Structural Analysis of Minimum Weight Codewords of the (32, 21, 6) and (64, 45, 8) Extended BCH Codes Using Invariance Property

Jun ASATANI
Faculty of Engineering
Okayama University of Science
1-1 Ridaicho, Okayama Japan

Toru FUJIWARA
Graduate School of Information Science and Technology, Osaka University 1-5 Yamadaoka, Suita, Osaka Japan

Takuya KOUMOTO
Graduate School of Natural Science and Technology, Okayama University
3-1-1, Tsushimanaka Okayama Japan
Tadao KASAMI
Graduate School of Information Science
Nara Institute of Science and Technology
8916-5 Takayamacho, Ikoma, Nara Japan

(Received November 20, 2007)

Abstract

Two typical examples, the $(32,21,6)$ and $(64,45,8)$ extended code of primitive permuted BCH codes, are considered. The sets of minimum weight codewords are analyzed in terms of Boolean polynomial representation. They are classified by using their split weight structure with respect to the left and right half trellis sections, and for each class, the standard form is presented. Based on the results, we can generate a proper list of the minimum weight codewords of the codes.

keywords: Boolean polynomial representation, extended BCH codes, minimum weight codewords, binary shift invariance property

1 Introduction

Contrast with Reed-Muller (RM) codes, the structure of the set of minimum weight codewords of extended codes of primitive permuted $\mathrm{BCH}(\mathrm{EBCH})$ codes of length 2^{m} for which the nesting relation with RM codes of the same length holds are not known in general. The fact is that its structure is not very simple. We briefly review the difference of structural complexity between RM codes and EBCH codes. The latter have smaller invariant permutation groups than the former. Consider a minimum weight codeword \boldsymbol{v} in a proper bit order. For RM codes, either the left half subword of \boldsymbol{v} is equal to the other or one of the half subwords of \boldsymbol{v} is $\mathbf{0}$. In contrast, for EBCH codes, the left half subword of \boldsymbol{v} is not equal to the other in most cases.

A stimulus to the present study was given by a let-
ter (private communication) to the following effect from Dr. P. Martin of Univ. of Canterbury, Christchurch, New Zealand just after ISIT'04: She was definitely interested in hearing about our progress on future research using the techniques [1] for BCH codes. From a preliminary study, we conclude that before designing a new decoding scheme whose complexity justify the gain, we need to make a thorough analysis of the set of minimum weight codewords of typical examples of EBCH codes with moderate parameters.

In this paper, two typical examples, the (32, 21, 6) and $(64,45,8) \mathrm{EBCH}$ codes, are considered. Based on the previous works [2, 3], the sets of minimum weight codewords are analyzed in terms of Boolean polynomial representation. They are classified by using their split weight structure with respect to the left and right half trellis sections, and for each class, the standard form is
presented. Based on the results, we can generate a proper list of the minimum weight codewords of the EBCH codes.

2 Preliminaries

2.1 Notations

For a positive integer m, let V_{m} denote the vector space of all binary 2^{m}-tuples and let C be a binary linear block code of length 2^{m}. We divide the top section of the code into two sub-sections of length 2^{m-1}. For $\boldsymbol{u}=$ $\left(u_{1}, u_{2}, \ldots, u_{2^{m}}\right) \in V_{m}$, define $p_{0} \boldsymbol{u} \triangleq\left(u_{1}, u_{2}, \ldots, u_{2^{m-1}}\right)$ and $p_{1} \boldsymbol{u} \triangleq\left(u_{2^{m-1}+1}, u_{2^{m-1}+2}, \ldots, u_{2^{m}}\right)$. Define $p_{0} C \triangleq$ $\left\{p_{0} \boldsymbol{u}: \boldsymbol{u} \in C\right\}$ and $p_{1} C \triangleq\left\{p_{1} \boldsymbol{u}: \boldsymbol{u} \in C\right\}$. Let C_{0} and C_{1} denote the subcodes of C which consist of those codewords in C whose nonzero components are confined to the spans of 2^{m-1} consecutive positions in the sets $\left\{1,2, \ldots, 2^{m-1}\right\}$ and $\left\{2^{m-1}+\right.$ $\left.1,2^{m-1}+2, \ldots, 2^{m}\right\}$. Clearly, every codeword in C_{0} and C_{1} are of the form, $\left(u_{1}, u_{2}, \ldots, u_{2^{m-1}}, 0,0, \ldots, 0\right)$ and $\left(0,0, \ldots, 0, u_{2^{m-1}+1}, u_{2^{m-1}+2}, \ldots, u_{2^{m}}\right)$. For the subcodes C_{0} and C_{1}, define $s_{0} C \triangleq p_{0} C_{0}$ and $s_{1} C \triangleq p_{1} C_{1}$. For two binary 2^{m-1}-tuples $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{2^{m-1}}\right)$ and $\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{2^{m-1}}\right)$, let $\boldsymbol{a} \circ \boldsymbol{b}$ denote the concatenation of \boldsymbol{a} and $\boldsymbol{b},\left(a_{1}, a_{2}, \ldots, a_{2^{m-1}}, b_{1}, b_{2}, \ldots, b_{2^{m-1}}\right)$, and for binary linear block codes of length $2^{m-1}, A$ and $B, A \circ B$ denotes $\{\boldsymbol{a} \circ \boldsymbol{b}: \boldsymbol{a} \in A, \boldsymbol{b} \in B\}$.

Let C^{\prime} be a linear subcode of C. Define

$$
\begin{equation*}
\mathcal{T} \triangleq C / C^{\prime} \tag{1}
\end{equation*}
$$

as the set of all cosets of C^{\prime} in C. Abbreviate $C /\left(s_{0} C \circ\right.$ $\left.s_{1} C\right)$ as $\mathcal{P} \mathcal{T}$. Then, there is a one-to-one correspondence between the cosets in $\mathcal{P} \mathcal{T}$ and the middle states of the 2section trellis diagram [4]. We will analyze the structure of minimum weight codeword with respect to $\mathcal{P} \mathcal{T}$.

For $\boldsymbol{u} \in V_{m}$, define $w(\boldsymbol{u})$ as the weight of \boldsymbol{u}, and define $w_{0}(\boldsymbol{u}) \triangleq w\left(p_{0} \boldsymbol{u}\right)$ and $w_{1}(\boldsymbol{u}) \triangleq w\left(p_{1} \boldsymbol{u}\right)$. For $U \subseteq C$, let $\mathrm{wp}(U), \mathrm{wp}_{0}(U)$ and $\mathrm{wp}_{1}(U)$ denote the weight profile of $U, p_{0} U$ and $p_{1} U$, respectively. For $w \in \operatorname{wp}(U)$, define

$$
\begin{equation*}
U(w) \triangleq\{\boldsymbol{u} \in U: w(\boldsymbol{u})=w\} . \tag{2}
\end{equation*}
$$

For $\boldsymbol{u} \in V_{m}$, define $w_{0,1}(\boldsymbol{u})$ as the split weight of \boldsymbol{u}, $\left(w_{0}(\boldsymbol{u}), w_{1}(\boldsymbol{u})\right)$. Let $\operatorname{swp}_{0,1}(U)$ with $U \subseteq C$ denote the split weight profile of U. For $\left(w_{0}, w_{1}\right) \in \operatorname{swp}_{0,1}(U)$,

$$
\begin{equation*}
U\left(w_{0}, w_{1}\right) \triangleq\left\{\boldsymbol{u} \in U: w_{0}(\boldsymbol{u})=w_{0}, w_{1}(\boldsymbol{u})=w_{1}\right\} \tag{3}
\end{equation*}
$$

For $\mathcal{T}=C / C^{\prime}$, for example $C^{\prime}=s_{0} C \circ s_{1} C$, define $g-\mathcal{T} \triangleq D \in \mathcal{T}$ such that $g \in D$. For $w \in \operatorname{wp}(C)$ (or $\left.\left(w_{0}, w_{1}\right) \subseteq \operatorname{swp}_{0,1}(C)\right)$, define

$$
\begin{gather*}
\mathcal{T}(w) \triangleq\{D(w): D \in \mathcal{T}\} \tag{4}\\
\left(\operatorname{or} \mathcal{T}\left(w_{0}, w_{1}\right) \triangleq\left\{D\left(w_{0}, w_{1}\right): D \in \mathcal{T}\right\}\right)
\end{gather*}
$$

and for $D \in \mathcal{T}$, nonempty $D(w)$ (or $D\left(w_{0}, w_{1}\right)$) is called a block (with weight w (or split weight $\left.\left(w_{0}, w_{1}\right)\right)$) of D. Abbreviate $p_{b} D$ as D_{b} for $b \in\{0,1\}$.

Let d be the minimum distance of the linear code C. For $w_{b} \in \operatorname{wp}_{b}(C)$ with $b \in\{0,1\}$, if there are \boldsymbol{u} and \boldsymbol{u}^{\prime} in $D_{b}\left(w_{b}\right), w_{b} \geq d / 2$, since $w_{b}\left(\boldsymbol{u}+\boldsymbol{u}^{\prime}\right) \geq d$. From this, the following relation holds [3] for $D \in \mathcal{T}$ and $\left(w_{0}, w_{1}\right) \in$ $\operatorname{swp}_{0,1}(D)$ with $w_{0}+w_{1}=d$.
(i) If $0 \leq w_{b}<d / 2$, then $\left|D_{b}\left(w_{b}\right)\right|=1$.
(ii) If $\left|D_{b}\left(w_{b}\right)\right| \geq 2$ for $b=0$ and 1 , then $w_{b}=d / 2$.

