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The electron system of arbitrary degeneracy can be mapped onto a classical system where electrons
of the same spin are assigned an additional interaction and the effect of degeneracy is taken into
account through an imaginative temperature. We apply this method to electrons in quantum dots
modeled as two-dimensional electron liquid confined in a finite domain by a harmonic potential. We
analyze distribution functions by molecular dynamics instead of solving integral equations which
are not so useful in the case without translational invariance.

I. INTRODUCTION

The behavior of electrons in quantum dots is an
important subject of theoretical and experimental re-
searches both as a manifestation of many-body effects
between electrons and as an element of nano-electronic
devices. A simple example of quantum dot can be
realized by applying a potential to two-dimensional
electron systems at the interface of GaAs/GaAlAs.
The first principle theoretical analyses are neverthe-
less still not simple except for the case where only a
few electrons are included.

Recently the classical-map hypernetted-chain
method (CHNC) has been developed by Dharma-
wardana and Perrot.[1-4] This reproduces the results
of the first princeple quantum simulations by map-
ping the quantum system to the classical system
with specified temperature and interactions, and
enables us to analyze properties of spin polarized
two-dimensional electron liquids at finite temper-
atures.[5] We here apply this method to analyze
two-dimensional electron liquids in finite domains
such as quantum dots. The natural units are adopted
in what follows.

II. CHNC METHOD

The mapping in the CHNC method consists of three
elements, (1) the assignment of the “quantum” tem-
perature, (2) the modification of the Coulomb po-
tential to account for the diffraction effect, and (3)
the inclusion of the spin-dependent potential (Pauli
potential) which accounts for the Fermi statistics for
electrons.

A. Quantum temperature

Electron liquids at the temperature T is assigned a
temperature Tcf given by

Tcf =
√

T 2
q + T 2. (1)

Here Tq is the quantum temperature which expresses
the effect of degeneracy in terms of the kinetic temper-
ature of classical fluid. In the two-dimensional case,
Tq is given by

kBTq =
1 + ars

b + crs
EF , (2)

where rs = 1/(πn)1/2, EF is the Fermi energy, a =
1.470342, b = 6.099404, c = 0.476465, and kB is the
Boltzmann constant.[6]
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B. Coulomb potential with diffraction effect

In order to take the effect of quantum diffraction
into account, the Coulomb potential is replaced by

Vcou(r) =
1
r
[1− e−rkth ]. (3)

Here kth = (2πm∗Tcf )1/2 with m∗ = 1/2, m∗ being
the reduced mass of scattering pair of electrons.[7]

C. Pauli potential

In this method an effective potential (Pauli poten-
tial), Pii, is assumed between electrons of the same
spin in order to take the effect of Fermi statistics for
electrons into account. The Pauli potential is deter-
mined by

g0
ii(r) = exp[−βPii(r) + h0

ii(r)− c0
ii(r)], (4)

where β = 1/kBTcf , g0
ii(r) = h0

ii(r) + 1 is pair distri-
bution function, c0

ii(r) is direct distribution function,
and the superscript 0 denotes the values for the ideal
Fermi gas. The pair correlation function for the ideal
Fermi gas h0

ii(r) is given by

h0
ii(r) = − 1

n2
i

∑

k1,k2

n(k1)n(k2) exp[i(k1 − k2) · r]

= −[fi(r)]2. (5)

Here ni is the surface density of species i (i = 1 and
2 denote up and down spins, respectively), n(k) is
Fermi occupation number at the temperature T and,
at T = 0, fi(r) = 2J1(ki

F r)/ki
F r（J1(x) is the Bessel

function and ki
F is Fermi wave number of species i）.

The pair potential between species i and species j,
φij(r), is thus given by

φij(r) = Pii(r)(1 + σiσj) + Vcou(r), (6)

where σi = ±1 denotes the z-component of the spin
of i-th electron.

III. APPLICATION TO FINITE SYSTEMS

As a model of quantum dots, we introduce a two-
dimensional harmonic potential which confines elec-
trons within a finite two-dimensional domain

∑

i

1
2
kr2

i . (7)

The strength of confinement is adjusted so as to give
average densities of electrons. The Hamiltonian of the
system is then given by

H({ri}) =
∑

i

P2
i

2me
+

1
2

∑

i 6=j

Vcou(|ri − rj|)

+
1
2

∑

i 6=j

Pii(|ri − rj |)(1 + σiσj) +
∑

i

1
2
kr2

i , (8)

where Pi is the momentum of i-th electron.
Since it is not easy to solve the hyper-netted

chain(HNC) and similar integral equations in the case
of finite systems where we have no translational in-
variance, we apply the classical molecular dynamics
to our system. The latter gives in principle exact re-
sults for given interparticle and external potentials.

IV. ONE-BODY AND PAIR DISTRIBUTION
FUNCTIONS

Total density of electrons is given by n = n1 + n2

and the degree of spin polarization ζ is defined by

ζ =
(n1 − n2)

n
. (9)

We here consider only the case of ζ = 0.
We apply molecular dynamics to electrons described

by the Hamiltonian (8) and obtain one-body and
pair distribution functions. The results are shown in
Figs.1-8.

