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SYNOPSIS

There are some substances in which their hydrogen bonds are considered to

play quite important roles in their ferroelectric or antiferroelectric phase tran­

sition. These ferroelectrics usually have large isotope effects in phase transition

temperatures and we expect the physics of hydrogen bonds is closely related to

the effects. We propose a simple model describing the isolated hydrogen bond.

Based on quantum-mechanical analyses of this model, we study the difference

between the behavior of a proton and a deuteron in hydrogen bonds.

I. INTRODUCTION

Tripotassium hydrogendisulfate, K3H(S04h, has hydrogen bonds between two S04 radicals

which do not form networks and these isolated hydrogen bonds are often referred to as O-dimensional.

The ferroelectrics and antiferroelectrics which have hydrogen bonds are known to have large iso­

tope effects in the critical temperature of phase transitions. While we have no phase transition

in K3H(S04h down to very low temperature of the order of Kelvins, K3D(S04h undergoes the

antiferroeleetric phase transition at about 84K1). The analysis of these O-dimensional hydrogen

bonds, especially of their isotope effects, on the basis of the electronic theory is not only important

but also useful to clarify the nature of ferroelectric or antiferroelectric phase transition.

We propose a very simple model which, we expect, contains essential physics of hydrogen bonds.

Our model is composed of two cations, A and B, a proton (or deuteron) P and an electron as shown

in Fig. 1. Hereafter we denote the proton or the deuteron in our system simply as proton when
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not specified otherwise. We fix the distance between A and B at Ro and solve the Schrodinger

equation for the proton and the electron.

The total Hamiltonian in atomic units is

where

1 2 ZA ZB
He = --\7 - - --,

2 Ta Tb

and

(1)

(2)

(3)

(4)

Here, Ta , Tb or Tp denotes the distance between the electron and A, B, or P, and R1 or R2 denotes

the distance between P and A or B. ZA, ZB, and Zp are electric charges of cations A, B, and the

proton, respectively. The mass ratio of the proton and the electron is denoted by M. We assume

that the proton always sits on the line connecting A and B.

electron

Cation A

Ro= R1 + R2

proton or Cation B
deuteron

Fig.! Model for hydrogen bond.

We apply the adiabatic approximation to our system. We first calculate electronic state ip(1', R)

of the Hamiltonian He + 'Hep with the position of the proton R as a parameter:

(He + 'Hep)ip(1', R) = E(Ro, R)ip(1', R). (5)

We then determine the wave function of the proton in the adiabatic potential E(Ro, R) determined

by ip(1', R) as

(6)
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(7)

The total energy of our system is given by Etotal(Ro) as a fun~tion of Ro.

In this article, we present the formulation of this model in detail and some preliminary results.

II. CALCULATION

Our solution of the electronic wave function is based on the variational method2
). The electronic

state lp(1', R) and the adiabatic potential are obtained by minimizing the expectation of He +Hep

as

. {J lp(1',R)*(He+ Hep)lp(1',R)d1'}
E(Ro,R) = mill. J .

lp(1', R)*lp(1', R)d1'
(8)

We adopt the linear combination of three Is electronic wave functions with variational parameters

aI, a2, and a3 as our trial function:

(9)

1 -Ta 1 -Tb 1 T

Xl = V7Fe ,X2 = V7Fe ,X3 = V7Fe- p

We rewrite the right-hand side of (8) into

where

(10)

and

n, n' = 1, 2, 3, (11)

.6.nn l = JXnXn,d1' , n, n' = 1, 2, 3. (12)

The values of all a2 and a3 which minimize E(Ro, R) are determined by the conditions,

or

oE(Ro, R) = 0,
oak

k = 1, 2, and 3,

I: an{Hnk - tlnkE(Ro, R)} = 0, k = 1, 2, and 3.
n

(13)

Solving this set of equations, we obtain E(Ro, R) and ai (i = 1, 2, 3). We now need to evaluate

the values of Hnn, and .6.nn"

Since X's are normalized, the diagonal elements of tlnn, reduce to unity;
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(16)

(17)

~n = ~22 = ~33 = ~Je-2rdr = 1. (14)

Using spheroidal coordinates (see Appendix I), we obtain the off-diagonal elements of ~nnl as

~12 = ~21 = ~Je-(r.+rb)dr = e-RJ:, G~ +flo +1) , (15)

~23 = ~32 = ~Je-(rb+rp)dr = e-R2 GR~ + R2 + 1) ,
and

~31 = ~13 = ~Je-(rp+r')dr = e-R1 G·Ri +R1 +1) .
An example of the diagonal elements of Hnn, is