2.2 Review of Boolean Polynomial Representation for Linear Block Codes [2]

For a positive integer m and a nonnegative integer r not greater than m, let P_{m}^{r} denote the set of all Boolean polynomials of degree r or less with m variables $x_{1}, x_{2}, \ldots, x_{m}$. A polynomial in $P_{m}^{1} \backslash P_{m}^{0}$ is called an affine polynomial. A set of l affine polynomials $\left\{a_{i 0}+\sum_{j=1}^{m} a_{i j} x_{j}: a_{i j} \in\{0,1\}\right.$ with $1 \leq i \leq l$ and $1 \leq j \leq m\}$ such that the rank of coefficient matrix $\left(a_{i j}: 1 \leq i \leq l, 1 \leq j \leq m\right)$ is l is called linearly independent. Hereafter, $\left\{y_{1}, \ldots, y_{l}\right\}$ and $\left\{z_{1}, \ldots, z_{l}\right\}$ denote linearly independent affine polynomials, respectively. For a nonnegative integer i less than 2^{m}, let $\left(b_{i 1}, b_{i 2}, \ldots, b_{i m}\right)$ be the standard binary expression of i such that $i=\sum_{j=1}^{m} b_{i j} 2^{m-j}$. For $f\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in$ P_{m}^{m}, define the following binary 2^{m}-tuple:

$$
\begin{equation*}
b(f) \triangleq\left(v_{1}, v_{2}, \ldots, v_{2^{m}}\right) \tag{5}
\end{equation*}
$$

where the $(i+1)$ th component (or bit) is given by

$$
\begin{equation*}
v_{i+1} \triangleq f\left(b_{i 1}, b_{i 2}, \ldots, b_{i m}\right), \text { for } 0 \leq i<2^{m} \tag{6}
\end{equation*}
$$

We say that the 2^{m}-tuple $b(f)$ is in standard bit-order. A binary linear code of length 2^{m} can be expressed in terms of Boolean polynomials of m variables. For example, the r th order RM code of length $2^{m}[5,6]$, denoted $\mathrm{RM}_{m, r}$, is defined as $\left\{b(f): f \in P_{m}^{r}\right\}$ [5]. In the following sections, $f \in P_{m}^{m}$ and $b(f) \in V_{m}$ are used interchangeably for simplicity.

Let $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{2^{m}}\right)$ and $\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{2^{m}}\right)$ be two binary 2^{m}-tuples. Define the following boolean product of \boldsymbol{a} and \boldsymbol{b},

$$
\boldsymbol{a} \cdot \boldsymbol{b} \triangleq\left(a_{1} \cdot b_{1}, a_{2} \cdot b_{2}, \ldots, a_{2^{m}} \cdot b_{2^{m}}\right)
$$

where ' \cdot ' denotes the logic product, i.e. $a_{i} \cdot b_{i}=1$ if and only if both a_{i} and b_{i} are ' 1 '. For simplicity, we use $\boldsymbol{a} \boldsymbol{b}$ for $\boldsymbol{a} \cdot \boldsymbol{b}$. For $f_{a}, f_{b} \in V_{m}, f_{a} f_{b}$ denotes the boolean product of $b\left(f_{a}\right)$ and $b\left(f_{b}\right)$.

For a Boolean polynomial $f \in P_{m}^{m}$, let $|f|_{m}$ denote the weight of $b(f)$, that is, $w(b(f))=|f|_{m}$. For f_{0} and f_{1} in P_{m}^{m},

$$
\begin{equation*}
\left|f_{0}+f_{1}\right|_{m}=\left|f_{0}\right|_{m}+\left|f_{1}\right|_{m}-2\left|f_{0} f_{1}\right|_{m} \tag{7}
\end{equation*}
$$

The polynomial $f \in P_{m}^{r}$ (with $r<m$) can be expressed as

$$
\begin{equation*}
f=f_{0}+x_{m} f_{1}, \quad \text { for } f_{0} \in P_{m-1}^{r}, f_{1} \in P_{m-1}^{r-1} . \tag{8}
\end{equation*}
$$

Then,

$$
\begin{equation*}
p_{0} f=f_{0}, \quad p_{1} f=f_{0}+f_{1} . \tag{9}
\end{equation*}
$$

From (7), (8) and (9), we have that

$$
\begin{align*}
& w_{0}(f)=\left|f_{0}\right|_{m-1} \tag{10}\\
& w_{1}(f)=\left|f_{0}\right|_{m-1}+\left|f_{1}\right|_{m-1}-2\left|f_{0} f_{1}\right|_{m-1} \tag{11}
\end{align*}
$$

2.3 Invariance Properties under Binary Shifts for Extended BCH Codes

Given linearly independent affine polynomials $y_{i}=$ $\sum_{j=1}^{m} a_{i j} x_{j}+b_{i}$ with $1 \leq i \leq m$, the replacement of x_{i} by affine polynomial y_{i} is called the affine transformation. An affine transformation $y_{i}=x_{i}+b_{i}$ with $1 \leq i \leq m$ is called a binary shift. Since an affine transformation is invertible, binary shifts of y_{i} with $1 \leq i \leq m$ correspond to binary shifts of x_{i} 's uniquely. If $\boldsymbol{u} \in V_{m}$ can be transformed to \boldsymbol{v} by binary shift B, then \boldsymbol{u} and \boldsymbol{v} are said to be binary shift equivalent and we write $\boldsymbol{v}=B(\boldsymbol{u})$.

RM codes are invariant under the affine transformations and the EBCH codes of length 2^{m} are invariant under the binary shifts [7]. If C is invariant under permutations, $C(w)$ with $w \in \operatorname{wp}(C)$ is also invariant under the permutations.

The following nesting relation holds [5]:
The EBCH code of length 2^{m} with minimum weight
$2^{m-r} \supseteq \mathrm{RM}_{m, r}$.
For a Boolean variable x, we use the notations, $\bar{x} \triangleq x+1$ and for $a \in\{0,1\}$,

$$
x^{a}= \begin{cases}\bar{x}, & \text { if } a=0 \\ x, & \text { if } a=1\end{cases}
$$

For $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\} \subseteq\{1,2, \ldots, m\}$, let $B_{i_{1}, i_{2}, \ldots, i_{s}}$ be the binary shift such that

$$
x_{i} \leftarrow \begin{cases}\bar{x}_{i}, & \text { if } i \text { is in the suffices }, \tag{13}\\ x_{i}, & \text { otherwise }\end{cases}
$$

For $a_{1}, a_{2}, \ldots, a_{m} \in\{0,1, *\}$, let $\mathcal{B}_{a_{1}, a_{2}, \ldots, a_{m}}$ be the set of binary shifts such that

$$
x_{i} \leftarrow \begin{cases}x_{i}^{a_{i}}, & \text { if } a_{i} \in\{0,1\}, \tag{14}\\ x_{i} \text { or } \bar{x}_{i}, & \text { if } a_{i}=* .\end{cases}
$$

For $\mathcal{B}_{a_{1}, a_{2}, \ldots, a_{m}}$, if the number of $*$ in its suffices is s, it contains 2^{s} binary shifts. If a binary linear code C of length 2^{m} is invariant under B_{m}, then the following symmetry holds:

$$
\begin{equation*}
p_{0} C=p_{1} C, \quad \text { and } \quad s_{0} C=s_{1} C . \tag{15}
\end{equation*}
$$

Hereafter in this section, let i be a positive integer less than or equal to $m, b \in\{0,1\}$, and $f \in P_{m}^{m} . B_{i}^{(b)}$ denotes the binary shift of x_{i} in right and left half subsections defined by

$$
B_{i}^{(b)}(f) \triangleq \begin{cases}B_{i}\left(p_{0} f\right) \circ p_{1} f, & \text { if } b=0 \tag{16}\\ p_{0} f \circ B_{i}\left(p_{1} f\right), & \text { if } b=1\end{cases}
$$

Define $\operatorname{deg}_{i}(f)$ as the degree of $\left(f+f_{x_{i}=0}\right) / x_{i}$. We have the following lemma:
Lemma 1: Let C be a binary linear code of length 2^{m} such that

$$
\begin{equation*}
\mathrm{RM}_{m, r} \subseteq C \subset \mathrm{RM}_{m, r+1}, \quad \text { for } r<m \tag{17}
\end{equation*}
$$

(i) For $f \in D \in C / \mathrm{RM}_{m, r}$, any codeword that is binary shift equivalent to f is in D.
(ii) For $f \in D \in \mathcal{P} \mathcal{T}\left(=C /\left(s_{0} C \circ s_{1} C\right)\right)$, if $\operatorname{deg}_{i}\left(p_{b} f\right)<$ r, then $B_{i}^{(b)}(f) \in D$. If $\operatorname{deg}_{i}(f)<r$, then $B_{i}(f) \in$ D.
(Proof) (i) $f+B(f) \in \mathrm{RM}_{m, r}$ implies $B(f) \in D$.
(ii) $p_{b}\left(f+B_{i}^{(b)}(f)\right)=p_{b} f+B_{i}\left(p_{b} f\right) \in \mathrm{RM}_{m-1, r-1}$, and $p_{\bar{b}}\left(f+B_{i}^{(b)}(f)\right)=0$. Since $s_{b} C \supseteq s_{b} \mathrm{RM}_{m, r}=$ $\mathrm{RM}_{m-1, r-1}, f+B_{i}^{(b)}(f) \in s_{0} C \circ s_{1} C$ implies $B_{i}^{(b)}(f) \in D$. The last half is proved similarly.

