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SYNOPSIS

For weakly guiding dielectric waveguides, the eigenmode field distribu­

tions are calculated numerically with a simple algorithm. In this numerical

method, the transverse sampling space can be chosen arbitrarily, and hence a

narrow waveguide can be analyzed. The field satisfying scalar wave equation

is expressed by the discrete Fourier transform and the mode eigenvalues and

eigenfunctions are calculated by solving an eigenvalue equation numerically.

The validity of this method is checked for 2-D waveguides having step and

parabolic or square index distributions. It is found that for the well guided

TE modes of the slab waveguide, the accuracy of this method is remarkably

good, but some discrepancies are found if the mode is near cut off. In the

problems where the normalized guide index b is small, caution should be

taken in applying the results of this numerical method.

1. INTRODUCTION

Recently, there has been considerable in­
terest in the evaluation of light propagation

characteristics of dielectric waveguides used for

the optical integrated circuits. To get reliable
results, it is necessary that the field distribu­

tion and the propagation constant should be
the mode eigenfunction and eigenvalue of the

waveguide, respectively. For some known refra-

ctive index profiles of a 2-D waveguide [1], the

reduced wave equation can be solved analyt­

ically. However, these index profiles are not

same as the index profiles of a practical dielec­
tric waveguide. For the realistic index distri­

bution of a guide, it is very difficult to get an
analytical solution of the reduced wave equa­

tion. So various numerical methods have been
developed to solve the reduced wave equation,

and hence to find the mode characteristics.
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tion is given, and in section 3, we compare the
numerical results with the analytical ones.

2. DERIVATION OF THE

EIGENVALUE EQUATION

Let us consider that the propagation of
light through a dielectric slab waveguide is in

the z-direction. The field of this waveguide is
taken uniform in the y direction (a/ay = 0)

~nd is confined in the x-direction only. The

TE modes of this waveguide consist of the field

components Ey , Hx and Hz.
Considering the medium is isotropic,

source-free and inhomogeneous, the wave equa­

tion for the TE modes can be expressed as

(2)n(x) = ns + 8f(x)

where 'ljJ(x, z) = Ey(x, z), Cr is the relative
dielectric constant of the medium, and ko =

w 2Jloco = 2rr / Ao; w is the angular frequency,
and ko, Ao, Jlo and co are the free space
wavenumber, wavelength, magnetic permeabil­

ity and dielectric constant, respectively. In de­

riving the above equation we have considered
the time dependence of the field as exp(jwt).
Equation (1) is also called Helmholtz equa­

tion. The relations of Ey with the other field

components (Hx and Hz) of the TE modes are
found from Maxwell's equations. Our aim is to

solve Eq. (1) with an approximated numerical
method, which is similar to the BPM.

Since we are interested in the calculation

of the eigenmodes of the waveguide, we assume
that the structure of the waveguide is uniform

in the z-direction. In that case the relative
dielectric constant Cr will be a function of only

one coordinate axis x and is written as Cr =

n2 (x). If 8 is the maximum index change of the

guide, then a general expression of the index
distribution is given by

One of the numerical methods is the

beam propagation method (BPM) by which

the mode eigenfunctions and eigenvalues are

calculated [2]. But this method needs vast

computer memory for the repeated calcula­
tion of the complex field up to a reasonable
propagation distance. Another improved nu­
merical method is developed by expressing the

BPM equation into the coupled mode equa­
tion, which is solved numerically as an eigen­

value problem [3J. In this paper, we describe
a numerical method which is simpler than the

method given in Ref. [3]. The present method

is based on the formulation of the BPM. All the
fundamental approximations of this method
are same as that of the BPM, but in this

method the transverse sampling space can be
chosen arbitrarily. The scalar Helmholtz equa­

tion is first approximated to get Fresnel equa­
tion [2], whose field is expanded by the discrete

Fourier transform. The scalar Fresnel equation

is then expressed in the form of an eigenvalue
equation which is solved for the mode eigenval­

ues and eigenfunctions.

