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In this paper, we formulate a new integrity constraint in correlation
with 3-valued stable models in an abduction framework based on
general logic programs. Under the constraint, not every ground
atom or its negation is a logical consequence of the theory and an
expected abductive explanation, but some atom may be unspecified
as a logical consequence by an adjustment. As a reflection of the
integrity constraint with an adjustment, we augment an adjusting
derivation to Eshghi and Kowalski abductive proof procedure, in
which such an unspecified atom can be dealt with.

1 Introduction

Abductive logic programming has been established primarily for the theory of general logiC
programs by means of negation as failure, as its refinements are summed up in [12]. The
original Eshghi and Kowalski abduction framework, a triplet (P, Ab, I) of a general logic
program (theory) P, a set of abducibles Ab and an integrity I, was captured by the 2-valued
stable model semantics in the sense that the abductive explanation is in a close relation with
a 2-valued stable model of a program (theory). The integrity constraint I requires that any
ground atom or its negation is a logical consequence of the theory and abducibles, but both
are not. That is, if P U ~ satisfies the constraint I for an abductive explanation ~, then
M = {a I ---,a ~ ~} is a 2-valued stable model of P, and if M Isa 2-valued stable model of P,
then P U ~ satisfies the constraint I for ~ = {---,a I a ~ M}. However, Eshghi and Kowalski
abductive proof procedure (E-K procedure, for short) is not in general sound with respect to
the 2-valued stable model semantics [7]. The correctness of E-K procedure is guaranteed in
3-valued logic in that it is sound with respect to a 3-valued stable model [4, 6,13].

We are motivated to formulate an integrity constraint under which an abductive explana­
tion is related to a 3-valued stable model. Owing to the 3-valued logic structure, an abductive
adjustment, as well as an abductive explanation, is taken into shape so that the adjustment
allows the atoms neither to be in an abductive explanation, nor to be a logical consequence
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of the theory and abducibles. In a more formal form, we intend an integrity constraint It
for a program P with its Herbrand base Bp so that, for an adjustment r and an abductive
explanation .6., if pur u .6. satisfies It, then (Bp - (r u .6.), .6.) is a 3-valued stable model
and if (T, F) is a 3-valued stable model, then P U (Bp - (T U F)) U F satisfies It.

As a next step, in order to extract not only an abductive explanation, but also an ad­
justment, we augment an adjusting derivation to the original E-K procedure, in which the
enumeration of the adjustment is made. By such an augmentation, the abductive proof pro­
cedure is defined as consisting of succeeding, finitely failing and adjusting derivations. As
regards a merit of the augmentation, we regard all the three derivations as possibly illitial
phases. Especially an adjusting derivation can be a prerequisite for an expected succeeding
derivation, since it detects and enumerates an adjustment before getting abducibles.

We must at the least examine the soundness of the augmented abductive procedure with
respect to the newly presented integrity constraint, before confronting the difficult problem
of the completeness of the abductive proof procedure. Because the integrity constraint is
expected to be related to a 3-valued stable model, the augmented procedure with an adjusting
derivation is to be proved sound with respect to a 3-valued stable model. Concerning the
3-valued stable model, the alternating fixpoint semantics ([1, 9]) is adequate in relation to
the constraint. Because the abductive explanation, as well as the logical consequence of the
theory and abducibles, is easy to be denoted by the fixpoint theory approach, though the
well-founded model [8] is an alternative. As well, the adjustment may be described by using
the alternating fixpoint techniques. We so far show a relation between the integrity constraint
and the 3-valued stable model through the alternating fixpoint.

On the other hand, rigid discussions regarding the soundness of the augmented abductive
proof procedure are necessary by induction on the length of derivations as natures of abductive
proof procedures, but may not be free from the procedural aspects even in terms of the
alternating fixpoints.

This paper is organized as follows. Section 2 summarizes technical terms and basic results
in model theory for general logic programs. In Section 3, we have an abduction framework in
which a new integrity constraint is introduced so that we may have a natural relation between
the constraint and the 3-valuecl stable model. In Section 4, an abductive proof procedure,
with an adjusting derivation augmented, is given and its soundness is shown. In Section 5,
technical merits are stated.

2 Model Theory for General Logic Programs

2.1 General Logic Programs

A general logic program is a set of clauses of the form:

At-- L1 . .. Ln (n ~ 0),

where A is an atom, and L i are literals. A is called the head of the clause, and L 1 .. . Ln its
body. A normal goal is an expression of the form:

t-- L 1 ..• L n ,

where L i are literals. If the clause contains any negation in its body, then it is said a definite
clause. A clause involving no variables is called a ground clause. As well an expression
without any variables is said a ground expression.
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For a general logic program P, its Herbrand base, constructed by any predicate symbols
and function symbols in it, is denoted Bp. Let (Bp)* be {P*(tl' ... , t n ) IP(tl,' .. , t n ) E Bp}.

Definition 2.1 For S <; Bp let S* = {a* E (Bp)* I a E S}. For T <; (Bp)* let T+ = {a E
Bp Ia* E T}.

2.2 Model Theory

A 2-valued Herbrand interpretation is a subset of the Herbrand base, for which a ground
atom included in the interpretation is evaluated as true, and a ground atom not included
in it as false. In the context of the present paper, a (Herbrand) model of a general logic
program is a (Herbrand) interpretation in which any clause of the program is true. The
following transformation associated with a set of definite clauses is often made use of.

Definition 2.2 For a set of definite clauses P, Tp : 2Bp
-t 2Bp is defined to be

Tp(I) = {A E Bp I :3A ~ AI ... An E ground(P) and {AI, ... , An} <; I},

where ground(P) is the set of all ground clauses obtained from clauses of P.

Now we take interpretations and models in 3-valued logic, where the truth value t (the
truth), f (the falsehood) and u (the undefined) are used. As in [16], the logical connectives
follow the truth tables.

t
A t u f V t u f
t t u f t t t t

u u u u u f u t u u
f t f f f f f t u f

~ t u f +--+ t u f
t t t t t t f f
u f t t u f t f
f f f t f f f t

A 3-valued Herbrand interpretation, as in [16], is defined:

Definition 2.3 Given a general logic program P, a 3-valued Herbrand interpretation is a
pair < T, F >, where T, F <; B p such that Tn F = 0.

A 3-valued model of a general logic program is a 3-valued Herbrand interpretation in which
the program is true. Partial orders on the family of 3-valued Herbrand interpretations of a
given general logic program P are given as in [11, 16].

Definition 2.4 Let 1=< T, F >, and J =< T', F' > be 3-valued Herbrand interpretations
of a general logic program P. We define ~t and ~k to be

I ~t J <=> T <; T' and F' <; F, and
I ~k J <=> T <; T' and F <; F'.
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t, f and u are used as atoms which are regarded as true, false and undefined, respectively,
in any interpretation. ~ stands for the logical consequence relation in 2-valued logic, while
~3 for that in 3-valued logic. In this paper, r ~3 F means that F is true in any 3-valued
Herbrand interpretation making r evaluated as true.

As/introduced in [16], the 3-valued stable model is defined as follows:

Definition 2.5 Let P be a general logic program and 1=< T, F > its 3-valued Herbrand
interpretation. PII is a set of clauses obtained by implementing the following procedures for
P:

(1) Delete the clause whose body involves ...,A such that A E T.
(2) Replace all the (negative) literals -.A by u, if A ¢ T U F, in the remaining clauses.
(3) Delete all the (negative) literals ...,A in the still remaining clauses.

Let the least Herbrand model of PII, with respect to ::::t, be denoted A(PII).

Definition 2.6 Assume a general logic program P. A 3-valued Herbrand interpretation I is
a 3-valued stable model iff A(PII) = I.

2.3 Relation of Alternating Fixpoint with 3-Valued Stable Model

As in [~J, there is a mapping whose fixpoint is closely related with the well-founded model [8J.
The well-founded model is a least 3-valued stable model with respect to ::::k [17J. [5J discusses
properties of the well-founded model. The relation between the 3-valued stable model and
the fixpoint of the mapping is discussed in [22J. Following [1, 9], we have some mappings:

Definition 2.7 Let F be a 2-valued Herbrand interpretation, and P a general logic program.
p F is defined by means of the following procedures:

(1) Let A+- B1 Bnfh ... Dm be in p F for each A+- B1 ... Bn...,D1 ... ...,Dm E ground(P),
where Di = p(t1, , tk) iff Di = P(tl, . .. , tk).

(2) Let A +- be in pF for A E F.
We define a mapping Sp : 2Bp

---t 2Bp to be Sp(F) = B p n lfp(TpF) , where lfp(TpF) is a

least fixpoint ofTpF. Let Ap(F) = Sp(Sp(F)), where the overlinestands for the complement
with respect to B p .

Based on the result in [22J, we have:

Theorem 2.8 For a general logic program P and its 2-valued Herbrand interpretation F,
F = Ap(F) and F n Sp(F) = 0 iff < Sp(F), F > is a 3-valued stable model of P.

3 New Integrity Constraint in Abduction Framework

In a new integrity constraint of an abduction framework, we prepare an auxiliary means,
called an adjustment, to let intractable (ground) atoms be interpreted unspecified as a logical
consequence of the theory and abducibles. This seems natural as far as we consider just the
integrity constraint in 3-valued logic. By means of the constraint, any (ground) atom is
evaluated as a logical consequence of the theory, the abducibles and adjustments to be true,
false or undefined. With the new integrity constraint of an abduction framework, we will
have an augmented abductive proof procedure on the basis of Eshghi and Kowalski procedure

[7J (E-K'procedure, for short) in Section 4. From now on, the negation is sometimes replaced
by "*,, for "the same treatment as in [12J.
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3.1 Abduction and Stable Model

An abduction framework [7J under some integrity constraint can be described by a 2-valued
stable model [lOJ.

Definition 3.1 An abduction framework based on a general logic program is a triplet <
P* ,Ab*, I* >, where:

(1) P* is a set of definite clauses obtained by substituting P*(tl,"" tk) for -,p(tl, . .. , tk)
in P.

(2) Ab* = (Bp )* is a set of abducibles.
(3) I* is the set of all integrity constraints of the form: Vx-,[P(x) 1\ p*(x)J and Vx[P(x) V

p*(x)J. (Note that x stands for a tuple of variables, and p is a predicate symbol in P.)
For ~ ~ Ab*, we say that P* U ~ satisfies 1* if for any s E Bp

P* U ~ ~ s 1\ s*, and P* U ~ F s or P* U ~ F s*.

If P* U ~ satisfies I*, then {a Ia* <t ~} is a 2-valued stable model, while P* U ~ satisfies
I* if we take ~ = {a* Ia <t M} for a 2-valued stable model M. ~ is expected as an abductive
explanation for a query. But the following example shows that there is no ~ such that P* U~
satisfies I*.

Example 3.2 Assume a general logic program P:

{ t +-- -,r,
r +-- -'q s,
q +-- p,
P +-- -'q }.

There is just one 3-valued stable model < {t}, {5, r} > of P, but no 2-valued stable model.
Hence there is no ~ such that P* U ~ satisfies 1*.

Since there exists a 3-valued stable model for any general logic program [17J, we are hereby
motivated to consider an adequate constraint in correlation with a 3-valued stable model. As
well, we devise an abductive proof procedure which should be in a more close relation with
the newly considered constraint, though E-K procedure is sound with respect to a 3-valued
stable model [4J.

3.2 3-Valued Integrity Constraint

We present an integrity constraint which an abductive explanation is denoted by, and which
is in correlation with a 3-valued stable model.

Given a general logic program P, we define B p * = Bp U (Bp )*. For an atom set S, let
SU = {a t-t u Ia E S}.

Definition 3.3 An amended abduction framework is a triplet < P*, Ab*, I; >, where
(1) P* is the same as the set in the former framework.
(2) Ab* is the same as the set in the former framework.
(3) I; is the set of all integrity constraints of the form:

Vx-,[P(x) 1\ (p*(x) +-- u)J and Vx-,[(p(x) +-- u) 1\ p*(x)J
and
Vx[P(x) V p*(x) V ((p(x) +-- u) 1\ (p*(x) +-- u))J.
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For f, ~ ~ Ab*, P* u fU u ~ satisfies I; iff for any 8 E B p

(1) P* u fU U~ ~3 81\ (8* t-- u), and
(2) P* U fU U~ ~3 (8 t-- u) 1\ 8*, and
(3) P* u fU u ~ ~3 8 or P* U fU U~ ~3 8* or P* U fU U~ ~3 (8 t-- u) 1\ (8* t-- u).

f is expected as an adjustment, while ~ as an abductive explanation. It is easy to see the
following lemma.

Lemma 3.4 Assume an abduction framework < P*, Ab*, I; > and f, ~ ~ Ab*. If P* u fU
U~ satisfies I;, then f n ~ = 0.

Proof Assume that f n ~ #- 0. Then there is no 3-valued Herbrand model of P* U fU U~,

and any formula is a logical consequence of P* U fU U~, which contradicts the constraint 1;.
Hence fn ~ = 0. q.e.d.

