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The convergence performance of typical numerical schemes for geometric fitting for computer
vision applications is compared. First, the problem and the associated KCR lower bound are
stated. Then, three well known fitting algorithms are described: FNS, HEIV, and renormal-
ization. To these, we add a special variant of Gauss-Newton iterations. For initialization of
iterations, random choice, least squares, and Taubin’s method are tested. Numerical simula-
tions and real image experiments and conducted for fundamental matrix computation and ellipse
fitting, which reveals different characteristics of each method.

1. Introduction

We consider the following class of problems, which
we call geometric fitting : we fit a parameterized geo-
metric model (a curve, a surface, or a relationship in
high dimensions) expressed as an implicit equation in
the form

F (x;u) = 0, (1)

to N data xα, α = 1, ..., N , typically points in an
image or point correspondences over multiple images
[9]. The function F (x; u), which may be a vector
function if the model is defined by multiple equations,
is parameterized by vector u. Each xα is assumed to
be perturbed by independent noise from its true value
x̄α which strictly satisfies Eq. (1).

From the parameter u of the fitted equation, one
can discern the underlying geometric structure [9].
In this paper, we focus on problems for which Eq. (1)
reduces to a linear form by changing variables. A
large class of computer vision problems fall into this
category [9].

For this, various algebraic methods were proposed
in the past, but Kanatani [9] pointed out that the
problem can be regarded as statistical estimation and
that maximum likelihood (ML) produces an optimal
solution. To compute ML, Chojnacki et al. [3] pro-
posed a procedure called FNS, and Leedan and Meer
[13] presented a method called HEIV. In this paper,
we add a special variant of Gauss-Newton iterations.
These methods attain a theoretical accuracy bound
(KCR lower bound) up to high order terms in noise
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[2, 9]. Kanatani’s renormalization [8, 9] also computes
a solution nearly equivalent to them [10].

All these are iterative methods with different con-
vergence properties, which also depend on the choice
of initial values. The purpose of this paper is to ex-
perimentally compare their convergence performance.

Sect. 2 and 3 state the problem and the KCR lower
bound. Sect. 4 describes the four algorithms: FNS,
HEIV, renormalization, and a new scheme based
on Gauss-Newton iterations. In Sect. 5, we list
three types of initialization of the iterations: random
choice, least squares, and Taubin’s method. We then
show numerical and real image examples of two typ-
ical problems: fundamental matrix computation in
Sect. 6 and ellipse fitting in Sect. 7. Section 8 con-
cludes this paper.

2. Statistical Optimization

Kanatani [9, 10] proved that if each datum xα is an
independent Gaussian random variable with mean x̄α

and covariance matrix V [xα], the following inequality
holds for an arbitrary unbiased estimator û of u:

V [û] Â
(

N∑
α=1

(Pu∇uF̄α)(Pu∇uF̄α)>

(∇xF̄α, V [xα]∇xF̄α)

)−

. (2)

Here, Â means that the left-hand side minus the right
is positive semidefinite, and the superscript − denotes
pseudoinverse. The symbols ∇xF̄α and ∇uF̄α denote
the gradient of the function F (x;u) in Eq. (1) with
respect to x and u, respectively, evaluated at x = x̄α.
The symbol Pu denotes projection onto the tangent
space Tu(U) to the domain U of the parameter u,
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which is generally a manifold in Rn. Throughout
this paper, we denote the inner product of vectors a
and b by (a, b).

Chernov and Lesort [2] called the right-hand side
of Eq. (2) the KCR (Kanatani-Cramer-Rao) lower
bound and showed that it holds except for O(ε4) even
if û is not unbiased; it is sufficient that û is “consis-
tent” in the sense û converges to the true value u as
the noise in the data decreases.

It is a common strategy to define an estimator
through minimization or maximization of some cost
function, although this is not always necessary. A
widely used method is what is called least-squares es-
timation (LS) (and by many other names such as al-
gebraic distance minimization), minimizing

J =
N∑

α=1

F (xα; u)2. (3)

A more sophisticated method is maximum likeli-
hood (ML) (also called by many other names). We
regard the data x1, ..., xN as perturbed from their
true values x̄1, ..., x̄N by noise. The domain X of the
data is generally a manifold in Rm. Assuming that
the noise is small, we view the noise as occurring in
the tangent space Tx̄α(X ) to the domain X at each
x̄α. Within that tangent space, the noise is assumed
to be independent Gaussian with mean 0 and covari-
ance matrix V [xα]. Then, the likelihood of observing
x1, ..., xN is

