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SYNOPSIS

Numerical simulations of a single layer recurrent neural network model in

which the synaptic connection matrix is formed by summing cyclic products of

succesive patterns show that complex dynamics can occur with the reduction of

a connectivity parameter which is the number of connection between neurons.

The structure in these dynamics is discussed from the viewpoint of realizing

complex function using complex dynamics.
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1 Introduction

Neural network models have been extensively investigated from the viewpoint

of understanding mechanisms for parallel distributed information processing (

see for example the collection of pioneering papers in [1] and [2] ). Although

some neural networks are known to show complex dynamics such as chaos [3],

[4], only a small proportion of the works so far have been devoted to functional

aspects of complex dynamics. In order to advance the argument that chaos

could play significant functional roles in adaptive, self-organizing and evolving

systems [5] f'V [8], it is important to consider chaos dynamics in neural networks

in a functional context. In this paper we consider chaotic dynamics in a neural

network in the context of a memory search task. Our motivation for this is

two-fold; (1) as a way of characterizing dynamics, and (2) to get insights into

the usefulness of a chaotic network for processing tasks.

We consider a discrete time synchronous recurrent network. The mem­

ory matrix is an asymmetric matix chosen so dynamics tend to converge to a

cycle of memory patterns [10]. In this network, an important parameter is the

connectivity of neurons. Mori et al. [10] showed that when fully connected the

robustness of the memory cycles improves with cycle length. This is due to a

type of dynamical "self-annealing" which reduces the effect of spurious attrac­

tors. If connectivity is reduced it is expected that cycles will become unstable

and that complicated dynamical behaviour may appear. Such complicated dy­

namical behaviour bifurcating out of stable memory cycles with the change of

the connectivity parameter may be useful if the structure in the dynamics is

related in some meaningful way to the stored memory.

Parisi [12] proposed that temporal instability due to strong asymmetry

could be useful in the learning process, with the metastability of memory states

serving to distinguish them from other, "chaotic" states. It is known from
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information processing tasks such as optimization and learning, that stochastic

dynamics can be useful in the right context [13] f"V [17]. It is natural to speculate

that the onset of deterministic chaotic dynamics may make it possible for a

processing network system to intrinsically generate all the stochasticity needed,

easily and efficiently. We focus on the possibility of inducing in the network

with a simple adaptive change of a parameter, the appearance of useful chaos ­

useful in the sense of a search task.

Such search access could be useful in stochastic pattern recognition, adap­

tation and learning. It is known for example that stochasticity is useful in the

learning stages in neural networks. We take the viewpoint that even if the

network connections have been determined ( either by learning process, or pro­

gramming ) in such a way that direct, non-stochastic access of memory states

is possible for a specific sort of input code, if at some later stage the memory

states need to be accessed using a completely new type of input code it may

be necessary to do a type of search access, or sampling among multiple basins.

In general, search access· is necessary for accessing information in cases where

effective direct relationships between input and attractor basins have not been

established j i.e. in cases where decoding or testing is possible, but coding or

direct selection is not possible. In this context, one of the author ( S. N. ) and

Peter Davis made numerical investigations and showed that the above men­

tioned function of search acess is actually realizable using complex dynamics

introduced in a certain recurrent neural network model [11].

Using chaos for search has been mentioned elsewhere (for example, Tsuda

et al. [7] ). We might expect that (a) intrinsic complex dynamics from simple

parameter adjustment means we don't need a separate complex sequence gen­

eration mechanism, and (b) non-uniform randomness of the complex dynamics,

i.e. the balance between structure and randomness, may allow the possibility
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of more efficient search. We introduce a concrete method for using chaos for

search. We emphasize the need for (1) an adaptive dynamical mechanism for

selection of favoured states from among the chaotically generated states, and (2)

a match between the internal dynamical structure and the externally specified

search task.

2 Neural Network Model Indicating Associative Func­
tion and Complex Dynamics

First, let us start form a brief description of our model. There· are N neurons

in states represented by Si = ±l(i = 1 rv N). Each neuron is updated by the

discrete time rule, S(t + 1) = F(S(t)),

j=N

Si(t + 1) = sgn( L WijSj(t»,
j=1

(1)

where sgn(x) is the step threshold function taking value +1(-1) for x > O(x <
0). Wij are the synaptic €Onnection coefficients. In the synaptic connection

matrix, T, a number of cycles of random patterns eare embedded by taking

(2)

where @ means to take direct product. L, M are the number of cycles and
...M+l ...1

the period of each cycle, respectively, so that ep' = ep.. Fig.1 helps the

understanding of our model architecture and the dynamical aspects of firing

pattern updating.