3 Structure Analysis of Minimum Weight Codewords of The (32, 21, 6) and (64, 45, 8) Extended BCH Codes

An $(n, k, d) \mathrm{EBCH}$ code is denoted by $\operatorname{EBCH}(n, k, d)$. In this section, for two typical examples, $\operatorname{EBCH}(32,21,6)$ and $\operatorname{EBCH}(64,45,8)$, the structure of minimum weight codewords is analyzed. For these codes, Lemma 1 and (15) hold.

$3.1 \quad \mathrm{EBCH}(32,21,6)$

3.1.1 Structure of the code

In this section, let C denote $\operatorname{EBCH}(32,21,6)$. From (12),

$$
\begin{equation*}
\mathrm{RM}_{5,2} \subset C \subset \mathrm{RM}_{5,3} \tag{18}
\end{equation*}
$$

where $\mathrm{RM}_{5,3}$ is the extended Hamming code. Define

$$
\begin{equation*}
\Gamma_{\mathrm{RM}} \triangleq C / \mathrm{RM}_{5,2} \tag{19}
\end{equation*}
$$

Then, $\operatorname{dim}\left(\Gamma_{\mathrm{RM}}\right)=5$.
By a generator matrix of C with a generator matrix of $\mathrm{RM}_{5,2}$ as a submatrix, we found the following set of

Table 1: The characterization of blocks in $\mathcal{P} \mathcal{T}\left(w_{0}, w_{1}\right)$ with $w_{0} \leq w_{1}$ and $w_{0}+w_{1}=6$ for $\operatorname{EBCH}(32,21,6)$.

w_{0}, w_{1}	$\left\|D_{0}\left(w_{0}\right)\right\|$	$\left\|D_{1}\left(w_{1}\right)\right\|$	$\left\|\mathcal{P} \mathcal{T}\left(w_{0}, w_{1}\right)\right\|$
0,6	1	16	1
2,4	1	4	120

generators which spans a set of coset leaders of Γ_{RM} :

$$
\left\{\begin{array}{l}
g_{1}=\left(x_{1}+x_{2}\right) x_{3} x_{4}+\left(x_{2} x_{3}+\left(x_{1}+x_{3}\right) x_{4}\right) x_{5} \tag{20}\\
g_{2}=\left(x_{1}+x_{3}\right) x_{2}\left(x_{3}+x_{4}\right)+\left[\left(x_{1}+x_{3}\right) x_{2}+\left(x_{2}+x_{3}\right) x_{4}\right] x_{5} \\
g_{3}=\left(x_{1}+x_{2}\right)\left(x_{2}+x_{3}\right)\left(x_{3}+x_{4}\right)+\left(x_{1} x_{3}+x_{2} x_{4}\right) x_{5} \\
g_{4}=x_{1}\left(x_{2}+x_{4}\right) x_{3}+\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right) x_{5} \\
g_{5}=\left[\left(x_{1}+x_{3}\right) x_{2}+\left(x_{1}+x_{2}\right) x_{4}\right] x_{5}
\end{array}\right.
$$

Now, we consider $p_{b} C$ and $s_{b} C$. Since $p_{b} \mathrm{RM}_{5,2}=$ $\mathrm{RM}_{4,2}$ and $p_{b} g_{5} \in \mathrm{RM}_{4,2}$,

$$
\begin{align*}
p_{b} C=\left\{\sum_{i=1}^{4} a_{i} p_{b} g_{i}:\right. & a_{i} \in\{0,1\} \\
& \text { with } 1 \leq i \leq 4\}+\mathrm{RM}_{4,2} . \tag{21}
\end{align*}
$$

It can be shown readily that $p_{0} g_{i}$ with $1 \leq i \leq 4$ are linearly independent and therefore,

$$
\begin{equation*}
p_{0} g_{i} \text { with } 1 \leq i \leq 4 \text { spans } \mathrm{RM}_{4,3} \backslash \mathrm{RM}_{4,2} \tag{22}
\end{equation*}
$$

Hence, by (15),

$$
\begin{equation*}
p_{b} C=\mathrm{RM}_{4,3}, \quad \text { and } \quad \operatorname{dim}\left(p_{b} C\right)=15 \tag{23}
\end{equation*}
$$

Since $s_{b} \mathrm{RM}_{5,2}=\mathrm{RM}_{4,1}$, by (15) and (22),

$$
\begin{equation*}
s_{b} C=\left\{\mathbf{0}, g_{5, x_{5}=1}\right\}+\mathrm{RM}_{4,1}, \tag{24}
\end{equation*}
$$

where $g_{5, x_{5}=1} \triangleq\left(x_{1}+x_{3}\right) x_{2}+\left(x_{1}+x_{2}\right) x_{4} \in \mathrm{RM}_{4,2}$. Define

$$
\begin{equation*}
\mathrm{RM}_{5,2}^{\prime} \triangleq\left\{\mathbf{0}, g_{5}\right\}+\mathrm{RM}_{5,2} \tag{25}
\end{equation*}
$$

Then, $C \supset \mathrm{RM}_{5,2}^{\prime}$ and $\operatorname{dim}\left(\mathrm{RM}_{5,2}^{\prime}\right)=17$. Define

$$
\begin{equation*}
\Gamma_{\mathrm{RM}^{\prime}} \triangleq C / \mathrm{RM}_{5,2}^{\prime} \tag{26}
\end{equation*}
$$

Then, $\operatorname{dim}\left(\Gamma_{\mathrm{RM}^{\prime}}\right)=4$. Since $\mathrm{RM}_{4,1} \circ \mathrm{RM}_{4,1} \subseteq \mathrm{RM}_{5,2}$, from (24), $\operatorname{dim}\left(s_{b} C\right)=6$ and $s_{0} C \circ s_{1} C \subseteq \mathrm{RM}_{5,2}^{\prime}$. Then,

$$
\begin{equation*}
\operatorname{dim}\left(\mathrm{RM}_{5,2}^{\prime} /\left(s_{0} C \circ s_{1} C\right)\right)=5 \tag{27}
\end{equation*}
$$

For $\mathcal{P} \mathcal{T} \triangleq C /\left(s_{0} C \circ s_{1} C\right), \operatorname{dim}(\mathcal{P} \mathcal{T})=9$. From (27), each coset of $\Gamma_{\mathrm{RM}^{\prime}}$ consists of 2^{5} cosets of $\mathcal{P} \mathcal{T}$. A computer analysis of $\mathcal{P} \mathcal{T}$ (6) based on the method presented in [3] results in Table 1 , where for blocks $D_{0}\left(w_{0}\right) \circ D_{1}\left(w_{1}\right) \in$ $\mathcal{P} \mathcal{T}\left(w_{0}, w_{1}\right)$ with $\left(w_{0}, w_{1}\right) \in \operatorname{swp}_{0,1}(C(6)),\left|D_{b}\left(w_{b}\right)\right|$ with $b \in\{0,1\}$ and $\left|\mathcal{P} \mathcal{T}\left(w_{0}, w_{1}\right)\right|$ are shown for $w_{0} \leq w_{1}$.

By (15), it is sufficient to consider $C(0,6)$ and $C(2,4)$ in the following sections 3.1.2 and 3.1.3.

3.1.2 Structure of $C(0,6)$

Let $\boldsymbol{v} \in C(0,6)$. Then $p_{b} \boldsymbol{v} \in p_{b} C=\mathrm{RM}_{4,3}$ with $b \in\{0,1\}$ from (23). Therefore, the Boolean polynomial corresponding to \boldsymbol{v} is $\left(y_{1} y_{2}+y_{3} y_{4}\right) x_{5}$ [5]. Note that g_{5} is of the form. Consider the binary shifts of g_{5} with respect to $x_{1}+x_{3}, x_{2}, x_{1}+x_{2}$ and x_{4}, equivalently x_{3}, x_{2}, x_{1}, and x_{4}. For $B \in \mathcal{B}_{* * * * 1}, B\left(g_{5}\right) \in g_{5}+\mathrm{RM}_{5,2} \subseteq C, w_{1}\left(B\left(g_{5}\right)\right)=6$, and $\left|\left\{B\left(g_{5}\right): B \in \mathcal{B}_{* * * * 1}\right\}\right|=16$. Then, we have from Table 1 that

$$
\begin{equation*}
C(0,6)=\left\{B\left(g_{5}\right): B \in \mathcal{B}_{* * * * 1}\right\} \tag{28}
\end{equation*}
$$

3.1.3 Structure of $C(2,4)$

Since $p_{0} C(2,4) \subseteq p_{0} C=\mathrm{RM}_{4,3}, p_{0} C(2,4) \subseteq \mathrm{RM}_{4,3}(2)$. The number of the minimum weight codewords in $\mathrm{RM}_{4,3}$ is $2^{3}\left(2^{4}-1\right)=120$ [5]. From Table 1,

$$
\begin{equation*}
p_{0} C(2,4)=\mathrm{RM}_{4,3}(2) \tag{29}
\end{equation*}
$$

Each polynomial of $\mathrm{RM}_{4,3}(2)$ is a form of the product of three linearly independent affine polynomials. By the binary shifts of three component polynomials, the 120 codewords of $\mathrm{RM}_{4,3}(2)$ can be partitioned into 15 groups. Each group consists of 8 codewords in the same coset of $\Gamma_{\mathrm{RM}^{\prime}}$ from Lemma 1. Table 2 lists the 15 representative codewords in its first column as f_{0}.

