation. Three-dimensional problems can easily be solved by the
frequency domain method with which it is however difficult to include reflecting or
scattering boundary conditions.

This paper proposes another numerical approach to calculate the nonlinear sound
propagation by means of finite element method6). The present finite element method is a
time domain method which can cope with the cases of heterogeneous medium and with
reflecting or scattering boundaries of arbitrary shape. In this paper, one-dimensional
cases are only considered for investigating the fundamental behavior. Kuznetsov's
equation?) is used as the governing equation of a nonlinear sound propagation. It is
discretized by finite element method in space and then solved for time using Newmark-{3
integration scheme 8) in which a numerical damping is devised. Some numerical
demonstrations are made for both linear and nonlinear sound propagation in air for
which numerical error is examined.

2. Governing equation
We here consider the nonlinear sound propagation in a homogeneous fluid under the

assumption that shock waves may occur but weakly during the course of sound
propagation. The nonlinear sound wave is governed by the following Kuznetsov's
equation:

(
1+~ ~ )V2I/>-~ i)21/> =-~~[(VI/»2+ BIA (dl/> 'f ] (1)

C02 dl Co2 dt2 co2dl 2Co2 dt)

where ¢ is velocity potential, CO sound speed of small amplitude wave, l time, BfA
nonlinearity parameter of the medium, and D sound diffusibility due to viscosity and
thermal conductivity of the medium. The right hand side of eq.(l) expresses the sound
nonlinearity. It acts as a virtual and spatial driving term which causes the waveform
distortion9). It consists of two terms: one associated with the particle velocity and the
other with the sound pressure. Both nonlinear terms contribute to the waveform
distortion but differently since the distribution of the particle velocity is not the same as
that of the sound pressure due to the diffraction effect. For an example, in a non-
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collinear interaction between two waves consisting of high and low frequencies, the
contribution of each term was changeable as the effective nonlinearity 'parameter
depended on the interaction angle between the two waves, which we previously
reported10),

Here we consider a plane wave propagating to x-direction. The one-dimensional
governing equation is written as

(
0 a )()2t/> 1 ()2t/> 1 a[(at/>f B/A(at/>f]

1 + co2at ax2 - co2 af2 =- co2at lax)+ 2co2 at ) (2)

(3)

In the analytical procedure that is usually practiced for a progressive plane wave
problem, under the assumption of the linear impedance relation, eq.(2) is written as

(
0 a ) ()2t/> 1 ()2t/> 1+BI2A a (at/> f

1 +co2 at ax2 - C02 af2 =- co4 at at )

which is known as Westervelt's equation11 ). This equation is only correct for a
progressive plane wave. However, it cannot be used for a field which has discontinuity,
at which wave is reflected so that the inciqent interacts with the reflected. The
superposition of the two waves cannot simply be made as the waveform of the sound
pressure is. not the same as that of the particle velocity, so that a linear impedance
relation does not hold for this case. Therefore eq.(3) does not express the nonlinear
phenomenon exactly at the reflection point. Even in one-dimensional cases, it is
necessary to take into account both nonlinear terms associated with the particle velocity
and the sound pressure for exact analysis12).

Observing a waveform on the coordinate which moves to positive x-direction at
sound speed co, eq.(3) is rewritten as

d¢ _ 1+BI2A (d¢ "¥= ~ J2¢
dr 2 d~) 2 d~2

where
~ = x - cot

and
r= t.

(4)

Equation(4) is a Bur~ers' equation which is known to give a weak shock solution 13),

The shock formation distance Xs is given by eq.(4) for angular frequency OJ as2)

Poc03
Xs = .,..,----=--.,,---,-,---:-

(1+B/2A)OJP

where po is medium density and P sound pressure.

(5)
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3. Spatial discretization by finite element method
Now we are to solve eq.(2) numerically. The equation is discretized in space by a

Galerkin's method. Theone-dimensional region to be analyzed is divided into line
elements for which the third order polynomial is used for test function. The discretized
equation have the following form:

[M](¢} + [R]{¢} + [K]{¢} = {F} + {V} (6)

where {¢} is the nodal velocity potential vector, [M], [R] and [K] are mass, damping and
stiffness matrices, {F} is the driving source vector and the dot indicates the derivative
with respect to time. {V} is the nonlinear driving vector corresponding to the virtual
source and it consists of two terms as

{V} = {Vu } + {Vp } (7)

where {Vu} and {Vp} are the virtual source vectors associated with the particle velocity
and that with the sound pressure, respectively.

