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Synopsis

An effective potential of an isolated partially

ionized high-Z ion, calculated withln the framework of

the statistical models of atoms, is injected into the

one-electron Schrodinger equation, in view of

evaluating the electron density and comparing it with

the results of statistical models. Starting from this

initial value, a self-consistent electron density is

obtained on the basis of the density functional theory,

where quantum natures of electrons are fully taken into

account.

§1. Introduction

In laser-driven fusion plasma experiments, we always encounter

partially ionized heavy impurity ions emitted from the pellet and the

pusher. Their effects on such transport phenomena as the electric and

thermal conduction and the radiative transfer are not yet well

understood and we are urged to clarify them from the viewpoint of both

the elementary atomic processes and the MHO transport.

In order to study an internal state of these partially stripped

high-Z ions, we have worked out a model of an isolated ion within the

framework of the statistical model of atoms in Ref.1, which will be

quoted as I in this paper •. (The term "ion" will be used also for

neutral atoms, since they can be viewed as ions with no net charges.)

Our next task is to check the consistency of the statistical

model, either Thomas-Fermi-Dirac (TFD) or Thomas-Fermi-Dirac-
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Weizsacker (TFOW), with the density functional theory (OFT) where

electrons are treated quantum mechanically. For this purpose, we

inject the effective potential obtained from such a model into the one­

electron Schrodinger equation, calculate the electron density anew and

compare it with a result of the statistical model. If there were a

satisfactory agreement between them, we would claim the validity of

the statistical model, i.e., replacement of the quantum mechanical OFT

for many-electron problem by simpler models as far as the electron

density distribution and Coulombic potential field around ions are

concerned. We also try to obtain the self consistent electron density

within the OFT starting from the result of models as an initial value.

To corroborate our isolated ion model characterized by an abrupt

jump of the electron density at the surface of the ion, we also

examine in some detail the asymptotic behavior of the electron density

analytically and conclude that, at least for finite temperature

models, strictly isolated ions cannot be described by the statistical

treatment.

In §2, redundant as it is, we give a brief survey of the

statistical model and fix the notations in this paper. In §3,

numerical solution of the Schrodinger equation is presented. To

obtain a self-consistent distribution of electrons, we have adopted an

iterative method borrowing the result of the statistical model as an

intial input. In §4, an analysis of the asymptotic behavior of the

electron density is given, to justify a posteriori its divergence

frequently observed in numerical analysis. Finally, several comments

and concluding remarks are summarized in §5.

§2. Survey of the Statistical Models

According to the OFT, on which the statistical models, TFO and

TFOW, are based, the electron density n(r) in the TFOW model is

determined by the differential equation' ),2)

an

a [h) V
2

n- --- - (Vn)2 - 2h +
an n n

11 + v, (, )
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where F[n(r») is the energy density and VCr) defined by
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VIr)
z

r J
nCr')

- dr'---­
Ir-r' I

( 2)

is the Hartree potential. The subscripts K, X, and C denote kinetic,

exchange, and correlation, respectively. The functional h[n(r»)

characterizes the effect of the density gradient and is given, as in

I, by

hen) y n 8 3 / 2 ,
2 1 / 2

( 3 )

where a is related to y through the expression

( I} )

We follow the notations in I and use the atomic units unless otherwise

specified.

Precision of the whole theory relies upon the appropriate choice

of the functional FxC as well as the functional h which partly

expresses the nonlocal effect. We here adopt again the local

approximation and borrow a fitting formula devised by Tanaka, Mitake,

and Ichimaru3 ) (TMI) on the basis of the Singwi-Tosi-Land-Sjolander

(STLS) scheme. 4 )

It should be emphasized that eq.(l) has been derived, using the

boundary condition n'(R):O. Eq.(l) is then coupled with the Poisson

equation

4TIrn(r)/Z ( 5 )

to determine ¢(r) and nCr), where ¢(r) is defined as

( 6 )
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correction terms in eq. ( 1 ) yields the TFD equation

dFK
dF

X
· Z K 2

<I>(r)
X

( 7 )+ -
on on r 4KT

Eqs. ( 1 ) and ( 7) hold at any temperature. It is therefore useful

to give explicit expressions for oFx/on and oFK/on:

oFK ex oFx
. 2 rrS

and
2rr 3 S2 [I_1 / 2 (ex))

