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SYNOPSIS

Difficulties in simulating systems composed of classical and
quantum particles lie in the treatment of the many-body interac-
tions between quantum particles and the geometrical variety of
configurations of classical particles. In order-to overcome these
difficulties, we have developed some numerical methods and ap-
plied them to simple cases. As for stationary states, the finite
element method provides us with sufficient geometrical freedom.
Combined with the Kohn-Sham equation based on the density
functional theory, this method virtually satisfies our require-
ment. In order to investigate time-dependent phenomena, we
apply the time-dependent Kohn-Sham equation. Adopting the
finite difference method, we are able to follow the development
of quantum many-body system. As an example, we estimate
the effects of the potential height, the electric field, and many-
body interactions in some transition processes in quantum wells
coupled by a tunneling barrier. This example is important in
itself in relation to semiconductor superlattices and also serves
as a benchmark for quantum simulations, variety of geometry
corresponding to that of classical particles.

1 Introduction

Numerical simulation of many-body systems is sometimes one of the most
powerful approaches when we have no small parameters useful in developing
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theoretical methods. Simulations of classical systems where the interactions be-
tween particles are known have now become a kind of tool relatively easy to
use owing to rapid progresses in computational hardwares. Those of systems
including quantum particles, on the other hand, are still a subject of study in
itself with difficulties in the treatment of the many-body interactions between
quantum particles and the geometrical variety of configurations of classical par-
ticles in the system. The purpose of this paper is to develop numerical methods
which overcome these difficulties.

-One of useful methods which enable us to describe the electronic states in in-
teracting systems is the density functional method. A formulation for stationary
states is embodied in the Kohn-Sham equation.[1] When the time dependence is
properly taken into account, we are also able to calculate the time development
of many body systems by this method. In the latter case, the corresponding
formulation is called the time dependent Kohn-Sham equation.[2]

As an example of application of our methods, we analyze the behavior of
electrons in semiconductor superlattices. In order to apply semiconductor sup-
perlattices to electronic devices, we need accurate analyses on electronic states
in various supperlattice potentials. In simple potentials analytical solutions for
one particle states are possible. In real applications, however, it is necessary to
take electronic many-body interactions and geometrical effects into account and
we have to resort to numerical methods even in simple cases. The geometrical
variety has the same effect as the potential due to classical particles in the mix-
ture of quantum and classical particles. This example thus serves as a test of
efficiency of our methods for such mixtures.

We consider a system composed of two symmetric quantum wires coupled
through a thin tunneling barrier and follow the behavior of electrons initially
confined in one of the wires. Though the analysis of dynamics is naturally
based on that of statics,[3] we here describe mainly time-dependent aspects of
our numerical procedures.

2 Time-Dependent Kohn-Sham Equation -

One can formulate the time-dependent density-functional method in the
form of the time-dependent Kohn-Sham equation.[2] This formalism reduces
to the following set of equations: ‘

n(r,t) = i:: l \I’n(r7t) ‘2, o (1)
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.8 B
o Ba(r, 1) = [~ =V + o(r, (r, ), )
v(r,t) = ven(r,t) + € /d y t)l + gf(:;hg (3)

Here n(r,t), ¥,(r,t), and v.(r,t) are the electronic density, the wave function,
and the external potential, respectively, and the second and the third terms on
the right-hand side of (3) are the Hartree and the exchange-correlation poten-
tials. We denote other quantities by usual symbols.

In order to make integration with respect to time, we write the approximate
solution [4] first in the form

U(r,t+ At) = exp[—Av( r,t+ At)]
zhAt

x50 7?) expl~ S lu(r, D] (x, ), @

and then in the form

U(r,t+ At) = exp[-— v(r t+ At)]

zhAt zhAt

(1-—V)7'(1+ V2)exp[— v(r t)]¥(r,?). (5)

This solution has the accuracy of the second order in time. The important
points are that the operation of

(1- BBtgny  Bhlgsy | ©

can be performed by the Crank-Nicolson method and that the operand of this
operator

expl~ 0 o(e, ], 1) @

gives the same electronic density as ¥(r, t) since the factor exp[—iAtv(r,t)/2h]
only changes the phase of the wave function.

