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One-Dimensional Classical Plasmas
in Ion Traps, Ion Storage Rings, and Semiconductor Quantum Wires
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As plasmas with extremely reduced dimensionality, proper-
ties of one-dimensional classical plasmas are analyzed in the do-
main of strong coupling and static and dynamic structure factors
and the plasmon dispersion relation are obtained. These plas-
mas may be realized in Penning traps with sufficiently strong
confinement and also in semiconductor quantum wires under
appropriate conditions.

I. INTRODUCTION

One of key observations to understand various phenomena in Penning traps may be that
charged particles in the trap can be regarded as embedded in the uniform background of
opposite charges.[1] When we neglect correlations between particles, we thus have a charged
fluid of finite extension. Normal modes of oscillations of these finite plasmas in the fluid
limit and related properties enable us to diagnose physical parameters of these plasmas.|[2]
Finiteness of extension also leads to novel phenomena not observed in infinite plasmas.

When the correlations or the discreteness of charges is taken into account, we have
shell structures, two-dimensional lattices on shells, and inter-shell correlation of positions
of charges.[3, 4, 5, 6] The inter-shell correlation may be neglected as a first approximation
and we can reproduce shell structure observed in real and numerical experiments by consid-
ering the intra-shell cohesive energy and inter-shell electrostatic energy.[7] In these cases, the
aspect of plasmas with limited dimensionality becomes clear.

By introducing an extra electrode on the central line of the trap, we can control the
structure of confined charges. Especially, we can produce purely two-dimensional system of
charges by such a method.[8]

In this paper, we consider classical plasmas with smallest degrees of freedom, the one-
dimensional plasmas. As one-dimensional plasmas, the system composed of charged sheets
has been extensively investigated.[9] The potential in this case is proportional to mutual
distances. In our one-dimensional plasmas, particles interact through potential proportional
to the inverse of the mutual distance. We have this kind of one-dimensional plasmas in
the central part of Penning (and Paul) traps with cylindrical symmetry, when the effect of
confining force is strong. We also note that in quantum wires in semiconductors we have a
system of classical charges with one degree of freedom interacting via the inverse r potential
under appropriate conditions.
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II. CHARACTERISTIC PARAMETERS

A. Ions in Traps

Ions in Penning (and Paul) traps have a variety of ordered structures at low temperatures. |3,
4, 5, 6, 7] These structures are determined as a result of the competition between the confin-
ing force and mutual Coulomb repulsion.[7] When the former is sufficiently strong, ions are
aligned on a line, and with its decrease, we have one-dimensional lattices on a cylinder, two
concentric cylinders (layers), three concentric cylinders, and so on.

We first consider the ions on a line: The cases of ions on cylindrical surfaces will be
discussed in the last section. As characteristic energies of this system, we have, in addition to
the thermal energy kgT', the Coulomb interaction at mean distance F¢ and the Fermi energy
Ey given by

Ec = ng?, Ep = (7?/8)(h*n?/m). (1)

By ¢, n, T, and m, we denote the charge, the line density, the temperature, and the ionic
mass, respectively. (The energy Er characterizes the energy for which we have to take the
effect of quantum statistics into account even if the ion is a boson.) These parameters are
compared for Beg ion in Fig.1.

We observe that these plasmas are usually in the classical domain where kg1 > Ef due
to large ionic mass. We there define the Coulomb coupling parameter v by

v = E¢/kgT = ng*/kpT. (2)

As is shown in Fig.1, we can be in either the weakly coupled domain v < 1 (A) or the strongly
coupled domain v > 1 (B) according to experimental conditions.
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FIGURE 1. Characteristic parameters of ions in traps.

B. Ions in Storage Rings

In ion storage rings, alternating quadrupole magnetic fields serve as confining force which
focuses ions in directions perpendicular to the beam. Sufficiently low parallel temperatures
of the order of meV are attained by employing the electron and laser coolings, while the
perpendicular temperatures are much higher and of the order of eV.