Since our systems are classical, they are character-
ized by the coupling parameter

Γ =
e2(πn)1/2

kBTcf
, (10)

when we neglect the effect of the Pauli potential. Thus
the quantum system is mapped onto a classical system
where Γ is given by

Γ =
b + crs

1 + ars
rs. (11)

As an example, the quantum system with rs = 50,
ζ = 0, and T = 0 is mapped to a classical system
with Γ = 20.1. The one-body and the pair distribu-
tion functions in the classical Coulomb system with
Γ = 20.1 are shown in Figs.9-10, respectively. Com-
paring Fig.4 with Fig.9, we observe that the effects of
diffraction and Pauli potential are not significant and
main role is placed by the temperature effect in the
mapping.

The quantum Monte Carlo results for the infinite
system by Tanatar and Ceperley[8] predicts that crys-
tallization occurs around rs = 37. But this phenom-
ena is not confirmed in our simulation.
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FIG. 1: One-body distribution function for rs = 1 in a
finite system. Dotted line is the mean density correspond-
ing to rs, dashed line is the mean density used to compute
the pair distribution function for particles located within
the longitudinal solid line.
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FIG. 2: The same as in Fig.1 for rs = 5.

0000

0.00020.00020.00020.0002

0.00040.00040.00040.0004

0.00060.00060.00060.0006

0.00080.00080.00080.0008

0.00100.00100.00100.0010

0.00120.00120.00120.0012

0000 50505050 100100100100 150150150150 200200200200 250250250250

n
(
R
)

n
(
R
)

n
(
R
)

n
(
R
)

RRRR

FIG. 3: The same as in Fig.1 for rs = 20.
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FIG. 4: The same as in Fig.1 for rs = 50.

0000

0.20.20.20.2

0.40.40.40.4

0.60.60.60.6

0.80.80.80.8

1.01.01.01.0

1.21.21.21.2

0000 0.50.50.50.5 1.01.01.01.0 1.51.51.51.5 2.02.02.02.0 2.52.52.52.5 3.03.03.03.0 3.53.53.53.5 4.04.04.04.0

SAME SPINSAME SPINSAME SPINSAME SPIN

DIFFERENT SPINDIFFERENT SPINDIFFERENT SPINDIFFERENT SPIN

TOTALTOTALTOTALTOTAL

g
(
R
)

g
(
R
)

g
(
R
)

g
(
R
)

RRRR

FIG. 5: Pair distribution function for rs = 1 in a finite
system.
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FIG. 6: The same as in Fig.5 for rs = 5.
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FIG. 7: The same as in Fig.5 for rs = 20.
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FIG. 8: The same as in Fig.5 for rs = 50.
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FIG. 9: One-body distribution function for Γ = 20.1 in a
classical system.
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FIG. 10: Pair distribution function for Γ = 20.1 in a clas-
sical system.
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FIG. 11: Pair distribution function for rs = 5 in a uniform
system.

These one-body distribution functions indicate that
the oscillation in the density starts from outside and
the amplitude increases with the increases of rs. We
may regard this phenomenon as similar to the one we
observe in classical Coulomb systems confined in finite
domains.

In Figs.5-8, we observe the effect of the Pauli po-
tential for electrons of the same spin component as an
additional repulsion. On the other hand, the effect on
the one-body distribution function is not so clear as
described above. In Fig.11, we show the pair distri-
bution function for rS = 5 and T = 0 in a uniform
system. Comparing this result with those of previ-
ous analyses based on quantum Monte Carlo method,
we note that our result has more pronounced oscilla-
tion. This may suggest that Tq given by Perrot and
Dharma-wardana is appropriate for the application of
HNC equation but would be somewhat small for the
application of the molecular dynamics simulation.

V. CONCLUSION

The behavior of electrons in two-dimensional finite
systems is of essential importance in understanding
physical properties of quantum dots. It is shown that
the combination of the classical mapping and molec-
ular dynamics is useful to obtain this information. It
is also shown that the assignment of the temperature
derived for analyses by the hypernetted-chain equa-
tion seems to need some adjustment for application of
molecular dynamics.

[1] M. W. C. Dharma-wardana and F. Perrot, Phys. Rev.
Lett. 84, 959(2000).

[2] F. Perrot and M. W. C. Dharma-wardana, Phys. Rev.
B 62, 16536(2000).

[3] F. Perrot and M. W. C. Dharma-wardana, Phys. Rev.
Lett. 87, 206404(2001).

[4] M. W. C. Dharma-wardana and F. Perrot, Phys. Rev.
Lett. 90, 136601(2003).

[5] N. Q. Khanh and H. Totsuji, Phys. Rev. B 69,

165110(2004).
[6] C. Bulutay and B. Tanatar, Phys. Rev. B 65,

195116(2002).
[7] H. Minoo, M. M. Gombert, and C. Deutsch, Phys. Rev.

A 23, 924(1981).
[8] B. Tanatar and D. M. Ceperley, Phys. Rev. B 39,

5005(1989).

Takashi MIYAKE et al. MEM.FAC.ENG.OKA.UNI. Vol.40

43


	Index