Equation(6) is then solved for time using the Newmark-,8 scheme8). In the present
procedure, the equation of motion (eq.(6» at a discrete time t+L1t is written as

[M]{ ¢t+L1t} + [R]{ ¢t+L1t} + [K]{ ¢t+L1t} = {Ft+L1t} + {Vt+L1t} (8)

where

{¢t+L1t} = {¢tl + L1t{ ¢tl + L1t{ (0.5 - ,8){ ~tl + ,8{ ~t+L1t}J (9)

{¢t+L1t}={ ¢~} + L1t [(0.5-V){ ¢~} + (0.5+v){ ¢~+L1t} ] (10)

,8 is a parameter (0<,8<0.5), v is a parameter to provide a numerical damping and L1t is
time step. Substituting eqs.(9) and (10) into eq.(8), we obtain the motional response
after a travelling of time L1t as

{¢t+L1tl =[Z]-l ({Ft+L1tl + {Vt+L1t} - [R]{A} - [K]{B}) (11)

where

[Z] = {[M] + (0.5 + v )L1t[R] +,8 L1t2 [K] }

{A} = {¢tl + (0.5 - v)L1t{ ¢~}

{B} = {¢tl + L1t{ <Ptl + (0.5 - ,8)L1t2 {¢tl

(12)

(13)

(14)

Substituting eq.(ll) into eqs.(9) and (10), we then obtain the response at time t+L1t from
the response at time t.

It is known in time dependent problems that errors due to the higher order
fluctuation often lead to unstable solution of rapid spatial fluctuation. For the
calculation of a shock wave propagation, the errors due to the higher order terms
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degrade the accuracy of a solution. There are some remedy to reduce the errors. We
here introduce a numerical dampingl4) into the Newmark-fJ time integration scheme.
The numerical damping is an artificial damping which performs the same operation as
that of a low-pass filter. Therefore, using this device, the solution for relatively low
frequency region can accurately be obtained. The calculation accuracy is however
degraded in the same frequency region as the errors present. In the Newmark-fJ
scheme, the degree of the numerical damping corresponds to the value v (v>O) for
which as the value of v increases, the damping increases. It is necessary to chose a
suitable value of v depending on problems.

The calculation procedure is made in such a way that matrices [M], [R] and [K] are
first calculated and initial values are assigned to vectors {<PI}, {~I}' {;PI} and {FI}' Then
the potential vectors {<pt+L1I}, {~I+ L1t} and {~I+ L1t }, the responses after a travelling of
time L1t, are calculated. Finally, the virtual driving vector {VI+ L1t} is calculated. In the
next step, the driving vector is now set to {F t+L1I}+{Vt+L1t} and the responses after
another step L1t are solved. This process is repeated.

4. Numerical examples
4.1 Field model

The one-dimensional field model is shown in Fig.l. The sound propagation in air
is demonstrated for a single-shot pulse. The field to be analyzed is divided into line
elements of the third order. The element length ..11 is chosen in the range of A/40 to
A/IOO where A is wavelength, and the time step L1t is chosen in the range of T/lOOO to
T/4000, where T is pulse width. To reduce CPU time for calculation, a frame technique
is used for long distance propagation in such a way that a framed region is shifted to the
x-direction as the pulse propagates and the calculation is only made for the region where
the pulse exists.

The finite element solution of the linear wave propagation is compared with the
exact solution to check the accuracy. For the nonlinear case, the analytical solution15)

for Burgers' equation is used for error estimation. Numerical calculations are
performed in double precision on super computer (NEC SX-IE).

Fig.! One-dimensional field model (the third order elements).
medium: air (po=1.2kg/m~co=340m1sec)
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4.2 Linear propagation
To check the validity of our program developed, the propagation of the sound in a

small amplitude is first simulated. Figure 2 shows the changes of the pressure waveform
as the wave of the amplitude of IPa progresses until the time lOOT. Figure a) and b) is
the finite element solutions without numerical damping (\'=0) and with (\'=0.06). In this
calculation, the element length is chosen to be mo, the time step Tj2000, and /3=0.3025.
The nonlinear distortion does not appear with this amplitude and the pulse linearly
propagates as it is. The solutions are accurately calculated without special care. The
amplitude damps in the presence of the numerical damping as the pulse propagates.
Figure 3 shows a relation between the propagation distance and the calculation error at
the peak of the pulse. In the figure, circles and dots indicate the errors without and with
the numerical damping. The solutions without the numerical damping provide the
results of the error less than 1% at each wavelength distance. The effect of the
numerical damping on the frequency characteristics (Fourier transform) which is
calculated at the distance 100..:t away from the sound source is shown in Fig.4. It shows
that the numerical damping causes the same effect as the one of a low-pass filter. Figure
5 shows a relation between the damping parameter v and the calculation errors in peak
pressure at the same point. As the value v increases, the amplitude decreases. As the
results, the accurate solution is obtained without the numerical damping for the linear
problem.

20T

40T

60T

80T

lOOT

2

o

o without numerical
damping (\1=0)

-6 • with numerical
damping (\1=0.06)

-8 L...-o........JL.......o.........JL...-..........J----o--J----o--J

o 20 40 60 80 100
Distance (..:t)

Fig.2 Finite element solutions for linear wave
propagation of a single-shot pulse.
(P=lPa, ,1/=)J70, ,1t=T/2000, {3=0.3025)

a) without numerical
damping (v=0)

b) with numerical
damping (v=0.06)

Fig.3 Relation between the propagation
distance and the calculation error
at peak pressure.
(,1/=)J70, ,1t=T/2000, {3=0.3025)
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Fig.S Relation between the damping parameter vand
the calculation error at peak pressure. (atx=100A.)