On the other hand, if f n~ = 0, then there is a 3-valued Herbrand model of P* U fU U~:

On the assumption that fn ~ = 0, there is no case that a* E f and a* E ~. Therefore
there is always a 3-valued Herbrand model of fU U~. There is no caluse of P*, whose head
has a predicate with *. Hence there is a 3-valued Herbrand model which satisfies P* and
fn~.

3.3 Consistency of Constraints

In this section, we present several lemmas, whose proofs are shown in Appendix, as regards
constraints. The main purpose is to express any logical consequence of P* U fU u~ by means
of the memberships in the sets f u~, ~, Sp(~+) and Sp(f+ U ~+).

Observing pb.+ in defining Sp(~+), we see that pb.+ is regarded as equivalent to P* U~
in the following sense.

Lemma 3.5 Assume an abduction framework < P*, Ab*, I; > and ~ ~ Ab*. Then

Sp(~+) = {a E Bpi P* U ~ ~ a}.

Proof See the appendix.

We can see that any member of ~ is a logical consequence of P* U~ and vice versa:

Lemma 3.6 Assume an abduction framework < P*,Ab*,I; > and ~ ~ Ab*. a* E ~ iff
P* U ~ ~ a*.

Proof See the appendix.

Noting that P* U~ is a set of definite clauses (clauses involving no negative literals in
their bodies), we have:

Lemma 3.7 Assume an abduction framework < P*,Ab*,I; > and ~ ~ Ab*. For 1 E B p *,
P* U ~ F= 1 iff P* U ~ F=3 l.

Proof See the appendix.

Now we investigate the relation between logical consequences of P* U~ and P* U fU U~.



Abductive Proof Procedure with Adjusting Derivations for General Logic Programs

Lemma 3.8 Assume an abduction framework < P*, Ab*, It > and r,.6. ~ Ab* such that
f n .6. = 0. Then

(1) A 3-valued Herbrand interpretation M = < Sp(.6.+) U.6., 0 > is a model of P* U fU
u.6..

(2) Fori E Bp *, P* U.6. F3 l iff P* U fU U.6. F3 l.

Proof See the appendix.

By means of Lemmas 3.5, 3.6, 3.7 and 3.8, we have:

Corollary 3.9 Assume an abduction framework < P*, Ab*, It > and f,.6. ~ Ab* such that
f n .6. = 0. For l E B p* ,

P* u.6. F l
¢::> P* U .6. F3 l
¢::> P* U fU U .6. F3 l
¢::> [(l E Bp =? l E Sp(.6.+)) 1\ (l E (Bp )* =? l E .6.)]

What follows, the relations between models of P* U fU U .6. and P* U .6. are shown.

Lemma 3.10 Assume an abduction framework < P*, Ab*, It > and f,.6. ~ Ab* such that
f n.6. = 0.

(1) If < IT,!F > is a 3-valued Herbrand model of P* U fU U.6., then Bp * - IF is a
2-valued Herbrand model of PUr u.6..

(2) If I is a 2-valued Herbrand model of P*UfU.6., then < I -f,Bp * -I > is a 3-valued
Herbrand model of P* U fU U.6..

(3) For any l E B p *, P* U fU U.6. F3l +- u iff P* U f U.6. Fl.

Proof See the appendix.

By Lemmas 3.5, 3.6 and 3.10, we have:

Corollary 3.11 Assume an abduction framework < P*, Ab*, It > and f, .6. ~ Ab* such that
f n .6. = 0. For l E Bp* ,

P* U fU U .6. F3 l +-- u
¢::> P* U f U .6. F l
¢::> [(l E Bp =? l E Sp(f+ U .6.+)) 1\ (l E (Bp)* =? l E f U .6.)]

As regards the logical consequence of P* U fU U.6., we have:

Lemma 3.12 Assume an abduction framework < P*,Ab*'!t > and f,.6. ~ Ab* such that
f n.6. = 0.

(1) For s* E Ab*, s* E .6. iff P* U fU u.6. F3 s*.
(2) For s* E Ab*, s* E f iff P* U fU U.6. F3 s* f-+ u.
(3) For s* E Ab*, s* ¢ f u.6. iff P* U fU u.6. ~3 s* +-- u.

Proof See the appendix.
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We now see the consistency of the constraint when P* u r u u ~ satisfies It. Let

T = {lEBp.IP*uruU~F3l},

F = {l E B p• I P* U r u U~ ~3l f- u}, and
U = B p • - (TUF).

Lemma 3.13 Assume an abduction framework < P*, Ab*, It > and r, ~ ~ Ab* such that
P* U r u U ~ satisfies It. For any a E B p,

(1) a E T ¢:} a* E F.
(2) a E F ¢:} a* E T.
(3) a E U ¢:} a* E U.

Proof See the appendix.

Lemma 3.14 Assume an abduction framework < P*,Ab*,It > and r,~ ~ Ab* such that
P* U r u U~ satisfies It. Then for any a E B p,

(1) a E T ¢:} a* E F ¢:} a E sp(~+) ¢:} a* ¢ r U ~.

(2) a E F ¢:} a* E T ¢:} a ¢ Sp(r+ U ~+) ¢:} a* E ~.

(3) a E U ¢:} a* E U ¢:} a E Sp(r+ u ~+) /\ a ¢ Sp(~+) ¢:} a* E r.

Proof See the appendix.

3.4 Relation between Constraint and Stable Model

We have the relations between the constraint It and the 3-valued stable model by making

use of the alternation fixpoint semantics [1, 91. That is, whether P* U r u U~ satisfies It is
equivalent to that < Sp(~+), ~+ > is a 3-valued stable model such that r+ == ~+ u Sp(~+).

We see this relation in what follows.

Lemma 3.15 Assume r, ~ ~ Ab*. If ~+ n Sp(~+) = 0 and r+ = ~+ u Sp(~+), then
r+ U ~+ = SP (~+).

Proof
r+ L:J ~+ = ~+u Sp(~+) u ~+

= Sp(~+) (by ~+ n Sp(~+) = 0)

q.e.d.

Theorem 3.16 Assume an abduction framework < P*, Ab*, It > . P* U r u U ~ satisfies It
for r, ~ ~ Ab* iff

(1) ~+nSp(~+) =0,
(2) r+ = ~+ u Sp(~+), and
(3) ~+ = Ap(~+).

Proof (Only if part) (1)

a* E ~ ¢:} a ¢ $p(r+u ~+) (by Lemma 3.14)
=? a ¢ Sp(~+). (bymonotonicity of Sp)
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(2)
a* E f ¢:? a E Sp(f+ U b.+) /\ a It Sp(b.+)

(by Lemma 3.14)
¢:? a It b.+ /\ a It Sp ( b.+) (by Lemma 3.14)
¢:? a It b.+ U Sp(b.+)

(3)
a* E b. ¢:? a It Sp(f+ U b.+) (by Lemma 3.14)

¢:? a It Sp(Sp(b.+)) (by the lemma 3.15
as well as (1) and (2))

¢:? a E -::Sp-:(:=;:Sp=(;=7b.::::::;:+~)) = Ap(b.+).

(If part) (i) Assume that P* U fU U b. F3 S /\ (s* f- u) for some s E Bp, on the contrary
to the constraint. By Lemma 3.14, s E Sp(b.+) and s* E f U b.. If s* E f, then

s* E f ¢:? s E b.+ U Sp(b.+) ¢:? s It b.+ U Sp(b.+),

which contradicts to that s E Sp(b.+). If s* E b., then s E b.+ n Sp(b.+), which contradicts
that b.+ n Sp(b.+) = 0. Hence P* U fU U b. ~3 S/\ (s* f- u) for any s.

(ii) Assume that P* U fUU b. F3 (s f- u) /\ s*, on the contrary to the constraint. By
Lemma 3.14, s E Sp(f+ U b.+) and s* E b.. By Lemma 3.14,

s E Sp(f+ U b.+) = Sp(Sp(b.+)) ¢:? s It Sp(Sp(b.+)) = Ap(b.+) = b.+,

which contradicts that s E b.+. Hence P* U fUU b. ~3 (s f- u)/\ s* for any s.
(iii) Assume that P* U fU U b. ~3 S, P* U fU U b. ~3 s* and P* U r.u U b. ~3 (s f- u)

/\ (s* f- u) for some s, on the contrary to the constraint. It follows from Lemma 3.14 that
sit Sp(b.+) and s It b.+. As well,

P* U fU U b. ~3 Sf- U or P* U fU U b. ~3 s* f- u.

If P* u fU U b.~3 S f- u, then

P*UfUUb.~3Sf-U {:} sItSp(f+Ub.+)
{:} s It Sp(Sp(b.+))
{:} s E Sp(Sp(b.+)) = Ap(b.+) = b.+,

which contradicts that s It b.+. If P* U fU U b. ~3 s* f- u, then

P* U fU U b. ~3 s* f- U {:} sit f+ U b.+ (by Lemma 3.14)
{:} 8 It Sp(b.+) (by Lemma 3.15)
{:} s E Sp(b.+),

which contradics that sit Sp(b.+). Hence for any s

P* U fU U b. F3 s, P* U fU U b. F3 s*, or P* U fU U b. F3 (8 f- u) /\ (s* f- u).

This concludes the proof. q.e.d.

By Theorems 2.8 and 3.16, we have:

Theorem 3.11 On the assumption that < P*, Ab*, It > is an abduction framework and f, b.
C Ab*, P* U fU U b. satisfies It iff < Sp (b.+), b.+ > is a 3-valued stable model and r+ =
b.+ U Sp(b.+).
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4 Augmented Abductive Proof Procedure

For a general logic program P as in Example 3.2, E-K procedure demonstrates the derivations
with P* obtained from P:

suc +-t [t] ff: ~ = {r*}
+-r

+- r* I
1ft] +- q* 8

0 T
+-8

..L
fail

where suc stands for a succeeding derivation and ff for a finitely failing derivation. Because
there is no succeeding derivation from +- q, +- q* is removed from the above ff. However, we
present an augmented procedure in which such a removal is replaced by an adjustment or an
explanation. This replacement is regarded as a reflection of some 3-valued stable model, on
the basis of the third truth value, that is, u.

4.1 Abductive Proof Procedure

The augmented abductive proof procedure consists of three derivations: an abductive suc­
ceeding derivation (suc, for short), an abductive finitely failing derivation (ff, for short) and
an abductive adjusting derivation (adj, for short).

A normal goal of the form +- L1 .•. Ln is called an abductive goal, where each L i is in
Bp •. By mgu(A, A') we mean one of most general unifiers of A and A' for given atoms A. and
A'. For a substitution 0, 0 IG stands for a substitution which can operate on just variables
involved in G. On the assumption of an abduction framework < P*, Ab*, It >, an abductive
proof procedure is recursively defined by means of three derivations, when a safe rule R of
selection of literals for abductive goals is given. Note that no nonground literal is selected by
R. An expression EO obtained by applying a substitution 0 to an expression E is explained
in [14]. Also see it for other terminologies as regards logic programming.

(1) An abductive succeeding derivation (suc):
An abductive succeeding derivation from G* of rank r and length h is a sequence of quadru­
plets of an abductive goal, a substitution, an adjustment and an abductive explanation

(Go, 00 , r o, flo), ... , (G'h,Oh,rh,fl h),

where Go = G*, G'h = 0 and the sequence is organized by the following rules. When
00 = €, the above abductive succeeding derivation is denoted by (Go, r o, flo) ~~~ (rh , fl h)
for 0' = Oh IGo' or (Go, ro,~o) ~suc (Oh, rh , ~h), without indicating the rank.

(Rules) Let Gic =:+- L1 ... Ln,where L i is selec:ted by the safe rule R. (Gic+1,Ok+1,
r kH ,~kH) is obtained from (Gic, Ok, r k, ~k) by:

(suc1) In case that there is A' +- h lm E P* such that L i = A and 0 = mgu(A, A'),

GicH =:+- (L1 L i - 1h .. . lmLi+1 ... Ln)O,
OkH = OkO, r kH = rk, ~kH = ~k.



Abductive Proof Procedure with Adjusting Derivations for General Logic Programs

(suc2) In case that Li = A* (a ground atom) and A* E b.k,

Gk+l =f- L 1 ... L i- 1Li+l ... L n ,

Ok+l = Ok, fk+l = f k , b.k+l = b.k.

(suc3) In case that Li = A* (a ground atom), A* tf. f k U b.k and there is an abductive
finitely failing derivation of rank r' « r), that is, .

({f- A}, f k, b.k U {A*})~ f f (r', b.'),

Gk+1 =f- L 1 ... L i- 1L i+l ... L n ,

Ok+l = Ok, f k+1 = .f', b.k+l = b.'.