For $f_{0} \in \mathrm{RM}_{4,3}(2), f \in C(2,4)$ with $p_{0} f=f_{0}$ can be expressed as

$$
\begin{equation*}
f=f_{0}+x_{5} f_{1} \tag{30}
\end{equation*}
$$

where $p_{1} f=f_{0}+f_{1} \in \mathrm{RM}_{4,3}(4)$. f_{1} is called the right part of f_{0} or f. There are exactly four right parts of f_{0} which belong to $s_{1} C=\left\{\mathbf{0}, g_{5}\right\}+\mathrm{RM}_{4,1}$. For each of the representative codewords f_{0}, two of the four right parts of f_{0} are also listed in the table. Note that the sum of the two f_{1} 's in each block is $g_{5} \bmod \mathrm{RM}_{4,1}$. The remaining two right parts can be obtained from the two f_{1} by applying the binary shift B in the table. Note that $B\left(f_{0}\right)=f_{0}$.

From (11) and (30), $w_{1}(f)=\left|f_{0}+f_{1}\right|_{4}=\left|f_{0}\right|_{4}+\left|f_{1}\right|_{4}-$ $2\left|f_{0} f_{1}\right|_{4}=4,\left|f_{1}\right|_{4}-2\left|f_{0} f_{1}\right|_{4}=2$. Since $f_{1} \in P_{4}^{2}$ and $f_{1} \neq 0,\left|f_{1}\right|_{4}$ is even with $\left|f_{1}\right|_{4} \geq 4[5]$. Since $\left|f_{0}\right|_{4}=2$, $\left|f_{0} f_{1}\right|_{4} \leq\left|f_{0}\right|_{4}=2$. Hence, $\left|f_{1}\right|_{4}=4$ or 6 . There are two cases for f_{1}.

Case I: $\left|f_{1}\right|_{4}=4$ and $\left|f_{0} f_{1}\right|_{4}=1$.
Case II: $\left|f_{1}\right|_{4}=6$ and $\left|f_{0} f_{1}\right|_{4}=2$.
Since $f_{0} \in \mathrm{RM}_{4,3}(2)$, we can express $f_{0}=y_{1} y_{2} y_{3}$. We show standard forms for Cases I and II.
Case I: f_{1} is expressed as $z_{1} z_{2}$. At least one of z_{1} and z_{2}, say z_{1} is linearly dependent on y_{1}, y_{2}, y_{3} and z_{2}. If z_{2} is also linearly dependent, then there exists an affine polynomial linearly independent of y_{1}, y_{2}, y_{3}; which implies $\left|y_{1} y_{2} y_{3} z_{1} z_{2}\right|_{4}=0$ or 2 . Hence, z_{2} is linearly independent of y_{1}, y_{2}, y_{3}, and $\left|z_{1} z_{2 y_{1}=y_{2}=y_{3}=1}\right|_{1}=1$. Without loss of

Table 2: $C(2,4): f_{0}+x_{5} f_{1}, B\left(f_{0}+x_{5} f_{1}\right), B^{\prime}\left(f_{0}+x_{5} f_{1}\right)$ and $B^{\prime}\left(B\left(f_{0}+x_{5} f_{1}\right)\right)$ with $B^{\prime} \in \mathcal{B}$ are codewords.

Case	S	$f_{0}=y_{1} y_{2} y_{3}$	\mathcal{B}	f_{1}		B
I	\{1, 3, 4\}	$x_{1}\left(x_{2}+x_{3}\right) x_{4}$	$\mathcal{B}_{* * 1 * 1}$	$y_{3} x_{3}$	$\overline{y_{1}+y_{2}}\left(x_{2}+x_{4}\right)$	$B_{2,3}$
	\{4\}	$x_{1}\left(x_{2}+x_{4}\right) x_{3}$	$\mathcal{B}_{* * * 11}$	$y_{1}\left(x_{2}+x_{3}\right)$	$\left(y_{1}+y_{2}+y_{3}\right)\left(x_{1}+x_{2}\right)$	$B_{2,4}$
	$\{1,2,3,4\}$	$\left(x_{1}+x_{2}\right)\left(x_{2}+x_{4}\right) x_{3}$	$\mathcal{B}_{* 1 * * 1}$	$\overline{y_{1}+y_{2}} x_{1}$	$\left(y_{1}+y_{2}+y_{3}\right) x_{2}$	$B_{1,2,4}$
	\{1, 2\}	$x_{1}\left(x_{2}+x_{3}\right)\left(x_{2}+x_{4}\right)$	$\mathcal{B}_{* 1 * * 1}$	$y_{2} x_{2}$	$y_{3}\left(x_{1}+x_{2}\right)$	$B_{2,3,4}$
II	\{2, 3\}	$x_{1} x_{3} x_{4}$	$\mathcal{B}_{* 1 * * 1}$	$y_{1} y_{2}+\bar{y}_{3}\left(x_{1}+x_{2}+x_{3}\right)$	$y_{2} y_{3}+\left(y_{1}+y_{2}\right)\left(x_{1}+x_{2}\right)$	B_{2}
	\{1\}	$\left(x_{1}+x_{2}\right) x_{3} x_{4}$	$\mathcal{B}_{* 1 * * 1}$	$\overline{y_{1}+y_{2}} y_{3}+\left(y_{2}+y_{3}\right) x_{2}$	$y_{2} y_{3}+\left(y_{1}+y_{3}\right) x_{2}$	$B_{1,2}$
	\{2, 4\}	$\left(x_{1}+x_{2}\right)\left(x_{2}+x_{3}\right) x_{4}$	$\mathcal{B}_{* 1 * * 1}$	$\overline{y_{1}+y_{2}} y_{3}+\bar{y}_{2} x_{1}$	$y_{2} y_{3}+\bar{y}_{1} x_{3}$	$B_{1,2,3}$
	\{3\}	$\left(x_{1}+x_{2}\right)\left(x_{2}+x_{3}\right)\left(x_{3}+x_{4}\right)$	$\mathcal{B}_{* 1 * * 1}$	$y_{1} y_{2}+\left(y_{1}+y_{3}\right) x_{2}$	$y_{1} y_{2}+\overline{y_{1}+y_{2}+y_{3}} x_{1}$	$B_{1,2,3,4}$
I \& II	\{2, 3, 4\}	$x_{1} x_{2} x_{3}$	$\mathcal{B}_{* * * 11}$	$y_{3}\left(x_{2}+x_{4}\right)$	$y_{1} y_{2}+\overline{y_{1}+y_{2}+y_{3}} x_{4}$	B_{4}
	\{1, 2, 3\}	$x_{2} x_{3} x_{4}$	$\mathcal{B}_{1 * * * 1}$	$\left(y_{1}+y_{2}+y_{3}\right) x_{1}$	$y_{1} y_{3}+\bar{y}_{2}\left(x_{1}+x_{2}\right)$	B_{1}
	$\{1,2,4\}$	$x_{1} x_{2} x_{4}$	$\mathcal{B}_{* * 1 * 1}$	$\overline{y_{1}+y_{2}}\left(x_{2}+x_{3}\right)$	$\overline{y_{1}+y_{2}} y_{3}+\bar{y}_{1} x_{3}$	B_{3}
	\{3, 4\}	$\left(x_{1}+x_{3}\right) x_{2} x_{4}$	$\mathcal{B}_{* * 1 * 1}$	$y_{2}\left(x_{1}+x_{4}\right)$	$y_{1} y_{3}+\left(y_{2}+y_{3}\right) x_{3}$	$B_{1,3}$
	\{1, 3\}	$x_{1} x_{2}\left(x_{3}+x_{4}\right)$	$\mathcal{B}_{* * * 11}$	$y_{3}\left(x_{1}+x_{2}+x_{4}\right)$	$y_{1} y_{2}+\left(y_{1}+y_{3}\right) x_{3}$	$B_{3,4}$
	\{1, 4\}	$\left(x_{1}+x_{4}\right) x_{2} x_{3}$	$\mathcal{B}_{* * * 11}$	$\overline{y_{1}+y_{2}}\left(x_{2}+x_{3}+x_{4}\right)$	$y_{1} y_{3}+\bar{y}_{2} \bar{x}_{4}$	$B_{1,4}$
	\{2\}	$x_{2}\left(x_{1}+x_{3}\right)\left(x_{3}+x_{4}\right)$	$\mathcal{B}_{* * * 11}$	$y_{2} x_{4}$	$y_{1} y_{2}+\left(y_{1}+y_{3}\right) x_{4}$	$B_{1,3,4}$

generality, $z_{1}=a_{0}+a_{1} y_{1}+a_{2} y_{2}+y_{3}+a_{4} z_{2}$. Write z_{2} as y_{4}. By row operations of f_{0} and f_{1}, we can assume $a_{0}=a_{1}=a_{2}=a_{4}=0$. Then,

$$
\begin{align*}
& f_{1}=y_{3} y_{4} \tag{31}\\
& f=y_{1} y_{2} y_{3}+x_{5} y_{3} y_{4} \tag{32}\\
& p_{1} f=\left(y_{1} y_{2}+y_{4}\right) y_{3} \tag{33}
\end{align*}
$$

