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Abstract

The statistical properties of two-dimensional

systems of charges in semiconductor superlattices are

analyzed and the dispersion relation of the plasma

oscillation is ealculated. The possibility to excite

these oscillations by applying the electric field

parallel to the structure is discussed.

]. Introduction

The layered structure of semiconductors with thickness of the

order of lO-6 cm or less is called semiconductor superlattice. The

superlattice was first proposed by Esaki and Tsu [11 as a structure

which has a Brillouin zone of reduced size and therefore allows to

apply the negative mass part of the band structure to electronic

devices through conduction of carriers perpendicular to the structure.

The superlattice has been realized by subsequent developments of

technologies such as molecular beam epitaxy (MBE) and metal-organic

chemical vapor deposition (MOCVD) in fabricating controlled fine

structures. At the same time, many interesting and useful physical

phenomena related to the parallel conduction have also been revealed

in addition to the parallel conduction.

From the view point of application to devices, the enhancement of

the carrier mobility due to separation of channels from Ionized

impurities may be one of the most important progresses. Some high

speed devices are based on this technique. The superlattlce structure

is now being applied to a very wide variety of electronic devices

including optical ones.
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Among numerous applications of high mobility carriers, there has

been reported an experiment of radiation from the plasma oscillation

of these carriers [21: By applying the electric field along the two­

dimensional system of electrons at the interface of heterojunction,

the far infrared radiation has been obtained presumably from the two­

dimensional plasmons.

The plasma oscillation of two-dimensional charges has a unique

property in comparison with the one in three dimensions: The

frequency strongly depends of the wave number. In fact, it is

proportional to the square root of the wave number in the limit of

long wavelength. This gives another possibility to control the

frequency of the plasma oscillation along with changing the areal

carrier density by doping: Typical values of the latter range from

IOlOcm- Z to IOlZ cm-Z. In the aforementioned experiment, the grating

of a fixed pitch is placed near the two-dimensional electron system

and served to determine the frequency.

In the superlattice structures, we have systems of carriers which

are spatially separated but coupled via the electromagnetic field. We

thus expect that the relative drift between systems (1f carrier's may

easily result from the electric field along the layers, especially in

the type II superlattice where we have alternate layers of the

electrons and holes.

In the analyses of carriers in superlattice structures, the

electrons are usually assumed to be degenerate. As is shown in 2,

however, we have classical or half-degenerate carriers at the

temperature higher than that of liquid nitrogen. We also expect that

the dispersion relation of the oscillation will be changed by the

drifting motion of carriers. The purpose of this work is to analyze

the plasma oscillations of two-dimensional charges in superlattice

structures, to compare the results with those in three dimensions and

to obtain the conditions for unstable oscillations which may possibly

be used in the active device.

2. Physical Parameters of Two-Dimensional Charge System

The Fermi energy of electrons Is given by

( 2 • 1 )
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Here ~ is the Planck constant, m is the mass, and the two-dimensional

Permi wave number Kp is related to the surface number density n as

71

K 1/2P = (2rrn) . ( 2 • 2 )

In Fig.l we plot the relation kBT=Ep (kB being the Boltzmann constant)

for systems of electrons and heavy holes in GaAs. We see that for

moderate densities these two-dimensional systems can be regarded as

classical at the room temperature and classical or half-degenerate at

the temperature of liquid nitrogen, 77K. We assume that the charges

are classical in what follows.

The effect of Coulomb interact ion in two-dimensional classical

systems is eharacterized by the parameter r defined by

r=(rr n )1/2 e 2 / £k BT ( 2 • 3 )

where e is the electronic charge, T the temperature, and £ the

relative dielectric constant of the medium which surrounds the system.

According to the condition r;;;l or r;Z:l, the two-dimensional charge

system is weakly or strongly coupled. (4)

The relation r=l is also shown in Fig.l. We see that for typical

value of the density l011 cm-2, r;Sl is satisfied at the temperatures

higher than 77K.

In the case of weak coupling, the screening and the plasma

oscillation in the two-dimensional system of charges are characterized

by the Debye wave number KD and the frequency wp defined respectively

by (3)

W p [(2rrne2K/£m)1/2)K=KD

2rr ne2 /£(mk BT)1/2

( 2 • 4)

( 2 • 5 )

Values of KD and wp calculated from the parameters of electrons and

heavy holes in GaAs (5) are shown in Plgs.2 and 3. We observe that

the inverse of the Debye wave number or the Debye length Is comparable

with the spacing between layers in the superlattice structure and the

typical frequency of the plasma oscillation Is around I013 rad/s.
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3. Plasma Oscillation in Superlattice Structures

3.1 Electrostatic formulation

Our system is composed of infinitely thin parallel layers of two­

dimensional charges. We take the z-axis perpendicular to these layers
~ ~ ~ ~

and denote three-dimensional vectors like rand k as r=(R, z) and

letters for x- and y- components. Since our

translatlonally invariant In two dimensions,

component of related quantities proportional

0), respectively....
potential <j,(R,

... ...
to exp(iK.R-iwt).