(2) An abductive finitely failing derivation (ff):
For a set F of abductive goals, an abductive finitely failing derivation of rank r and length h is
a sequence of triplets of a set of abductive goals, an adjustment and an abductive explanation

(Fo, f o, b.o), ... , (Fh , f h , b.h ),

where Fo = F, Fh = 0, 0 tf. Fk for each k, and the sequence is organized by the following
rules. The above abductive finitely failing derivation is denoted by (Fo, f o, b.o) ~ff (fh , b.h ),

without indicating the rank.
(Rules) Assume that Fk = Ffc U {f- L 1 ... L n }, where L i is selected by the safe rule R in

f- L1 ... Ln.
(ff1) In case that Li = A,

Fk+l = Ffc U {Gi,···, G:'n},
fk+l = f k , b.k+l = b.k,

where

G; =f- (L1 L i- 1l{ . . . ltiLi+l ... Ln)Oj

is a derived abductive goal for Aj f- l{ lti E P* and oj = mgu(A, Aj).
(ff2) In case that L i = A* (a ground atom) and A* E f k U b.k,

Fk+l = Ffc U {f- L 1 ... Li~ILi+l'" L n },

fk+l = f k , b.k+1 = b.k.

(ff3) In case that Li = A* (a ground atom) and A*tf. f k U b.k,
(ff3-1) if there is an abductive succeeding derivation of rank r' « r),

(f- A, f k , b.k) ~~uc (r', b.'),

then

(ff3-2) if there is an abductive finitely failing derivation of rank r' « r), that is,

({f- A},fk,b.k U {A*}) ~ff (r',b.'),
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then

H+1 = FkU {f- L 1 ··· L i - 1Li+1 ... L n },
f k+1 = f', ~k = ~',

(ff32.3) if there is an abductive adjusting derivation of rank r' « r), that is,

({(t, f- An,Tk U {A*}, ~k) "-+adi (fI, N),

then

H+1 = FkU {f- L 1 ... L i- 1Li+1 ... L n},
f k+1 = f/, ~k+1 = ~/,

(ff3-4) otherwise,

Fk+1 = FkU {f- L 1... L i - 1L i+1'" L n },
f k+1= f k , ~k+1 = ~k.

(3) An abductive adjusting derivation (adj):
An abductive adjusting derivation from C of rank r and of length h is a sequence

(Co, f o, ~o), ... , (Ch, f h , ~h),

where Co = C, each Ck has the form (V, G*) for V = t or u, (t, 0) ~ Ck(O :::; k :::; h),
Ch = {(u, on, and the sequence is organized by the following rules. The above abductive
adjusting derivation is denoted by (Co, f o, ~o) "-+adi (fh , ~h), without indicating the rank.

(Rules) Let Ck = C~ U {(V, f- L 1 ... L n )}, where L i is selected by the safe rule R.
(adj1) In case that Li = A,

Ck+1 = C~ U {(V, Gi), ... , (V, G:'nn,
f k+1 = f k , ~k+1 = ~k,

where

G; =f- (L1 L i - 1l{ .. . ltLi+1 ... Ln)(}i

is aderived abductive goal for Ai f- l{ lJq·. E P* and (}i = mgu(A, Ai).
J •

(adj2) In case that Li = A* (a ground atom), A* E f k and A* ~ ~k,

Ck+1 = C~ U {(u, f- L 1 ... L i- 1L i+1'" Lnn,
f k+1 = f k , ~k+1 = ~k.

(adj3) In case that L i = A* (a ground atom) and A* E ~k,

Ck+1 = C~ U {(V, f- L 1 ... L i- 1L i +1 ... L n )},

f k+1 = f k , ~k+1 = ~k.

(adj4) In case that L i = A* (a ground atom) and A* ~ f k U ~k,

(adj4-1) if there is an abductive adjusting derivation of rank r' « r), that is,
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then

Ck+1 = C£ U {(U, f--- L1... L i - 1Li+1 .. ' Ln )},

fk+l = fI, ~k+l = ~',

(adj4-2) if there is an abductive succeeding derivation of rank r' « r), that is,

(f--- A, f k , ~k) ""'-+~uc (f', ~'),

then

Ck+l = C£, fk+l = fI, ~k+l = ~',

(adj4-3) if there is an abductive finitely failing derivation of rank r' « r), that is,

({ f--- A}, f k , ~k U {A*}) ""'-+ff (f', ~'),

then

Ck+l = C£ U {(V, f--- L1... L i - 1Li +l ... Ln )},

fk+l = f', ~k+l = ~'.

Example 4.1 Assume a general logic program P as in Example 3.2. With P* induced from
P, we have the following abductive adjusting derivation [t] for f--- q*. For an abductive goal
f--- r, we have the following finitely failing derivation: ({f--- r},0,0) ""'-+ff ({q*},0). As well, ,
(f--- t,0,0) ""'-+~uc ({q*}, {r*}). On the other hand, for an abductive goal f--- q, we have the
following abductive adjusting derivation: ({(t, f--- q)}, 0, 0) ""'-+adj ({q*}, 0).

[t] adj: f = {q*} ff: ~=0 adj: f=0
(t,f---q) f---r (t, f--- q)

I I I
(t,f---p) f--- q* S (t,f---p)

I 1m I
(t, f--- q*) f---S (u, f--- q*)

I ..1 I[t]
(u, D) fail (u, D)

To stand for any derivation sue, ff or adj, we adopt the following notation:

Definition 4.2 By (fo, ~o) ""'-+any (f, ~), we mean (G*, f o, ~o) ""'-+~uc (f,~) for some G* and
0, (F, to, ~o) ""'-+ff (f,~) for some F, or (C, f o, ~o) ""'-+adj (f,~) for some C.

By the definitions of sue, ff, and adj, we have:
• If ({ f--- A}, f o, ~o) ""'-+ff (f, ~), then A* E ~o .
• If ({(t,f--- A)},fo,~o) ""'-+adj (r,~), then A* E fo.

We follow [4, 6] for the notations to show the recursive relations between derivations.

Definition 4.3 If a subderivation " : (fa, ~a) ""'-+any (f~, ~~) appears in a derivation, :
(fo, ~o) ""'-+any (f, ~), then it is denoted by , > ,'. » is the transitive closure of >.

From now on, S E ,means that a configuration S appears in a derivation ,. For example,
(G*,o,r,~) E /3 means that (G*,O,f,~) appears in /3.
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4.2 Soundness of Abductive Proof Procedure

Before seeing the soundness of the presented abductive proof procedure, we need several
lemmas. Assume an abduction framework < P*, Ab* ,It > .

1. Succeeding, finitely failing and adjusting derivations

Intuitively speaking, the following lemmas state that if there is a succeeding derivation
from an abductive goal with initial sets then any finitely failing derivation cannot be expected
with the same set, nor an adjusting derivation. On the other hand, any finitely failing
derivation, which is a subderivation of any derivation with f and D. as results, cannot permit
any succeeding derivation, with the super sets of sets f and D. as initial sets, for the abductive
goal which occurs in the finitely failing derivations.

If there is an abductive succeeding derivation with results f and ~, then each atom
involved in the abductive goal is a logical consequence of P* U fU U D.. This is stated by:

Lemma 4.4 Assume that (f- L 1 ... Ln, f o, D.o) "'-'t suc ((), f, D.). Then

Vi: [(1::; i ::; n):::;. [(Li()rp = a E B p :::;. a E Sp(D.+))
I\(Li()rp = a* E (Bp )* :::;. a* E D.)]].

Proof See the appendix.

When f and D. are obtained by an abductive succeeding derivation, there is neither an
abductive finitely failing derivation, nor an abductive adjusting derivation, if f' and D.' are
initial sets such that f ~ f' and D. ~ ~'. On the other hand, there is an abductive succeeding
derivation with f' and ~' as initial sets such that f ~ f' and D. ~ D.'. This is formally given
by:

Lemma 4.5 Assume that (G*, f o, ~o) "'-'tsue ((), f, ~). Then

"If', D.', f",~": [(f ~ f') 1\ (D. ~ ~') :::;.
(G* f' ~') "'-'to (f' D.')

" sue'
1\({G*}, f', D.') 1* ff (f", D.")
1\({(t,G*)},f',~i) 1*adj (f",~")l

Proof See the appendix.

If there is an abductive finitely failing derivation in some derivation with f and D. as
results, then there is no abductive succeeding derivation with the initial setsf' and D.' such
that f ~ f' and D. ~ D.'. It is shown below:

Lemma 4.6 Assume,: (fo,D.o) "'-'tany (f,D.) and JL: ({f- B},fa,~a) "'-'tff (f~,D.~) such
that , ~ JL. Let

~"

= ~ U {s* 13fe,D.e, f~, ~~: [(f ~ f e) 1\ (D. ~ ~e) 1\ ({f- s}, fe, ~e) "'-'tff (f~, ~~)]).

If({Gi,···,Gn,fb,~b) E JL, then

Vi, f', D.',()z,fz, D.z : [(1::; i::; l):::;. [(f ~ f') 1\ (~~~' ~ ~")

:::;. (Gi, f', D.') 1*::.c (fz , ~z)]].
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Proof See the appendix.

If there is an adjusting derivarion with f and ~ as results, occurring in some derivation,
then there is also an adjusting derivation starting with f and ~ for some abductive goal
occurring in the adjusting derivation. This is given formally:

Lemma 4.7 Assume that'Y : (fo,~o) ~any (f,~) and 1/ : ({(t,f- B)},fa,~a) ~adj

(f~, ~~) such that 'Y » 1/. Then

(C, f b, ~b) E 1/ => (C, f,~) ~adj (f, ~).

Proof See the appendix.

2. Adjustments and abducibles obtained by succeeding derivations

If there is an abductive succeeding derivation with f- a as an abductive goal and with f o,
~o as the initial sets such that a* f/. f~ and a* f/. ~~, then a* f/. f and a* f/. ~ for f and ~
obtained by the derivation. In a more formal description, we have:

Lemma 4.8 Assume that (f- a, f o, ~o) ~;'Uc (f,~) for a E B p . Then

[(a* f/. f o => a* f/. r) /\ (a* f/. ~o => a* f/. ~)J.

Proof See the appendix.

3. Adjustments and abducibles obtained by finitely failing derivations

In case that there is an abductive finitely failing derivation in some derivation, and in
relation with the abductive goal, we have:

Lemma 4.9 Assume that'Y: (fo,~o) ~any (f,~) and /-L: ({f- B},fa,~a) ~ff (f~,~~)

such that'Y» /-L. Also assume that (F,fb,~b) E /-L, where F = {Gi, ... ,G;} for G7 =f-
Li ... L;i (1 ~ i ~ l). Then .

Vi, c.p(ground substitution), 3j : [(1 ~ i ~ l) =>[(1 ~ j ~ ni)/\
(L~c.p = a E Bp => a f/. Sp(f+ U ~+)) /\ (L~c.p = a* E (Bp)* => a* f/. f U~)]J

Proof See the appendix.

Lemma 4.10 (F, f o, ~o) ~ff (r, ~), where F = {Gi, .. ·, G;} for G7 =f- Li .. · L;i (1 ~ i
~ l). Then

Vi, c.p(ground substitution), 3j : [(1 ~ i ~ l) => [(1 ~ j ~ nd/\
(L)c.p = a E Bp => a f/. Sp(Sp(~+))) /\ (L)c.p = a* E (Bp)* => a E Sp(~+))J).

4. Adjustments and abducibles obtained by adjusting derivations

In case that there is an adjusting derivation, and in relation with the abductive goal, we
have:.
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Lemma 4.11 Assume that (C, f o,~o) '""-+adj (f, ~), where C = {(Vi, Gi),···, (Vi, Gin for
Gi =~ L1 ... L~i (1 ::; i ::; l). Then

::Ii, <p(ground substitution), Vj: [(1::; i ::; l) /\ [(1 ::; j ::; ni) =>
[(L;<p = a E Bp => a E Sp(f+ U ~+)) /\ (L;<p = a* E (Bp)* => a* E f U ~))]]]

Proof See the appendix.

Lemma 4.12 Assume that / : (0,0) '""-+any (fo,~o) and II : ({(t,~ Bn,fa,~a) '""-+adj
(f~, ~~); such that / »11. Let (C, fb, ~b) E II, where C = {(Vi, Gi), ... , (Vi, Gin for
Gi =~ L1·· . L~i (1 ::; i ::; l). Then

Vi, <p(ground substitution),::Ij: [(1::; i ::; l) /\ (Vi = t) => [(1 ::; j ::; ni)/\
[(L;<p = a E B p => a ft Sp(Sp(ft U ~t)))

/\(L;<p = a* E (Bp)* => a E Sp(ft U ~t))]]]·

Proof See the appendix.

For the similar reason in Lemma 4;.12, we have:

Lemma 4.13 Assume that II : ({(t,G*n,0,0) '""-+adj (fo,~o). Let (C,fb,~b) E II, where
C = {(Vi, Gi), ... , (Vi, Gin for Gi =~ L1 ... L~i (1 ::; i ::; l). Then

Vi, <p(ground substitution),::Ij: [(1::; i ::; l) /\ (Vi = t) => [(1::; j ::; ni)/\
[(L}<p = a E B p => a ft Sp(Sp(ft u ~t)))

/\(L;<p = a* E (Bp)* => a E Sp(ft U ~t))]]].