C
N∏

α=1

e−(xα−x̄α,V [xα]−(xα−x̄α))/2, (4)

where C is a normalization constant. The true values
x̄1, ..., x̄N are constrained by Eq. (6). Maximizing
Eq. (4) is equivalent to minimizing the negative of
its logarithm, which is written up to additive and
multiplicative constants in the form

J =
N∑

α=1

(xα − x̄α, V [xα]−(xα − x̄α)), (5)

called the (square) Mahalanobis distance. This is to
be minimized subject to

F (x̄α; u) = 0, α = 1, ..., N. (6)

This constraint can be eliminated by introducing La-
grange multipliers and ignoring higher order terms in
the noise level. The resulting form is

J =
N∑

α=1

F (xα; u)2

(∇xFα, V [xα]∇xFα)
. (7)

It can be shown that the covariance matrix V [û]
of the resulting estimator û achieves the KCR lower
bound except for O(ε4) [2, 9, 10].

3. Linearized Constraint

We concentrate on a special subclass of geometric
fitting problems in which Eq. (1) reduces to the linear
form

(ξ(xα), u) = 0, (8)

by changing variables. Since the data xα are m-
dimensional vectors and the unknown parameter u
is a p-dimensional vector, ξ( · ) is a (generally nonlin-
ear) embedding from Rm to Rp. In order to remove
scale indeterminacy of the form of Eq. (8), we nor-
malize u to ‖u‖ = 1.

The KCR lower bound for the linearized constraint
has the form

VKCR[û] =
( N∑

α=1

ξ̄αξ̄
>
α

(u, V [ξα]u)

)−
, (9)

where ξ̄α is an abbreviation for ξ(x̄α). The covari-
ance matrix V [ξα] of ξ(xα) is given, except for higher
order terms in the noise level, in the form

V [ξα] = ∇xξ̄
>
α V [xα]∇xξ̄α, (10)

where ∇xξ̄α is the m× p Jacobian matrix

∇xξ =




∂ξ1/∂x1 · · · ∂ξp/∂x1

...
. . .

...
∂ξ1/∂xm · · · ∂ξp/∂xm


 . (11)

evaluated at x = x̄α. Note that in Eq. (9) we do not
need the projection operator for the normalization
constraint ‖u‖ = 1, because ξ̄α is orthogonal to u
due to Eq. (8); for the moment, we assume that no
other internal constraints exist.

This subclass of geometric fitting problems covers
a wide range of computer vision applications. The
following are typical examples:

Example 1. Fundamental Matrix Computation

Suppose we have N corresponding points in two
images of the same scene viewed from different posi-
tions. If point (xα, yα) in the first image corresponds
to (xα, yα) in the second, the following epipolar equa-
tion holds [7]:

(




xα

yα

1


 , F




x′α
y′α
1


) = 0. (12)

Here, F is a matrix, called the fundamental matrix ,
that depends only on the relative positions and orien-
tations of the two cameras and their intrinsic param-
eters (e.g., their focal lengths) but not on the scene or
the choice of the corresponding points. If we define

ξ(x, y, x′, y′)=(xx′ xy′ x yx′ yy′ y x′ y′ 1)>,

u=(F11 F12 F13 F21 F22 F23 F31 F32 F33)>, (13)
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Eq. (12) is linearized in the form of Eq. (8). If inde-
pendent Gaussian noise of mean 0 and standard de-
viation σ is added to each coordinates of (xα, yα) and
(x′α, y′α), the covariance matrix V [ξα] has the form

V [ξα] = σ2×


x̄2
α + x̄′2α x̄′αȳ′α x̄′α x̄αȳα 0 0 x̄α 0 0
x̄′αȳ′α x̄2

α + ȳ′2α ȳ′α 0 x̄αȳα 0 0 x̄α0
x̄′α ȳ′α 1 0 0 0 0 0 0

x̄αȳα 0 0 ȳ2
α + x̄′2α x̄′αȳ′α x̄′α ȳα 0 0

0 x̄αȳα 0 x̄′αȳ′α ȳ2
α + ȳ′2α ȳ′α 0 ȳα0

0 0 0 x̄′α ȳ′α 1 0 0 0
x̄α 0 0 ȳα 0 0 1 0 0
0 x̄α 0 0 ȳα 0 0 1 0
0 0 0 0 0 0 0 0 0




,

(14)

except for O(σ4), where (x̄α, ȳα) and (x̄′α, ȳ′α), are the
true positions of (xα, yα) and (x′α, y′α), respectively.
The fundamental matrix F should also satisfy the
constraint that detF = 0 [7]. If this constraint is
taken into account, the KCR lower bound involves
the corresponding projection operation [9, 11].