(dex/dn)2·
(8 )

on S on

Evaluation of oFC/on is much more involved, since TMI's expression is

a sort of Pade approximant which contains the plasma parameter

f[=S(Ze)2(4rrn/3)1/3 j and the degeneracy parameter T/TF, with TF the

Fermi temperature. Instead of using an analytic expression, we resort

to the numerical differentiation for this term~

§3. Self-Consistent Electron Density in Density Functional Theory

A. Solution of one-electron Schrodinger equation

Once the Hartree potential U(r) and the exchange-correlation

potential oFxC/on are obtained from the statistical model, we inject

them into the one-electron schrodinger equationS)

(-
2

v2 + V(r))w(r)= E w(r) ( 9)

to calculate the wave function. Since the one-body potential

dFXC
V(r)=U(r)+ (10)

on

is spherically symmetric, we expand w(r) by the spherical harmonics

Ytm ( 6,<1» as

w(r)= L Rt (r)Ytm (6,<I»,
t ,m

(11 )
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where i and m are the azimuthal and magnetic quantum numbers,

respectively. Writing the radial part as Rni(r)=Xni(r)/r and

normalizing the distance and the energy as ~=Zr and E=E/Z2 , we obtain

( 1 2 )
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where v(~)=V(r)/Z2. We solve this equation by transforming it into an

eigenvalue problem with appropriate boundary conditions by finite

difference method.

The electron density n(~) is related to the solutions of the one­

electron Schrodinger equation as 6 )

223

n(~)= L 2(2£+1) (Rn i b (O)2 f (En£) + f:dEf(E)~(2i+1) (RniS(~»)2, (13)
n,i rr 2 ~

where the first term on the right-hand side refers to bound electrons,

while the second to the free electrons. The function f(E) is the

Fermi distribution function, which reduces to 1 for E ~ U=u/Z2 •

The one-body potential obtained from the statistical TFDW model

was used in the Schrodinger equation as an input to the subsequent

iteration. The Hartree potential U(r) inside the ion sphere is

smoothly connected to the Coulomb potential z/r at the ion sphere.

An initial chemical potential U was inferred from the highest

energy eigenvalue of levels occupied by electrons, the number of which

being specified by a given degree of ionization z/Z. Iteration

continues until each energy level converges within a prescribed error

or until the relative change of energy eigenvalues per one iteration

becomes smaller than 10-6 •

One important comment is needed at this point on whether or not we

may preclude scattering states. If we insist on the idea that all

electrons should be enclosed within the ion sphere, situation in which

a potential of an infinite height is present on the spherical

interface, it suffices to count only a number of bound electrons for a

given value of z/Z. In our isolated ion model, however, this is not

the case, since the effective potential prevailing in a sphere is

connected smoothly with the Coulomb potential z/r outside the sphere.

We should thus address ourselves to both the bound and scattering
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states, when solving eq.(12).

B. Numerical results at T=O

In the present numerical analysis, we have chosen 2=20 (calcium)

as in I with z/2=0.1, 0.3 and 0.6. Several examples of the final

values of energy eigenvalues and ~, the potential U(~), and the

electron density n(s) are shown in Table 1 and Figs.1 to 3 in

comparison with those obtained from the TFOW model. The solid line

represents the result of the TFOW model, and the dotted and dashed

lines refer, respectively, to the initial and final (or converged)

values of iteration. In figures labelled (a), values of normalized

potential rU(r)/2 are shown and we observe a fairly satisfactory

agreement between the solid and dashed lines, which indicates the

validity of the TFOW model. In (b) of each figure, the radial density

profile n(r) is illustrated. Though the curves are plotted in semi­

logarithmic scale, a discrepancy between results of the TFOW model and

iterative procedure is minute, except in the intermediate region where

the density is already low. Figures (c) and (d) depict n(r) and

4rrr 2n(r)/24 / 3 near the origin in an enlarged scale. The shell

structure in (d), indicative of the electron number profile in the ion

sphere, is smeared out in the statistical model. In (e), we show the

integrated number of electrons as a function of radius. We illustrate

in Figs.2 and 3 our results for z/2=0.3 and 0.6, respectively, in

order to emphasize the same trend for each quantity of interest.

Numerical analysis for finite temperatures is now in progress.

Table 1. Energy levels and chemical potential for TFOW potential

and those for the self-consistent OFT potential.

z/2=0.1 z/2=0.3 z/2=0.6
n t TFOW OFT TFOW OFT TFOW OFT
1 s -144.255 -144.295 -147.611 -147.648 -158.217 -158.244
2 s -15.005 -29.710 -18.262 -31.693 -27.564 -36.902
2 P -12.285 -24.856 -15.568 -26.982 -25.086 -32.807
3 s -1.936 -3.966 -4.546 -6.739
3 P -1.295 -2.895 -3.823 -5.678

~ -0.894 -2.895 -4.452 -5.678 -17.913 -32.807



One-Electron State of a Partially Ionized High-Z Ion 21

1.0
105

zlZ = 0.10 O.