3 Results

3.1 Transition of Electrons in Coupled Quantum Wells

Our system is composed of two parallel quantum wires coupled by a thin
potential barrier as shown Fig.1. The size of our system is taken tentatively to

47



186

Hiroo TOTSUJL, Seiji HASHIMOTO and Shigetoshi NARA

— Vp

[ V=0

v=0

v=0

100

N

Le |

100

15} ]
3 10l- |
c | i
o
o [ i
1 = i
w L R

5F . ]

0% 0.1 0.2

TIME STEP

o

w 30F .
=
-
D
=
5

& 20f- ]
>
(TN ]
o

] 1

0 1 2

POTENTIAL [eV]

48

Fig.1 Structure of coupled quantum
wells. Lengths are in A.

Fig.2 Relative error in time
development. Time is in 0.12fs.

Fig.3 Time for reversing electron

distribution vs. barrier height.
Thickness of barrier is 12.5A.
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be 1004 x 100A. We denote the height and the thickness of the barrier by Vp and
Lp, respectively. We impose the Dirichlet boundary conditions for both wave
functions and the electrostatic potential at the outer boundary of the domain
including wells and the barrier. We assume that electrons are in the conduction
band of GaAs in the wells.

We first obtain the stationary states in our system by the finite element
method and construct the initial asymmetric state for dynamic analyses by
superposing the ground and the first excited states. The electronic density per
length is taken to be 2 x 10°cm™!. Before analyzing effects of various parameters
in our system, we have applied our time development scheme to the case where
electrons have no interactions. In this case, the time development is completely
determined by the difference in the eigenvalues of the ground and the first excited
states. Comparing our numerical results with the exact results thus predicted,
we have confirmed the accuracy of our procedures and determined an optimal
value for the time step.

In Fig.2 we show relative errors in the time 7., needed to reverse the dis-
tribution of electrons to the other side of the barrier. We observe the increase
of error for larger time steps. The behavior as a function of the time step, how-
ever, does not allow simple interpretations. Since our scheme is of the second
order in the increment of time, we expect the increase of error in proportion to
(At)2. It is not clear whether this is confirmed. It is also inconsistent with our
expectation to have a nonzero limiting value for At — 0. We speculate that
these unexpected behaviors may be due to insufficient spatial resolution of our
analysis. We use the time step giving the error of a few percents in subsequent
analyses. _

The effect of the barrier height Vg on 7., is shown in Fig.3. We see that
the electronic interactions have very small effect on the dependence of 7., on
Vp: Irregular fluctuations from general tendency in these results seem to be
due to insufficient accuracy of our method and this small effect is within these
fluctuations.

. The relation between the thickness of the barrier Ly and 7ye, is shown in
Fig.4. The time 7, first increases and then decreases with the increase of the
thickness: When Lp exceeds some critical value, we have no bound states in
each well and 7,., begins to decrease.
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Fig.4 Time for reversing electron distribution vs. barrier thickness.
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3.2 Effect of Electric Field

Let us now examine the effect of electric field on the dynamic behavior of
electrons. In Fig.5 shown are the results for four cases where the barrier height
and thickness are changed. The electric field has the strength of the order of
10’V/m. The results with or without electronic interactions give almost the
same values.

The electrons move quickly when the electric fields are applied. This is
intuitively natural and can be expressed in another way: Under the electric
field, we have increased values for the difference of energies in the ground and
the first excited states and therefore the time needed to reverse the distribution
becomes short. This effect is larger for wider separation of wells as is consistent
with numerical results.

4 Conclusion

We have analyzed the electronic states in symmetrical quantum wires taking
many-body effects into account. Starting from the initial state obtained by the
time-independent density functional theory, we have numerically followed the
time development of electronic distribution based on the time dependent density
functional theory.

The most interesting result may be the apparent insensitiveness of dynamical
behaviors to the electronic interactions. It has been shown that they play an
important role in determining stationary states in these systems[3] Therefore it
seems, at least in our case, that the dynamics can be approximately described
as a weakly interacting system on the basis of those eigenstates which include
the many-body effects properly.

In this paper we have considered a system of electrons only in a fixed poten-
tial structure. Our method may also extended to the cases where the potential
has a part due to other classical particle. A typical example of the latter may
be the plasma encountered in the inertial confinement fusion.
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