/{ = LM is the total number of stored patterns. In this mode, for

/{/ N ~ 1, there are coexisting cycle attractors, each with a corresponding

basin of attraction. If the output is sampled at the cycle period M, each of

the memory patterns will look like a fixed point attractor. This model has the

same "many-to-one" (i.e. mapping of a basin onto an attractor ) dynamical
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structure as the autocorrelation type of memory model, and similarly can act

as a classifier or error .correcting memory. In network memories, the appear­

ance of complex phase space structure, such as spurious attractor basins, can

detract from the function of memory retrieval. It has been shown that the noise

reduction performance in this limit cycle memory can be better than that of

autocorrelation type model due to a dynamic self-averaging effect which reduces

trapping in spurious attractors [10].

Other studies have used nonsymmetric networks from a different point

of view, addressing the interesting issue of the possible roles and properties of

pattern transitions, cycles and more complicated dynamical behaviour in neural

networks. Shinomoto [18] used an assumption that each synapse must be either

excitatory or inhibitory to form an asymmetric memory matrix for which the

system either converges to one of the memorized patterns or to a homogeneous

"don't know" state for too noisy inputs. Nonsymmetric matrices, in which a

symmetric contribution causes convergence toward a stationary pattern and an

asymmetric part causes transitions between patterns, have been used in models

of temporal pattern sequence generation. There are a number of models which

either use nonsymmetric synaptic interactions with temporal features such as

dynamic synamptic strength [19], or time delayed transmission (20J, [21], [22],

or use thermal noise to induce transitions [23J. (See other models [24], [25],

(26] ).

Some previous works on recurrent asymmetric neural networks have inves­

tigated various aspects of complicated dynamical behavior. Some studies have

considered the effect of a percentage of asymmetric connections on autocorrela­

tion memory retrieval performance [27], [28J. It has been found that there is a

critical threshold for stability of autocorrelation memory with respect to asym­

metric dilution. Adding a weak random asymmetry to a symmetric network
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can have an effect similar to increasing the level of noise [29].

Sompolinsky et al. studied a continuous-time network with random Wij .

Using a self-consistent mean-field theory, exact in the limit of infinite N, they

predicted a transition from a stationary phase to a chaotic phase occurring at a

critical value of the gain parameter 9 contained in the threshold function which

they used tanhgx. For finite N, they commented that simulations show the ap­

pearance of limit cycles of increasing complexity in the intermediate parameter

regime between the stationary phase and chaos.

One could consider several primary parameters of our system which would

affect the stability of the cycles j for instances, threshold levels, or time de­

layed effect in eqn.(I) or synaptic connectivity, or cycle strength coefficients

in eqn.(2). In the present paper, we consider a synaptic connectivity parame­

ter and investigate the effect of its reduction. The existence of neurons which

inhibit the transmission of signal pulses in a neural network and thus reduce

neuron connectivity should play an important role in the stability of neurody­

namics. Although such dynamics have not yet been observed in a biological

system, an observation of synapse-on-synapse [31], [32] suggests the existence

of such dynamics.

For reduced connectivity the time development of neuron states is calcu­

lated as

Si(t + 1) = sgn( L WijSAt)) , (3)
j={i±R/2}

where {i ± R/2} means that the j-summation shoud be taken over a certain

number R of synaptic connections, R $ N. R is called the connectivity param­

eter.