(a)

0.8 103

0.6 10
'

0,4 10- 1

I'.
I"
I"
I

10- 3
0.2

\
\ ,, ,

0.0
10-5

0.0 2.0 4.0 6.0 8.0 0.0

Z/Z = 0.10

, ",,,,,,,,,,,,,,,
4.0

O.

6.0

(b)

8.0

102

0.00 0.05

z/Z=O.IO

O.

(c)

0.10

z/Z = 0.10 T = O.
100

(d)

10- 1

I'.
I'.
I
I
I

10-2 1
I
I
I
I
I
\
I

10-3 I
I
I
I
I
I
I
I

10- 4 I

10- 3 10-2 10- 1 100 10'

16.0

12.0

4.0

zlZ = 0.10

T O.

(e)

Fig .1. Comparison of TFOW model (solid

line) and iterative solution of

OFT [dotted (initial) and broken

(final) lines)] for T=O and z/Z
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§4. Asymptotic Behavior of n(r) and ¢(r) as Solutions of the TFD

and TFDW Equations

As was already pointed in I, our isolated ion model was

constructed so as to satisfy the boundary conditions, n'(R)=O and

U(r)=z/r for r>R, and the resultant electron density is discontinuous

at r=R. In order to clarify in what sense our model ions are

isolated, we now ask if there be a solution such that n(R)=n'(R)=O at

some finite (or infinite) radius. We are then led to analyze the

asymptotic solutions of the TFD and TFDW equations.

A. T=O case

In this case, the TFD equation gives a solution for n(r) at a

finite radius R where the decreasing function ¢(r) vanishes. Since we

know that

( 1 4 )

this requires ¢(r)~O and thus we cannot continue to evaluate n(r)

beyond R. As a result, n(r) has a discontinuity at R, such that

[
Kx ) 3

n(R -0) = - --- >0
2KT

and n(r)=O , r >R ( 15 )

and the chemical potential ~ is related to R as

~= -U(R) -
R

( 1 6 )

In the TFDW model, however, the above discontinuity of n(r) is

smeared out by the effect of squared gradient terms and no simple

relation such as eq.(14) is available for ¢(r). Assuming the

asymptotic behavior as
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U( r) '"
z

r
, q, ( r) '"

z
r +

z

z
and n(r)+O, (17 )

eq.(3.3) of I suggests

- 36 \..Iq,(2), ( 1 8 )

which, upon integration, yields

q, ( 1 ) ( r) '" C exp (- ( - 72 \..I) 1 /2 r ) ( 1 9 )

and the ionic radius becomes infinite as in the case of the TF model

for a neutral atom. The chemical potential \..I is determined by an

asymptotic value of q,(r).

The above two solutions are likely to support our isolated ion

model. We compare them with those of numerical analysis, for several

values of z/Z, in Figs.4 to 6 and Table 2. We observe that n(r) has

essentially the same profile except for very small and large values of

R and the effect of the gradient correction on \..I is minute and less

than a few per cent. In this sense, we may safely adopt the simple

TFD model instead of the TFDW model, whenever we are concerned with

quantities as evaluated by an integral over all electrons.

Table 2. Comparison between chemical potentials

in TFDW and TFD models

z/Z 0.1 0.3 0.6

TFDW -0.894 -4.452 -17.913

TFD -0.844 -4.348 -17.727

B. T> 0 case

With the help of the finite temperature expressions for FK and

FX' the TFD equation is written as



26 Yoichiro FURUTANI. Hiroo TOTSUJI. Kunitaka KOMAKI and Masahito TANABE

\, 0 r---,----,---r---,---,---,r---,--,

8.0

(b)

6.0

o.

4.02.0

Z/Z- 0.10T-

10-3 '----'---'---'-'----'---'-----"'-----'-;---'
8.0 0.0

(a)

6.0

o.

4.02.0

zlZ - 0.10 T -

0.2

0.4

0.6

0.0
0.0

0.8

z/Z - 0.10 T - O.

Z/Z - 0.10

T O. (d)

102

0.00 0.02 0.04

16.0

12.0

8.0

Z/Z-0.10

T O.

(e)

Fig.4. Comparison of TFDW (solid line)

and TFD (dotted line) models for

z/Z=0.1. (a) to (e) depict

the same quantities as in Fig.1.