Hn = "!'Je-r. ·(_~V'2 _ ZA _ ZB _ Zp) e-r'dr
1r 2 Ta Tb Tp

..!. Je-2r. (_~ + .!.- - ZA) dr _ ZB J e-
2r

' dr _ Zp J e-
2r

• dr.
1r 2 Ta Ta 1r Tb 1r Tp

Expressing the integrals Jexp(-2Ta )jTbdr and Jexp(-2Ta )jTp dr in spheroidal coordinates, we

obtain

1 Je- 2r.- --dr
1r Tb

We thus have

..!.j1 dJl ['Xl e-RJ:,(A+JL) 2 (>,2 _ Jl2)d>. 1rRg
1r -1· J1 Ro(>'-Jl) . 4

~ [1 - e-
2
RJ:,(1 + flo)]. (18)

H n = ~ - ZA - ZB [1 - e-2RJ:, (1 +Ro )] - Zp [1 - e- 2R1 (1 +Rd].
2 E!-o R1

Other diagonal elements Hnn are similarly calculated as

1 ZA [ 2RJ:, )] Zp [ 2RH22 = 2" - ZB - flo 1 - e- (1 +flo - R
1

1 - e- 1(1 +RdJ,

1 ZA [ 2R )] ZB [ . 2RH33 = - - Zp - - 1 - e- 1 (1 +R1 - - 1 - e- 2(1 +R2 )].
2 R1 R2

The off-diagonal elements need some more elaborate integrations. For example,

or

H21

1 A 1 J -r. ZA -r d 1 J -r. ( 1 . ZB) -r--U12 - - e -e b r - - e -- +- e bdr
2 1r Ta 1r Ta Tb

1 J -r. Zp -rbd-- e -e r.
1r Tp

(19)

(20)

(21)

(22)
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The second and the third terms on the right hand side of (22) can be calculated in the same way

as (18);

The last term on the right hand side of (22) includes another type of integration but can be

calculated similarly (see Appendix II). Finally H12 = H 21 reduces to

H 21

1 Ro
-2~12 +e- (1 - ZA - ZB)(Ro+1)

-Zp [
2kR

2 {e- Ro (3 +3Ro+ R~)(log2Ro +,) - 3Roe-Ro

+eRo (3 - 3Ro + R~)Ei( -2Ro)} + 6RIR~~- R~ e-Ro(Ro+ R~)] .

Here, , = 0.5772... is Euler's constant and

Ei( -x) = _ [00 e-
l
dt

lx t

(23)

is the exponential integral function.

For other off-diagonal elements, H13 and H23 , another kind of integrations like Je-r
• ~e-rpd7'

rb
are necessary (see Appendix III). The final results are
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(2.5)

Substituting Eqs.(14) through (25) into Eq.(13), we obtain the electronic potential E(Ro, R).

We calculate the total energy Etotal(Ro) again by the variational method or by minimizing

. {J 1jJ(R)*1i
A
1jJ(R)dR}

Etotal(Ro) = mill. J .
1jJ(R)*1jJ(R)dR

(26)

As the variational wave function for proton, we take a linear combination of two Gaussian functions

(27)

with variational parameters A, zo, 131, and 132' The variational procedures with respect to 131, and

132 are performed in the same way as determining 01, 02 and 03, but those related to Aand Zo

require numerical treatment.

III. RESULTS

Some examples of adiabatic potential including the constant terms, ZAZp/R1 + ZBZp/ R2 +
ZAZB/ Ro, are shown in Fig.2. Although our computation may be performed for arbitrary set of

ZA, ZB and Zp, here we assume for the sake of later convenience ZA +ZB +Zp = 1 and ZA = ZB'

The widths of the figures are taken to bo proportional to the hydrogen bond length Ro.

-0.250,---,----~----,----,

-0.275

-0.300

-O.3:~.'-::75;--------:O-'-::.O::--0-----:-'

-0.2£0,--,,----_---_,,

-0.275

-0.300

(c)
-O.3~1.'--25,.-------0~.OO--------J

0.00

0.00

2.SO

'.00

Fig.2 Adiabatic potentials for ZA = ZB = 0.1 and Zp = 0.8:
(a)Ro = 3.5, (b)Ro = 5.0, (c)Ro = 6.5, and (d)Ro = 8.0 (in atomic units).
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Fig.3 Minimum value of the adiabatic potential vs. Ro: (a)ZA = ZB = 0.05, Zp = 0.9,

(b)ZA = ZB =0.1, Zp =0.8, and (C)ZA = ZB =0.3, Zp =0.4. Solid lines denote

the minimum of potential, and broken lines the potential at the center of A and B.
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FigA Wave functions of proton and deuteron (ZA = ZB = 0.1, Zp = 0.8):

(a)Ro =5.0, (b)Ro =6.0, and (c)Ro =7.0.
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In Fig.3, we show the minimum of the potential as the function of Ro. .Solid lines denote the

minimum of potential, and broken lines the potential at the center of two cations. In the case of

Ro;:S3.0, no minima are found in the potential and there is only a potential barrier at the center.

We show the distributions of a proton and a deuteron in the hydrogen bond in FigA for various

values of Ro. The three figures on the left-hand side are wave functions of a proton, and those on

the right-hand side are of a deuteron.