Example 2. Conic Fitting

Suppose we want to fit a quadratic curve (circle,
ellipse, parabola, hyperbola, or their degeneracy), or
a conic, to N points (xα, yα), α = 1, ..., N , in the
plane. The constraint has the form

Ax2
α +2Bxαyα +Cy2

α +2(Dxα +Eyα)+F = 0. (15)

If we define

ξ(x, y) = (x2 2xy y2 2x 2y 1)>,

u = (A B C D E F )>, (16)

Eq. (15) is linearized in the form of Eq. (8). If in-
dependent Gaussian noise of mean 0 and standard
deviation σ is added to each coordinates of (xα, yα),
the covariance matrix V [ξα] has the form

V [ξα] = 4σ2




x̄2
α x̄αȳα 0 x̄α 0 0

x̄αȳα x̄2
α + ȳ2

α x̄αȳα ȳα x̄α 0
0 x̄αȳα ȳ2

α 0 ȳα 0
x̄α ȳα 0 1 0 0
0 x̄α ȳα 0 1 0
0 0 0 0 0 0




,

(17)
except for O(σ4), where (x̄α, ȳα) is the true position
of (xα, yα).

4. Numerical Computation of ML

As we can see from Eqs. (17) and (14), the covari-
ance matrix V [ξα] of ξα in many practical problems
is factored into the form

V [ξα] = ε2V0[ξα], (18)

where ε is a constant that characterizes the noise and
V0[ξα] is a matrix that depends only on the true data
values. Hereafter, we call ε the noise level and V0[ξα]
the normalized covariance matrix .

For the constraint in the form of Eq. (8), Eq. (7)
reduces to

J =
1
2

N∑
α=1

(u, ξα)2

(u, V0[ξα]u)
. (19)

The covariance matrix V [ξα] can be replaced by
V0[ξα], because multiplication of J by a positive con-
stant does not affect its minimization. The maximum
likelihood solution is obtained by solving

∇uJ =
N∑

α=1

(u, ξα)ξα

(u, V0[ξα]u)
−

N∑
α=1

(u, ξα)2V0[ξα]u
(u, V0[ξα]u)2

= (M −L)u = 0, (20)

where we define

M =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

, L =
N∑

α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

.

(21)

4.1 Fundamental Numerical Scheme (FNS)

The procedure called FNS (fundamental numerical
scheme) of Chojnacki et al. [3] for solving Eq. (20) is
described as follows:

1. Initialize u.

2. Compute the matrices M and L in Eqs. (21).

3. Solve the eigenvalue problem

(M −L)u′ = λu′, (22)

and compute the unit eigenvector u′ for the
eigenvalue λ closest to 0.

4. If u′ ≈ u except for sign, return u′ and stop.
Else, let u ← u′ and go back to Step 2.

Later, Chojnacki et al. [5] pointed out that con-
vergence performance improves if we choose in Step
3 not the eigenvalue closest to 0 but the smallest one.
We call the above procedure the original FNS and the
one using the smallest eigenvalue the modified FNS .

Whichever eigenvalue is chosen for λ, we have λ =
0 after convergence. In fact, convergence means

(M −L)u = λu (23)

for some u. Computing the inner product with u on
both sides, we have

(u,Mu)− (u, Lu) = λ. (24)

On the other hand, Eqs. (21) imply that (u, Mu) =
(u, Lu) identically, meaning λ = 0.
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4.2 HeteroscedasticErrors-in-Variables (HEIV)

Equation (20) can be rewritten as

Mu = Lu. (25)

The HEIV (heteroscedastic errors-in-variables)
method of Leedan and Meer [13] is to iteratively
solve the generalized eigenvalue problem Mu =
λLu. In many applications, the matrix L is not
positive definite, so we cannot directly solve this
generalized eigenvalue problem. For a wide range
of problems, however, the vectors ξα and u and
the normalized covariance matrix V0[ξα] have the
following form:

ξα =
(

zα

C

)
, u =

(
v
a

)
,

V0[ξα] =
(

V0[zα] 0
0> 0

)
. (26)

For example, C = 1 and a = F33 for fundamental
matrix computation (see Eqs. (13) and (14)), and C
= 1 and a = F for conic fitting (see Eqs. (16) and
(17)).