If the ratio of number of stored patterns to the total number of neurons

is small enough, the fully connected neural network has great stability of mem­

ory retrieval because of the strong collective "molecular" field acting on each
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neuron near stored memory states and the consequent existence of large basins

of attraction in the high dimensional phase space of neuron states. A slight

reduction of connectivity has no effect on the stability of attractors. However,

when the connectivity is greatly reduced, the collective field becomes sd weak

that the memory patterns cease to be stable. In the auto-correlation case (

M = 1 ) the pattern tends to fall into a spurious fixed sate. On the other

hand, in numerical trials on a network with embedded cycles, when R ~ N the

trajectory of firing patterns wandered through the phase space. Fig. 2 shows

the long time behaviour of the overlap m =S(t) • (,/N with a memory pattern

(, when the connectivity is reduced from full connectivity for a case in which the

initial pattern is the memory pattern t One can see that itinerant trajectories

can occur for small values of connectivity parameter and that these trajectories

wander ina region of the phase space which typically has small overlap with the

initial pattern. Short cycle spurious attractors seem to become more common

again at very small connectivity, for example at R = 2. We haven't exhaustively

sutudied the behaviour for all initial conditions and parameters. In this letter

we concentrate on typical properties of wandering dynamics.

The dynamics of this system consists of itinerant orbits among 2400 pat­

terns which are the vertices of hyper-cube in 400-dimensions. In order to de­

scribe an itinerant trajectory we can use a symboic dynamics method - partition

the space up into disjoint cells and record the sequence of transitions among cells.

The question is, what is an appropriate partition? For now, let us consider the

partition defined by the basins of attraction of memory patterns at full connec­

tivity. We call this the" memory basin partition". Letting i = ,,\ + (p - I)M,

we label the i-th cell in the partition as em; ( i = 0, 1, 2, ... , K = LM ), and
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for i = 1, 2, ... , K, define it by

... M-- -->. >.tem; ={5 : as k --. 00, pk (5) --. <p or the inverse pattern, denoted <p },
(4)

where P is the one step mapping of network state S at full connectivity, eq.(2).

To complete the partition We define cell emo as the complement of the space,

which includes the basins of so called "spurious attractors".

e mo ={S E em;, Vj 1::; j ::; K} for i = 0 (5)

Note the memory cells so defined are (1) disjoint (2) typically complex in shape,

and (3) typically have macroscopic size when the memory patterns are a rel­

atively small number of random patterns ( KIN ~ 1 ). Clearly at reduced

connectivity, these cells may no longer correspond to memory basins. However,

we adopt the memory basin partition because our ultimate interest is to use the

dynamics at small connectivity in conjunction with dynamics at full connectiv­

ity. For convenience we shall also make use of cycle cells, where a cycle cell is

the union of the memory cells containing memory patterns in the same cycle.

How do the dynamics for reduced connectivity look in the memory par­

tition? Let us present typical examples for N = 400, L = 10, M = 3, K = 30

and R = 6. Table 1 shows the initial stages of two neighbor orbits whose start­

ing patterns differ by only one bit. The orbits are represented as sequences of

the integer labels, i, assigned to the memory basins. The sequences are very

different, indicating a sensitive dependence on initial condition. In each case,

the sequence repeatedly visits all memory cells, but the visiting sequence is not

periodic ( or at least has very long period). We refer to this complex wandering

phenomenon, with sensitive dependence on initial states, as chaos.

Fig. 3 shows the visiting ratio for cycle cells for the first case in the table.

Comparing the visiting ratios over 1000 time steps ( Fig. 3a) and 2000 time

steps( Fig. 3b), it can be seen that the resulting distribution is roughly identical,
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which indicates the distribution has converged. Fig. 3c shows the completely

different distribution obtained for the second orbit with initial pattern differ­

ing by only one bit. Different distributions are obtained for different starting

patterns, showing the co-existence of different types of asymptotic orbits.

Fig. 4 shows the distribution on the memory partition that would be

expected if the dynamics at reduced connectivity were completely random in

the space (ie. a mapping which independently inverts N bits Sj each with

probability 1/2 ). This is just a projection of a homogeneous measure onto the

memory basins at full connectivity and shows the relative size of these basins.

Clearly, there is considerable structure in the chaotic orbits. With respect

to basin distribution, each of the chaos examples examined differed from the

random case. The degree of similarity with the random case was found to

depend on the connectivity parameter.

3 Memory Search as A Complex Information Process­
ing Function

One can now consider these dynamics from the point of view of sampling the

phase space. Let us consider using the chaotic dynamics to do a search task.