We also obtain the distribution of electron, per), in the hydrogen bond as

p(.r) = JIcp(r, RWI7/>(RWdR. (28)

In Fig.5, we show an example which shows the difference in the electron distribution in the cases

of the proton and the deuteron in the same adiabatic potential.

0.40 0.40

(a) proton (b) deuteron

0.30 0.30

0.20 0.20

0.10 0.10

0.00 0.00
-6.50 -3.25 0.00 3.25 6.50 -6.50 6.50

Fig.5 Distribution of electron (ZA =ZB =0.1, Zp =0.8, and Ro =6.5):

Cation A is at -3.25 and cation B at 3.25. (a) proton, and (b) deuteron.

These results are preliminary and more extensive investigation may be necessary to apply our

model to real hydrogen-bonding materials. The analysis of the interactions between two dimers

composed of two hydrogen bonds described above is now in progress and the results will be

reported elsewhere.
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APPENDIX I. INTEGRATION OF Jexp[-(ra + rb)]dr

We express the volume integral into the spheroidal coordinates

.A = Tl + r2 rl - r2
R ' f-l=-R-'

and,

and evaluate the integral

47

APPENDIX II. INTEGRATION OF Jexp[-(ra + rb)]jrpdr

Taking spheroidal coordinates, we rewrite Ijrp as

1

We then have

II = ..!:.. Je-Ta~e-Tbdr
7r Tp

Rg Jl 1,00 e-Ro >'(A2- f-l2)dAdf-l

4 -1 1 Jm(A2+ f-l2) +2Af-lRo(R2 - R1 ) - 4R1R2

m1,00 -Ro>' {A2 Jl df-l
2 1 e . -1 J R5(A2+ f-l2) +2Af-lRo(R2 - R1 ) - 4R1R2

_Jl f-l
2d
f-l} d.A

-1 J R5().2 + f-l2) +2Af-lRo(R2 - R1 ) - 4R1R2

~5 1,00 e-Ro >. {21~t2(3A2 -l)log I~ ~ ~ 1- 2A (61~t2 -I)} dA.
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The first term in { } of the right hand side is integrated as

[>0 e-,6X(3x2 -I)(log Ix + II-log Ix -Il)dx

1"'" e-,6(t-l) (3t2 - 6t + 2) log tdt - 100

e-,6(t+l)(3t2 +6t + 2) log tdt

e,6 [e-
2

,6 {;3 + (;3 + ;2 + ~) log 2} + (;3 - ;2 + ~)100

e-,6t~dt]

-e-,6 {;3 + ;2 - (;3 + ;2 + ~) (J + log ~)}

e-,6 { (;3 + ;2 + ~) (log 2~ +,) - ;2}-e,6 (;3 - ;2 + ~) Ei(-2~).

Here, we have used

100

e-,6t log tdt = -(J + log m/~.

The final result of II is

2R R2 {II = - ~~ e-Ro (3 +3Ro + ~)(log2Ro +,) - 3Roe-Ro

+eRo (3 - 3Ro + R~)Ei( -2Ro)} + 6Rtl~~- R~ e-Ro (Ro + R~).

APPENDIX III. INTEGRATION OF Jexp[-(1'a +1'p)]/1'bdr

In spheroidal coordinates, I/1'b is written as,

I 2

I 2 2

1'b = R1 . JP..2 + p2) + 2>..p1'1 - 1'2'

The integral we need becomes
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{

VI + 2A1'2 + A2 - 1'2 = -A - 1'1,

VI + 2A1'2 + A2
- 1'2 = A+ 1'1,

1:::; A :::; 00,

We can easily perform the first integral as

The first term of the second integral turns out to be

rX> e-R'\3A2 _ 1) log IA+ 11 dA
Jl+2R2/R, A-I

foo e-R'A(3A2 _ l){log IA + II-log IA - II}dA
Jl+2R2/R,

foo e-RI(t-I){3(t-l?-I}logtdt- foo e-RI (t+1){3(t+l?-I}logtdt
J2Ro/RI J2R2/R,

= CRI [_e-2Ro { (_ 12m _ 12m _ ~ + 12~ + ~ _ 2.) log 2Ro
Rr m Rr Ri Ri RI RI

+ (_6~ _ -; + -;)} + (-; _ -; + 2.) Ei (_2~ . R I )]RI RI RI RI RI RI RI

_e-R, [_e-2R2 {(_ 12m _ 12R~ _ ~ + 12R2 + ~ _ 2.) log 2R2
m m m Ri Ri RI R I

+ (_ 6~2 _ -; + -;) } + (-; _ -; + 2.) Ei(- 2R2 . R I )] .
RI RI RI RI RI RI RI

The second term of the second integral becomes

Finally we obtain

I - R2 -R, (2~R2l ~ _ ~+R2)
2 - 1e Ri og R

2
R

I
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1 J 1To calculate another integral - e-rb-e-rpdr, we only need to replace R1 by R2 and R2 by R1
7r ra

in the above result.