To show the exactness of the present nu­

merical method, the eigenmodes of a narrow
waveguide and also of a wide waveguide with

step and parabolic or square index distribu­

tions are calculated. The obtained results are
compared with that of the exact analytical

ones. It is found that both results agree well
for the lower order eigenmodes, but for higher

order eigenmodes some discrepancy between
the two results are found near the waveguide

boundaries. According to Ref. [3J these dis­
crepancies are due to the virtual boundaries
placed at the waveguide edges for the conve­
nience of the numerical calculation. In this

paper, we make it clear that this conjecture
is not true. The il,bove disagreements are oc­
curred when the normalized guide index (b) is
small. For simplicity, we limit our discussion

for the TE modes of a 2-D waveguide. In sec­
tion 2, the derivation of the eigenvalue equa-



Evaluation of Eigenmodes of Dielectric Waveguides by a Numerical Method Based on the BPM 51

(5)

where f(x) is the index distribution function.
The parameter (j is, generally, very small in

comparison with ns. Therefore, we can write

(3)

Let us consider that one type of solution

of Eq. (1) may be expressed as

t/;(Xrz) = ¢>(x,z)exp{-jkonsz} (4)

where n s is the refractive index of the sub­

strate. Substituting Eq. (4) into Eq. (1), and

using the approximation that the change of the
refractive index is very slight over the distance

of one wavelength, we get the parabolic or Fres­

nel wave equation as [2J

8¢>' -j ['t72 k2 {2 2}) -1..'
~ = -k-- v t + 0 n - n s If'
uZ 2 on s

where \7~ = 82 /8x 2 and ¢>' represents the field
distribution of the above wave equation which

is obtained by neglecting the term containing
the double derivative of ¢> with respect to z. So
hereafter, a prime will be used for the param­

eters belong to Fresnel equation.
Let the eigensolutions of Eq. (1) and Eq.

(5) are, respectively

Thus it is clear that the solutions of Helmholtz
and Fresnel equation will provide us with the

same eigenmode field distributions, but their

eigenvalues are related by Eq. (8).

Substituting Eq. (7) in Eq. (5), we get

n~ff¢>' = -k; [\7~ + k6 {n 2
- nn] ¢>'. (10)

2 ons

The above equation can again be modified to

the following form by substituting Eq. (3) in

it

n~ff ¢>' = [ ':~ + f( X)] ¢>'. (11)
(j 2kons {j

The approximated field ¢>' is now ex­

panded by the discrete Fourier transform as

n

(jj'n(z) = ~~¢>'(xi,z)exp(-jVnXi) (13)
,

wherei,n = -(N/2-1), ... ,-1,0,1, ... ,N/2,
Xi = Di/N, and the transverse wavenumber

Vn = 27rn/Dj N is the total sampling points,
and D is the length of the calculated region.

In matrix form, Eqs. (12) and (13) are written

as

~' = F</>'and

t/;(x, z) = tm(x) exp( -jkoNeffz) (6)
</>' F-l~'

(14)

¢>'(x,z) = t:n(x)exp(-jkon~ffz) (7)

where Neff and n~ff are the effective indices

found from Eqs. (1) and (5), respectively. The

effective index Neff found from Helmholtz equa­

tion (Eq. (1)) is used to define the propagation

constant f3 = koNeff · The effective index n~ff

found from Fresnel equation is related to Neff

by the relation [2J

n~ff = (N;ff - n~)/(2ns)' (8)

Similarly, the field distributions of Fresnel

equation is related to that of Helmholtz equa­

tion by the relation [2J

(9)

where F = 1/N . [Fn;] = 1/N . [exp( -jvnXi)J
and F-1 = [Fi~lJ = [exp(jvnxi)J. Substituting

Eq. (14) in Eq. (11), we get

,
n;t </>' = [qF- 1K F + R] </>' (15)

where, matrices K and R are the two diag­

onal matrices with elements \7~ = 82
/ 8x~ =

-v; and f(x;), respectively, and q is equal to

1/(2k~ns{j).

Let us define the approximated normal­

ized guide indeX' b' as

N 2 2 ,

b' = eff - n s ~ neff (16)
n~ - n; {j
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where no = n(x = 0) is the core index at x = O.
The value of b' may vary from 0 to 1. Using

the above equation, we can write Eq. (15) as
an eigenvalue equation, i.e.

where matrix P = qF-1K F + R. With­

out calculating the beam propagation in the z­

direction [2], we can calculate the mode eigen­
functions and the eigenvalues at a plane z = 0
by solving Eq. (17). Since we have used the

slow index variation approximation, the wave

equation of TM modes can also be made similar

to Eq. (1) for Hy ignoring the term containing
the derivative of c [5]. So the solutions for the

TM modes will be similar to the TE modes.
84
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the solutions of the wave equation as given in

Ref. [6].