Ions in storage rings can be regarded as classical one-dimensional plasmas along the di-
rection of the beam.[10] The effective interactions in this system are modified by the finite
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perpendicular extensions and the existence of grounded wall surrounding the beam. Correla-
tions between ions can be observed in the spectrum of Schotkky noise picked up by electrodes
placed near the beam: In the domains of strong coupling we have a reduction of integrated
spectrum and the appearance of collective mode.[11] These effects can be accounted for by
regarding the ion beam as one-dimensional plasma with an effective interaction.[10]

C. Electrons in Quantum Wires

In microstructures such as quantum wires in semiconductors, electrons (and holes) are
confined by the potential due to the band offset between different semiconductors. Typical
potential depth in structures composed of GaAs and Al,Ga;_,As is of the order of 100meV.
For electrons in quantum wires, the mass is to be replaced by the effective mass and the
characteristic Coulomb energy is screened by the dielectric constant € as E¢ = ¢*n/fe. (We
assume that the difference in energies of the ground and the first excited states in the plane
perpendicular to the wire AFE satisfies AE > Maxz(kgT, EF), and only the ground state is
occupied.)

In the classical domain where kgT > Ep, the parameter v = FE¢/kgT = ¢’n/ckpT
characterizes the importance of Coulomb interactions;

v <1 weakly coupled (A), v >1 strongly coupled (B). (3)

In the degenerate case kgT < EF, the ratio E¢/FEp = (8/7?)R, characterizes the importance
of Coulomb interactions;

R, <1 weakly coupled (C), R, >1 strongly coupled (D). (4)

These three energies are compared with one another in Fig.2 for electrons in quantum
wires composed of GaAs with m = 0.067m, and ¢ = 13.1, m, being the electronic mass. In
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the domain A, our system is classical and weakly coupled, in B, classical and strongly coupled,

in C, degenerate and weakly coupled, and in D, degenerate and strongly coupled.

We note that, except for very low temperatures and high densities, electrons in quantum
wires are classical with respect to the motion along the wire. In other words, we have one-
dimensional classical plasmas in quantum wires under a wide range of conditions.

We keep the dielectric constant ¢ in following expressions: € = 1 for ions in traps and
storage rings.
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FIGURE 2. Characteristic parameters of electrons in quantum wires.
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II1. RANDOM PHASE APPROXIMATION

In the domain of weak coupling, we may apply the random phase approximation to our
one-dimensional plasmas. When we cutoff the interaction ¢%/e|z| at & as ¢?/v/22 + 82, its
Fourier component is given by 2Ky(ké) ~ 2¢*(— Ink) (Ko(z) is the modified Bessel function)
and the plasmon dispersion w(k) and the static form factor S(k) are calculated as

2¢°n

W (k) ~ =L

Z k(= nk), (5)

-1

24 (1o k)) , (6)

S(k) ~ (1
respectively.[10]
IV. STRONGLY COUPLED DOMAIN

The Hamiltonian of our system may be written as

2
q 1
H= Z 252

+ H;. 7
Zla—z T @

Here z; denotes the position of i-th electron and H,, the effect of neutralizing background.
Let us note that, since our system is one-dimensional and composed of the same particles,
we can always number our particles in the order of their distance from some arbitrary taken
origin. The inverse r potential also assures that this ordering is maintained throughout the
time development of our system.[12] We thus have

C 2 Z Zi-1- (8)

When the couplings between classical charges are sufficiently strong, it is natural to expect
those charges have correlations which resemble those in a solid phase. For our system in the
strongly coupled regime, we therefore imagine a lattice of particles with positions {z?} and
express the positions of particles {z;} by deviations from those in the lattice {(;} as

zi=20 4G (9)
with ]
0 _ *.

% =i (10)

It is well known that we do not have solids in one dimension due to enhanced effect of
thermal fluctuations: The mean square displacement calculated in the harmonic approxima-
tion diverges and the Debye-Waller factor reduces to zero due to the contribution of acoustic
modes with long wavelengths.[13] In this respect, we emphasize that, in our calculation, it is
not necessary to assume the existence of such a lattice.