Case II: f_{1} can be expressed as $z_{1} z_{2}+z_{3} z_{4}$ [5]. Without loss of generality, we assume that $y_{1}, y_{2}, y_{3}, z_{4}$ are linearly independent. For convenience, write z_{4} as y_{4}. Then, z_{1}, z_{2}, z_{3} can be expressed as $z_{i}=a_{i 0}+\sum_{j=1}^{4} a_{i j} y_{j}$, $1 \leq i \leq 3$. By row operations of $z_{1} z_{2}$ and $z_{3} y_{4}, a_{i 4}=0$ for $i=1$ and 3 . If $a_{24}=1$, then by cross-row operation $z_{2} \leftarrow z_{2}+y_{4}$ and $z_{3} \leftarrow z_{3}+z_{1}, a_{24}=0$. By renaming y_{1}, y_{2}, y_{3}, so that $a_{11}=a_{22}=a_{33}=1$ and by row operations of $z_{1} z_{2}$ again, $a_{12}=0, a_{21}=0$. From $\left|f_{0} f_{1}\right|_{4}=2$,

$$
\begin{aligned}
& \left|\left(z_{1} z_{2}+z_{3} y_{4}\right)_{y_{1}=y_{2}=y_{3}=1}\right|_{1}= \\
& \left|\left(\overline{a_{10}+a_{13}}\right)\left(\overline{a_{20}+a_{23}}\right)+\left(\overline{a_{30}+a_{31}+a_{32}}\right) y_{4}\right|_{1}=2 \\
& \quad \text { if and only if } \\
& \left(\overline{a_{10}+a_{13}}\right)\left(\overline{a_{20}+a_{23}}\right)=1 \text { and } \overline{a_{30}+a_{31}+a_{32}}=0 .
\end{aligned}
$$

By row operations $y_{1} y_{2} y_{3}$ again, $y_{1} \leftarrow y_{1}+a_{13} \bar{y}_{3}, y_{2} \leftarrow$ $y_{2}+a_{23} \bar{y}_{3}$ and $y_{3} \leftarrow a_{31} \bar{y}_{1}+a_{32} \bar{y}_{2}+y_{3}$, that is, $z_{1}=$ $y_{1}, z_{2}=y_{2}$, and $z_{3}=\bar{y}_{3}$, we have

$$
\begin{align*}
& f_{1}=y_{1} y_{2}+\bar{y}_{3} y_{4}, \tag{34}\\
& f=y_{1} y_{2}\left(y_{3}+x_{5}\right)+x_{5} \bar{y}_{3} y_{4}, \tag{35}\\
& p_{1} f=\left(y_{1} y_{2}+y_{4}\right) \bar{y}_{3} . \tag{36}
\end{align*}
$$

For $y_{1} y_{2} y_{3} \in \mathrm{RM}_{4,3}(2)$, suppose that there is a codeword f of Case I or II. From (32) or (35) and Lemma 1, f and its binary shift with respect to y_{4}, denoted $B_{y_{4}}(f)$, are in the same coset (block) of $\mathcal{P} \mathcal{T}$. Note that y_{i} with $1 \leq i \leq 3$ are invariant under the shift, and therefore the binary shift $B_{y_{2}}$ is unique. For Case I (or II), f and $B_{y_{4}}(f)$ are called a Case I (or II) pair.

Table 2 shows that the number of representative blocks which consist of two Case I pairs, two Case II pairs and a combination of Case I and Case II pairs are 4, 4 and 7, respectively. In each block, f_{0} is a product of three affine polynomials named y_{1}, y_{2} and y_{3}, and f_{1} is expressed in terms of y_{1}, y_{2}, y_{3} and an affine polynomial linearly independent of y_{i} 's. Subexpression $\overline{y_{i}+y_{j}}$ and $y_{1}+y_{2}+y_{3}$ in f_{1} correspond to row operations in f_{0}. By making such row operations and renaming y_{i} 's, the standard forms (32) and (35) can be derived. The first column shows that the coset in which the block belongs is $\sum_{i \in S} g_{i}-\Gamma_{\mathrm{RM}^{\prime}}$.

$3.2 \operatorname{EBCH}(64,45,8)$

3.2.1 Structure of the code

In this section, let C denote $\operatorname{EBCH}(64,45,8)$. From (12),

$$
\begin{equation*}
\mathrm{RM}_{6,3} \subset C \subset \mathrm{RM}_{6,4} \tag{37}
\end{equation*}
$$

Define

$$
\begin{equation*}
\Gamma_{\mathrm{RM}} \triangleq C / \mathrm{RM}_{6,3} \tag{38}
\end{equation*}
$$

Then, $\operatorname{dim}\left(\Gamma_{\mathrm{RM}}\right)=3$. We found the following set $\left\{g_{1}, g_{2}, g_{3}\right\}$ of generators which spans a set of coset leaders

Table 3: The characterization of blocks in $\mathcal{P} \mathcal{T}\left(w_{0}, w_{1}\right)$ with $w_{0} \leq w_{1}$ and $w_{0}+w_{1}=8$ for $\operatorname{EBCH}(64,45,8)$.

w_{0}, w_{1}	$\left\|D_{0}\left(w_{0}\right)\right\|$	$\left\|D_{1}\left(w_{1}\right)\right\|$	$\left\|\mathcal{P} \mathcal{T}\left(w_{0}, w_{1}\right)\right\|$	Subcode
0,8	1	620	1	$\mathrm{RM}_{6,3}$
2,6	1	32	112	
4,4	8	8	155	$\mathrm{RM}_{6,3}$
	2	2	2240	

of Γ_{RM} :

$$
\left\{\begin{array}{l}
g_{1}=x_{1} x_{3} x_{4} x_{5}+\left(x_{1} x_{4}+x_{3} x_{5}\right) x_{2} x_{6} \tag{39}\\
g_{2}=x_{1} x_{2} x_{4} x_{5}+\left[\left(x_{1}+x_{2}\right) x_{3} x_{4}+x_{1} x_{3} x_{5}\right] x_{6} \\
g_{3}=\left(x_{1}+x_{2}\right) x_{3} x_{4} x_{5}+x_{1}\left[\left(x_{2}+x_{3}\right) x_{4}+x_{2} x_{5}\right] x_{6}
\end{array}\right.
$$

The basis of coset leaders was given by an algebraic method in [2].

Note that

$$
\left\{\begin{array}{l}
p_{0} g_{1}=x_{1} x_{3} x_{4} x_{5}, \tag{40}\\
p_{0} g_{2}=x_{1} x_{2} x_{4} x_{5}, \\
p_{0} g_{3}=\left(x_{1}+x_{2}\right) x_{3} x_{4} x_{5}
\end{array}\right.
$$

Since $p_{0} g_{1}, p_{0} g_{2}$ and $p_{0} g_{3}$ are linearly independent polynomials of degree $4, s_{1} C=s_{1} \mathrm{RM}_{6,3}=\mathrm{RM}_{5,2}$ and by (15),

$$
\begin{equation*}
s_{b} C=\mathrm{RM}_{5,2}, \text { for } b \in\{0,1\} \tag{41}
\end{equation*}
$$

For $\mathcal{P} \mathcal{T} \triangleq C /\left(s_{0} C \circ s_{1} C\right)=C /\left(\mathrm{RM}_{5,2} \circ \mathrm{RM}_{5,2}\right)$, $\operatorname{dim}(\mathcal{P} \mathcal{T})=13$. Each coset of Γ_{RM} consists of 2^{10} cosets of $\mathcal{P} \mathcal{T}$. The results by a computer analysis of $\mathcal{P} \mathcal{T}$ (8) are summarized in Table 3. For blocks $D_{0}\left(w_{0}\right) \circ D_{1}\left(w_{1}\right) \in$ $\mathcal{P} \mathcal{T}\left(w_{0}, w_{1}\right)$ with $\left(w_{0}, w_{1}\right) \in \operatorname{swp}_{0,1}(C(8)),\left|D_{b}\left(w_{b}\right)\right|$ with $b \in\{0,1\}$ and $\left|\mathcal{P} \mathcal{T}\left(w_{0}, w_{1}\right)\right|$ are shown only for $w_{0} \leq w_{1}$ in Table 3 because of the symmetry (15).

Since $s_{b} C=\mathrm{RM}_{5,2}, p_{1} C(0,8)$ is the set of the minimum weight codewords of $\mathrm{RM}_{5,2}$. The algebraic structure of $C(4,4) \cap \mathrm{RM}_{6,3}(4,4)$ can be directly obtained from that of $\mathrm{RM}_{m, r}\left(2^{m-r-1}, 2^{m-r-1}\right)$ presented in [8, 9]. We analyze the structure of $C(4,4) \backslash \mathrm{RM}_{6,3}(4,4)$.

As shown in Table 4, there exists an affine transformation with x_{1}, x_{2}, x_{3} from $g_{1}-\mathrm{RM}_{6,3}$ to $\sum_{i \in S} g_{i}-\mathrm{RM}_{6,3}$ with $S \subseteq\{1,2,3\}$. Since RM codes are invariant under affine transformations, 7 cosets in $\Gamma_{\mathrm{RM}} \backslash \mathrm{RM}_{6,3}$ have the same split weight structure over uniform 8 or less subsections. Hence, it is sufficient to analyze the structure of codewords in the coset with coset leader g_{1} of $\Gamma_{\mathrm{RM}}(2,6) \cup \Gamma_{\mathrm{RM}}(4,4)$. We use the fact that g_{1} has the following invariant affine transformations:

$$
A_{1,4} \triangleq x_{1} \leftrightarrow x_{4}, A_{3,5} \triangleq x_{3} \leftrightarrow x_{5}, A_{14,35} \triangleq\left\{\begin{array}{l}
x_{1} \leftrightarrow x_{3} \tag{42}\\
x_{4} \leftrightarrow x_{5}
\end{array}\right.
$$

Table 4: Affine transformations from $g_{1}-\mathrm{RM}_{6,3}$ to $\sum_{i \in S} g_{i}-\mathrm{RM}_{6,3}$.