4.3 Nonlinear propagation
4.3.1 Nonlinear propagation of a single-shot pulse

Next, the nonlinear sound propagation of a single-shot pulse is simulated for the
sound of amplitude 1kPa. The shock formation distance Xs becomes 18.41l for this
amplitude. Figure 6 shows the changes in the pressure waveform up to the time 50T.
Figure a) and b) are the finite element solutions without and with the numerical
damping, respectively, and c) is the analytical solutions. Other parameters are the same
as in the previous linear analysis (Fig.2) except that Lit is chosen to be T/5000 in the
figure a) because the solution diverges for Lit=T/2000. The solutions are not stable
without the numerical damping as shown in figure a) but its introduction is capable of
eliminating this fluctuation as shown in figure in b). The finite element solutions with
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with numerical damping
(V=O.06)

Fig.6 Nonlinear wave propagation of a single-shot pulse.
(P=lkPa, Al=A!70, At=T/2000, ~.3025)

a) finite element solutions
without numerical damping
(V=O)
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Fig.7 Frequency spectrum of the shock wave.
(x=50A, Al=A!70, L1t=T/2000, ,8=0.3025)
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the numerical damping well agree with the analytical solutions. Figure 7 shows the
frequency spectrum of the pressure waveform calculated at the distance 50;\' away from
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the sound source. fu the figure, fine and bold lines indicate the finite element solutions
without and with the numerical damping, respectively and dashed lines indicate the
analytical solutions. The error increases in the high frequency region without the
numerical damping. As the numerical damping is thus devised in the time domain, the
finite element solutions give reasonable results over the wide frequency range.
Nonlinear sound propagation can be calculated with reasonable accuracy by devising the
numerical damping.

4.3.2 Effect of the numerical damping
We here investigate a relation of the parameter of the numerical damping von the

solution accuracy more in detail. Figure 8 shows the changes in the pressure waveform
whose amplitude is increased to 5kPa. Other parameters are the same as in the previous
nonlinear analysis given in Fig.6 b). As the amplitude is increased to 5kPa, the
fluctuation again appears in the solutions. This is due to the fact that the time integration
for interval L1t cannot properly follow this intense amplitude because the waveform
change is more rapid for the wave of large amplitude than that of small amplitude. This
means that a suitable value must be chosen for v according to the pressure. Figure 9
shows the relation between the sound pressure and the suitable range for the value of v.
fu the figure, broken and solid lines indicate the case that a sound wave propagates over
2 or 10 times longer distance than the shock formation distance xs, respectively and 0
and !1 indicate the lower bounds of v, and • and • the upper bounds for the allowance
of 1dB error. fu smaller amplitude, the value v comes close to 0 because the sound

0.5A.-
.......-- 20T

30T

40T

50T

Fig.8 Nonlinear pulse wave propagation of large amplitude.
(P=5kPa, Al=).f70, At=T/2000, jJ=0.3025, v=0.06)
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Fig.9 Relation between the sound pressure and suitable
damping parameter for IdB error allowance.
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wave is almost linear, while larger value must be taken for larger amplitude. The
suitable value of v can be smaller as the pulse propagates over a long distance as
expected because the amplitude decreases due to the nonlinear absorption. The
acceptable range of v becomes narrower and is more sensitive to the amplitude for
smaller amplitude.
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Figure 10 shows a relation between the time step L1t and the value of v for suitable
solutions. The amplitude is chosen to be lkPa and the propagation distance 2xs. The
suitable value of v is inversely proportional to time step L1t. This is because the cut-off
frequency of the numerical damping as the filter is given as a reciprocal of L1t. The
present numerical experiment shows that suitable value of L1t is chosen in the range of
0.25xlO-3-lxlO-3 for the accurate shock calculation.

In time dependent problems, it is known that the calculation accuracy depends on
both element length L11 and time step L1t. To evaluate this dependence, a following
parameter is often introduced:

7(= 3coL1t/L11 (15)

Values of 7( corresponding to the case of Fig.10 are 0.05-0.21. Though the parameter 7(

thus depends on the element length L11, our numerical experiment shows that the
parameter v does not depend on L11. The element length L11 must be less than A/40 to
hold reasonable accuracy.

5. Concluding remarks
A numerical approach to the calculation of a nonlinear sound wave propagation by

finite element method is proposed. Only a plane sound wave is considered. It is shown
that the nonlinear sound propagation can be calculated up to the formation of the shock
waves with reasonable accuracy. Newmark-,B time integration scheme is u.sed devising
the numerical damping. Some numerical experiments are carried out for the
propagation of a single-shot pulse and the relation of the numerical damping on the
calculation accuracy is examined. It is found that for accurate shock wave simulation the
element length must be less than A/40 and the time step must be chosen less than Til 000.
Though only one-dimensional cases are demonstrated in the present paper, it is
straightforward to expand this method into two or three-dimensional cases.
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