Let us define (p− 1)× (p− 1) matrices M̃ and L̃
by

M̃ =
N∑

α=1

z̃αz̃>α
(v, V0[zα]v)

, L̃ =
N∑

α=1

(v, z̃α)2V0[zα]
(v, V0[zα]v)2

,

(27)
where we put

z̃α = zα − z̄,

z̄ =
N∑

α=1

zα

(v, V0[zα]v)

/
N∑

β=1

1
(v, V0[zβ ]v)

. (28)

Then, Eq. (25) splits into the following two equations
[5, 13]:

M̃v = L̃v, (v, z̄) + Ca = 0. (29)

If we compute a (p−1)-dimensional unit vector v that
satisfies the first equation, the second gives a. Hence,
we obtain

u = N [
(

v
a

)
], (30)

where N [ · ] denotes normalization to unit norm. The
vector u that satisfies the first of Eqs. (29) is com-
puted by the following iterations [5, 13]:

1. Initialize v.

2. Compute the matrices M̃ and L̃ in Eqs. (27).

3. Solve the generalized eigenvalue problem

M̃v′ = λL̃v′, (31)

and compute the unit generalized eigenvector v′

for the generalized eigenvalue λ closest to 1.

4. If v′ ≈ v except for sign, return v′ and stop.
Else, let v ← v′ and go back to Step 2.

However, Leedan and Meer [13] pointed out that
choosing in Step 3 not the generalized eigenvalue clos-
est to 1 but the smallest one improves the convergence
performance. Here, we call the above procedure the
original HEIV and the one using the smallest gener-
alized eigenvalue the modified HEIV .

Whichever generalized eigenvalue is chosen for λ,
we have λ = 1 after convergence. In fact, convergence
means

M̃v = λL̃v (32)

for some v. Computing the inner product with v on
both sides, we have

(v, M̃v) = λ(v, L̃v). (33)

On the other hand, Eqs. (27) imply that (v, M̃v) =
(v, L̃v) identically, meaning λ = 1.

4.3 Renormalization

Kanatani’s renormalization [8, 9] is to approximate
the matrix L in Eqs. (21) in the form

L ≈ cN , N =
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

. (34)

The constant c is determined so that M − cN has
eigenvalue 0. This is done by the following iterations
[9]:

1. Initialize u and let c = 0.

2. Compute the matrix M in Eqs. (21) and the
matrix N in Eqs. (34).

3. Solve the eigenvalue problem

(M − cN)u′ = λu′, (35)

and compute the unit eigenvector u′ for the
eigenvalue λ closest to 0.

4. If λ ≈ 0, return u′ and stop. Else, let

c ← c +
λ

(u′,Nu′)
, u ← u′ (36)

and go back to Step 2.

4.4 Gauss-Newton Iterations

Since the gradient∇uJ is given by Eq. (20), we can
minimize the function J in Eq. (19) by Newton itera-
tions. If we evaluate the Hessian ∇2

uJ , the increment
∆u in u is determined by solving

(∇2
uJ)∆u = −∇uJ. (37)
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Since ∇2
uJ is singular (recall that J is constant in the

direction of u), the solution is indeterminate. How-
ever, if we use pseudoinverse and compute

∆u = −(∇2
uJ)−∇uJ, (38)

we obtain a solution orthogonal to u.
Differentiating Eq. (20) and introducing Gauss-

Newton approximation (i.e., ignoring terms that con-
tain (u, ξα)), we see that the Hessian is nothing but
the matrix M in Eqs. (21). We enforce M to have
eigenvalue 0 for u, using the projection matrix

P u = I − uu>, (39)

where I is the unit matrix. The iteration procedure
goes as follows:

1. Initialize u.

2. Compute the matrices M and L in Eqs. (21).

3. Let

u′ = N [u− (P uMP u)−(M −L)u]. (40)

4. If u′ ≈ u, return u′ and stop. Else, let u ← u′

and go back to Step 2.

5. Initialization

For initialization of the iterations, we test the fol-
lowing three:

5.1 Random Choice

We generate nine independent Gaussian random
numbers of mean 0 and standard deviation 1 and nor-
malize the vector consisting of them into unit norm.