Since the itinerant dynamics, at small connectivity, visit states which corre­

spond, at large connectivity, to all the basins of recorded memory patterns, all

memory patterns can be generated ( all-be-it in a random sequence) by just

modulating the connectivity. If we have a test criterion for the memory patterns

generated, we can use this method to search for memory patterns satisfying the

criterion.

The test criterion we shall use is whether or not a pattern has a certain

"feature". By way of example we think of the N neuron elements as pixels in a

p by ( N /p ) two dimensional image, and define the feature as a measure of the
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similarity of two vertical stripes separated by q pixels. In this case the feature

function is

(6)

Here [x] means the largest integer not greater than x. It is easy to understand

that the definition of eq.(6) .gives an inner product of two stripe vetors as shown

in Fig.5, for instance, by taking p = 20 and q = 10.

A feature partition can be specified by specifying the set of feature values

which can be taken by 1(3),

Ii = ~(i - 1) - 1 for i = 0, 1, 2, ... , J (7)
P

where J = p+ 1. (eq. 1= -1, -.9, -.8, ... , .8, .9, 1 for p = 20 case). The

i-th cell in a feature partition eli (i = 1, 2, 3, ... , Q) is defined by

I .... ....e i = {8 : 1(8) = Ii} for i = 1, 2, 3, ... , Q (8)

This second partition is unrelated to the dynamics at full connectivity.

For a random sequence of patterns, the distribution on the feature partition is

just a binomial distribution centered on feature value zero. In the case of chaotic

dynamics at reduced connectivity, it was found that chaos at intermediate con­

nectivities typically resembles that for the random generation of patterns. For

other values of connectivity, the distribution can be significantly different, for

example, displaced and narrower.

As an example of search, we consider "feature-first" search in which feature

value is tested first and memory membership tested second. Such feature-first

search is particularly meaningful in a memory system when the number of mem­

ory patterns is very high. We have investigated the search procedure in which

patterns are generated at reduced connectivity, R = Rb (0 < Rb < N), until

one is found with a specified feature value, and then full connectivity, R = N,
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is restored for a number, z, of steps to test if that pattern is in a basin of cycle

containing a memory pattern with the target feature value.
t

R(t + 1) = N - (N - Rb ) II E(k) (9)
k=t-z

The error variable takes on one of two values, E = 1 when the pattern has the

target feature value and E = 0 otherwise. This is a type of "tw<rlevel adaptive

bifurcation" [33], [34] .. The effect of the product on the right-hand side of Eqn.9

is that connectivity R is set at full connectivity, R = N, so long as any of the

patterns generated in the last z steps had the target feature. Taking z > M

results in trapping in a cycle if one of the patterns in the cycles has ~he target

feature. We include a random reset of pattern if search is not successful before

a certain time limit. A corresponding random search is defined as a search in

which the reduced connectivity R = Rb steps are replaced by completely random

choices of pattern.

Fig. 6 shows an example of average search times as a function of Rb for

a particular target feature value in a case where N = 400, M = 6 and L = 5.

The search times are typically smaller for intermediate values of connectivity,

than for extremes of large or small connectivity. Moreover, the shortest search

times are comparable if not smaller than the value for random search, which is

indicated by the dotted line. The measured search time for random search case

is 52. There are 19 values of small R for which the chaos search is better than

the random search. R = 46 is best.

Let Pl be the measure of the dynamical sequence at reduced connectivity

R = Rb on the target feature ( E = 0 ) partition cells, and P2 the proportion of

this measure in the target memory cell. For search where the probability P of

success is the same each trial, the average search time r is given by r = (l-p)/p.

In the random case, the one-step success probability P is just P = P2 •Pl' Using

the distributions on the partitions to obtain the values of Pl and P2, the expected
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average search time for random search was found to be about 50, which is

consistent with the average value of 52 obtained in the search trials.

Let us assume that in the chaos case, as in the random case the one-step

success probability P is estimated as P = P2· Pl' Then we can say the foliowing.

On the one hand, search at small connectivity, such as R = 10, is slower than

random search because both PI and P2 are smaller than in the random case. On

the other hand, search at intermediate values of connectivity, such as R = 46,

compares favourably with the random search because, for typical orbits, PI is

comparable with that in the random case, and P2 is slightly larger than that in

the random case. In other words, the suitability of the intermediate connectivity

values for the search task is due to the fact that on the one hand there is sufficient

randomness with respect to the arbitrarily specified feature partition so PI is

comparable with random generation, while on the other hand there is remnant

dynamical structure associated with the memory partition, giving high P2.

