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Identification of Electric Charge Distribution
Using Dual Reciprocity Boundary Element Models

Yonghao SUN* and Yukio KAGAWA*

(Received October 2 , 1995)

Identification of unknown electric charges or sources distributed in space is made from the
data observed over the field boundary using dual reciprocity boundary element models. The
inhomogeneous term of the Poisson field can equivalently be expressed as the linear combination
of the functions associated with the particular solutions to transform into Laplace equation. For
the solution procedure, the variational formulation is employed, in which the regular boundary

integral approach is incorporated to avoid the singularity. Numerical examples are presented to
demonstrate the availability and the capability.

1 INTRODUCTION

The boundary element analysis of Poisson equation requires the cell integration for the domain. The discretization of the
interior domain means loss of its "boundary only" nature. A great deal of effort has gone into eliminating the domain
integrals. The most promising approach to this is the use of Dual Reciprocity Method(l).

The identification of the locations and magnitudes of the external forces in a domain using boundary element algorithm
has been proposed by many investigators(2-4). The methods in most cases based on the minimizing the sum of the squares

of the relative errors evaluated over the boundary.
We proposed a procedure to be called simulated charge searching approach(5) in which the DRM is extended to the

problems of the identification of electric charge distribution. In the present work, using the simulated charge searching
approach, both the location and magnitude of the electric charge are identified without iterative calculation. When the
charges are uniformly distributed, the shape of the domain can be determined by minimizing the sum of the squares of the

relative errors evaluated over the boundary. The variational formulation is also employed in which with the regular
boundary integral procedure(6) is incorporated to avoid the singular integrals.

2 FORMULATION FOR THE DRM BOUNDARY ELEMENT METHOD

Defining vris the electric scalar potential, and p is the space charge density distributed in domain D, the functional of

hybrid form corresponding to the Poisson equation can be expressed as

n(vr,lit,p)=-!f.CV vr)2dD -J(vr-lit)PdT -Jlit PdT-f. ~vrdD (1)
[J r r2 [J

where lit, P(=%) are the potential and flux on boundary T, and p(=~n) is the forcing term prescribed on
boundary T2. The expression allows the discrepancy between potential 'II closest to the boundary in the domain and
potential lit on the boundary. Taking variation with respect to 'II, lit and p respectively, we obtain the governing equation

V2vr = _P.. = b in D (2)
e
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and the boundary conditions
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lfI=tjt

tjt=Vt

p=p

onT

onTI

onT
(2)'

P=P onTz
Potential lfI can be expressed as the sum of particular solution lp and fundamental solution if' , so that

lfI(x,Y) =lp(x,Y) + if'(x,Y) (3)
Dividing the boundary into elements r k (k = 1,2,...M ), and locating simulated-charges aj (j=1, 2, ..., L ) inside the

domain, and fictitious charges 13k (k=l, 2, ..., M) outside the domain, the particular solution and fundamental solution at

arbitrary point i in the field is expressed in terms of the linear combination of the contributions from each source aj and 13k,
that is

L

lpi = Llp~aj = {lp*r {a}
j=l
M

if'i = Lif'~f3k = {if'* r{f3}
k=l I

where

{lp*t={lp;l'lp;z,···..·,lp~}, {if'*t,={if';l'if';z, ··,if'~} I

{a} = {al.az, ,aL} , {I3}={I3t.1h, ,I3M}
and lp~ is the particular solution of the Poisson equation VZlp; =!;j' where lij is an approximate function, the linear

combination of which forms the forcing terms as one will see later. if'~ is the fundamental solution of the Laplace equation

whose value is evaluated at i for a unit source given at point k outside the domain.