The eigenmode field distribution of the
narrow waveguide obtained by this numerical

method is plotted in Fig. l(a) and is shown

by the dotted curve. In the wide waveguide, 3

guided modes are found and their field distri­

butions are plotted in Fig. 1(b) and are shown

(17)b' 4>' = P 4>'

Transverse direction (xjdJ

(b)

Fig. 1 Mode field distributions obtained by

the numerical (dotted curves) and analytical

methods (solid curves) with step index profile;

(a) narrow waveguide and (b) wide waveguide.

84

m=O
b'=0.9

m=l
b'=0.6

m=2
b'=0.17

o-4

o
1

o

o

-1

1

-1
I--......._I--......._I--......._.L...--'----'

-8

1

0.5

"'C
Q)

.~

<U
E...
o
Z

A. Eigenmodes of Step Index Wave­
guide

3. NUMERICAL EXAMPLES

The present numerical method is first ap­

plied to a symmetric 2-D waveguide with step

index distribution as shown by the insert of

Fig. 1. The half- and full-width of the waveg­
uide are denoted by d and T, respectively. De­

pending on the waveguide width, two types of
waveguides are analyzed. For a narrow waveg­

uide (where only fundamental mode exits) Tis
taken 211m, and for a wide waveguide (where

three modes exist) T is chosen 811m. The nor­

malized frequency V of the narrow waveguide

is taken 2 and that of the wide waveguide is
chosen 8. The value of f(x) in Eq. (9) is 1
in the core and 0 in the cladding region. The

other parameters are n s = 1.0, Ao = 111m,
D = 40 pm and N = 256. The maximum in­
dex change 8 can then be calculated from the

relation V = koT(nl- n~)l/2, where nf = no is
the core index for step index guide. In our case

8 is found to be 0.012665148. The analytical

eigenmode field distributions are found from
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by the dotted curves. The analytical eigen­

mode field distributions of the narrow as well

as the wide waveguide are also plotted in Fig.
1 by the solid curves. It is seen that the dotted

curves are completely coincide with the solid
curves for both types of waveguides. The well

agreement of both solutions confirms the valid­
ity of Eq. (7).

/
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, , ,,,,,
B. Eigenmodes of Truncated Square
Index ~aveguide

-d d x
As a second example, the present nu­

merical method is applied to a symmetric slab
waveguide with truncated square index disti'i­

bution (Fig. 2) which is expressed as [IJ

Fig. 2 The truncated square index distribu­

tion shown by the solid curve for which the
present calculation is done and the typical infi­

nite square index profile shown by the dashed

(18)
curve.

the region Ixl ~ d the exact field is expressed
by Hermite-Gauss function as [IJ,

where m is the mode number, Hm (0 is the

mth order Hermite function, and w is called
the beam mdius given by

A = Hm (V2d/w) exp(-d2 /w2
) exp(,d) (21)

, = 2d _ 2Vi· m Hm _ 1 (Vid/w) (22)
w2

W Hm ( Vid/w)

In Fig. 3, both the analytical (solid
curves) and the numerically (dotted curves)

(20)

The parameter w indicates the degree of con­

finement of the fundamental mode. In the

region Ixl ~ d, the field is expressed as

A exp(-,Ixl). The amplitude A and the prop­
agation constant, are found by matching the

tangential field components of Ey and Hz at

the boundary Ixl = d and they are found as

The parameter Xn is selected such that the in­

dex at a distance Ixl = d will be equal to ns . All

the parameters of the square index case, except
T and V, are kept same as those of the step in­

dex case explained in the Example A. For a
narrow waveguide (single-mode waveguide) T

is 4 /lm 'and V is 4, and for a wide waveguide
(multi-mode waveguide) T is chosen 12 /lm and

11 is taken 12.

The exact eigenmode field distributions

are calculated by the mode matching method.