In terms of (;, |z — 2| = | — 5)/n + (G — ()|, and the Hamiltonian is rewritten as

2 q2 1
H=X e 5 ST 6= 0

where p; = m(d(;/dt) conjugate to {;. We now expand each term in the potential with respect
to (; — ¢;. Within the harmonic approximation, we have

+ H,, (11)

2,,3 1

p? q n 1 q n
H = Z : + Hy + Z
2771 26 i) | - l 1£] |z - J|3

(6= G)™ (12)
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The second and third terms on the right hand side give the Madelung energy of linear chain
of charges. When the effect of neutralizing backgroung charge is properly taken into account,
they reduce to

Un /2 + In(Rn), (13)

where U a = —0.231803 - - - and R is the radius of cylinder containing neutralizing background.[14]
The rest of the Hamiltonian (12) gives a collection of harmonic oscillations. Their disper-
sion relation is calculated as

4¢’n3 _ [k
pr:q”F@) k| < I, (14)
em n n
where o 1
F(z) =3 (1 ~cosjz). (15)
7=1 J
For long wavelengths, (14) reduces to
2¢°n
2 2
k) ~ —k*(—1nk).
(k) ~ 2L~ Ink) (16)

We show the dispersion relation in Fig.3.
To confirm the applicability of the harmonic approximation, we now calculate < ((; —
(;)? >. Here < > denotes the thermal average. At the temperature T, we have

1 .. sin? (&g
<(G=G)Y>nt= E/" dﬂ?“——“lg(;) ) (17)

in the harmonic approximation. We plot the ratio of < (¢; — ¢;)? > to (i — j)?/n? normalized
by 1/~ in Fig.4. We note that the average < ({; — (;)* > is finite even if the mean square
displacement < (2 > diverges and the ratio plotted in Fig.4 is a decreasing function of |¢ — j]
with the maximum of 0.4/ at |i — j| = 1. When [¢ — j| > 1, we have

<(G-¢)r> 1 1
(1=4)?/n*  2yli—j|nfi—j|

We also note that this asymptotic expression works as a good approximation for |i — j| > 2.

The approximation we applied to the Hamiltonian (12) is the expansion of 1/|z — z;| =
1/](i—37)/n+ (¢ = ¢;)] with respect to {; — (;. Our harmonic approximation is thus applicable
at least as a first approximation when v > 1 or in the domain of strong coupling,.

(18)
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FIGURE 3. Dispersion relation of one-dimensional plasmon.
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FIGURE 4. Relative displacement from (fictitious) lattice points.

The static correlation between charges is characterized by the structure factor S(k) and
the pair distribution function g(z) given by

Sk = < o> (19)
g(z)— 1= 2% [ dkexp(ikz)[S(k) - 1]. (20)

Here pr = T; exp(—ikz;) is the density fluctuation and N is the total number of charges.

Within the harmonic approximation, the structure factor and the pair distribution function
are calculated as

Sk)y=1+2 icos (]g) exp [—%ﬁ < (G = ¢)? >}

]:

& k 1 ckgTk* = 1 -l .
=1+ 212 cos (]E) exp [—4—7}—%—;/0 dwF_(:c_)[l - cos(]a:)]J , (21)

9(z) : (273)1/2 ; n < (Go - Gy >
e I

We show the structure factor and the correlation function in Fig.5 for several values of coupling
constant -. '

The dynamic structure factor S(k,w) is the Fourier transform of the intermediate scat-
tering function < pg(t)p_i(t = 0) > /N where pi(t) = T; exp[—ikz;(t)]:

S(k,w) = %51; /_°:o dtexp(it) < pr(t)p-r(t = 0) > (23)

The intermediate scattering function is calculated as

j=—oo

T <ot =0)>= 3 exp (-jg) exp [—52— <{G(t=0)- G} >

oo & 1 ekgTh? (v 1 o
= FX_:OO exp (—] 5) exp [—E n 7—13/0 dmm[l — cos{jz — w(n;v:)t}ﬂ (24)
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FIGURE 5. Pair distribution function and static form factor.
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V. ONE-DIMENSIONAL LATTICE ON CYLINDERS

We here consider one-dimensional lattices of charges on a cylinder which are realized in
Penning and Paul traps.[7, 15] We write the position of i-th charge r; referring to the lattice
(denoted by the superscript 0) as

= (R} + Ry, 2] + (). (25)

Here R{ and R; have = and y components. Expanding the mutual interaction ¢?/|r; — r;| with
respect to (;; = (; — (; and R;; = R; — R;, we have the deviation of the interaction potential
from the Madelung energy to the second order as

l q2 ) 3 q2
~ 3w e Gt R+ S moypn

where 20; = 20 — 2} and R}, = R} — R}. The equatlons of motion for (; and R, are given by