This consideration demonstrates in a concrete way how the effectiveness of

the search depends on the match of the chaotic dynamics with the search task.

This highlights an issue which is central to the question of the possible role of

chaos in adaptive systems [33], [34]. It is clear that given a specific problem,

in general there can be some chaos which will be better than random search,

while there is other chaos which will not be. This is similar to the problem

of the efficiency of genetic algorithms in stochastic search tasks [35]. However,

the above example shows that when there is bifurcation to chaos from stable

attractors in a neural network, there can be a regime, easily accessed by moving

a single parameter, where the chaos typically has a balance of randomness and

meaningful structure which at least makes it comparable with random search

for search based on arbitrarily specified features. How such matching can be

improved by learning algorithms remains to be investigated.



Complex Dynamics and Search in A Cycle-Menwry Neural Netwark

4 Concluding Remarks

31

In this paper we considered whether in the cycle-memory neural network model

there appear chaotic dynamics which enable us to realize a complex informa­

tion function. The important queations are "Does chaos appear?" and if so

"Are the chaotic dynamics appropriate for an application to a complex function

realization?"

As shown in this paper, the complex dynamics can be easily induced in

a neural network model in which a certain number of limit cycles are embed­

ded with the use of a connection matrix formed by summing direct products of

successive pattterns in cyclic sequences. Chaos-like wandering or dynamics are

induced by reducing the synaptic connectivity. The structure in the chaos dy­

namics suggest such dynamics could be potentially useful for search in pattern

space. We have shown it is possible to do search among all memories with just

modulation of just a single parameter. It was found that there were chaotic

dynamics which appeared random in some partitions but had remnants of the

programmed or learnt structure in other partitions, and we showed that this

determined the match of the internal dynamics with the search task and thus

the effectiveness of search with chaos. The challenge remains to find ways ( for

example learning algorithms ), in which a system can adapt the internal dy­

namical structure, for example via a learning mechanism, to improve the match

between internal structure and search tasks.
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(a) initial condition 1 (b) initial condition 2

time step t memory basin number time step t memory basin number

295 2 300 8t

302 9t 321 9t

305 20t 326 9t

306 9t 328 17t

307 4t 336 8t

317 29 338 9t

319 2 339 28

327 4t 340 8t

339 4t 342 9t

342 ' 13t 343 4t

343 2 351 4t

344 29 358 8t

345 8t 360 8t

347 13t 365 29

357 14 368 8t

363 4t 379 2

374 12t 383 8

378 9t 384 8t

379 2 388 8t

392 29 395 9t

395 26t 415 2

397 29 429 9t

399 4t 432 8t

411 24t 434 30

414 13t 436 8t

415 2 438 12t

35

Table 1: Symbolic dynamic representation of orbits for two initial patterns differing by
just one bit when the range is R = 6 in a case with N = 400, M = 3, L = 10. Location
in pattern space is indicated by symbol i if SEem;. The steps in the spurious cell,
i = 31, are not shown here. The symbol t means that the firing pattern is an exact
inversion of a memory pattern. Initial state is memory pattern i = 1.
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Figure 1: Schematic representation of our model architechture and the embedded pattern
as limit cycles
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Figure 3: Memory partition distribution for orbits at connectivity R = 6. (a) 1000 steps
of orbit (a) in the table. (b) 2000 steps of orbit (a) in the table. (c) 1000 steps of orbit
(b) in the table.
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Figure 5: Twomemory patterns, the ll-th and 19-th, which have the feature value -0.5
where the feature is defind as an inner product of two tripe vectors shown in the figure
as solid line, a center and a edge stipe.
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Figure 6: Dependence of search time on connectivity parameter R". N = 400, M =
6, L = 5. Feature target value is -0.5 ± 0.1. Memory pattern numbers 11 and 19
have the target feature value. Average over 300 initial conditions at each parameter
value. The cutoff number for steps at full connectivity before random reset occurs is
120. Changing the cutoff number doesn't change the qualitative conclusion. The dashed
line shows the search time for the random search case.