5.2 Least Squares (LS)

Approximating the denominators in Eq. (19) by a
constant, we minimize

JLS =
1
2

N∑
α=1

(u, ξα)2 =
1
2
(u, MLSu),

MLS =
N∑

α=1

ξαξ>α . (41)

Equation (41) is minimized by the unit eigenvalue u
of MLS for the smallest eigenvalue.

5.3 Taubin’s Method

Replacing the denominators in Eq. (19) by their
average, we minimize the following function1 [14]:

JTB =
1
2

∑N
α=1(u, ξα)2∑N

α=1(u, V0[ξα]u)
=

1
2

(u, MLSu)
(u, NTBu)

,

1Taubin [14] did not take the covariance matrix into ac-
count. This is a modification of his method.

Figure 1: Simulated images of planar grid surfaces.

NTB =
N∑

α=1

V0[ξα]. (42)

Equation (42) is minimized by solving the generalized
eigenvalue problem

MLSu = λNTBu, (43)

for the smallest generalized eigenvalue. However, the
matrix NTB is often not positive definite, so we de-
compose ξα, u, and V0[ξα] in the form of Eqs. (26)
and define (p− 1)× (p− 1) matrices M̃LS and ÑTB

by

M̃LS =
N∑

α=1

z̃αz̃>α , ÑTB =
N∑

α=1

V0[zα], (44)

where

z̃α = zα − z̄, z̄ =
1
N

N∑
α=1

zα. (45)

Then, Eq. (43) splits into two equations

M̃LSv = λÑTBv, (v, z̄) + Ca = 0. (46)

If we compute the unit generalized eigenvector v of
the first equation for the smallest generalized eigen-
value λ, the second gives a. Hence, u is given by
Eq. (30).

6. Fundamental Matrix Computation

6.1 Simulated Images

Figure 1 shows two simulated images of two pla-
nar grid planes joined at angle 60◦. The image size
is 600 × 600 (pixels), and the focal length is 1200
(pixels). We added random Gaussian noise of mean 0
and standard deviation σ (pixels) to the image coordi-
nates of each grid point independently and estimated
the fundamental matrix by different methods.

The fundamental matrix F should satisfy the con-
straint det F = 0 [7], and Chojnacki et al. [4] pre-
sented a FNS-like procedure to incorporate this con-
straint. However, once the solution û of Eq. (20) is
obtained, it can be easily corrected so as to satisfy
detF = 0 in such a way that the accuracy is equiva-
lent to the constrained minimization of Eq. (19) sub-
ject to det F = 0 except for higher order terms in σ
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Figure 2: Average number of iterations vs. noise level. (a) Random initialization. (b) LS initialization. (c) Taubin
initialization.

(see Appendix A for the procedure) [9, 11]. So, we
consider here the computation prior to this correc-
tion.

Figure 2 shows the average number of iterations of
each method for 1000 trials. We stopped when the
increment in u was less than 10−6 in norm (the sign
of the eigenvector was chosen so that the orientation
aligns with the previous solution). Figure 2(a) is for
random initialization. The original FNS did not con-
verge for about 99% of the trials after 100 iterations;
the original HEIV not for about 40%. We stopped af-
ter 100 iterations and set the iteration count to 100.

Figure 2(a) shows that the modified FNS/HEIV
converge much more quickly than the original
FNS/HEIV. This can be explained as follows. If the
computed u′ is close to the true value u, the matrix
L in Eqs. (21) and the matrix L̃ in Eqs. (27) are both
close to O. Initially, however, they may be very differ-
ent from O when the initial value is randomly chosen.
Equations (22) and (31) are written, respectively, as

(M −L− λI)u′ = 0, (M̃ − λL̃)v′ = 0. (47)

Note that L and L̃ are both positive definite. In
order to cancel their effects, we need to choose λ to
be negative in the first equation and smaller than 1
in the second.

As predicted from this explanation, the difference
between the original FNS/HEIV and the modified
FNS/HEIV shrinks as we use better initial values, as
seen from Fig. 2(b), (c). We also see that the (origi-
nal or modified) FNS is more efficient than (original
or modified) HEIV.

Another finding is that, for random initialization,
renormalization is the most efficient. This is because
we start solving Eq. (35) with c = 0, canceling the
effect of N whatever it is, and the resulting u′ is
close to the LS solution. In contrast, FNS and HEIV
may produce a solution very different from the true
value when initially the matrices L and L̃ are very
different from O.