With substitution of equation (3) into (2), the Poisson equation can be replaced by Laplace equation

V~=O inn ~
and the expression over the boundary is given as

~(x,y)=tjt(x,y) - q,(x,y) on T (5)

Defming if'in domain n, ~, Il( = a~) on the boundary T, equation (4) can also be expressed as the functional of

hybrid form

II(if',~,q) =!le(Vif')zdn-Je(if'-~)qdr-Je~ qdT (6)
D r rz

where q is the forcing term on the boundary rz.
Integrating by parts the first term in equation (6) to eliminate the domain integration results in the expression with boundary
integral only

II(if',~,q,ij)=!Jeif'qdT-J e(if'-~)ijdT-le~qdT (7)
r r rz

The variational boundary integral expression(1) of equation (7) is

[K]{~}-[G]{~}= {OJ (8)

Applying the relation (5) into equation (8), one can write

[KJ[{V;j- {~}HGJ[ {P}-{:}]~ [K{{Iji} -{~~;aj }]-[G{{P}-{~a~aj}]~ {O} (9)

Finally, the discretized system equation becomes

[K]{tjt}-[G]{j}} = {[K][H]-[G][Q]} {a} = [S] {a} (10)

where
[S] = [K][H] -[G][Q]

The components of the matrix [ G ], [ H] and [ Q ] are

J * * dlp; *
Gki = r. if'ki dTi ' Hij =lpij , Qij = dn =qij

I
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and
[K] =[E][R]

in which the component of [E] is
M * M a*

E . =.!. ""J f/J* af/Jim dr +.!. "" J "''': ~Ian dr
ki 2 £.J r Ian an m 2 £.J r 'f'un an m

m=1 m m=1 m

[R]=([Grlt[U] (k ,i= 1 ,2, ... ,M, j=I,2 ,... ,L)

Here, in the present formulation, the constant elements are used. [U] are diagonal matrix, the component of [U]

corresponds to the length of element Ii over the boundary r. Equation (10) is the result of the dual reciprocity expression

for which regular boundary element approach is incorporated to avoid the singular integrals by locating fictitious charges 13k
outside the domain.

The DRM implies an expansion for b(x, y) of the type
L L

bi =LJ;pj =L(V21p~)aj (11)
j=l j=l

where L is the number of the node of simulated charges aj, and Ip~ is the particular solution of the Poisson-type equation
u 2 * •vip.. =t· (11 )

IJ IJ

wherefij is an approximate expansion function for b. The coefficient as can be expressed in a matrix form as

{a}=Url{b} (12)

where

27

{b}={b},b2, ,bL}, bj=b(Xi,Yi)
Equation (12) is substituted into equation (10) resulting in

[K] {lft} -[G] {p} = [S]Url {b} (13)

In the forward analysis, b(x, y) is known, so that equation (13) arrives at the conventional boundary element expression.

3 SINGLE CHARGE IDENTIFICATION

3.1 Inversion

The inverse problem shown in Figure 1 is considered. The source term b is a function of (x, y) in domain n, bounded

by r (=rl+r2). The potential lft and flux Pon r2, and lft on r l are known or observed. We try to find the value Pon

boundary rl and the source distribution b(x, y). We first allocate coefficients a, and then calculate the values of a, whose
linear combination gives the approximate values for b(x, y) with equation (11). Boundary r l is divided into k elements,
and r2 is divided into M-k elements. Reordering the equations in such a way that all the unknown, coefficients a and
potentials Pon rl are placed on the left hand side, and the known values on the right hand side. Therefore one can write

equation (13) as

Gll Ga Sll SIL
PI Kll KIM -GU + l -GIM

lftl

Pk lftM (14)
a l Pk+l

GMl GMk SMI SML KMl KMM -GMk+l -GMM
aL PM

Assigning that the matrix on the left is [A], the unknown vector is {X} and the product of the matrix and vector on the right
is {W}, one can write equation (14) as

[A]{X}={W} (15)