5. Lemmas for the soundness theorem

Now we have several lemmas, to be made use of, directly for the soundness proof, which
are established by means of preceding lemmas.

Lemma 4.14 If there is / : (0,0) '""-+any (fo, ~o), then ~t ~ Ap(~t)·

Proof
a* E ~o => J.l: ({~ a}, fa, ~a) '""-+ff (f~, ~~) such that / » J.l

=> aft Sp(Sp(~~+)) (by Lemma 4.10)

=> a E Sp(Sp{~~+))

=> a E Ap(~~+)

=> a E Ap(~t) (by ~~ ~ ~o and monotonicity of A p)

Note that a* E ~o iff a E ~t· Hence ~t ~ Ap(~t). q.e.d.

Now consider the family of sets obtained by applying Ap inductively.

Definition 4.15 We define ~a inductively as follows.

~+ _ { Ap(~t-l) if Q: is a successor ordinal,
a - U,8<aAp(~t) if Q: is a limit ordinal.
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Lemma 4.16 Assume that ,: (0, 0) ~any (fo, .6.0 ), For X ~ Bp, let
(1) Ql(X) == ft ~ Sp(ft U X),
(2) Q2(X) == ft ~ Ap(ft U X), and
(3) Q3(X) == X n Sp(ft U X) = 0.

Whether Q = Ql, Q2, or Q3, the following three conditions are satisfied.
(a) Q(L\t).
(b) Q(L\~) implies Q(Ap(L\~)).

(c) Q is inclusive, that is,

VL: [L ~ 2Bp is a chain => [[VYo E L : Q(Yo)] => Q(UL)]].

Proof (1) As regards Ql:
(a)

a* E f o => v: ({(t, +- a)}, fa, .6.a) ~adj (f~, L\~) and I » v
=> a E Sp(f~+ U L\~+) (by Lemma 4.11)
=> a E Sp(ft U L\t) (by f~ ~ f o, L\~ ~ L\o and

monotonicity of Sp).

Note that a* E f o iff a E ft. Hence ft ~ Sp(ft U L\t).
(b) Assume Q(.6.~). By Lemma 4.14, L\t ~ Ap(.6.t). By monotonicity of Ap and by

induction, .6.~ ~ Ap(bo~). Combining it with monotonicity of Sp,

Sp(ft U L\~) ~ Sp(ft U Ap(L\t)).

It follows that ft ~ Sp(ft U Ap(L\t)). Hence Ql is preserved under A p.
(c) For any Yo E L, Sp(ft U Yo) ~ Sp(ft U (UL)). Clearly Ql is inclusive.
(2) As regards Q2: .
(a)

a* E f o => v: ({(t, +- a)}, fa, boa) ~adj (f~, bo~) and I » v

=> a ¢ Sp(Sp(ft U .6.t)) (by Lemma4.12)

=> ~ E Sp(Sp(ft U bot))
=> a E Ap(ft U L\t)

Note that a* E f o iff a E ft. Hence ft ~ Ap(ft U L\t).
(b) As we see, bot ~ Ap(bot). By monotonicity of Ap and by that L\t ~ Ap(bot),

Ap(ft UL\t) ~ Ap(ft UAp(L\t))· Assume that Q2(L\t), that is, ft ~ Ap(ft UL\t). Then
ft ~ Ap(ft U Ap(L\t))·

(c) For any Yo E L, Ap(ft UYo) ~ Ap(ft U (UL)). Clearly Q2 is inclusive.
(3) As regards Q3:
(a)

a* E L\o => /1: ({+- a}, fa, .6.a) ~ff (f~, L\~) and I » /1
=> a ¢ Sp(ft U L\t). (by Lemma 4.9)

Note that a* E L\o iff a E .6.t. Hence L\t n Sp(ft U .6.t) = 0.
(b) Since .6.t ~ Ap(L\t), it is easy to see that L\o ~ L\o. Because Sp is monotonic,

Q3(L\t) => L\t n Sp(ft U L\t) = 0
=> L\~ ~ Sp(ft U .6.t)

-=-'7::'::-;~--:--:-

=> Sp(L\t) ~ Sp(Sp(ft U L\t)) .

=> Sp(Sp(ft U L\t)) ~ Sp(.6.t)
=> Ap(ft U L\t) ~ Sp(L\t)·
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By (2) and monotonicity of Ap ,

rt ~ Ap(rt U Llt) ~ Ap(rt U Llt) and Ap(Llt) ~ Ap(rt U Llt)·

It follows that rt U Ap(Llt) ~ Ap(rt U Llt). By using monotonicity of Sp,

Q3(Llt) => Ap(rt U Llt) ~ Sp(Llt)
=> rt U Ap(Llt) ~ Sp(Llt) -=-.,....,......,:-7
=> Sp(rt U Ap(Llt)) ~ Sp(Sp(Llt))

=> Sp(Sp(Llt)) ~ Sp(rt U Ap(Llt))
=> Ap(Llt) ~ Sp(ft U Ap(Llt))
=> Q3(Ap(Llt))·

Hence Q3 is preserved under A p .

(c) Assume that Q3 is not inclusive, and that Q3(UL) does not hold for some L even if
Q3(Yo,) for any Yo: E L. Then

3a: [a E uL 1\ a E Sp(rt U (UL))]
=> 3Yo: E L : [a E Yo: 1\ a E Sp(rt U Yo:)],

which contradicts Q3(Yo:). Thus Q3 is inclusive. q.e.d.

Lemma 4.17 Assume 'Y : (0,0) "'-'t any (ro, Llo). Then there exists Ll satisfying the following
conditions:

(1) Llo ~ Ll.
(2) Ll+ = Ap(Ll+).
(3) rt ~ Sp(rt U Ll+).
(4) rt ~ Ap(rt U Ll+).
(5) Ll+ n Sp(rt U Ll+) = 0.

Proof (1) and (2): Let Llt be defined as in Definition 4.15. By monotonicity of Ap and
Lemma 4.14, there exists 'Y such that Llt ~ Ll~ and Ll~ = Ap(Ll~).

(3), (4) and (5): These follow from Lemma 4.16 and fixpoint induction. q.e.d.

Lemma 4.18 Assume 'Y : (0,0) "'-'t any (ro, Llo). Then there exists Ll satisfying the following
conditions:

(1) Llo ~ Ll and Ll+ = Ap(Ll+).
(2)Ll+ n Sp(Ll+) = 0.
(3) f o n Ll = 0.
(4) rt nSp(Ll+) = 0.

Proof By Lemma 4.17, there exists Ll satisfying:
(a) Llo ~ Ll and Ll+ = Ap(Ll+).
(b) ft ~Sp(rtU Ll+).
(c) rt ~ Ap(rt U Ll+).
(d) Ll+ n Sp(rt U Ll+) = 0.

Hence (1) is satisfied. From (d) and from that Sp(Ll+) ~ Sp(rt U Ll+), (2) follows. By (b)
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and (d), (3) holds. It follows from (c) and (d) that

ft ~ Ap(ft u .6.+) =} ft ~ Sp(Sp(ft u ~+))

=} ft n Sp(Sp(ft u ~+)) = 0, and
~+ n Sp(ft u ~+) = 0 =} ~+ ~ Sp(ft u ~+)

--'---:---
=} Sp(~+) ~ Sp(Sp(ft u ~+))

Hence (4) is satisfied. q.e.d.

6. Soundness theorems

Finally we have the soundness theorems of the newly presented abductive proof procedure.

Theorem 4.19 Let < P*,Ab*,It > be an abduction framework. Assume r : (0,0) ~any

(fo, ~o). Then there exist f and ~ such that f o ~ f, .6.0 ~ ~ and P* U fU U~ satisfies It-

ProofIt follows from Lemma 4.18 that there exists ~ such that (1) ~o ~ ~, ~+ = Ap(~+),
(2) ~+ n Sp(~+) = 0, (3) f o n ~ = 0, and (4) ft n Sp(~+) = 0. By (3) and (4), ft n
(.6.+ u Sp(~+)) = 0. By setting f+ = ~+ u Sp(.6.+), we have f o ~ f. By using Theorem
3.16, P* U fU U~ satisfies It. q.e.d.

Theorem 4.20 Let < P*, Ab*, It > be an abduction framework. If ((t- L1 ··. Ln ), 0, 0)
~:uc (fo, ~o), then there exist f and.6. such that:

(1) f o ~ f, ~o ~ ~ and P* U fU U~ satisfies It­
(2) P* u fU U.6. F3 V((L1 t\ ... t\ Ln}O).

Proof By Lemma 4.4, it is obtained that for any i (1 ~ i ~ n)
L/)cp = a E Bp implies a E Sp(~t), and
L/)cp = a* E (Bp)* implies a* E ~o.

By Lemma 4.18, f o n ~o = 0. It follows from Corollary 3.9 that for any i (1 ~ i ~ n),.
L/)cp E Bp. implies P*UfO'U~o F3 LiBcp. Hence for any ground substitution cp, P*UfO'U.6.o
F3 (L 1 t\ ... t\ Ln}Ocp. Finally

P* UfO' U.6.o F3 V((L1 t\ ... t\ Ln)B).

By Theorem 4.19, there exist f and ~ such that f o ~ f, ~o ~ ~ andP*Ufuu ~ satisfies It,
where f+ = ~+ U Sp(~+). By monotonicity of Sp, Sp(~t) ~ Sp(~+). Owing to Corollary
3.9 and similar reasons as above, we have:

q.e.d.

Theorem 4.21 Assume an abduction framework < P*,Ab*,It >. If ({t- L 1 ... Ln}, 0,0)
~ff (fo, ~o), then there exist f and ~ such that:

(1) f o ~ f, ~o ~ ~ and P* U fU U~ satisfies It.
(2) P* U fU U.6. ~3 V((L1 t\ ... t\ Ln) t- u).

Proof By the proof of Theorem 4.19, there exist f and ~ such that f o ~ f, ~o ~ ~,

P* U fU U~ satisfies It, and f+ = ~+ U Sp(~+). Now assume that there exists a ground
substitution cp such that
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P* U fU U ~ F3 (L1 /\ •.• /\ Ln)'P ~ u.

Then Vi : [(1 ::; i ::; n) ::::} [p* u fU U~ F3 Li'P ~ u]]. By Lemma 3.14,

Vi: [(1::; i::; n)::::} [(Li'P = a E B p ::::} a E Sp(f+ U ~+))

/\(Li'P = a* E (Bp)* ::::} a* E f U ~)]]. (#)

By Lemma 4.10,

3j : [(1 ::; j ::; n) /\[(Lj'P = a E Bp ::::} a ¢ Sp(Sp(~t)))

/\(Lj'P = a* E (Bp)*::::} a E Sp(~t))]].

In case that Lj'P = a E Bp, a ¢ Sp(Sp(~t)). By Lemma 3.15 and (#),

a E Sp(f+ U ~+) = Sp(Sp(~+)).

Also
~t ~ ~+ ::::} Sp(~t) ~ Sp(~+)

::::} Sp(~+) ~ Sp(~t)
---

::::} Sp(Sp(~+)) ~ Sp(Sp(~t))·

It follows that a ¢ Sp(Sp(~t)) ::::} a ¢ Sp(Sp(~+)), which is a contradiction.
In case that Lj<R = a* E (Bp)*, a E Sp(~t). By Lemma 3.15, a E f+ U~+ = Sp(~+).

Also a E Sp(~t) ~ Sp(~+). This is a contradiction. q.e.d.

Theorem 4.22 Assume an abduction framework < P*, Ab*, It >. If ({(t, ~ L1 .·· Ln)}, 0,
0) ~adj (fo, ~o), then there exist f and ~ such that:

(1) f o ~ f, ~o ~ ~ and P* U fU U ~ satisfies It.
(2) P* U fU U~ F3 3((L1 /\ ... /\ Ln) ~ u) and P* U fU U~ ~3 V(L1 /\ ... /\ Ln).

Proof By the proof of Theorem 4.19, there exist f and ~ such that f o ~ f, ~o ~ ~,

P* U fU U~ satisfies It, and f+ = ~+ U Sp(~+).

By Lemma 4.11,

3:.p(ground substitution), Vi: [(1 ::; i ::; n) ::::}
[(Li'P = a E B p ::::} a E Sp(ft U ~t))

/\(Li'P = a* E (Bp)* ::::} a* E f o U ~o))]].

By Lemma 4.18, f o n ~o = 0. By Corollary 3.11,

3'P(groundsubstitution), Vi: [(1 ::; i ::; n) ::::} [p* U fa U ~o F3 Li'P ~ u]].