We den 0 t e the

... ...
k=(K, kz ) using capital

system is stationary and

we consider the Fourier

Is

at

From

z)

layertheofcharge and current densities
... ...

w)6(Z-zi) and (JI(K, w)6(Z-zl)'

equation, the electrostatic

...
by PI(K,

Poisson
z=zl
the

calculated as

...
<j>(R, z) ( 3 • 1 )

The current density Is related to PI by

+-+... a ...
- <li(K, w)'~ <j>(R,zi)'

aR
( 3 • 2 )

+-+ ...
where <l(K, w) Is the conductivity tensor of the two-dimensional

charges on the layer I.

continuity

From (3.1), (3.2) and the equation of

wP I (K, w)
...... ...
K. J I (K, w), ( 3 • 3 )

we o·bta In

o. ( 3 • 4 )

Thus the dispersion relation of the charge density oscillations In our

system Is determined by

o ( 3. 5 )
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in the electrostatic approximation.

Inthe cas e wit h 0 u t ma g n e ti c fie Ids, the con d uc t i v i t Y ten s 0 r i s

diagonal and Eq. (3.5) takes a simpler form

det(6ij + i
2rrK

6ie-KIZi-Zjl)
w

o. ( 3 • 6 )

3.2 Random phase approximation

When the effect of Coulomb interaction is relatively small, the

dynamical properties of our system may be described by the random

phase approximation (RPA). It has been pointed out [3] that due to

reduced dimensionality, the validity of RPA is not guaranteed in some

respects even in the case of weak coupling. In this work, however, we

are interested in the general behavior of the plasma oscillation and

the RPA may be used as a first step.

In the RPA, the conductivity of the classical two-dimensional

charges with Maxwellian velocity distribution is given by [3]

wi th

-i ( 3 • 7 )

W( z) ( 2rr) - I 12 J:~x xexp ( _x 2 12 ) 1 (x-z - i 0 ) • ( 3 • 8 )

...
Here 0 denotes the positive infinitesimal and Vd the average drift

velocity.

The electrons or holes confined in a single layer in vacuum may

be regarded as the simplest case of our layered charges. The

dispersion relation of the plasma oscillation in this system is given

by [3)

1 + (Ko/K)W[(w/K)(m/kBT)1/2] = O. ( 3 • 9 )

The real and imaginary parts of the frequency for long wavelengths are

calculated as
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w(K)

(3.10)

w (i) I,., (r)_ - (n/8) liz (KD/K) 3/z exp[ -K
D

/2K-3/2].

In this case, the average drift of charges only affects the real part

of the frequency through the Doppler shift.

Since our charge layers are embedded in the bulk material of the

dielectric constant E, the conductivity of the i-th layer Is written

as

Here

1 12
-i~ --S~ rkST

]
2n K K/K i lm i

x W[(w/wi)/(K/K i ) - (3.11)

(3.12)

(3.13)

and n i , qi and mi are the surface number density, the charge and the

effective mass of particles in the layer i.

It is well known In plasma physics that the relative drift

between groups of charges has a destabilizing effect on the charge

density oscillation. The drift of electrons against ions and the

existence of high velocity beams are typical examples and the

dependence of the growth rate on characteristic parameters has been

thoroughly investigated.

In the case of superlattlce structures in semiconductors, we have

an extra parameter, the spacing of layers, which has not been

s e rio u sly con sid eredin the a na I ysis 0 f P I a sma 0 sci I I a t ion Inth r e e

dimensions. Tn the latter, this parameter Is either irrelevant or

uncontrollable. Naturally we expect that the Increase of the spacing

has a stabilizing effect on the dispersion.
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4. Examples

4.1 Two layers with relative drift velocity

As a first simple example, we here consider two layers (i=l, 2)

of electrons (or holes) with the number density n i and the effective

mass mi drifting with the relative velocity Yd' From (3.6), we have

KKK K
(1+--1 WI )(l+-3Wz ) - __1 -3 W W e- 2K6
KKK K I Z

where 6 is the distance between two layers and

0, ( 4. 1 )

( 4. 2 )

When 6=0, (4.1) reduces to

o. ( 4. 3 )

This equation is the two-dimensional version of the dispersion

relation for counterstreaming plasmas

0, (4.4)

h k -(4 Z/k liz 2 1 1/2were i- rrnie ST) and ("i=(4rrJlie mi ) are the Debye wave

number and the plasma frequency in three dimensions.