If the sum of the number of the known, lft and Pon r2, and on rl, is greater than the number of the unknown a and
Pon rt. then the order of equation (15) is greater than the number of the unknown variables. The equation can be solved
in the least squares sense. Especially, when lft and P are both specified on boundary r, the left hand side of equation (10)
being replaced by {V}, one has the expression
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Space charge
distribution b = unknown

y, = known
P=unknown

Fictitious charges
y /\* * * * *

24 23 22 21 20 19 18 17

* . *25 \/ 16
• • •

* *26 Boundary elements 15

* 27 14 *
* 28 13 *• • •* 29 True charge/source 12 *
* 30 ~ 11 *

31
Simulated charges

10 ** / ~• •32 9

*
x

0 1 2 3 4 5 6 7 8

* * * * * * * *
r y,=known

2 ­p=known

Domain .Q

Boundaryr = r 1 + T2

Fig.l Field and boundary conditions for inverse problem Fig.2 Boundary elements, simulated and fictitious charges

(17)

(16)

* 1
tn .. =--(lnr.. )
"t'IJ 21r IJ

~=~rx~2~+-y~2,X=~_~,Y=~_~

rij is the distance from node i on the boundary to node j where the simulated charges are allocated.
Allocating L number of simulated charges at locations (Xj, Yj), we can calculate the magnitudes aj by solving equation

(15). We estimate the best possible positions (xc, Yc) of the charge by averaging the simulated charges obtained in such a

way that

[S]{a} ={b}
Pre-multiplying [S]T on both sides of equation (16), one has

[S]T[S]{a} = [S]T{b}
which is solved for {a} by usual Gauss elimination method and the source distribution b(x, y) can readily be obtained by

equation (11).

Now we consider the case when a positive source charge situated in the domain. The conventional strategy for the

solution is that the location and magnitude of the charge to be identified is chosen so as to minimize the objective function or

the sum of the squares of the relative error between the solution calculated and the observed at some reference points.

Efficiency may depend on the choice of its initial location and magnitude.

Here we propose a procedure which could be called a simulated charge searching approach. Since term b(x, y) is

expanded as the linear combination of simulated charges, that is
L

bi"" LajB(Xi-Xj,Yi-Yj)
j

where, 8 (Xi-Xj ,Yi-Yj) is a delta function, which implies the approximate function
/;j =B(xi - xj,yi - Y) =Bij

The particular solution for V
2",; = 0ij is therefore

L jL L jL
Xc = ~aj Xj ~aj, Yc = ~aj Yj ~aj

J J ) )

and the best possible magnitude ~ by summing total charges up as

(18)



Identification of Electric Charge Distribution Using Dual Reciprocity Boundary Element Models 29

L

a ="'a.
c £.. J

j

(19)

3.2 Numerical Examples

A closed square domain, x = 0.0 - 1.0 and y = 0.0 - 1.0 is considered in which a single charge of magnitude 1.0 is
placed at location ( Xc, Yc) = (0.4, 0.3). We assume that the values of ljt and p are both observed or measured on
boundary r, for which we employ the forward solution in the present simulation. Figure 2 shows the field and field
boundary, and the locations of both simulated and fictitious charges, where the boundary is divided into 32 constant
elements. In the inverse analysis the boundary is again divided into 32 constant elements for which the same number of the
fictitious charges are allocated outside the domain along the boundary, and 9 simulated charges are allocated within the
region. As the fictitious charges are arranged outside the domain, all of the boundary integrals do not involve singularity,
which can easily be evaluated.

Each magnitude of the simulated charge or aj is calculated by solving equation (17) and shown in Figure 3. The position
of the charge is estimated to be at xc=O.3977, Yc=O.2978 and the magnitude to be ~=1.0003 with the help of equation
(18) and (19), which is very close to magnitude 1.0 at location (0.4,0.3) originally set. The potential distribution is shown
in Figure 4. Convergence to the exact values is expected as the number of element division increases, which is given in i

Figure 5.
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Fig.3 Magnitudes of the simulated charges

x

(b) Inverse solution obtained, magnitude a c=1.0003
position (xc, y~)=(0.3977, 0.2978)
(32 boundary elements)