It follows that 3'P(groundsubstitution) : [p* U fa U~o F3 (L1 /\.·. 1\ Ln)'P ~ u]. Hence

P* U fa U ~o F3 3((L1 /\ ••. /\ Ln) ~ u).

Since Sp is monotonic, Sp(ft U ~t) ~ Sp(f+ U ~+). By the similar discussion as above,

P* U fU U ~ F3 3((L1 /\ ... /\ Ln)~ u).

Now assume that there exists a ground substitution 'P such that P* U fU U ~ F3 (L 1 /\

... /\ Ln)'P. Then Vi: [(1 ::; i ::; n) ::::} [p* U fU U~ F3 Li'P]]. By Corollary 3.9,

Vi: [(1::; i ::; n)::::} '[(Li'P =a E Bp ::::} a E Sp(~+))

/\(Li'P = a* E (Bp)* ::::} a* E ~)]].
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By Lemma 4.13,
:3j: [(1 ~ j ~ n)/\

[(Lj'P = a E Bp ~ a tt Sp(Sp(ft u ~t)))

/\(Lj'P = a* E (Bp)* ~ a E Sp(ft u ~t))]].

In case that Lj'P = a E Bp,

art Sp(Sp(ft u ~t)) {::} a E Ap(ft u ~t) ~ Ap(ft u ~+).

By Lemma 4.17, ~+ n Sp(ft u ~+) = 0. It follows that

~+ n Sp(ft u ~+) = 0 ~ ~+ ~ Sp(ft u ~+)
---'-~--

~ Sp(~+) ~ Sp(Sp(ft u ~+))

~ Sp(~+) ~ Ap(ft u ~+)

~ Sp(~+)nAp(ftu~+)=0.
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But we see that a E Sp(~+) n Ap(ft u ~+), which is a contradiction.
In case that Lj'P = a* E (Bp)*, by Lemma 4.17, ~+ n Sp(ft u ~+) = 0.

a E ~+ and a E Sp(ft u ~t) ~ Sp(ft u ~+). It is a contradiction.
But we see that

q.e.d.

Example 4.23 Assume a general logic program P as in Example 3.2. As we have seen in
Example 4.1, we see that (f- t,0,0) ~~uc ({q*},{r*}). For f = {p*,q*} and ~ = {s*,r*},
P*U fU U ~ satisfies It, and P* U fU U~ F3 t.

5 Concluding Remarks

The primary mntributions of the present paper are to have a new integrity constraint in
an abduction framework based on general logic programs, and to augment an adjusting
derivation to Eshghi and Kowalski procedure in correlation with the presented constraint. As
an advantage of the augmented abductive proof procedure, each derivation can be regarded as
a start, whether it is an abductive succeeding, finitely failing or adjusting derivation. Hence,
as a prerequisite, an adjusting derivation can be implemented before starting a succeeding
derivation, to avoid an unsuccessful derivation. The possibility of adopting a general negation
as failure, discussed as in [19, 20, 21], for the abduction framework with the presented integrity
constraint, and for the augmented abductive proof procedure, may be studied.

In [2, 3], positive and negative loops are examined in computations with respect to the
well-founded semantics. In [18], a loop is detected by an oracle in computations with respect
to the well-founded semantics. In more general, a sound and complete derivation is studied
in [15]. On the other hand, we present a derivation to detect the undefined as a logical
consequence. As regards the completeness of the presented proof procedure, we have a
question of which class of programs as theories can be a subject.
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Appendix

A.I Proofs in Section 3
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Proof of Lemma 3.5

a ESp (Do+) ¢:> a E B p nTpLl+ i w

¢:> a E B p nTp*UA i w
¢:> a E B p n {b E Bp*UA IP* U Do F b}
¢:> a E{b E B p I P* U b. F b}

Hence we have the lemma.

(by the definition of S p )

(by the definition of p A + )

(as in [14])

q.e.d.

Proof of Lemma 3.6 Assume that a* E b.. It is evident that a* is true in any 2-valued
Herbrand model of P* U b.. On the other hand, assume that P* U b. F a*. Because a*does
not appear in any head of the clause of ground(P*) , a* E b. as long as P* U b. F a*. q.e.d.

Proof of Lemma 3.7 (1) It is shown in [19] that P F a iff P F3 a if P is a set of definite
clauses. The lemma follows it. q.e.d.

Proof of Lemma 3.8 (1)(i) Because b. ~ Sp(b.+)U b., M is a model of b..
(ii) For each clause a f- L 1 ... L n E ground(P*): .
(a) In case that a E Sp(b.+), a is true in M, and thus a f- L 1 •.. Ln is true in M.
(b) In case that a ¢ Sp(b.+), a is regarded as u (the undefined). It follows from the

definition of Sp that L i = b E B p but b ¢ Sp(b.+), or L i = b* E (Bp)* but b* ¢ b. for
some Li (1 ::; i ::; n). Hence Li ¢ Sp(b.+) U b., and L; is evaluated as u by M. Finally
a f- L 1 .•• L n is true in M.

(iii) fnb. = 0implies fn(Sp(b.+)Ub.) = 0. It followsthat any member in f is interpreted
as u in M. That is, M is a model of f U

•

By (i), (ii) and (iii), M is a model of P* U fU U b..
(2) (i) Assume that P* U b. F3 l. Since any 3-valued Herbrand model of P* U fU U b.

is also a 3-valued Herbrand model of P* U b., 1 is true in any 3-valued Herbrand model of
P* U fU U b.. It follows that P* U fU U b. F3l.

(ii) Assume that P* UfU UDo F3 l. Assume that P* Ub. ~3 l. By Lemma 3.7, P* Ub. .~ l.
If 1 E Bp then 1 ¢ Sp(b.+) by Lemma 3.5. If 1 E (Bp)* then 1 ¢ b. by Lemma 3.6. Hence
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l t/. Sp(.6.+) U.6.. l is evaluated as u by M =< Sp(.6.+) U.6., 0 >, which is a 3-valued Herbrand
model of P* U fU U.6.. This contradicts that P* U fU U .6. 1=3 l. q.e.d.

Proof of Lemma 3.10 (1) Assume that < IT, IF > is a 3-valued Herbrand model of
P* U fU U .6.. Let I = BP* - IF.·

(i) Because .6. ~ IT, I is a 2-valued Herbrand model of .6..
(ii) Since < IT,IF > is a 3-valued Herbrand model of fU, a* E B p * - (IT U IF) if

a* +-+ u E fU. Hence a* E I. That is, f ~ I, and I is a 2-valued Herbrand model of f.
(iii) Since < IT,IF> is a 3-valued Herbrand model of P*, any ground clause obtained

from a clause of P* is interpreted by < IT, IF> as follows:

tt-t, tt-u, Ut-U, tt-f, ut-f, or ft-£'

Hence, by I, any ground clause obtained from a clause of P* is interprested as

tt-t, tt-t, tt-t, tt-f, tt-f, or ft-f,

respectively. It follows that I is a 2-valued Herbrand model of P*.
(2) Assume that I is a 2-valued Herbrand model of P* U f u.6.. Since I is a 2-valued

Herbrand model of P* U f U.6., f ~ I and .6. ~ I. Let M =< I - f, B p * - I>.
(i) Because f n.6. = 0, .6. ~ I - f, and M is a 3-valued Herbrand model of .6..
(ii) Assume that a* E f, that is, a* +-+ U E fU. It follows that a* t/. I - f and a* t/. B p * - I.

Hence a* is interpreted as U by M. That is, M is a 3-valued Herbrand model of fU.
(iii) Since I is a 2-valued Herbrand model of P*, any ground clause obtained from a clause

of P* is interpreted by I as:

tt-t, tt-f, or ft-£'

Note that any head of the ground clause is not in f. By M, it is interpreted as

tt-t or tt-u, tt-f, or ft-f,

respectively. Hence any ground clause obtained from a clause of P* is interpreted as t by A/.
That is,M is a 3-valued Herbrand model of P*.

By (i), (ii) and (iii), M is a 3-valued Herbrand model of P* U fU u.6..
(3) (i) Assume that there is l E B p * such that P* UpI U.6. 1=3 l t- U and P* Uf U A ~ l.

It follows that there is a 2-valued Herbrand model I of P* Uf U.6., which interprets l as false.
By (2), M =< I - f, B P* - I> is a 3-valued Herbrand model of P* UfU U.6.. Because l t/. I,
l E B p * - I. Thus l is false in M, which contradicts that P* U fU u.6. 1=3 l t- u.

(ii) Assume that there is I E Bp* such that P* Uf U .6. 1= land P* UfU U .6. ~3 l t- U. It
follows that there is a 3-valued Herbrand model < IT, IF> of P* UfU u.6., which interprets
l as false. By (1), I = B p * - IF is a 2-valued Herbrand model of P* UfU.6.. Because lEIF,
l 1. I. Thus l is false in I, which contradicts that P*U f U .6. 1= l.

By (i) and (ii), P* U fU u.6. 1=3 l t- U iff P* U f U .6. 1= l. q.e.d.

Proof Lemma 3.12 (1) It follows from Lemma 3.6 and Corollary 3.9.
(2) (i) Assume that s* E f. In any 3-valued Herbrand model of P* U fU U .6., which is a

model of fU, s* +-+ U is true. That is, P* U fU u.6. 1=3 s* +-+ u.
(ii) Assume that P* U fU U .6. 1=3 s* +-+ u. Because f n .6. = 0, and there is no clause of

P*, whose head contains s*, s* should be in f.
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(3) (i) If s* F/. f U 6., then there is a 3-valued Herbrand model of P* U fU u6., which
interprets s* as false. It follows that P* U fU U 6. ~3 s* f- u.

(ii) If P* U fU U 6. ~3 s* f- u, then there is a 3-valued Herbrand model of P* U fU U 6.,
which interprets s* as false. It follows that P* U fU U 6. ~3 s* and P* U fU U 6. ~3 s* +-> u.
By (1) and (2), s* F/. f and s* F/. 6.. q.e.d.

Proof of Lemma 3.13 (1) Assume that a E T, that is, P* U fU U6. F3 a: Since P* U fU
u6. satisfies It, P* U fU U6. ~3 a 1\ (a* f- u). It follows that a* is false in some 3-valued
Herbrand model of P*U fU U 6.. Hence a* E F. On the other hand, if a* E F, that is,
P* U fU U 6. ~3 a* f- u, then P* U fU U 6. F3 a, that is, a E T, because of the constraint.
Hence a* E F implies a E T.

(2) If a E F, that is, P* U fU U.6. ~3 a f- u, then P* U fU u.6. F a*, because of the
constraint. Hence a* E T. On the other hand, on the assumption that a* E T, P* U fUU
6. ~3 a f- U, because of the constraint. Hence a E F.

(3) It follows from (1) and (2) that

a E U ¢} a F/. T 1\ a F/. F ¢} a* F/. T 1\ a* F/. F' ¢} a* E U.

q.e.d.

Proof of Lemma 3.14 By Lemma 3.4, r n 6. = 0.
(1) It follows from Lemmas 3.12, 3.13 and Corollary 3.9.
(2) It follows from Lemmas 3.12, 3.13 and Corollary 3.11.
(3) It follows from (1), (2) and f n.6. = 0 that

a* E U ¢} a* F/. T U F ¢} (a* E r U.6.) 1\ (a* F/. 6.) ¢} a* E f.

By (1) and (2), a* E f ¢} a E Sp(f+ U .6.+) 1\ a F/. Sp(.6.+). q.e.d.

A.2 Proofs in Section 4

Proof of Lemma 4.4 It is proved by induction on'length k ofthe derivation: (f- L 1 ... L n , f 0,

.6.0 ) ~suc (0, f, 6.).
(1) If k = 0, then n = °and it holds.
(2) Assume that it holds if k = m. Let k = m +1. Also assume that a literal L s is selected

in the abductive goal f- L1 ... Ln.
(i) In case of (sud): Consider the case that Ls = A (an atom) and there is A' f- L~ ... Li

E P* such that 01 = mgu(A, A'), and

(f- (L1... Ls-1L~ ... LiLs+! ... Ln)e1, f o, .6.0 ) ~~~c (f, 6.)

of length m, where 010' = O. By induction hypothesis,

Vi: [(1 :S i :S n) 1\ (i # s) =>
[(L i 010''P = a E Bp => a ESp(6.+))
I\(Li010''P = a* E (Bp)* => a* E 6.)]] and

Vj: [(1:S j :S l) => [(Lj010''P = a E Bp => a E Sp(6.+))
I\(L j 010''P = a* E (Bp)* => a* E .6.)]].

Hence LsO'P = A'010''P E Sp(.6.+) if A'010''P E Bp. This completes the induction.
(ii) In case of (suc2): Consider the case that L 8 = A* (ground), A* E .6.0 , and

121
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(~ L1... L s- 1Ls+l .. , L n, f o, b.o) ~suc (B, f, b.)

of length m. By induction hypothesis,

Vi: [(1 ~ i ~ n,i =I s) =? [(LiB<p = a E Bp =? a E Sp(b.+))
/\(LiB<p = a* E (Bp)* =? a* E b.)]].