As Fig. 2(b), (c) shows, however, the convergence
performance of FNS and HEIV improves as we use

 0

 0.1

 0.2

 0.3

 0.4
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 0  1  2  3  4  5  6  7  8  9σ

KCR lower bound

least squares

Taubin

original/modified FNS
original/modified HEIV

Gauss-Newton

renormalization

Figure 3: RMS error vs. noise level.

better initial values. Naturally, Gauss-Newton itera-
tions converge faster when started from better initial
values. In contrast, renormalization behaves almost
independently of initialization, confirming the above
explanation. Overall, Taubin-initialized (original or
modified) FNS shows the best convergence perfor-
mance.

Figure 3 plots for each σ the RMS (root-mean-
squares) of ‖P uû‖ over 1000 independent trials. We
compared LS, Taubin’s method, and the four iterative
methods starting from the Taubin solution and con-
firmed that for each method the final solution does
not depend on the initial value as long as the itera-
tions converge. The dotted line indicates the KCR
lower bound implied by Eq. (9).

We can see that Taubin’s method is considerably
better2 than LS. The four iterative methods indeed
improve the Taubin solution, but the improvement is
rather small. All the solutions nearly agree with the
KCR lower bound when noise is small and gradually
deviate from it as noise increases. Since FNS, HEIV,
and Gauss-Newton minimize the same function, the
resulting solution is virtually the same. The renor-
malization solution is nearly equivalent to them.

2The mechanism of the superiority of Taubin’s method over
LS is analyzed in detail in [10].
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Figure 4: Corresponding points in real images and com-
puted epipolar lines.

Table 1: Number of iterations and the computation time
(sec) for different methods and different initializations.

random LS Taubin

original FNS 94.3 .168s 5 .009s 5 .012s
modified FNS 12.0 .030s 5 .010s 5 .013s
original HEIV 74.6 .264s 7 .019s 7 .025s
modified HEIV 9.1 .037s 7 .020s 7 .026s
renormalization 7.0 .022s 7 .013s 7 .017s
Gauss-Newton 10.3 .038s 5 .009s 6 .017s

6.2 Real Images

Figure 4 shows two images of the same scene. We
manually chose corresponding 100 points as marked
there and computed the fundamental matrix by dif-
ferent methods. The solution is the same whichever
is used, and the computed epipolar lines are drawn in
the images.

Table 1 lists the number of iterations and the com-
putation time (sec) for each method. For random
initialization, we computed the average over 100 in-
dependent trials. We used Pentium 4 3.4GHz for the
CPU with 2GB main memory and Linux for the OS.

We observe that for whichever initialization, FNS
is always better than HEIV. For both, the choice of
the eigenvalue is irrelevant if the iterations are ini-
tialized by LS or Taubin’ method; for random ini-
tialization, the original FNS/HEIV do not converge
in most of the trials (recall that 100 means noncon-
vergence). As predicted, the number of iterations of
renormalization does not depend on initialization.

The difference in computation time between LS
and Taubin initializations is due to the initialization
computation: 0.0009s for LS vs. 0.0015s for Taubin.
Overall, LS initialized (original or modified) FNS
shows the best convergence performance.

7. Ellipse Fitting

Figure 5 shows two examples of 20 equidistant
points (x̄α, ȳα) on an ellipse. We added Gaussian
noise of mean 0 and standard deviation σ to the x
and y coordinates of each point independently and

(a) (b)

Figure 5: 20 points on elliptic arcs. (a) Short arch. (b)
Long arc

fitted an ellipse by different methods.

Equation (15) does not necessarily describe an el-
lipse. Even if the points are sampled from an ellipse,
the fitted equation may define a hyperbola or other
curves in the presence of large noise, and Fitzgib-
bon et al. [6] presented a technique for preventing
this Here, however, we do not impose any constraints
to prevent non-ellipses, assuming that noise is suffi-
ciently small.

Doing numerical experiments, we have found that
the convergence performance differs greatly, depend-
ing on whether we use points on a short elliptic arc
as in Fig. 5(a) or on a long elliptic arc as in Fig. 5(b).
So, we study the two cases separately.

7.1 Fitting to a Short Arc

For each σ, we computed the average number of
iterations over 1000 independent trials (Fig. 6). We
stopped when the increment in u is less than 10−6

in norm as before. As in the case of fundamental
matrix computation, the modified FNS/HEIV always
converge faster than the original FNS/HEIV. This
is most apparent for random initialization, for which
the original FNS/HEIV did not converge for 16% and
49%, respectively, of the trials.