Fig.4 Potential distribution

(a) Forward solution for a unit electric charge
at position (xc, Yc)=(O.4, 0.3)
(32 boundary elements)



30 Yonghao SUN and Yukio KAGAWA

magnitude = 1.0
position of true charge
(x, y) = (0.4, 0.3)

p=O
If/=known

""'.r2

(1,1)
p =0

iii = known

0/=0
p =unknown

\

(0,1)

iiJ= 0
p =unknown

I

y.

position x=O.4 (exact)

magnitude a =1.0 (exact)

position y=O.3 (exact)
0.3

3.0
EI

2.5

2.0

1.5

1.0--0.5

0.4

Fig.6 Boundary conditions for a closed square
domain with a single elctric charge

10 20 30 40
Number of elements

Fig.5 Identification capability
depends on the element division

(0,0) (1,0) x

Another case of a single charge of magnitUde 2.0 at location (xc, Yc)= (0.2, 0.2) is considered. The boundary conditions
and element division are the same as in the previous case. The identified results of the position and magnitude of the charge

are (xc.Yc) = (0.1946, 0.19460) and ac=2.0007 respectively, which are satisfactory.
Next is, as shown in Figure 6, the case when the values of Vi and p are both specified or observed on boundary n but

the value of Vi is only known on r l . The magnitude and position of a single charge are to be identified together with flux

jJ on rl. Boundary r2 is divided into 14 and boundary r l into 4 constant elements.
A charge of magnitude 1.0 is placed at location (0.4, 0.3). In inversion, the magnitude and the position obtained are

ac=1.0246, xc=0.4306 and Yc=0.2920.

Another case is again single charge of magnitude 2.0 at location (xc. Yc)= (0.2, 0.2). The identified results are
ac=2.2120 and (xc.Yc)= (0.11692, 0.1754). The solution is not satisfactory, which could be improved if finer division or
increased observation points are used.

4 UNIFORMLY DISTRIBUTED CHARGES OF ARBITRARY SHAPE

One can extend the discussion further to the case when the charges are uniformly distributed in circle. Figure 7 shows the
Poisson field in which the boundary conditions are prescribed on the rectangular domain boundary. Electric charges are
distributed uniformly within the circle. The center of the circle is at (xc. Yc)= (2.Om, 2.Om), the radius is R = 0.8m and the
charge density is known, p=100 (Clm2).

Center of the circle and its radius are to be determined from the data observed on the boundary. The data observed on the
boundary or the forward solution are given in the figure.

By solving equation (16), the circle's center is determined as (xc.Yc)= (1.9874m, 1.9872m) and the total charge is
ac=198.2527(C). As the density is known, radius R can be calculated from ac=trR2p. The results are given in table 1.

If uniformly distributed charges are of an arbitrary shape, the inversion process is not so simple as discussed in previous
section and must be made in successive manner. We first calculate the central position of the distributed charges and the
magnitude of the total charges by using the simulated charge search approach proposed in this paper, and then find the
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equivalent radius as demonstrated above. Taking this as the initial boundary shape, true shape is searched by shifting the

boundary so as to minimize the error function or objective function.

y
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(0,6)

p=o

Yc -•._..._.._._.__ .~

\
ijJ = 50

Vi = 100

(6,6)

p =0

~Tz

Table 1 Identified results (32 boundary elements)

Examples Exact Identified

Xc =3.0 Xc =2.9997
Case 1

p =50
Yc =2.0 Yc = 1.9924

r =1.0 r =0.9932

Case 2
xc= 2.0 Xc =1.9874

P =100
Yc=2.0 Yc =1.9872

r =0.8 r =0.7944

(0,0) (6,0)

(21)

Xc n
Fig.7 Boundary conditions for a closed square domain

with circular charges uniformly distributed

4.1 Formulation

If the charges are uniformly distributed in the domain [jJ within field.QA shown in Figure 8, the term b(x, y) of the

Poisson's equation is constant bo and equation (11) can be expressed as
L

}2JiPi =at =bo in nB
(20)

j=l

Only one simulated charge could be used, that is, ~-s are entirely zeros except at position k where aF boo Here we allocate

the simulated charge ak in the center of domain [jJ. With functionfik =1 adopted, the particular solution lp~ and its normal

derivative are
2 :"I.