Because A* E b.o ~ b., the induction step is completed.
(iii) In case of (suc3): Consider the case that L s = A* (ground), A* (j. f o U b.o and

({~ A}, f o, b.oU {A*}) ~ff (f~, b.~), then

(~ L 1... L s- 1Ls+l ... L n , f~, b.~) ~suc (B, f, b.)

of length m. By induction hypothesis for the derivation of length m and by that A * E b.~

~ b., the induction step is completed. q.e.d.

Proof of Lemma 4.5 It is proved by induction on length k of the derivation: (G*, f o, b.o)
~suc (B, f, b.).

(1) If k = 0, then G* = 0 and it holds.
(2) Assume that it holds for k = m. Let k = m + 1. Also assume that Ls is the selected

atom in the abductive goal ~ L1 ... Ln.
(i) In case of (sud): Consider the case that Ls = A and there is A' ~ L~ ... L; E P* such

that B1 = mgu(A, A'), and (Gi, f o, b.o) ~suc (B', f, b.) of length m, where

Gi =~ (L1... Ls-1L~ ... L;Ls+l ... L n )B1

and BIB' = B. By induction hypothesis,

Vf', b.', f", b.": [(f ~ f') /\ (b. ~ b.') =?

(Gi, f', b.') ~~~c (f', b.')
/\({Gi},f',b.')+ff (f/,b./)
/\({(t, Gin, f', b.') +adj (f", b./)].

It follows that

Vf', b.' : [(f ~ r') /\ (b. ~ b.') =? (G*,f', b.') ~~uc (f', b.')].

Because Gi is involved in the derivation from G*,

Vf', b.', f/~ b./: [(f ~ f') /\ (b. ~ b.') =?

({G*},f',b.') +ff (f",b.") /\ ({(t, G*n, f', b.') +adj (f",b./)].

(ii) In case of (suc2): Consider the case that Ls = A* (ground), A* E b.o, and (Gi, f o, b.o) ~suc
(B, f,~) of length m, where

By induction hypothesis,

Vf', b.', f", b./: [(f ~ f') /\ (b. ~ ~') =?

(G* f' b.') ~() (f' b.')1" sue'
/\ ({Gi}, f' , b.') +ff (f/, b.")
/\({(t, Gin, f', b.') +adj (f", b.")].

Because A* E b.o~ b. ~ b.', the induction step is completed.
(iii) In case of (suc3): Consider the case that L s = A* (ground), A* (j. f o U b.o, ({~

A}, f o, b.o U {A*}) ~ff (f~, b.~), and (Gi, f~, b.~) ~suc (B, f, b.) of length m, where
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Gi =f- L1 ... Ls- 1Ls+1 ... Ln·

Because A* E ~~ ~ ~ ~ ~', the induction step is completed. q.e.d.
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Proof of Lemma 4.6 It is proved by induction on the rank r of J.l. Let F = {Gi, ... , G;}.
(1) In case that r = 0: It is proved by induction on the length k of the derivation for (F,

f b , ~b) '"v+ff (f~, ~~).

(i) If k = 0, then F = 0 and it holds.
(ii) Assume that it holds for k = m. Let k = m + 1. Also let F = F' U {f- L1 ... Ln },

where the selected literal in f- L 1 .•• Ln is Ls.
(a) In case of (ff1): Assume that Ls = A, {gi, ... ,g;} is a set of derived abductive goals

by using A and

(F' U {gi, ... ,g;}, f b, ~b) '"v+ff (f~, ~~)

of length m. By induction hypothesis,

'tj, f', ~', f z , ~z,(;lz: [(1 S j S p) ~
[(f ~ f') 1\ (~ ~ b.' ~ b.") ~ (g;, f', ~') +~~c (fz, ~z)]].

As well,
'ti, f', b.', fz, b.z, {}z :[(1 SiS l)
~ [(Gi =l=f- L1 .. · L n ) 1\ (f ~ r') 1\ (b. ~ ~' ~ ~")

~ (Gi, r', b.') +~~c (fz, ~z)]].

It follows that
'ti, f', b.', fz, b.z, {}z: [(1 SiS l) ~

[(f ~ f') 1\ (~ ~ ~' ~ b.") ~
(Gi, f', b.') +~~c (rz, b.z)]].

This completes the induction step.
(b) In case of (ff2): Assume that L s = A* (ground), A* E f b U b.b and

(F' U {f- L1 ... Ls- 1Ls+1 ." Ln}, f b , .6.b ) '"v+ff (f~, ~~)

of length m. By induction hypothesis,

'ti,f',b.',fz,~z,{}z: [(1 SiS l) ~
[(Gi =l=f- L1 .•. Ln V Gi =f- L1 ··• Ls- 1Ls+1'" Ln)
I\(f ~ r') 1\ (b. ~ b.' ~ b.") ~ (Gi, f', ~') +~~ (rz, b.z)]].

(b-1) If A* E .6.b, then A* E b.b ~ ~ ~ b.', Hence

'tf',~',fz,~z,Oz :
[(f ~ f') 1\ (b. ~ ~' ~ ~") ~

(f- L 1 ... Ln,f', ~') +~~c (fz , ~z)].

This completes the induction step.
(b-2) If A* ¢ b.b, then A* E f b. Because f b ~ f ~. f', neither (sud), (suc2) nor (suc3)

can't be applied to Ls = A* in f- L1 ... Ln. This leads to that

'tf',b.',fz,~z,{}z: [(f ~ f') 1\ (b. ~ b.' ~ b.") ~
(f- L 1... Ln, f', b.') +~~c (fz , b.z)].
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This completes the induction step.
(c) The case of applying (ff3) is none, because the rank r is o.
(2) Assume that it holds for r :S t. Let r = t + 1. .It is proved by induction on length k

for (F, f b, b..b) "'*ff (f~, b.~).

(i) If k = 0, it is proved like the case that r = O.
(ii) Assume that it holds for k = m. Let k = m + 1. Also let F = F' U {~ L1 ... Ln },

where Ls is the selected literal in ~ L 1 ... Ln.
(a) Incase of (ff1): It is proved like the cae that r == o.
(b) In case of (ff2): It is proved like the case that r = O.
(c) In case of (ff3): Assume that Ls = A* and A* ~ f b U b.b.
(c-l) In case of (ff3-1): Assume that f3': (~A,fb,b.b)"'*~ue (f~,b.~)for some f~ and b.~

such that J.L > f3', and

of length m. We prove that

Vb..' : [(b. ~ b..' ~ b.") ~ A* ~ b..'].

Assume that A* E b.: Because A* ~ f b U b..b'

J.L' : ({~ A}, f d, b..d ) "'*ff (fd,b..d) for some f d , b..d , f dand b.dand "f » J.L'.

Because A* E b.d , J.L' occurs after f3' starts. If f3' » J.L', then, by induction hypothesis for the
rank (of J.L') less than t + 1,

(~ A, f, b..) r:~e (rz, b.. z ).

Because f~ ~ f and b..~ ~ b.., owing to Lemma 4.5, the induction hypothesis contradicts f3'.
If f3' 1P J.L', then f~ ~ f d and b..~ ~ b..d . It contradicts J.L', by Lemma 4.5. Hence A* ~ ~.

Assume that A* E b..' - b.. By the definition of b.",

::Ife, b.e,f~, b.~ : [(f ~ f e) 1\ (b.. ~ b..e) 1\ ({~ A}, fe,b.e) "'*ff (f~, b.~)].

Because f~ ~ f ~ f e andb..~ ~ b. ~ b. e , it contradicts Lemma 4.5. Hence A * ~ b.' - b...
These case analyses lead us to that A* ~ b..'. Next we conclude that

Vfz , b..z,Oz : [(~ L1 ... Ln, f', b..') r:~e (fz , b.z)]

for the reasons:
Assume that A* E f'. Because A* ~ b..', (suc2) and (suc3) are not applied, it is evident.
Assume that A* ~ f'. Because A* ~ b..', A* ~ P U b.'. Since f~ ~ f ~ f' and ~~ ~ b..

~ b.', by Lemma 4.5,

({~A},f',b..'U{A*})rtt (f~,b..~),

which makes it hold that (~ L1 ... L n , f', b..') r:~e (rz, b.. z ).

Combining that Vfz , b..z, Oz : [(~ L1 ... Ln, P, b..') r:~e (fz , b..z)] and (F', f~, b..~) rtt
(f~, b..~), we complete the induction step. .

(c-2) In case of (ff3-2): Assume that J.L' : ({~ A}, f b, b..b U {A*}) "'*ff (f~, b..~) for some f~

and b..~ such that J.L > J.L', and

(F' U {~ L1 ... Ls- 1Ls+l ... Ln}, f~, b..~) "'*ff (f~, b..~)
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of length m. By induction hypothesis for the derivation of length m, and by that A * E b.~ ~ b.
e b.'- ,

Vf', b.', fz, b. z , ()z: [(f ~ f) 1\ (b. ~ b.' ~ b.") ~
(- L 1 ... Ln,f', b.') +~:.c (rz, L1z)J.

This can complete the induction step.
(c-3) In case of (ff3-3): Assume that v' : ({(t, - An, f b U {A*}, L1b) "-+adj (r~, b.b) for

some f~ and L1~ such that 1/ > 1/', and

(F' U {- L1 ... Ls - 1Ls+1'" Ln }, f~, b.~) "-+ff (f~, L1~)

of length m. Take any r' and b.' such that f ~ r' and L1 ~ L1' ~ L1".
Assume that A* E L1'. By induction hypothesis for the derivation of length m,

Vfz, b. z , ()z : (- L1 ... Ls - 1Ls+1'" Ln , f', L1') +~:.c (fz , L1z ).

Hence

Vfz, L1z , ()z : (- L 1 ... L n , f', b.') +~:.c (rz, L1z ).

This completes the induction step.
(c-4) Otherwise: Assume that

(F' U {- L1 ... Ls - 1Ls+1'" Ln }, f b , L1b) "-+ff (f~, L1~)

of length m. For any f' and L1' such that f ~ r' and b. ~ L1' ~ L1", in case that

(- L1 ... Ln,E, f', b.'), (- L1 ... Ls- 1Ls+1." Ln,E, f', b.')

is a succeeding derivation. By applying induction hypothesis for the derivation of length m,
we conclude that

(- L 1 ... L n , f', b.') +~:.c (fz, b. z ),

and in case that A* f/. L1' and A* E T', neither (sud), (suc2) nor (suc3) is applied for the
selected literal Ls in (- L1 ... Ln,E,f', b.'), and thus

(- L 1 ... L n , f', b.') +~:.c (fz , b.z ) ..

Assume that A* f/. L1' and A* E f'. With the selected literal L s in - L1 ... Ln, neither
(sud), (suc2), nor (suc3) is applied. It follows that

Vfz , L1z, ()z : (- L1 ... Ln, f', b.') +~:.c (fz , L1z).
This completes the induction step.

Assume that A* f/. b.', A* f/. f', and IL' : ({-A}, f', b.' U {A*}) "-+ ff (fd, L1d) for some f d

and L1d. It follows that

(- L1 ... Ln,E, f', b.'), (- L1 ... Ls- 1Ls+1 ., . Ln,E, f d, L1d)

is a succeeding derivation. We show below that L1d ~ b.". Assume that a* E b.d and a* f/. L1"
for some a*. a* f/. L1" implies a* f/. b.'. As well, a* E L1d implies that

J1.": ({- a}, fe, L1e) "-+ff (f~,L1~) such that J1.'» IL", or a* = A*.

By the definition ofL1", a* f/. L1" implies
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Vfc, o6.c,f~, b.~ : [f ~ f c 1\ b. ~ b.c => ({+- a}, f c,b.c) f>ff (f~, b.~)].

If a* = A*, then this contradicts Jl, because r ~ r' and 06. ~ b.'U {A*}. If a* =1= A*, then it
contradicts Jl', because f ~ r' ~ r e and b. ~ o6.'U{A*} ~ b.e. This concludes that b.d ~ b.".
By induction hypothesis for

(F' U {+- L1 ... Ls- 1Ls+1'" Ln}, f b, b.b) ~ff (r~, b.~),

we see that

(+- L1 •.• Ls - 1Ls+1 ' .• Ln , r d, b.d ) f>~~c (f~, b.~),

because f ~ f d and 06. ~ b.d ~ b.". It follows that

vrz , b.z,Oz : [(+- L1 ... Ln, f', b.') f>~~c (C, b.z)].

This completes the induction step.
Assume that A* ft b.', A* ft f' and

It is easy to see that

Vfz , b.z,Oz : [(+- L1 ... Ln,f', b.') f>~~c (rz, b.z)].

This completes induction step. q.e.d.

Proof of Lemma 4.7 It is proved by induction on rank r of 1/.

(1) In case that r = 0, it is proved by induction on length k of the derivation for (C, r b, b.b)
~adj (f~, b.~) in 1/.