4.0

0.0
0.0 2.0 4.0 6.0 8.0



One·Electron State of a Partially Ionized High-Z Ion 27

1.0 105

z/Z = 0.30 T = O. zlZ 0.30 T = o.
(a) (b)

0.8 103

0.6 10 1

0.4 10- 1

0.2
0.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

zlZ = 0.30 T o.

z/Z = 0.30

T O. (d)

102
0.00 0.02 0.04

12.0

8.0

4.0

z/Z = 0.30

T O.

(e)

Fig.5. The same as Fig.4 for z/Z=O.3.

0.0
0.0 1.0 2.0 3.0 4.0



28 Yaichira FURUTANI, Hiroa TOTSUJI. Kunitaka KOMAKI and Masahira TANABE

1.0 105

zlZ 0.60 T a. z/Z 0.60 T O.
(a) (b)

103

0.8

10 '

0.6

10- 1

0.4 10- 3

o. a 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0

106 100
z/Z 0.60 T O.

z/Z = 0.60

T o. (d)

(e) 10- 1

104 10-2

102

0.00 O. 02 O. 04

8.0

z/Z 0.60

O.

6.0
(e)

4.0

2.0

Fig.6. The same as Fig.4 for z/2=0.6.

0.0
o. a 0.4 0.8 1.2 1.6 2.0



One-Electron State of a Parlially Ionized High-Z Ion 29

+
an an

z

r
0, ( 7 )

which does not serve to limit the range of variation of ¢, in marked

contrast to the T=O case. We may therefore expect to obtain n(r), for

example, which decreases continuously at large distances. Since the

parameter y defined by eq.(4) decreases with n(r), the kinetic and

exchange energy densities can be approximated by

an
and

an
( 20)

with a=£n(2y/n 1 / 2 ). Eq.(7) reduces then to

z

an r
(21 )

the solution of which can be given by

(22)

The above behavior of n(r) at large distances is inconsistent with our

original assumption. We may then conclude that the TFD equation for

finite temperatures has no solution which describes the completely

isolated ion.

In the case of the TFDW model, the asymptotic solutions satisfy

( 23 )

This equation seems also to allow no decaying solution for n(r) at

large distances. It is obvious that the density decreasing with r by

inverse power law is not acceptable, and its possible form may be

Gaussian, such as n(r)cr exp(-Ar 2 ) with A=-6/S, which is again

inconsistent with the initial assumption. As shown above, the failure

of describing an isolated ion by finite temperature TFD or TFDW models



30 Yoichiro FURUTANI. Hiroo TOTSUJI, Kunitaka KOMAKI and Masahiro TANABE

may be ascribed to the use of the finite temperature version of Fk for

small n(r) on the outskirt of the ion, where applicability of these

statistical models turns out questionable. Analysis from this point

of view will be given elsewhere.

For practical purposes, however, we may adopt a solution for n(r)

of these equations, if it takes on a minimum value much smaller than a

typical value within the ion, before it diverges. In effect, we find

solutions of this type for the TFDW model in the case of large degree

of ionization. Several examples are shown in Figs.7 to 9.

§5. Concluding Remarks

We have revised our previous solution for the one-electron

Schrodinger equation,7) taking the exchange-correlation potential into

account. Except for the case of very small degree of ionization, we

have thus obtained a sufficient number of bound states to confine

electrons as required by the degree of ionization and these levels can

be use as an initial input to the DFT formalism. The self-consistent

solution of the latter has been obtained by an iterative procedure.

Resultant electron distributions in the DFT are in satisfactory

agreement with those obtained from the TFDW model.

In view of looking for a solution for n(r) which satisfies the

boundary conditions n'(R)=n(R)=O simultaneously, we examined its

asymptotic behavior using both the TFD and TFDW equations. For T=O,

the TFDW equation provides us with such a solution which is

essentially the same as the TFD solution with discontinuity, as far as

quantities smeared over all electrons in the ion core are concerned,

justifying thus the use of the simple TFD instead TFDW equations.

When T>O, the TFDW equation has a solution for n(r) with a minimum

which can be regarded as zero for practical purposes, while the TFD

equation seems to have no physically relevant solutions.

Our numerical code developed for the isolated ion model may

easily be extended to a m6~e realistic model with larger radius of

several times the mean ionic distance, in which one includes

neighboring ions and free electrons. This model allows us to take

account of a screening effect of the surrounding particles and the

correlations between different species of charged particles.

Numerical analysis of such a model will be undertaken in the near
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future.
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