We can also see that the difference between the
original FNS/HEIV and the modified FNS/HEIV
shrinks as we use better initial values. The behav-
ior of renormalization, on the other hand, is almost
unchanged, as before. Overall, the most efficient
method is the modified HEIV for whichever initializa-
tion. However, there is no difference between (origi-
nal or modified) FNS/HEIV if initialized by Taubin’s
method.

Figure 7 plots for each σ the RMS of ‖P uû‖
computed over 1000 independent trials starting the
Taubin solution. As in the case of fundamental ma-
trix computation, the final solution does not depend
on the initial value as long as the iterations converge,
and the solutions of FNS, FNS, HEIV, and Gauss-
Newton are virtually the same. Renormalization also
produces solutions very close to them, and their ac-
curacy is close to the KCR lower bound (dotted line).
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Figure 6: Average number of iterations for ellipse fitting vs. noise level. (a) Random initialization. (b) LS initialization.
(c) Taubin initialization.
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Figure 7: RMS error of ellipse fitting to the points in
Fig. 5(a) vs. noise level.

7.2 Fitting to a Long Arc

The comparative behavior of each method for
points distributed over a short elliptic arc in Fig. 5(a)
is more or less similar to the case of fundamental ma-
trix computation. However, the behavior is very dif-
ferent when a long elliptic arc shown in Fig. 5(b) is
used.

Figure 8 shows the number of iterations corre-
sponding to Fig. 6. This time, all methods con-
verged within 10 iterations when initialized by LS or
Taubin’s method, so the vertical axis is restricted over
that range.

The most unexpected is the fact that the modified
FNS is worse than the original FNS . For random ini-
tialization, the modified FNS did not converge after
100 iterations for all 1000 trials, while the original
FNS did not converge for 24% of the trials.

This is related to the singularity of ellipse fitting
[1] (see Appendix B): Some of the terms on the right-
hand side of Eq. (19) diverge to ±∞. This happens
when a data point exists near the center of the current
candidate fit, which is more likely to occur when the
data points are distributed over a long arc.

As can be seen from Fig. 8, renormalization is the
most stable for whichever initialization. As we noted
earlier, this is because the iterations start from c =
0. Gauss-Newton iterations are also stable.

Figure 9 shows the RMS error corresponding to
Fig. 7. Now, the LS solution, which is prone to sta-

tistical bias, is as accurate as Taubin’s method. This
is because bias is less likely to arise for a long arc
(no bias would arise for the entire ellipse due to the
symmetry). All solutions have the accuracy close to
the KCR lower bound.

7.3 Real Images

The left image in Fig. 10 shows edges extracted
from a real image of a circular object occluded to a
large extend. For edge detection, we used the method
of Kanatani and Ohta [12]. We fitted an ellipse to
148 points that constitute an elliptic arc by differ-
ent methods. All iterations are initialized Taubin’s
method. The right image shows the resulting ellipses
overlaid on the original image .

The solutions obtained by (original and modified)
FNS/HEIV, renormalization, and Gauss-Newton it-
erations are indistinguishable when displayed as el-
lipses. We can see that the accuracy of LS is
very much lower than Taubin’s method, compared to
which the accuracy gain by ML is very small.

Figure 11 shows corresponding results for a less
occluded circular object. In this case, the LS fit is
sufficiently accurate, producing practically the same
solution as the other methods.

Table 2 lists the number of iterations and compu-
tation time (sec) for different methods. The compu-
tation time for Taubin initialization is 0.00063s for
Fig. 10 and 0.00166s for Fig. 11.

Since the initial Taubin solution is sufficiently ac-
curate already, all the methods converge after the
same number of iterations except renormalization.
This exceptional behavior of renormalization can be
explained as follows. Because renormalization always
starts from c = 0 irrespective of the accuracy gain
by the initial Taubin solution, it requires one or two
additional iterations to arrive at the same accuracy.

8. Conclusions

We have compared the convergence performance
of different numerical schemes for geometric fitting.
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Figure 8: Average number of iterations for ellipse fitting to the points in Fig. 3 vs. noise level. (a) Random initialization.
(b) LS initialization. (c) Taubin initialization.
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Figure 9: RMS error of ellipse fitting to the points in
Fig. 5(b) vs. noise level.