(i) If k = 0, then C = {(u, on and it holds.
(ii) Assume that it holds for k = m. Let k = m + 1. Also assume that C = C' U {(V, +­

L1 ... Lnn, where Ls is the selected literal in +- L 1 .•. Ln.
(a) In case of (adj1): Assume that Ls = A (an atom), the set of abductive goals derived

by using A is {g;, ... ,gn and

(C' U {(V, g;), .. ., (V, gin, r b, b.b) ~adj (f~, o6.~)

of.length m. By induction hypothesis,

(Cf U {(V, gn, ... ,(V, gin, f, b.) ~adj (f, b.).

Because

(C, f, b.), (C' U {(V,g;), ... , (V,gi)}, f, b.)

is an adjusting derivation, we can complete the induction step.
(b) In case of (adj2): Assume that L s = A* (a ground atom), A* E f b, A* ft o6.b and

(C' U {(u, +- L 1 •.. Ls - 1Ls+1'" Lnn, r b, b.b) ~adj (f~, o6.~)

of length m. If A* E f b , then neither (suc3), (££3) nor (adj4) is applied to A*. It follows that
A* ft b.. Because A* E r b ~ f,

(C, f, b.), (C' U {(u, +- L1 ... Ls- 1Ls+1'" Lnn, f, b.)
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is an adjusting derivation. By means of induction hypothesis for the derivation of length m,
we complete the induction step.

(c) In case of (adj3): Assume that L s = A* (a ground atom), A* E ~b and

(G' U {(V, f- L 1 '" Ls - 1Ls+1'" Lnn, r b, ~b) ~adj (r~, ~~)

of length m. Because A* E ~b ~ ~,

(G, r, ~), (G' U {(V, f- L 1 ... Ls - 1Ls+1'" Lnn, r,~)

is an adjusting derivation. By making use of induction hypothesis for the derivation of length
m, we complete the induction step.

(d) In case of (adj4): There is no possibility, because r = O.
(2) Assume that it holds for rank r ::; t. Let r = t + 1. It is proved by induction on the

length k for (G, r b, ~b) ~adj (r~, ~~).

(i) In case that k = O. Itholds as for r = O.
(ii) Assume that it holds for k = m. Also assume that k = m + 1 and G = G' U {(V, f-

L1 ... Lnn, where Ls is the selected literal in f- L 1 ... Ln.
(a) In case of (adj1): It is proved like the case r = O.
(b) In case of (adj2): It is proved like the case r = O.
(c) In case of (adj3): It is proved like the case r = O.
(d) In case of (adj4): Assume that L s = A* (a ground atom) and A* <t r b U ~b.

(d-l) In case that'; : ({(t, f- An, r b U {A*}, ~b) ~adj (r~, ~~) for some r~ and ~~ such
that v> v', and

(G' U {(u, f- L 1 ... Ls - 1Ls+1'" Lnn, r~, ~~) ~adj (r~, ~~)

of length m. Note that A* E r~ ~ r. We show below that A* <t ~. Let A* E ~. Then

IL' : ({f- A}, r e, ~e) ~f f (r~, ~~) for some r e, ~e, r~ and ~~ such that I ~ IL'·

Because A* <t ~b and A* E ~e, v' does not appear after IL'. It follows that A* E r~ ~ r e ·

This contradicts the application of (suc3), (ff3) or (adj4) for A*. It is impossible that I ~ J..l'.
Hence A* <t ~. By applying (adj2), we have an adjusting derivation:

(G, r, ~), (G' U {(u, f- L1 ... Ls - 1Ls+1'" Lnn, r, ~).
By making use of induction hypothesis for the derivation of length m, we complete the
induction step.

(d-2) In case that (3' : (f- A, r b, ~b) ~~uc (r~, ~~) for some r~ and ~~ such that v > (3',
and

(G', r~, ~~) ~adj (r~, ~~)

of length m. It is s'ufficient that A * <t r U~ and (f- A, r, ~) ~~uc (r, ~), to see that

(G, r, ~), (G', r,~)

is an adjusting derivation.
Assume that A* E r. Then

v' : ({(t, f- An, r e, ~e) ~adj (r~, ~~)
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for some fe, f~, Lle , Ll~ such that I »v'. Because A* cf. f b and A* E fe, (3' does not appear
after v'. If (3 » v', then the rank of v' is not greater than t. By induction hypothesis on
rank,

({(t, +- An, f, Ll) ""adj (f, Ll).

Because f~ ~ f and Ll~ ~ Ll, this contradicts Lemma 4.5. Unless (3' » v', f~ ~ f e and
Ll~ ~ Lle, which shows that v' contradicts Lemma 4.5. Hence A* cf. f.

Assume that A* E Ll. Then

/1' : ({ +- A}, fe, Lle) ""ff (r~, Ll~)

for some fe, Lle , f~ and Ll~ such that I »/1'. Because A* cf. Llb and A* E Lle , (3' does not
appear after /1'. If (3' » /1', then by Lemma 4.6,

'v'fz , Llz ,{lz : [(+- A, f, Ll) +~~e (fz , Llz )]'

Because' f~ ~ f and Ll~ ~ Ll, this contradics Lemma 4.5. Unless (3' » 11', /1' contradicts
Lemma 4.5, because f~ ~ f e and Ll~ ~ Lle. Hence A* cf. Ll.

Because f~ ~ f and Ll~ ~ Ll, by Lemma 4.5,

(+- A, f, Ll) "";ue (f, Ll).

By the adjusting derivation (G, f, Ll), (G', f, Ll), and by induction hypothesis for the
derivation of length m, we complete the induction step for (G, f, Ll) ""adj (f, Ll).

(d-3) In case that /1' : ({+- A}, f b, Llb U {A*}) ""II (f~, Ll~) for some f~ and Ll~ such that
v > /1', .and

(G' U {(V, +- L1 . ',' Ls- 1Ls+l". Lnn, f~, Ll~) ""adj (f~, Ll~)

of length m. Because A * E Ll~ ~ Ll,

(G, f, Ll), (G' U {(V, +- L1 ... Ls- 1Ls+l'" Lnn, f, Ll)

is an adjusting derivation. By making use of induction hypothesis for the derivation of length
m, we complete the induction step. q.e.d.

Proof of Lemma 4.8 Assume (3 : (+- a, f 0, Llo) "";ue (f, Ll).
(1) On the assumption that a* cf. f o and a* E f,

v : ({ (t, +- an, fa, Lla ) ""adj (f~, Ll~)

for some fa, Lla , f~, Ll~ such that (3)> v. By Lemma 4.7,

({ (t, +- an, f, Ll) ""adj (f, Ll).

This contradicts Lemma 4.5. Hence a* cf. f o implies a* cf. f.
(2) On the assumption that a* cf. Llo and a* E Ll,

/1 : ({+- a}, fa, Lla ) ""ff (f~, Ll~)

for some fa, Lla , f~ and Ll~ such that (3 »/1. By Lemma 4.6,

(+- a, f, Ll) +~~e (fz, Llz )
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for any r z , ~z and Oz' This contradicts Lemma 4.5. Hence a* rt ~o implies a* rt~. q.e.d.

Proof of Lemma 4.9 It is proved by induction on the length k for (F, r b, ~b) "--'>ff (r~, ~~).

(1) If k = 0, then F = 0 and it holds.
(2) Assume that it holds for k ::S m. Let k = m + 1 and F = F' U {+- L 1 ... L n }, where

Ls is the selected literal in +- L 1... Ln.
(i) In case of (ffl): Assume that Ls = A, the set of abductive goals is {gi, ... ,g;} derived

by using A, and

of length m.
(a) If P = 0, then there is no abductive goal by using A, and Lsrp E B p implies Lsrp rt

Sp(r+ U L\+).
(b) On the assumption that P > 0, we assume

3rp(ground substitution), 'ifj: [(l::S j ::S n) ::::}
[(Ljrp = a E Bp /\ a E Sp(r+ U ~+))

V(Ljrp = a* E (Bp )* /\ a* E r U ~)]]. (#)

Also let g; =+- (L1... Ls-1l1 . . . l~iLS+1 ... Ln)ei for A +- l1· . . l~i E P* and Oi = mgu(A, Ai)'
In case that rp = OiP (a ground substitution) for some i (1 ::S i ::S p) and P, Arp = AOiP =

AiOiP. By the assumption (#), Arp E Sp(r+ U L\+). That is, AiOiP E Sp(r+ U L\+). Hence

3(Ai +- l1 . . . l~JOiP~ E ground(P*), 'ifj :
[(1 ::S j ::S Pi) ::::}
[(l;OiP~ = a E Bp ::::} a E Sp(r+ U L\+))
/\(l;OiP~ = a* E (Bp )* ::::} a* E r U L\)]]. (*)

By induction hypothesis for the derivation of length m, applied to g;, for any ground substi­
tution (J,

(b-1) 3j: [(l::S j ::S n,j # s)/\
[(LjOi(J = a E Bp =? a rt Sp(r+ U L\+))
/\(LjOi(J = a* E (Bp )* ::::} a* rt r U L\)]] or

(b-2) 3j: [(l::S j ::S Pi)/\
[(l;Oi(J = a E Bp ::::} a rt Sp(r+ U L\+))
/\(l;Oi(J = a* E (Bp )* ::::} a* rt r U ~)]].

The case (b-1) contradicts (#), while the case (b-2) contradicts (*).
In case that there is no i such that rp = OiP for any P, there is no clause in P*, whose head

is unifiable to Arp. It follows that Arp rt Sp(r+ U L\+), which contradicts (#).
Therefore

'ifrp,3j: [(1 ::S j ::S n)/\
[(Ljrp = a E Bp ::::} a rt Sp(r+ U L\+)) /\ (~jrp = a* E (Bp)*::::} a* rt r U L\)]].

By making use of induction hypothesis for the derivation of length m, we complete the
induction step.

(ii) In case of (ff2): Assume that Ls = A* (a ground atom), A* E rb U L\b, and

(F' U {+- L1... L s- 1Ls+1'" L n}, r b,L\/,) "--'>ff (r~, L\~)



130 Susumu YAMASAKI and Yoshinori KUROSE

of length m. By induction hypothesis for the derivation of length m, the induction is com­
pleted.

(iii) In case of (££3): Assume that L s = A* (a ground atom) and A* f/. f b U D.b.
(a) In case that {3' : (f- A, f b, D.b) ""~uc (fb,D.b) and

(F', f b,D.b)""ff (f~, D.~)

of length m. Since induction hypothesis can be applied to the derivation of length m, it is
sufficient to show for the completion of the induction step that A * f/. f U D.. Assume that
A* E f U D.. By Lemma 4.8, A* f/. f bU D.b. It follows that

(a-I) z/: ({(t, f- An, fe, D.c) ""adj (f~, D.~) such that/'» v', or
(a-2) Ji: ({f- A},fc,D.c) ""ff (f~,D.~) such that/,» p,'.

In case of (a-I), A* E f c and {3' does not appear after z/. Hence f bS; f c and D.bS; D.c. This
contradicts Lemma 4.5. In case of (a-2), A* E D.c and {3' does not appear after jl. Hence
f bS; f c and D.bS; D.c. This contradicts Lemma 4.5. Therefore A* f/. f U D..

(b) In case that (f- A, f b, D.b U {A*}) ""ff (fb,D.b) and

(F' U {+- L1 •.. Ls- 1Ls+l .. , Ln}, f b,D.b)""ff (f~, D.~)

of length m, it is easy to see that the induction step is completed by applying induction
hypothesis to the derivation of length m..

(c) In case that ({(t, +- An, f b U {A*}, D.b) ""adj (fb,D.b) and

(F' U {+- L1 ... Ls- 1Ls+l'" Ln}, f b,D.b)""ff (f~, D.~)

of length m, it is easy that the induction step is completed by applying induction hypothesis
to the derivation of length m.

(d) Assume that

(F' U {+- L1 ... Ls- 1Ls+l'" Ln}, f b , D.b) ""ff (f~, D.~)

of length m. By applying induction hypothesis to this derivation, we complete the induction
step. q.e.d.

Proof of Lemma 4.10 It is proved by induction on the length k for (F, f o, D.o) ""ff (f, D.).
, (1) If k = 0, then l = 0 and it holds.

(2) Assume that it holds for k = m. Let k = m+ 1. Assume that F = F'U {f- L1 ... Ln },

where Ls is the selected literal in f- L 1 ... Ln.
(i) In case of (££1): Assume that Ls = A, the set of abductive goals derived by using A is

{gi, ... ,g;} , and

of length m.
(a) If p = 0, then there i~ no derived abductive goal by using A, and Ls<p E Bp implies

Ls<p f/. Sp(Sp(D.+)).
(b) Assume that p > O. Also assume that

3<p(ground substitution), 'Vj : [(1::; j ::; n) =>
[(Lj<p = a E Bp Va E Sp(Sp(D.+))) V (Lj<p = a* E (Bp)* 1\ a f/. Sp(D.+))]] (#)
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Let gi =t- (L1. .. Ls-1l1 ... L~iLS+l ... Ln)Oi for Ai t- It .. .l~i E P* such that ()i = mgu(A, A)
(1 ;:; i;:; p).