S	Affine transformation		
	$x_{1} \leftarrow$	$x_{2} \leftarrow$	$x_{3} \leftarrow$
$\{2\}$	$x_{1}+x_{2}$	x_{3}	x_{1}
$\{3\}$	$x_{1}+x_{2}+x_{3}$	x_{1}	$x_{1}+x_{2}$
$\{1,2\}$	$x_{2}+x_{3}$	$x_{1}+x_{2}$	$x_{1}+x_{2}+x_{3}$
$\{1,3\}$	x_{3}	$x_{1}+x_{3}$	x_{2}
$\{2,3\}$	$x_{1}+x_{3}$	$x_{1}+x_{2}+x_{3}$	$x_{2}+x_{3}$
$\{1,2,3\}$	x_{2}	$x_{2}+x_{3}$	$x_{1}+x_{3}$

3.2.2 Structure of $C(2,6)$

From Table 3, there are $16(=112 / 7)$ blocks of $\mathcal{P} \mathcal{T}(2,6)$ in $g_{1}-\Gamma_{\mathrm{RM}}$. Define

$$
\begin{align*}
g_{1}^{\prime} & \triangleq g_{1}+x_{2} x_{5} x_{6} \\
& =x_{1} x_{3} x_{4} x_{5}+\left(x_{1} x_{4}+\bar{x}_{3} x_{5}\right) x_{2} x_{6} \tag{43}
\end{align*}
$$

Then, $g_{1}^{\prime} \in g_{1}-\mathcal{P} \mathcal{T}(2,6)$. Therefore, one of the 16 blocks is the subset, $g_{1}-\mathcal{P} \mathcal{T}(2,6)$, of $g_{1}-\mathcal{P} \mathcal{T}$, where

$$
\begin{equation*}
g_{1}-\mathcal{P} \mathcal{T}=g_{1}+\left(\mathrm{RM}_{5,2} \circ \mathrm{RM}_{5,2}\right) \tag{44}
\end{equation*}
$$

From Lemma 1-(i), the 16 blocks in $g_{1}-\Gamma_{\mathrm{RM}}$ can be obtained from the block by applying the binary shifts in $\mathcal{B}_{* 1 * * * 1}$.

It follows from Table 3, (43) and (44) that for f in $g_{1^{-}}$ $\mathcal{P} \mathcal{T}(2,6), p_{0} f=p_{0} g_{1}$, and therefore, f can be expressed as $g_{1}+x_{6} h$ with $h \in \mathrm{RM}_{5,2}$. Define $f_{0} \triangleq p_{0} f=x_{1} x_{3} x_{4} x_{5}$ and

$$
\begin{equation*}
f_{1} \triangleq\left(x_{1} x_{4}+x_{3} x_{5}\right) x_{2}+h \tag{45}
\end{equation*}
$$

Then, $p_{1} f=f_{0}+f_{1}$, and $\left|f_{0}\right|_{5}=2$, and $\left|f_{0}+f_{1}\right|_{5}=6$. From (7),

$$
\begin{equation*}
\left|f_{0}+f_{1}\right|_{5}-\left|f_{0}\right|_{5}=\left|f_{1}\right|_{5}-2\left|f_{0} f_{1}\right|_{5}=4 \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|f_{0} f_{1}\right|_{5}=\left|f_{1, x_{1}=x_{3}=x_{4}=x_{5}=1}\right|_{1}=\left|h_{x_{1}=x_{3}=x_{4}=x_{5}=1}\right|_{1} . \tag{47}
\end{equation*}
$$

If $h=0$, then from (45) to (47), $\left|f_{1}\right|_{5}=6,\left|f_{0} f_{1}\right|_{5}=0$ and $\left|f_{0}+f_{1}\right|_{5}=8$, a contradiction. Hence $\left|f_{1}\right|_{5} \geq 4$. Based on the monomial basis of RM codes, we prove that $\left|f_{1}\right|_{5} \geq 6$. If $\left|f_{1}\right|_{5}=4$, then f_{1} can be expressed as $y_{1} y_{2} y_{3}$, where $y_{i}=a_{i 0}+\sum_{j=1}^{5} a_{i j} x_{j}$ with $1 \leq i \leq 3$. Express $y_{1} y_{2} y_{3}$ as the sum of monomials. From (45), f_{1} has two monomials of degree $3, x_{1} x_{2} x_{4}$ and $x_{2} x_{3} x_{5}$, only. Without loss of generality, we can assume that $a_{12}=1, a_{21}=a_{23}=1$ and $a_{34}=a_{35}=1$. Then, besides $x_{1} x_{2} x_{4}$ and $x_{2} x_{3} x_{5}, y_{1} y_{2} y_{3}$ has monomials $x_{2} x_{3} x_{4}$ and $x_{1} x_{2} x_{5}$, a contradiction. From (46) and $\left|f_{1}\right|_{5} \geq 6$, we have $\left|f_{0} f_{1}\right|_{5} \geq 1$. Hence, there remain the following two cases:
Case I: $\left|f_{1}\right|_{5}=6$ and $\left|f_{0} f_{1}\right|_{5}=\left|h_{x_{1}=x_{3}=x_{4}=x_{5}=1}\right|_{1}=1$.
where $x_{i} \leftarrow x_{j}$ and $x_{j} \leftarrow x_{i}$ are abbreviated as $x_{i} \leftrightarrow x_{j}$.

Case II: $\left|f_{1}\right|_{5}=8$ and $\left|f_{0} f_{1}\right|_{5}=\left|h_{x_{1}=x_{3}=x_{4}=x_{5}=1}\right|_{1}=2$.
First, consider Case I. As an example, g_{1}^{\prime} is Case I. From the second condition, for simplicity, we assume that h is a form of $x_{2}\left(\bar{a}_{1} \bar{x}_{1}+\bar{a}_{2} \bar{x}_{3}+\bar{a}_{4} \bar{x}_{4}+\bar{a}_{5} \bar{x}_{5}+1\right)$. Since $x^{a}=\bar{x}+a$, $x_{1} x_{4}+x_{3} x_{5}+h / x_{2}=\left(x_{1}^{a_{4}} x_{4}^{a_{1}}+x_{3}^{a_{5}} x_{5}^{a_{3}}+a_{1} a_{4}+a_{3} a_{5}+1\right)$. Therefore, $f_{1}=B\left(\left(x_{1} x_{4}+x_{3} x_{5}\right) x_{2}+h\right)+x_{2}\left(a_{1} a_{4}+a_{3} a_{5}+\right.$ 1), where B is a binary shift such that $x_{i} \leftarrow x_{i}^{a_{i}}$ for $i=1,3,4,5$. From the first condition $\left|f_{1}\right|_{5}=6$ of Case I, $a_{1} a_{4}+a_{3} a_{5}=1$, which implies

$$
\begin{equation*}
B \in \mathcal{B}_{1 * 01 *} \cup \mathcal{B}_{1 * 110} \cup \mathcal{B}_{0 * 1 * 1} \cup \mathcal{B}_{1 * 101} \tag{48}
\end{equation*}
$$

The number of the binary shifts in (48) is 12 .
Next consider Case II.
(i) From the second condition,

$$
\begin{equation*}
h_{x_{1}=x_{3}=x_{4}=x_{5}=1}=1 . \tag{49}
\end{equation*}
$$

A simple example of h which meets the first condition is $h=x_{1} x_{4}$ or $x_{3} x_{5}$. Define

$$
\begin{equation*}
f_{1}^{\prime} \triangleq\left(x_{1} x_{4}+x_{3} x_{5}\right) x_{2}+x_{3} x_{5}=x_{2} x_{1} x_{4}+\bar{x}_{2} x_{3} x_{5} \tag{50}
\end{equation*}
$$

Then, $\left|f_{1}^{\prime}\right|_{5}=8,\left|f_{0} f_{1}^{\prime}\right|_{5}=2$ and $B_{2}\left(f_{1}^{\prime}\right)=\bar{x}_{2} x_{1} x_{4}+$ $x_{2} x_{3} x_{5}=\left(x_{1} x_{4}+x_{3} x_{5}\right) x_{2}+x_{1} x_{4}$ is Case II, too.
(ii) Consider the following type of Case II:

$$
\begin{equation*}
f_{1}=B\left(f_{1}^{\prime}\right)+h^{\prime}, \quad \text { for } h^{\prime} \in \mathrm{RM}_{5,2} \tag{51}
\end{equation*}
$$

where $B \in \mathcal{B}_{* 1 * * *}$ such that

$$
\begin{equation*}
B\left(f_{1}^{\prime}\right)_{x_{1}=x_{3}=x_{4}=x_{5}=1}=0 . \tag{52}
\end{equation*}
$$

From the second condition,

$$
\begin{equation*}
h_{x_{1}=x_{3}=x_{4}=x_{5}=1}^{\prime}=1 \tag{53}
\end{equation*}
$$

That is, h^{\prime} is independent of x_{2}. For the first condition, note that

$$
f_{1, x_{2}=0}=x_{1}^{a_{1}} x_{4}^{a_{4}}+h^{\prime}, \quad f_{1, x_{2}=1}=x_{3}^{a_{3}} x_{5}^{a_{5}}+h^{\prime}
$$