An example of the dispersion relation obtained from (4.1) is

plotted in Fig 4: The ratios of the number densities and the

effective masses are taken to be n1/n2=1 and m1 /m 2=0.5, respectively.

We see that the plasma oscillation becomes unstable for small values

of the wave number.
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Fig.4. Dispersion relation of oscillation of parallel charge layers

(n l /n 2=1, m l /m2=0.5) separeted by 6=0 (left) and 6=2/KD (right),

where KD=K 1+K 2 • Pairs of thick and thin lines of the same kind

show the real and imaginary parts of two branches. In this
~ ~ 1/2case, K.Vd/K(kBT/m 1 ) =5.
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Fig.5. Domain of Instability. Plasma oscillation is unstable for

wave numbers smaller than solid or broken lines when 6=0 or

2/KD• Other parameters are the same as in Fig.4. Thin lines

with numbers show the most unstable wave number with the

growth rate in the unit of 10 12 rad/s for the case of
11 -2 d 0 067T=77K, n 1=n2=10 cm ,an m1=· melectron'
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4.2 MUltiple layers

The dispersion relation of the two-dimensional plasma oscillation

in the system composed of a series of two alternate layers is shown in

Fig.6 for the case of two, four, and six layers: The parameters are

n l /n 2=1, m l /m 2=0.5, 6=2/(K l +K 2 }, and Vd=O. With the increase of the

number of layers, there appear increased number of branches in the

dispersion relation and we have a band of plasma oscillation for

layered structures repeated infinitely in space.

For large values of the wave number, the real part of the

frequency approaches to two branches corresponding to independent

oscillation of each layer: With the increase of the wave number, the

coupling between layers becomes small as is clear from the nondiagonal

elements exp(-Kfi} in (3.5).

Wh enthe ad j ace n t I aye r s ha ve fin i t ere I a t i ve d r i f t vel 0 cit Y,

some of these branches become unstable as in the case shown in Fig.4.

An example is shown in Fig.7. From the most unstable branch plotted

there, we may extrapolate the one in the band of the plasma

oscillation.

In Figs.4-7, the ratio of the effective masses ml /m 2 is taken to

be 0.5. We show the effect of the decrease of this ratio in Fig.8

where ml /m2=0.149 (the ratio of the effective mass of electrGn to

that of heavy hole in GaAs). We see that the high frequency branches

and the low frequency branches are separated more clearly. The

overall behavior of the dispersion, however, is similar to the case of

ml /m2=0.5.

5. Competition with Relaxation Processes

Electrons and holes suffer collisions

oscillations of these carriers. In order

oscillation in semiconductor superlattlces,

oscillation should exceed the damping rate

which serve to damp

to excite the plasma

the growth rate of the

due to such re laxa t ion

processes.

The relaxation time r for collisions may be roughly estimated by

the value of the mobility ~ based on the simple Drude formula

~ = er/m*

where m* is the effective mass determined by the band structure.

( 5 • 1 )
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Fig.6. Formation of band of two-dimensional plasma oscillation:

n l /n 2=1, m l /m2=O.5, o=2/(K 1+K 2 ), and Vd=O. Lines of the

same kind show the real (upper curves) and the imaginary

(lower curves) parts of a branch.
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We tentatively take GaAs at 77K as an example. It is known that

the electron and hole have the mobilities ~n~2.105cm2/vs and

~h~6.103cm2/vs, respectively, for small electric fields and the

mobilities decrease with the increase of the field intensity. Weak

field mobilities give rn~8.l0-12s and rh~2.l0-1Zs for relaxation times

of electrons and holes, respectively. Expecting the electric field of

a few times lOZV/cm, we may here adopt r~lO-12s as a typical

relaxation time and require the condition

( 5 • 2 )

for instability in realistic situations.

In order to check whether the above condition can be satisfied,

we plot in Fig.5 the values of the wave number of the most unstable

oscillation together with the growth rate: The surface number density

is assumed to be IOll cm-Z. We see that there exists a domain where

the two-dimensional plasma oscillation grows in spite of collisional

damping. The relative velocity around 5(kBT/m*}I/Z is sufficient for

this condition. The magnitude of the electric field corresponding to

this drift velocity is calculated to be 6.10 zV/cm. We also observe

that the condition (5.2) is satisfied only marginally and we need more

detailed investigation on the effect of relaxation processes.

We expect that the above values may apply as rough est imates

also for the case of other materials such as InAs-GaSb which form Type

II superlattices and plasma instabilities in these structures may he

used as the source of active functions.
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