In case that cp = ()iP (a ground substitution) for some i, Acp = A()iP = Ai()iP. By (#),
Acp E Sp(Sp(.6.+)), that is, A()iP E Sp(Sp(.6.+)). Hence

3(Ai t-l1·· .l~J()iP~ E ground(P*), Vj : [(1 ;:; j ;:; Pi) =?

[(l}()iP~ = a E Bp =? a E Sp(Sp(.6.+))) /\ (l}()iP~ = a* E (Bp )* =? a ~ Sp(.6.+))]] (*)

By induction hypothesis for gi, for any ground substitution (J,

(b-1) 3j: [(1;:; j ;:; n) /\ (j i= s)/\
[(Lj()i(J = a E Bp =? a ~ Sp(Sp(.6.+)))
/\(Lj()i(J = a* E (Bp)* =? a E Sp(.6.+))]]

or
(b-2) 3j: [(1;:; j :s; Pi)/\

[(l}()i(J = a E Bp =? a ~ Sp(Sp(.6.+)))
/\(l}()W = a* E (Bp)* =? a E Sp(.6.+))]]

The case (b-1) contradicts (#), because cp = ()iP, while the case (b-2) contradicts (*).
In case that there is no i such that cp = ()iP, there is no clause in P*, whose head is

unifiable with Acp. Hence Acp ~ Sp(Sp(.6.+)), which contradicts (#).
It follows that

Vcp(ground substitution), 3j : [(1 ;:; j ;:; n)/\
[(Ljcp = a E Bp =? a ~ Sp(Sp(.6.+))) /\ (Ljcp = a* E (Bp)* =? a E Sp(.6.+))]].

By making use of induction hypothesis for the derivation of length m, we complete the
induction step.

(ii) In case of (ff2): Assume that Ls = A* (a ground atom), A* E f o U .6.0 and

(F' U {t- L1... Ls- 1Ls+1... Ln}, f o, .6.0 ) ~ff (f,.6.)

of length m. By induction hypothesis for the derivation of length m, we complete the induc­
tion step.

(iii) In case of (ff3): Assume that Ls = A* (a ground atom) and A* ~ f o U .6.0 .

(a) In case of (ff3-1): In case that (t- A, f o, .6.0 ) ~~uc (f~, .6.~) and

(F', f~, .6.~) ~ff (f,.6.)

of length m, it is sufficient for the completion of induction step to show that A E Sp(.6.+).
By Leinma 4.4, A ESp (.6.~+). Because .6.~ ~ .6. and Sp is monotonic, A ESp (.6.+).

(b) In case of (ff3-2): In case that ({ t- A}, f 0, .6.0 U {A*}) ~ ff (f~, .6.~),

(F' U {t- L1... Ls- 1Ls+l'" Ln}, f~, .6.~) ~ff (f,.6.)

of length m. By applying induction hypothesis for this derivation, we complete the induction
step. ' .

(c) In case of(ff3-3): In case that ({(t, t- An, f o U {A*}, .6.0) ~adj (f~, .6.~) and

(F' U {t- L1... Ls- 1Ls+l'" Ln}, f~, .6.~) ~ff (f,.6.)

of length m. By applying induction hypothesis for this derivation, we complete the induction
step.

(d) In case of (ff3-4): Otherwise,
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(F' U {f- L1 ... Ls- 1Ls+1'" Ln}, f o, ~o) ~ff (f,~)

of length m. By applying induction hypothesis for this derivation, we complete the induction
step. q.e.d.

Proof of Lemma 4.11 It is proved by induction on the length k of v : (C, f o, ~o) ~adj

(f,~).

(1) If k = 0, then C = {(u, on and it holds.
(2) Assume that it holds for k = m. Let k = m + 1. Also assume that C = C' U {(V, f­

L1 ... Lnn, where Ls is the selected literal in f- L 1 ... Ln.
(i) In case of (adj1): Assume that Ls = A, the set of goals derived by using A is {g;, ... ,

g;}, and

(C' U {(V, g;), ... , (V, g;n, f o, ~o) ~adj (f,~)

of length m.
(a) If P = 0, the induction step is completed by applying induction hypothesis for the

derivation of length m.
(b) In case that P > 0: Assume that the induction step is not completed by applying

induction hypothesis for C'. Let.

g; =f- (L 1 ... L8 - 1lt ... l~iLS+1'" Ln)Oi,

where Ai f- It ... l~i E P* and (}i = mgu(A, A;) (1 ::; i ::; p). By induction hypothesis,

:3i, <p(ground substitution), tlj : [(1 ::; i ::; p)/\
[(1 ::; j ::; n) /\ (j =1= s) ~
[(Lj(}icp = a E Bp ~ a E Sp(f+ U ~+)) /\ (Lj(}icp = a* E (Bp )* ~ a* E f U ~)]]

/\[ (1 ::; j ::; Pi) ~
[l;(}icp = a E Bp ~ a E Sp(f+ U ~+) /\ l;(}icp = a* E (Bp )* ~ a* E f U ~]]].

Hence

:3cp(ground substitution): [(1::; i ::; p) /\ (Ai(}icpo- = a E Bp ~ a E Sp(f+ U ~+))].

Because Ai(}i = A(}i,

A(}icpo- = a E Bp ~ a E Sp(f+ U ~+).

This completes the induction step.
(ii) In case of (adj2): Assume that Ls = A* (a ground atom), A* E f o, A* ~ ~o and

(C' U {(u, f- L1 ··. Ls- 1Ls+1'" Ln)}, f o, ~o) ~adj (f,~)

of length m. Assume that the induction step is not completed even by applying induction
hypothesis for ct. By induction hypothesis for the derivation of length m,

:3cp(ground substitution), tlj : [(1 ::; j ::; n) /\ (j =1= s) ~
[Ljcp = a E B p ~ a E Sp(f+ U ~+) /\ Ljcp = a* E (Bp )* ~ a* E f U ~]].

Because A* E f o ~ f, the induction step is completed.
(iii) In case of (adj3): Assume that Ls = A* (a ground atom), A* E ~o and

(C' U {(V, f- L1 .•. Ls - 1Ls+1'" Lnn, f o, ~o) ~adj (f, ~).
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Because A* E ~a ~ ~, the induction step is completed.
(iv) In case of (adj4): Assume that Ls = A* (a ground atom) and A* rt fa U ~a.

(a) In case of (adj4-1): Assume that ({(t,f- A)}, fa U {A*},~o) "'*adj (f~,.6.~) and

(G' U {(u, f- L1... Ls- 1Ls+1... Ln)}, f~, .6.~) "'*adj (f,~)

of length m. Because A* E f~ ~ f, the induction step is completed.
(b) In case of (adj4-2): Assume that (f- A,fo,.6.a) "'*~uc (f~,.6.~), and

(G', f~, .6.~) "'*adj (f,.6.)

of length m. By applying induction hypothesis to the derivation of length m, the induction
step is completed.

(c) In case of (adj4-3): Assume that ({f- A}, f a,.6.a U {A*}) "'*ff (f~, .6.~) and

(G' U {(V, f- L1... Ls- 1Ls+l'" Ln)}, f~, .6.~) "'*adj (f, .6.).

Because A* E ~~ ~ .6., the induction step is completed.

Proof of Lemma 4.12 It is proved by induction on the length k for v : (G, f b, ~b) "'*adj

(f~, ~~).

(1) If k = 0, then G = {(u, O)} and it holds.
(2) Assume that it holds for k = m. Let k = m + 1. Also assume that G = G' U {(V, f­

L1... Ln)}, where Ls is the selected literal in f- L 1 ... Ln.
(i) In case of (adjl): Assume that L s = A, the set of abductive goals derived by using A

is {gi, ... ,g;}, and

(G' U {(V, gi), ... , (V, g;)}, r b, .6.b) "'*adj (r~, .6.~)

of length m. If V = u, then the induction step is completed by applying induction hypothesis
for G'. Let V= t.

(a) If P = 0, then there is no derived abductive goal by using A, and Ls<p E Bp implies
Ls rt Sp(Sp(rt U ~t)). ~y applying induction hypothesis, the induction step is completed.

(b) Assume that P > O. Also assume that

3<p,Vj: [(1::; j::; n) =>
[Lj<p = a E Bp /\ a E Sp(Sp(rt U ~t)) or
Lj<p = a* E (Bp)* /\ art Sp(ft U .6.t)]]· (#)

Let

g; =f- (L1... Ls- 1i1 ... i~iLs+1'" Ln)Oi

for Ai f- i1 . . . i~i E P* such that ()i = mgu(A, Ai)'
In case that <p = ()iP (a ground substitution) for some i, A<p = A()iP = A()iP. By (#),

A<p E Sp(Sp(rt U .6.t)). That is, Ai()iP E Sp(Sp(rt U .6.t)). Hence

3(Ai f- il ... i~J()iP~ E ground(P*) ,Vj : [(1 ::; j ::; Pi) =>
[i}()iP~ = a E Bp => a E Sp(Sp(rt U .6.t))/\
i;()iP~ = a* E (Bp)* => a rt Sp(rt U .6.t)]]. (*)
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By induction hypothesis, for any ground substitution (J,

3j: [(1 'S: j 'S: n) /\ (j =I 8)/\
-:c-""='"';----;-;-;-

[LjI'}W = a E Bp => a rf- Sp(Sp(rt U b.t))/\
L/Ji(J = a* E (Bp)* => a E Sp(rt U b.t)]] or
3j : [(1 'S: j 'S: Pi)/\
[ljBw = a E Bp => a ~ Sp(Sp(rt U b.t))/\
l;Bi(J = a* E (Bp)* => a E Sp(rt U b.t)]].

The former case contradicts (#), because ep = BiP. The latter case contradicts (*).
In case that ep =I BiP for any i, there is no clause of P*, whose head is unifiable with Aep.

Hence Aep rf- Sp(Sp(rt U b.t)), which contradicts (#).
Therefore

Vep,3j: [(1 'S: j 'S: n)/\

[(Ljep = a E Bp => a rf- Sp(Sp(rt U b.tm
/\(Ljep = a* E (Bp )* => a E Sp(rt U b.t))]].

This is applied to the completion of induction step.
(ii) In case of (adj2): Assume that Ls = A* (a ground atom), A* E r b , A* rf- b.b and

(G' U {(u, ~ L1 ... Ls- 1Ls+l ... Lnn, r b, b.b) ~adj (r~, b.~)

of length m. If V = u, then the induction step is completed by applying induction hypothesis
for the derivation of length m. Assume that V = t. It is sufficient for the completion of the
induction step to show that A E Sp(rt U b.t). Because A* E r b,

v': ({(t,~An, r c , b.c ) ~adj (r~,b.~) such that 'Y» v'.

By Lemma 4.11, A E sp(r~+ U b.~+). Since r~ ~ r o, b.~ ~ b.o and Sp is monotonic,
A E Sp(rt U b.t).

(iii) In case of (adj3): Assume that Ls = A* (a ground atom), A* E b.b and

(G' U {(V, ~ L1 ... Ls - 1Ls+l ... Lnn, r b, b.b) ~adj (r~, b.~)

of length m. By applying induction hypothesis to this derivation, we complete the induction
step.

(iv) In case of (adj4): Assume that Ls = A* (a ground atom) and A* rf- r b U b.b.
(a) Assume that ({(t, ~ An, r b U {A*}, b.b) ~adj (r~, b.~) and

(G' U {(u, ~ L1 ... Ls - 1Ls+l ... Lnn, r~, b.~) ~adj (r~, b.~)

of length m. If V = u, then the induction step is completed by applying induction hypothesis.
Assume that V = t. It is sufficient for the completion of the induction step to show that
A E Sp(rt U b.t). By lemma 4.11, A E Sp(r~+ U b.~+). Because r~ ~ r o, b.~ ~ b.o and Sp
is monotonic, A E Sp(rt U b.t).

(b) Assume that (~ A, r b, b.b) ~~uc (r~, b.~) and

(G', r~, b.~) ~adj (r~, b.~)

of length m. If V = u, then the induction step is completed by applying induction hypothesis
for this derivation. Assume that V = t. It is sufficient for the completion of the induction
step to show that A E Sp(rt U b.t). By Lemma 4.4, A E Sp(b.~+). Because b.~ ~ b.o and
Sp is monotonic, A E Sp(rt U b.t).

(c) Assume that ({~ A}, r b, b.b U {A*}) ~ff (r~, b.~) and
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(C' u {(V, +- L1 ... Ls - 1Ls+l ... Ln )}, r~, ~~) '"'-+adj (r~, ~~)

of length m. By applying induction hypothesis for this derivation, the induction step is
completed. q.e.d.
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