From (52), the first term is zero, and therefore, $\left|f_{1, x_{2}=b}\right|_{4}>0$. Hence,

$$
\begin{equation*}
\left|f_{1, x_{2}=b}\right|_{4}=4, \quad \text { for } b \in\{0,1\} \tag{54}
\end{equation*}
$$

which implies that h^{\prime} is a single term.
(ii-1) Let $h^{\prime}=y_{1} y_{2}$, where $y_{1} \in\left\{x_{1}, x_{4}\right\}, y_{2} \in\left\{x_{3}, x_{5}\right\}$. As an example meeting (53) and (54), let $y_{1}=x_{4}, y_{2}=x_{5}$ and $B=B_{1,3}$. Then,

$$
\begin{align*}
f_{1} & =B_{1,3}\left(f_{1}^{\prime}\right)+x_{4} x_{5} \\
& =x_{2} \bar{x}_{1} x_{4}+\bar{x}_{2} \bar{x}_{3} x_{5}+x_{4} x_{5} \\
& =x_{2}\left(\bar{x}_{1}+x_{5}\right) x_{4}+\bar{x}_{2}\left(\bar{x}_{3}+x_{4}\right) x_{5} . \tag{55}
\end{align*}
$$

Then, $\left|f_{1}\right|_{5}=8$ and $\left|f_{0} f_{1}\right|_{5}=2$. By invariant transformations over $g_{1}, A_{1,4}$ and $A_{3,5}$, and binary shift B_{2}, we have 8 new codewords of $g_{1}-\mathcal{P} \mathcal{T}(2,6)$.
(ii-2) As another example, let $h^{\prime}=\left(\bar{x}_{1}+x_{4}\right) x_{5}$ and $B=$ $B_{1,3,4}$. Then,

$$
\begin{align*}
f_{1} & =x_{2} \bar{x}_{1} \bar{x}_{4}+\bar{x}_{2} \bar{x}_{3} x_{5}+\left(\bar{x}_{1}+x_{4}\right) x_{5} \\
& =x_{2}\left(x_{1}+\bar{x}_{4}\right)\left(\bar{x}_{4}+x_{5}\right)+\bar{x}_{2}\left(x_{1}+x_{3}+x_{4}\right) x_{5} \tag{56}
\end{align*}
$$

Then, $\left|f_{1}\right|_{5}=8$ and $\left|f_{0} f_{1}\right|_{5}=2$. By transformations $A_{3,5}$, $A_{14,35}$ and B_{2}, we have 8 new codewords.
(ii-3) Let $h^{\prime}=\left(\bar{x}_{1}+x_{4}\right)\left(\bar{x}_{3}+x_{5}\right)$ and $B=B_{1,3,4,5}$. Then,

$$
\begin{aligned}
f_{1} & =x_{2} \bar{x}_{1} \bar{x}_{4}+\bar{x}_{2} \bar{x}_{3} \bar{x}_{5}+\left(\bar{x}_{1}+x_{4}\right)\left(\bar{x}_{3}+x_{5}\right) \\
& =x_{2}\left(\bar{x}_{1}+x_{4}\right)\left(x_{1}+x_{3}+x_{5}\right)+\bar{x}_{2}\left(\bar{x}_{3}+x_{5}\right)\left(x_{1}+x_{3}+x_{4}\right)
\end{aligned}
$$

Then, $\left|f_{1}\right|_{5}=8$ and $\left|f_{0} f_{1}\right|_{5}=2 . f$ and $B_{2}(f)$ are two new codewords of $g_{1}-\mathcal{P} \mathcal{T}(2,6)$.

Thus, we find all 32 codewords in $g_{1}-\mathcal{P} \mathcal{T}(2,6)$ (see Table 5).

3.2.3 Structure of $C(4,4) \backslash \mathrm{RM}_{6,3}$

From Table 3, there are $320(=2240 / 7)$ blocks of $\mathcal{P} \mathcal{T}(4,4)$ in $g_{1}-\Gamma_{\mathrm{RM}}(4,4)$, and for a block D in $\mathcal{P} \mathcal{T}(4,4), D=p_{0} D \circ$ $p_{1} D$ and $\left|p_{b} D\right|=2$ with $b \in\{0,1\}$. For $f \in g_{1}-\Gamma_{\mathrm{RM}}, f$ can be expressed as $f=g_{1}+h$, where $h=h_{0}+x_{6} h_{1}$ with $h_{0} \in \mathrm{RM}_{5,3}$ and $h_{1} \in \mathrm{RM}_{5,2}$. Suppose that $f \in g_{1^{-}}$ $\Gamma_{\mathrm{RM}}(4,4)$. Then,

$$
\begin{align*}
& w_{0}(f)=\left|x_{1} x_{3} x_{4} x_{5}+h_{0}\right|_{5}=4 \tag{57}\\
& w_{1}(f)=\left|x_{1} x_{3} x_{4} x_{5}+\left(x_{1} x_{4}+x_{3} x_{5}\right) x_{2}+h_{0}+h_{1}\right|_{5}=4 \tag{58}
\end{align*}
$$

From (57), $w_{0}(f)=2+\left|h_{0}\right|_{5}-2\left|x_{1} x_{3} x_{4} x_{5} h_{0}\right|_{5}=4$, where $\left|h_{0}\right|_{5} \geq 4$ and $0 \leq\left|x_{1} x_{3} x_{4} x_{5} h_{0}\right|_{5} \leq 2$. There are two cases:
Case I: $\left|h_{0}\right|_{5}=4$ and $\left|h_{0, x_{1}=x_{3}=x_{4}=x_{5}=1}\right|_{1}=1$. Then, $h_{0}=y_{1} y_{2} y_{3}$. By row operations, only y_{3} is dependent on x_{2}, and $y_{i, x_{1}=x_{3}=x_{4}=x_{5}=1}=1$ with $i \in\{1,2\}$. By row operations, $p_{0} g_{1}=y_{1} y_{2} y_{4} y_{5}$, and therefore

$$
\begin{equation*}
p_{0} f=y_{1} y_{2}\left(y_{4} y_{5}+y_{3}\right) \tag{59}
\end{equation*}
$$

Case II: $\left|h_{0}\right|_{5}=6$ and $\left|h_{0, x_{1}=x_{3}=x_{4}=x_{5}=1}\right|_{1}=2$. Then, $h_{0}=z_{1}\left(z_{2} z_{3}+z_{4} z_{5}\right)$, and by row and cross operations, only one of z_{1} and z_{2} depends on x_{2}. If z_{2} dose not depend on x_{2}, then $h_{0, x_{1}=x_{3}=x_{4}=x_{5}=1}$ is 0 or $x_{2}+b$, where $\left|h_{0, x_{1}=x_{3}=x_{4}=x_{5}=1}\right|_{1}=0$ or 1, a contradiction. Hence, only z_{2} depends on x_{2}. If and only if $z_{1}=z_{4}=z_{5}=1$ and $z_{3}=0$ at $x_{1}=x_{3}=x_{4}=x_{5}=1,\left|h_{0, x_{1}=x_{3}=x_{4}=x_{5}=1}\right|_{1}=$ 2. By row operations of $p_{0} g_{1}=y_{1} y_{2} y_{3} y_{4}, y_{1}=z_{1}, y_{2}=$ $\bar{z}_{3}, y_{3} y_{4}=z_{4} z_{5}$ and therefore,

$$
\begin{align*}
p_{0} f & =y_{1} y_{2} y_{3} y_{4}+y_{1}\left(z_{2} \bar{y}_{2}+y_{3} y_{4}\right) \\
& =y_{1} \bar{y}_{2}\left(y_{3} y_{4}+z_{2}\right) \tag{60}
\end{align*}
$$

Next we consider (58). Define

$$
\begin{equation*}
h_{0}^{\prime} \triangleq\left(x_{1} x_{4}+x_{3} x_{5}\right) x_{2}+h_{0}+h_{1} \in \mathrm{RM}_{5,3} \tag{61}
\end{equation*}
$$

Table 5: The 5 representative codewords of $g_{1}-\mathcal{P} \mathcal{T}(2,6)$. The 32 codewords shown in 3.2 .2 are $f_{0}+x_{6} f_{1}, f_{0}+x_{6} B\left(f_{1}\right)$ and $f_{0}+x_{6} A\left(f_{1}\right)$, where $f_{0}=x_{1} x_{3} x_{4} x_{5}$.