In the region Ixl ~ d the exact field is expressed
by the parabolic cylindrical function and out­

side this region the field will decay exponen­

tially. By matching the tangential field com­

ponents of Ey and Hz at the boundary Ixl = d,
the field amplitude and its propagation con­

stant are found. For a well guided mode, the

order of the parabolic cylindrical function is
very close to some integer value. In that case
the parabolic function can be approximated by

Hermite-Gauss function.

Considering the simplicity of the analyt­

ical solution, we used Hermite-Gauss function
to express the field in the guide. Thus, within
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shown in Fig. 3(b), b' is 0.16 when m = 2).

Thus with the increase of mode number '112, the

mode field distributions in the guide spread out
further from the guide axis and the numerical

results are no longer a good approximation to

the exact ones.

Fig. 3 Mode field distributions for the trun­
cated square index profile obtained by the nu­

merical (dotted curves) and analytical calcula­

tions (solid curves); (a) single-mode waveguide

and (b) multi~mode waveguide.

obtained eigenmode field distributions are plot­
ted. The mode field distributions of the single­

mode waveguide and the multi-mode waveg­
uide are shown in Fig. 3(a) and in Fig. 3(b),
respectively. It is seen that the numerical re­

sults agree well with the analytical ones for the

lower order modes of a multi-mode waveguide,

and is consistent with Eq. (7). But some dis­

agreements of these two results are found if the

mode belong to a square index waveguide. For

the fundamental mode of a single-mode waveg­

uide as well as for a higher order mode of a

multi-mode waveguide, these discrepancies are
due to the beam radius wand the normalized

guide index b'.

Using Eq. (20), the fundamental mode
beam radius w of the single-mode and the

multi-mode waveguide are found to be 2.0 JLm

and 3.46 JLm, respectively. The ratios of wid

for the single- and multi-mode waveguides are
1.0 and 0.58, respectively. Since w indicates

the degree of confinement of the fundamen­
tal mode, smaller value of w in comparison

to d means better confinement of fundamental

mode. Thus the confinement of the fundamen­

tal mode field in the multi-mode waveguide is

better than that in the single-mode waveguide.
This description is clearly visible in the field

distributions form = 0 shown in Fig. 3(a) and
in Fig. 3(b). Since the guidance of the funda­
mental mode is weak in the single-mode waveg­

uide, some errors are found in the numerical

calculations. With the increase of the mode

number the confinement of the modal power

decreases. So for higher order modes of the

multi-mode waveguide, the numerical results

have also errors near the boundary of guide.

Form = 2, such field distribution is shown in
Fig. 3(b).

For the well confined modes b' is large

(for example, in our obtained results shown in

Fig. 3(b), b' is 0.8 when m = 0) and for the

weakly confined modes which are near cut off

b' is small (for example, in our obtained results
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Furthermore, the gradient of index dis­

tribution near the region Ixl = d is relatively
larger than that near the waveguide axis. So

the value of matrix P near Ixl = d is not as ac­
curate as that near the waveguide axis. Thus in

calculating the higher order mode fields at the

vicinity of the waveguide edges, some error may
arise in the numerical results. The authors of

Ref. [3J have claimed that the above disagree­
ments are occurred due to the virtual bound­

aries placed at the core and cladding inter­
faces of the multi-mode waveguide. But with

the present calculation these discrepancies are
present even the virtual boundaries are moved

to a distance equal to 3d. From the above dis­

cussion it is clear that the obtained disagree­

ment between the analytical and numerical so­

lutions are not due to the virtual boundaries,

but due to the effects of b', wand "Vn. Since

the present numerical method is based on the
BPM, it can be inferred that the stationary

mode eigenfunctions obtained the BPM [2J is
not accurate enough if the normalized guide

index b' is small.

4. CONCLUSIONS

The eigenmode field distributions of the

slab optical waveguide with step and truncated
square index distributions are evaluated nu­

merically with a simple algorithm. For the well

guided TE modes of the slab waveguide, the
accuracy of this method is remarkably good,

but some discrepancies are found if the mode

is near cut off. The basic approximations of

this numerical method are same as that of the
BPM, but the transverse sampling space of the
present calculation can be chosen arbitrarily.

Using slow index variation approximation, the
present numerical method can also be used for

the analysis of the TM modes [5].
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