LG 2(25)" + (Ry;)° Zj

(2;Gij + Rj; - Ry;)?, (26)

= Git6 2 R - Ryj, 27
" i G+ (RGP o [(20)2 + (R SUEERC (27)
d’R; 1
z:-—kRi+2 0y2 R12R1"3R0R0R3
e 2 TGOy T ()" + (R R ~ SRGRY, R
0
+6 Y (28)

](;e,)[( 17)2 ( )2]5/2 z]Cz]a

respectively. Here k in the equation for R; is the confining force constant. When we note
that |RY;| < (diameter of cylinder) while |2)| o |i — j| and the convergence of summations
are relatlvely slow, the equations of motion for (; and R; are approximately decoupled as

N (29)
dt i) Zz’f|
2
mE R, ~—kR;+2 ¥ ——R,; (30
a PR )

The longitudinal fluctuations in these lattices are thus given by the dispersion relation (14)
and density fluctuation is given by (21).

VI. CONCLUSION

We have shown that the strongly coupled classical one-dimensional plasma with 1/r in-
teraction can be described by the harmonic approximation. The harmonic approximation
which is originally devised for crystalline state does apply to one-dimensional system where
crystalline order cannot exist due to enhanced effect of long wavelength fluctuations. These re-
sults apply to one-dimensional string of charges in long traps and also to clectrons in quantum
wires under appropriate conditions. Dynamical simulations of this system are in progress with
preliminary results confirming our calculations. Their full account will be given elsewhere.

Acknowledgments

This work has been partially supported by the Grants-in-Aid for Scientic Research from
the Ministry of Education, Science, and Culture, Nos. 04680013 and 06680448. The author
would like to thank the Okayama Foundation for Science and Technology for supporting the
presentation of some of the results described above in the Nonneutral Plasma Workshop held
at University of California, Berkeley.



One-Dimensional Classical Plasmas . 65

References

[1] J. M. Malmberg and T. M. O’Neil, Phys. Rev. Lett. 39, 1333(1977)

[2] D. H. E. Dubin, Phys. Rev. Lett. 66, 2076(1991); D. J. Heinzen, J. J. Bollinger, F. L.
Moore, W. M. Itano, and D. J. VVmeland Phys. Rev. Lett. 66, 2080(1991) J. J. Bollinger,
D. J. Heinzen, F. L. Moore, W. M. Itano D. J. Wineland, and D. H. E. Dubin, Phys.
Rev. A48, 525(1993).

[3] A. Rahman and J. P. Schiffer, Phys. Rev. Lett. 57, 1133(1986).

[4] D. H. E. Dubin and T. M. O’Neil, Phys. Rev. Lett. 60, 511(1988).

[5] J. P. Schiffer, Phys. Rev. Lett. 61, 1843(1988).

[6] S. L. Gilbert, J. J. Bollinger, and D. J. Wineland, Phys. Rev. Lett. 60, 2022(1988).
[7] H. Totsuji and J.-L. Barrat, Phys. Rev. Lett. 60, 2484(1988).

[8] H. Totsuji, Phys. Rev. E47, 3784(1993).
{

9] For example, Ph. Choquard, H. Kunz, Ph. A. Martin, and M. Navet, Physics in One
Dimension, edited by J. Bernasconi andT Schneider (Sprlnger New York 1981), 335.

[10] H. Totsuji, Phys. Rev. A46, 2106(1992).

[11] See, for example, Proceedings of the Workshop on Electron Cooling and New Cooling
Techniques, Legnaro, Italy, 1990, edited by R. Calabrese and L. Tecchio (World Scien-
tific, Singapore, 1991).

[12] For example, Z. W. Salsburg, R. W. Zwanzig, and J. G. Kirkwood, J. Chem. Phys. 21,
1098(1953).

[13] For example, let us fix both ends of a system of size L. In this case, the mean square
displacement of charges at finite temperatures increases with the distance from the fixed
end z as z/vIn z and diverges as L/yIn L when L — oc.

[14] H. Totsuji, Phys. Rev. A38, 5444(1988).

[15] M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Phys.
Rev. A45,6493(1992).





