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Abstract

Several methods to derive thermodynamic sum rules for a

system including charged particle are proposed and applied to

charged mixtures as well as one-component systems. The

validity of the statements is examined carefully with respect to

the ordering in the powers of the wave number. As for the

mixture of electrons and ions, it is shown how the aspect of

the one-component plasma or the ionic mixture appears when

electrons become strongly degenerate.

1. In troduction

The behavior of response functions in the limit of low frequency and long

wavelength are related to thermodynamic functions of the system. These relations

ha ve been used to construct approximation schemes for response functions or to

check their thermodynamic consistency.

In the case of charged particles, these sum rules take different forms from

those for systems of neutral particles reflecting the long range nature of the

Coulomb interaction. In this paper, we analyse the long wavelength limit of density

response functions in mixtures of charged particles by taking the long range nature

in several different ways and clarify how sum rules in various idealized models,

such as one-component plasma, are related to the properties of the original systems

which the models try to describe.

2. Sum Rules

2.1 Long Wavelength Behavior of Density Response Functions

We consider a mixture of charged particles in thermal equilibrium at' the

temperature T in a volume V. We denote the quantities related to electrons by
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the subscript 0 and use the subscripts a=l, 2,... to denote ions of species a:

Roman letters will be used as running parameters including electrons, e.g., i=O, 1,

2,.... In order to include the cases of one-component plasma and ionic mixtures,

the existence of uniform background is assumed when the charged particles under

consideration are not charge neutral. We denote the char.ge, the total number,

and the number density of charges of species i=O, 1, 2,... bye., N., and n.,
I I I

respectively.

We now introduce into the system an infinitesimal fictitious test charge density

{j (J • which interacts only with the charges of the species i. We assume that
eX,1

the wavelength of perturbation is sufficiently large and all quantities related to

the perturbation have the spatial and temporal dependence exp(ik· r-iwt) with w=O.

The condition for the chemical potential of the species j, tJ /.1.=0, is written
J

as

where
2v(k)=4'IT. /k

is the Fourier transform of the Coulomb interaction and

(2.1)

(2.2)

(2.3)

The first term on the left hand side of (2.1) is the change of the chemical potential

due to induced densities, {j n
k

, the second term is the interaction with the test

charge, and the third term is the potential energy due to induced mean field. The

induced chat'ge density is given by the density response function X ..(k,w=O) as
IJ

(2.4)

where

and (J .(k,t) is the density fluctuation of species
J

N.
J
~ exp[-ik· r.(t)].

i=1 I

We thus have

(2.5)

(2.6)
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or, in terms of the inverse of the density response function X ij
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(2.7)

It is to be noted that we have not assumed that the system is classical nor

degenera tee

The above relations can also be obtained by introducing an imaginary background

charge density {j P b to maintain the charge neutrality as

In this case, both the test charge density {j PeX,i and the introduced background

{j Pb equivalently work as the external charge density for our system. The induced

density {j n
k

is thus given by

(2.9)

Since the charge neutrality is maintained, the condition for the chemical potential

of the species j is now written as

(2.10)

the term due to mean filed being absent. From Eqs. (2.8), (2.9), and (2.10),we have

the same results (2.7).

The static form factor for species and is defined by

(2.11)

where < > denotes the statistical average. For classical systems, the static density

response function is related to the static form factor by the fluctuation-dissipation

theorem as

(2.12)

where kB is the Boltzmann constant.

2.2 compressibility Sum Rule
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energy F) is given by P = -(aF/aV)TN N
, 0' 1'··

the isothermal compressibility .t T is calculated as

The relation between the compressibility of a system and the long wavelength

behavior of the response function or the static form factor is called compressibility

sum rUles.1 The compressibility sum rule is included in the relations derived in 2.1.

Since the Helmholtz free energy F is written as F(T, V, NO' Nl'•••) = Vf(T, nO'

n1 ,•••), the pressure of charged mixture (defined by the volume derivative of the

Helmhol tz free

-v(aPI aV)T,N ,N = n(aPI an)T = :Eijnl·njllloJo.o 1'··· ,xO,x1'···
(2.13)

Here n is the total (unperturbed) number density and x
j

is the concentration of

species j:

n = (2.14)

(2.15)

From (2.7) and (2.13) we have

(2.16)

Here < > denotes the average as

(2.17)

The above equation relates the long wavelength limit of the inverse density response

function and the compressibility of the charged mixture.

The compressibility sum rule for charge mixtures (2.16) can also be obtained

by applying the test charge densities lJ p ., i=O, 1, 2, •••, adjusted so as to induceeX,l
the number densities lJ nj in proportion to the unperturbed number densities nj ,

simulating the volume change of the system:

(j = 0, 1, 2, •••), (2.18)

where A is an arbitrary infinitesimal constant. From

(2.19)

the test charge densities are determined as
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(2.20)

The force on charges (per unit volume)

is balanced by the pressure gradient

-ik(8P/8n)T :E .6n.
,xi J J

as

From (2.20) and (2.21), the relation (2.16) is again derived.