First, we stated the problem and the associated KCR
lower bound. Then, we described the algorithms
of FNS, HEIV, and renormalization, to which we
added a special variant of Gauss-Newton iterations.
For initial values, we tested random choice, LS, and
Taubin’s method. Numerical and real image exper-
iments of fundamental matrix computation and el-
lipse fitting revealed different characteristics of each
method. Overall, FNS exhibited the best convergence
performance if initialized by Taubin’s method.
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Appendix

A Rank Constraint Optimization

The computed fundamental matrix F can be opti-
mally corrected so as to satisfy det F = 0 as follows
[9, 11].

Let û be the 9-dimensional vector representation
of the ML estimate F̂ of the fundamental matrix F
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Figure 10: Left: Edge image of a circular object occluded
to a large extend. Right: Ellipses fitted to the 148 edge
points overlaid on the original image. The thin line is for
LS, the white line is for Taubin’s method, and the thick
line is for the ML solution.

computed without the constraint det F = 0. Com-
pute

M̃ =
N∑

α=1

(P ûξα)(P ûξα)>

(û, V0[ξα]û)
, (48)

where P û is the projection matrix defined in
Eqs. (40). Let λ1 ≥ λ2 ≥ · · · ≥ λ9 (= 0) be the
eigenvalues of M̃ , and u1, u2, ..., u9 (= û) the cor-
responding orthonormal system of eigenvectors. The
covariance matrix V [û] of û is estimated to be V0[û]
up to a positive multiplier in the following form3 [9]:

V0[û] =
u1u

>
1

λ1
+ · · ·+ u8u

>
8

λ8
. (49)

We update û and V0[û] iteratively until they converge
as follows:

û ← N [û− (det F )V0[û]û†

(û†, V0[û]û†)
], V0[û] ← P ûV0[û]P û.

(50)
Here, û† denotes the following transformation of the
vector û, corresponding to the cofactor F † of F̂ :

û† =




û5û9 − û8û6

û6û7 − û9û4

û4û8 − û7û5

û8û3 − û2û6

û9û1 − û3û7

û7û2 − û1û8

û2û6 − û5û3

û3û4 − û6û1

û1û5 − û4û2




. (51)

B Singularity of Ellipse Fitting

The error term ∆ξα in Eq. (8) is written to a first
approximation in the form

∆ξα =
∂ξ

∂x

∣∣∣
x=xα,y=yα

∆xα+
∂ξ

∂y

∣∣∣
x=xα,y=yα

∆yα. (52)

3For numerical computation, we multiply this expression by
λ8 to make it O(1) to prevent numerical instability.

Figure 11: Left: Edge image of a circular object occluded
to a small extend. Right: Ellipses fitted to the 414 edge
points overlaid on the original image. The thin line is for
LS, the white line is for Taubin’s method, and the thick
line is for the ML solution.

Table 2: Number of iterations and the computation time
(sec) for fitting an ellipse to the data in Figs. 10 and 11.

Fig. 10 Fig. 11

original FNS 5 .000s 3 .000s
modified FNS 5 .008s 3 .013s
original HEIV 5 .006s 3 .010s
modified HEIV 5 .006s 3 .010s
Gauss-Newton 5 .009s 3 .015s
renormalization 7 .008s 4 .012s

By our assumption, we have E[∆x2
α] = E[∆y2

α] = σ2

and E[∆xα∆yα] = E[∆xα]E[∆yα] = 0. Hence the
covariance matrix V [ξα] in Eq. (10) is written as

V [ξα] = σ2
(∂ξ

∂x

∂ξ>

∂x
+

∂ξ

∂y

∂ξ>

∂y

)∣∣∣
x=xα,y=yα

(53)

The function J in Eq. (19) has a singularity if there
is some α for which

(u, V [ξα]u) =
(
(u,

∂ξ

∂x
)2 + (u,

∂ξ

∂y
)2

)∣∣∣
x=xα,y=yα

= 0.

(54)
This occurs when there is a point (xα, yα) such that

(u,
∂ξ

∂x
) = (u,

∂ξ

∂y
) = 0. (55)

Since the vector ξ is a function of x and y in the
form of Eqs. (16), the equation z = (u, ξ(x, y)) defines
a convex surface in the xyz space. Eq. (15) describes
its cross section with the xy plane. Since this surface
takes its minimum at the center of the ellipse, we have

∂(u, ξ)
∂x

= (u,
∂ξ

∂x
) = 0,

∂(u, ξ)
∂y

= (u,
∂ξ

∂y
) = 0,

(56)
there. Hence, the function J in Eq. (19) diverges to
±∞ if one of the data points (xα, yα) is at the center
of the ellipse represented by u.
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