• rik ulp'k • 1
mile' =- -I-=q'k=-(n X+n Y).." 4' Un I 2 x y

where

rik = ~(Xi - xk)2 + (Yi - Yk)2

nx and ny are the directional cosines of n with respect tox andy axes. In this case, equation (10) becomes

[K]{lji}-[G] {p}=[[K]{q,}-[G] {l}]bo
In region.Q4, since there is no charge, the governing equation is

V2ljiA =0
and in region {1J in which the charges are uniformly distributed, it is

V2ljiB =-!!..=boe
The boundary P. =To+T[ of domain.QA is divided into Mo+M[ elements and the boundary [1J =n of domain nJ1 is

divided into M[ elements. The discrerized boundary element expressions can be expressed for each region as

[KmK1llli~~1=[GmG1]] li;~ ~1 (22)
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(23)

where superscript A or B indicates the boundary of each domain, and I indicates the interface boundary. Along the
interface, both If! and P are unknown but compatible, so that equilibrium conditions are

-A -B -
~=~=~ ~

-B -A - (25)PI =-PI =-PI

Equations (22) and (23) are now combined to form

(26)

Equation (26) can be rearranged to provide the known variables on the right-hand side and to obtain the same form as
equation (15). The size of the system equation obtained is Mo+2MI . The sizes of the matrices are

[K~lMo+M,)XMo ' [a~lMo+M,)XMo'
[Kt](Mo+M,)XM, , [atlMo+M,)XM, ,

[Kft xM ' [aft xM ,{lp*}M ' {l}M
I I I I I I

4.2 A Numerical Example

The task of the inverse problem considered here is to determine the boundary II of the rectangular domain fiJ in which
the charges are uniformly distributed as shown in Figure 8. In the inverse analysis, frrst, by using equation (16) we
obtained the equivalent circular radius, which is used as the initial boundary shape. The circumference is radially divided
into 16 (Rj, i = 1, 2, ..., 16 ).

y

(0,6) ~
If! = 0

II

[I±j
..( .

:: :P:';'.56:::...........

::::::rl:::...........

(6,6)

p=o T
~ r2 "1......

1
Fig.8 Boundary conditions for a closed

square domain with rectangular charges
uniformly distributed

(0,0)
';;=10
/ (6,0) x

I~'"--- 2.0 ----.-·1
... Charge distribution to be identified

o Initially obtained circle
• Identified or final shape

Fig.9 Inversion
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The unknown interface boundary can be determined by varying the radial length Rj to minimize the objective function
Mo

w= 1:11'2
n=l

which is chosen as a square sum of the potentials evaluated at the nodes selected on the boundary roo The potentials are
computed by equation (26) for the position of the interface boundary. Davidon-Fletcher-Powell (DFP) method(8) is

employed for minimizing the objective function to determine the interface boundary shape. The determined shape is shown
in Figure 9 and the convergence of the objective function is shown in Figure 10 against the number of iteration. The
rectangular shape is not properly reconstructed. This is expected as the resolution would be within the length of the element

on which the variables are assumed to be constant.

4.0- 4

o 2 4 6 8 10 12 14 16
Iterations

Fig.1O Convergence property of the objective function

5 CONCLUDING REMARKS

The use of DRM boundary element models was proposed to identify the distribution of the electric charges. The method

incorporated a simulated charge approach to avoid the singular integral. In the case when a single charge is located in the
domain, the position and magnitude are well identified by the direct inversion. This method could be used to give the first
guess of the shape for the problem to determine the shape of the arbitrary domain of uniformly distributed. For the last

case, the usual iterative method is inevitable.
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