3. Examples

o. (2.21)

3.1 One-Component Plasma

The one component plasma (OCP) is a system of charged particles of one species

in a uniform neutralizing backgrourid of opposite charges. We denote the charge

and the number density by e and n, respectively. In this case with only one

species, the relations (2.7) and (2.16) are identical:

(3.1)

Here we note that 11 itT is the compressibility of charges in uniform background and

may become negative without causing any instability of the system.2

Especially when these charges are classical, we have the long wavelength

behavior of the static structure factor to the order of k2 as

(3.2)

where kD is the Debye wave number defined by

(3.3)

oand Ie T is the compressibility of the classical ideal gas
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o
" T = linkST. (3.4)

In terms of the Fourier transform of the direct correlation function c(k) defined by

(3.2) is expressed as

S(k) - 1 c(k) + c(k)[S(k) - ll, (3.5)

(3.6)

3.2 Classical Ionic Mixtures

Eqs.(2.7) and (2.16) hold also for mixtures of charged particles in a uniform

background. As in the case of one-component plasma, we note that <e>*O and "T

is the compressibility of mixtures in a uniform background which may become negative

without causing the instability of the whole system. As a model of real systems,

it is natural to regard electrons as a background and assume that the mixture is

composed of ions. We may therefore expect that the mixture is classical. Eq.(2.7)

is thus written as

(3.7)

The Fourier transform of the direct correIation function c ()( p(k) is related to the

static form factor by

(3.8)

The long wavelength limit of the direct correlation function is thus given to the

order of k0 as

(3.9)

This generalizes Eq.(3.6) to ionic mixtures. From (2.16) and (3.9), we have

For the charge density fluctuation spectrum, (3.7) gives the long-wavelength

limit as

(3.11)
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For classical binary ionic mixtures (81M), the structure factors are calculated

as
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where

(3.l2a)

(3.l2b)

(3.l2c)

A (3.l2d)

We note that the terms of the order k2 and k4 cannot be determined from (3.7):

Terms of these orders neglected in (2.7) or (3.7) should be taken into account.

To the total charge density fluctuation, however, careful calculations show

tha t these neglected k2 and k4 terms do not contribute and we have

where

kBT[l-C/Av(k}]lAv(k) + O(k
6

), (3.13)

(3.14)

When we use the temperature T, the concentration of l-st species xl =nl/n, and

the total charge number density n:e le}n (e being the unit charge) as independent
a

variables, (3.l3) reduces to the expression obtained earlier by the method of

thermodynamic fluctuations.3

3.3 Two Component Plasma

We now consider the mixture of electrons and one species of ions, sometimes

called two-component plasma (TCP). Electrons are denoted by the subscript 0 and

ions are denoted by the subscript 1.

Taking the inverse of (2.7), we have for long wavelenghts

where K T is the compressibility of the total system.

the density response function have the same long

system becomes thermodynamically unstable when the

(3.1S)

Thus all the components of

wavelength behavior and the

total compressibility vanishes.
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This behavior of the response function has already been derived as a result of

analyses based on temperature Green's functions.4 The simple derivation shown above,

however, seems to have not 'appeared in the literatures. We note that the relation

(2.7) is accurate to the order of kO and the next order term has the order of k2•

Therefore the exact statement on the response function is limited to the order of

kO in (3.15).

3.4. Ion. System in Highly Incompressible Electrons

We here consider the mixtures of ions and electrons where electrons are highly

degenerate and almost incompressible, simulating the role of the background charges.

We thus assume that the Fermi energy of electrons E
F

is much larger than the

thermal energy of ions:

(3.16)

In this case, the element /100 may be estimated by the value for the ideal Fermi

gas as

/I 00 (3.17)

and we may assume that

Let us first consider the case where the ions are of one species.

calculations lead to the density response functions as

-(kBT/nlh:n(k,(d=O) = Sn(k)
2 2

{

= nl kBT K T + (k/kn) + O[(k/kn) (kBTIEF)] 2

for 1» kBT/EF)(k/kn) ,

2 '4 2
(k/kn) + nlkBTKT - (k/kn) (nl/ln/nlkBT) + O[(k/kn) (kBT/EF)]

(3.18)

Careful

(3.l9a)

(3.l9b)

(3.l9c)
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(3.l9d)

Here It T is the compressibility of the whole system

(3.20)

which can be approximated by the compressibility of electrons in Eqs.(3.l9c) and

(3.l9d).

Eq.(3.l9a) is consistent with the result (3.15) and gives the next order term for

ions. In Eq.(3.l9b), we note that nlPn/nlkaT is the inverse compressibility of ions

normalized by the ideal gas value nlkaT. We thus see how the aspect of the

one-component plasma appears with the decrease of the electronic compressibility or

the increase of P 00.

When ions are composed of several species, we have

and

112
-[kaT/(nan~) ha~(k,(j)=O) = Sap(k)

-[kaT/(nan~F2h/a~(k,(j)=0)+ O[(k/ko)2, (kaT/Ea )) (3.21)

(3.22)

Here X I D is the density response function of the ionic mixture of the same, a fJ

composition in the uniform background. An example of such response functions is

given in 3.2 for binary mixtures.

3.5 Screened One-Component Plasma and Ionic Mixtures

As a model of ions in highly degenerate electrons, there has been used the

ion system interacting via the Coulomb interaction screened by the dielectric function

of electrons e (k,(j) =0). The results in the foregoing sections hold also for these
e

systems when the COUlomb potential is replaced by the screened Coulomb potential

as

v(k) -) v(k)1 e e(k,O).

In the case of one species of ions, the screened OCP, we thus have5

(3.23)

S(k) (3.24)
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As has been pointed out by Leger and Deutsch,6 (3.24) is consistent with the results

(3.15), (3.19a) and (3.19b), when the dielectric function of electrons satisfies the

compressibility sum rule (of electron system).
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