Case	f_{1}	Binary shift B	Transformation A	Group Size
I	$\left(x_{1} x_{4}+\bar{x}_{3} x_{5}\right) x_{2}$	$\mathcal{B}_{1 * 11 *}, \mathcal{B}_{1 * 010}, \mathcal{B}_{0 * 0 * 1}, \mathcal{B}_{1 * 001}$	-	
II (i)	$x_{2} x_{1} x_{4}+\bar{x}_{2} x_{3} x_{5}$	B_{2}	-	12
II (ii-1)	$x_{2} \bar{x}_{1} x_{4}+\bar{x}_{2} \bar{x}_{3} x_{5}+x_{4} x_{5}$	B_{2}	2	
II (ii-2)	$x_{2} \bar{x}_{1} \bar{x}_{4}+\bar{x}_{2} \bar{x}_{3} x_{5}+\left(\bar{x}_{1}+x_{4}\right) x_{5}$	B_{2}	$A_{1,4}, A_{3,5}$	8
II (ii-3)	$x_{2} \bar{x}_{1} \bar{x}_{4}+\bar{x}_{2} \bar{x}_{3} \bar{x}_{5}+\left(\bar{x}_{1}+x_{4}\right)\left(\bar{x}_{3}+x_{5}\right)$	B_{2}	$A_{3,5}, A_{14,35}$	

It follows from (61) that

$$
\begin{equation*}
g_{1}+h_{0}^{\prime}+x_{6} h_{1}=B_{6}\left(g_{1}+h_{0}+x_{6} h_{1}\right)=B_{6}(f) \tag{62}
\end{equation*}
$$

Since $h_{1} \in \mathrm{RM}_{5,2}, h_{0}^{\prime} \neq h_{0}$, and therefore,

$$
\begin{equation*}
p_{0} f \neq p_{1} f \tag{63}
\end{equation*}
$$

From (57) and (58), h_{0} and h_{0}^{\prime} are either Case I or Case II, respectively. We concentrate on the following case, which is the special case of Case I with $y_{3}=x_{2}$.
Case I': $h_{0}=y_{1} y_{2} x_{2}$ such that $y_{1} y_{2_{1}=x_{3}=x_{4}=x_{5}=1}=1$. Since $h_{0}^{\prime}=x_{2}\left(x_{1} x_{4}+x_{3} x_{5}+y_{1} y_{2}\right)+h_{1}, h_{0}^{\prime}$ is not Case II and if h_{0}^{\prime} meets (58), then it is a Case I' and $x_{1} x_{4}+x_{3} x_{5}+y_{1} y_{2}$ is reduced to a single term, say, $y_{1} y_{2}=x_{1} x_{4}, x_{3} x_{5},\left(x_{1}+x_{3}+1\right) x_{4}, \ldots$ The number of those minimum weight codewords of $\mathrm{RM}_{4,2}$ which are one at $x_{1}=x_{3}=x_{4}=x_{5}=1$ is $\prod_{i=0}^{1}\left(2^{4-i}-1\right) /\left(2^{2}-1\right)=35$. We have found that for $20 y_{1} y_{2}$'s among the 35 codewords,

$$
\begin{equation*}
h_{0}^{\prime}=\left(x_{1} x_{4}+x_{3} x_{5}+y_{1} y_{2}\right) x_{2}+h_{1} \tag{64}
\end{equation*}
$$

are Case I'. Table 6 lists the $10 y_{1} y_{2}$'s and the related h_{1} / x_{2} and h_{0}^{\prime} / x_{2}. Define $G_{\phi} \triangleq\left\{g_{1}+h_{0}+x_{6} h_{1}=\right.$ $x_{1} x_{3} x_{4} x_{5}+h_{0}+x_{2}\left(x_{1} x_{4}+x_{3} x_{5}\right) x_{6}+x_{6} h_{1}: h_{0} / x_{2}$ and h_{1} / x_{2} are listed in Table 6$\} . G_{\phi}$ consists of 10 codewords in $g_{1}-\Gamma_{\mathrm{RM}}(4,4)$. The 10 codewords corresponding found 10 remaining $y_{1} y_{2}$'s can be obtained from those in G_{ϕ} by the binary shift B_{6}. Note that for any nonempty subset X of $\left\{x_{i}: 1 \leq i \leq 6\right\}$, there are no binary shift equivalent pairs with respect to X in G_{ϕ}. For $f \in G_{\phi}, \operatorname{deg}_{2}(f)=2$. From Lemma 1-(ii), $f, B_{2}(f), B_{2}^{(0)}(f)$ and $B_{2}^{(1)}(f)$ are in the same block of $\mathcal{P} \mathcal{T}(4,4)$ in $g_{1}-\Gamma_{\mathrm{RM}}$, and they are all different. f is called the representative of the block. Note that for $f \in G_{\phi}$, the term of degree 4 is the same as $x_{1} x_{3} x_{4} x_{5}$. For each of the 32 subsets S of $\{1,3,4,5,6\}$ and $f \in G_{\phi}$, it follows from Lemma 1-(i) and (63) that

$$
\begin{equation*}
B_{S}(f) \in g_{1}-\Gamma_{\mathrm{RM}}(4,4) \tag{65}
\end{equation*}
$$

For $S \subseteq\{1,3,4,5,6\}$, define $G_{S} \triangleq\left\{B_{S}(f): f \in G_{\phi}\right\}$. Then, the 320 blocks of $\mathcal{P} \mathcal{T}(4,4)$ in $g_{1}-\Gamma_{\mathrm{RM}}(4,4)$ are

$$
\begin{equation*}
\left\{f, B_{2}(f), B_{2}^{(0)}(f), B_{2}^{(1)}(f)\right\} \quad \text { for } \quad f \in \quad \bigcup G_{S} \tag{66}
\end{equation*}
$$

Table 6: The representative $10 h_{0} / x_{2}$ and related h_{1} / x_{2} and h_{0}^{\prime} / x_{2}.

h_{0} / x_{2}	h_{1} / x_{2}	h_{0}^{\prime} / x_{2}
$\left(\bar{x}_{1}+x_{5}\right) x_{3}$	$x_{1}+x_{3}$	$x_{1}\left(\bar{x}_{3}+x_{4}\right)$
$\left(x_{1}+x_{4}+x_{5}\right) x_{3}$	$\bar{x}_{1}+x_{3}+x_{4}$	$\left(\bar{x}_{1}+x_{4}\right)\left(\bar{x}_{3}+x_{4}\right)$
$\left(\bar{x}_{1}+x_{5}\right)\left(\bar{x}_{3}+x_{5}\right)$	$\bar{x}_{1}+x_{3}+x_{5}$	$x_{1}\left(x_{3}+x_{4}+x_{5}\right)$
$\left(x_{1}+x_{4}+x_{5}\right)\left(\bar{x}_{3}+x_{5}\right)$	$x_{1}+x_{3}+x_{4}+x_{5}$	$\left(\bar{x}_{1}+x_{4}\right)\left(x_{3}+x_{4}+x_{5}\right)$
$x_{1} x_{4}$	0	$x_{3} x_{5}$
$\left(\bar{x}_{1}+x_{3}\right) x_{4}$	$x_{3}+x_{4}$	$x_{3}\left(\bar{x}_{4}+x_{5}\right)$
$\left(\bar{x}_{1}+x_{5}\right) x_{4}$	$x_{4}+x_{5}$	$\left(\bar{x}_{3}+x_{4}\right) x_{5}$
$\left(x_{1}+x_{3}+x_{5}\right) x_{4}$	$\bar{x}_{3}+x_{4}+x_{5}$	$\left(\bar{x}_{3}+x_{5}\right)\left(\bar{x}_{4}+x_{5}\right)$
$x_{1}\left(\bar{x}_{4}+x_{5}\right)$	$x_{1}+x_{5}$	$\left(\bar{x}_{1}+x_{3}\right) x_{5}$
$\left(\bar{x}_{1}+x_{5}\right)\left(\bar{x}_{4}+x_{5}\right)$	$\bar{x}_{1}+x_{4}+x_{5}$	$\left(x_{1}+x_{3}+x_{4}\right) x_{5}$

4 Conclusion

For two EBCH codes, $\operatorname{EBCH}(32,21,6)$ and $\operatorname{EBCH}(64,45$, 8), the sets of minimum weight codewords are analyzed in terms of Boolean polynomial representation. We have listed all the representative minimum weight codewords for the codes, and shown the transformations to obtain the remaining minimum weight codewords. Both codes contain an RM code as a large subcode. The minimum distance of $\operatorname{EBCH}(32,21,6)$ is smaller than that of the RM code $\mathrm{RM}_{5,2}$, while that of $\operatorname{EBCH}(64,45,8)$ is equal to the RM code $\mathrm{RM}_{6,3}$.

To obtain the results, binary shift invariance property is utilized. Especially, for a linear code C satisfying (17), we can use the property effectively as shown in Lemma 1.

References

[1] J. Asatani, T. Koumoto, T. Fujiwara and T. Kasami, "Soft-input soft-output decoding algorithm of linear block codes based on minimum distance search," Proc. 2004 IEEE International Symposium on Information Theory, p. 345, Chicago, USA, June 2004.
[2] T. Kasami, T. Takata, T. Fujiwara and S. Lin, "On complexity of trellis structure of linear block codes," IEEE Trans. Inform. Theory, vol. 39, no. 3, pp. 10571064, May 1993.
[3] T. Kasami, T. Koumoto, T. Fujiwara, H. Yamamoto and S. Lin, "Low weight subtrellises for binary linear block codes and their applications," IEICE Trans. Fundamentals, vol. E80-A, no. 11, pp. 2095-2103, Nov. 1997.
[4] T. Fujiwara, H. Yamamoto, T. Kasami, and S. Lin, "A trellis-based recursive maximum likelihood decoding algorithm for lenear block codes," IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 714-729, Mar. 1998.
[5] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, The Netherlands, 1977.
[6] W.W. Peterson and E.J. Weldon, Jr., ErrorCorrecting Codes, 2nd ed., MIT Press, Cambridge, 1972.
[7] T. Kasami, H. Tokushige, T. Fujiwara, H. Yamamoto and S. Lin, "A recursive maximum likelihood decoding algorithm for some transitive invariant binary block codes," IEICE Trans. Fundamentals, vol. E81A, no. 11, pp. 1916-1924, Sept. 1998.
[8] T. Kasami, H. Tokushige, T. Fujiwara, H. Yamamoto and S. Lin, "A recursive maximum likelihood decoding algorithm for Reed-Muller codes and related codes," Nara Institute of Science and Technology Technical Report, NAIST-IS-TR97003, May 1997.
[9] J. Asatani, K. Tomita, T. Koumoto, T. Takata and T. Kasami, "A soft-decision iterative decoding algorithm using a top-down and recursive minimum distance search," IEICE Trans. Fundamentals, vol. E85A, no. 10, pp. 2220-2228, Oct. 2002.

