論 文 要 旨 等 報 告 書

氏	石井 敏 美
授与した学位	博 士
専攻分野の名称	歯甲 学
学位授与の番号	博 甲 第 33688 号
学位授与の日付	平成 19 年 3 月 233 日
学位授与の要件	医歯学総合研究科社会環境生命科学専攻（学位規則第4条第1項該当）
学位論文題名	太陽電池を付与した棒状半導体酸化チタンの歯科臨床応用への可能性

論 文 審 査 委 員 教授 下野 勉 助教授苔口 進教授 鈴木 一臣

学 位 論 文 内 容 の要旨

［緒言］
近年，酸化チタン（ TiO_{2} ）は化学的に安定した性質と光触媒という特徵的な機能から有機物分解，脱臭，大気浄化，浄水，防汚など様々な分野で実用化が進んでいる。歯科頱域においても TiO_{2} を用いた新たな薢蝕予防方法や口腔清掃用具への応用の可能性，実用展開が期待される。そこで本研究では，半導体 TiO_{2} の光蚛媒反応に着目して Streptococcus mutans（以下 S ．mutans）に対する酸産成抑制，抗菌および付着抑制効果について検討を行った。また，太陽電池付与による光触媒反応の増強効果についても検討を行った。

［材料および方法］

実験 1． pH 低下抑制及び抗菌性の判定
ソーラーパネル部を遮光した $\mathrm{S}-\mathrm{S}$ 電極群（ S ：ステンレス， S 群），太陽電池付 $\mathrm{S}-\mathrm{S}$ 電極群（ $\mathrm{S}+$電池群），ソーラーパネル部を遮光した $\mathrm{S}-\mathrm{Ti} \mathrm{O}_{2}$ 電極群（ $\mathrm{TiO} \mathrm{O}_{2}$ ：酸化チタン， TiO_{2} 群），太陽電池付 S $-\mathrm{TiO}_{2}$ 電極群（ $\mathrm{TiO}_{2}+$ 電池群），電極を付与しない群の 5 種のカリオスタット試験アンプルを準備 し，各々菌量が $10^{8} \mathrm{CFU} / \mathrm{ml}$ になるよう S．mutans ATCC25175 株（血清型 c）を添加した。各電極を電極棒間（＋極，一極）が接触しないよう試験アンプルに固定し，40W，750Lux の照明下 $37^{\circ} \mathrm{C}$ で培養，経時的に pH 及び生菌数の測定を行った。

実験 2 ．光触媒効果発現領域の判定
$10^{8} \mathrm{CFU} / \mathrm{ml}$ の S．mutans を $100 \mu \mathrm{l}$ ずつ播種したカリオスタット寒天培地に，電極棒間（＋極，－極）が接触しないよう電極を固定した。S 群， $\mathrm{S}+$ 電池群， TiO_{2} 群， $\mathrm{TiO} \mathrm{O}_{2}$＋電池群の 4 群で実験を行 った。各試験培地は 40W，750Lux の照明下，37Cで5日間培養後，電極周囲培地の pH 指示薬の色不変領域（青色領域）の有無の判定および直径の計測を行った。また実体顕微鏡下で電極周囲 のコロニー非形成領域発現の有無の判定を行った。

実験3．アパタイトペレットへの付着抑制効果の判定
1% スクロースを添加した BHI broth 10 ml が入った試験管に， $10^{8} \mathrm{CFU} / \mathrm{ml}$ の S ．mutansを 100 $\mu 1$ ずつ添加し，アパタイトペレットAPP－100（ $10 \times 10 \times 2 \mathrm{~mm}$ PENTAX）を試験管底部でおよそ 30° の斜面になるよう試験液中に挿入した。 TiO_{2} 群， $\mathrm{Ti}_{2}+$ 電池群，電極を付与しない群の 3 群で実験 を行った。各電極は電極棒間（＋極，一極）およびアパタイトペレットに接触しないよう試験液中に挿入，固定し， $40 \mathrm{~W}, 750 \mathrm{Lux}$ の照明下 $37^{\circ} \mathrm{C}$ で 24 時間培養した。培垍後，取り出したアパタイ トペレットにエリスロシン染色液を滴下して付着菌体を染色し，画像解析により染色された付着菌体をドット表示した。各アパタイトペレットの染色部ドットを計測し，平均値の差について t －検定を行った。さらに，各平均値から，電極を付与しない群の染色部平均値を 100% 付着とした時の TiO_{2} 群および $\mathrm{Ti} 0_{2}+$ 電池群の相対的な付着率を求めた。
［結果および考察］
1． pH の変化
$T \mathrm{i} 0_{2}+$ 電池群は 12 時間までに pH が 7.2 から 6.5 （CAT 値 0）に低下し，以降 48 時間まで pH は一定値を保ち，最終 pH となった。その他 4 群は 6 時間までに pH 6.0 （CAT 値 0 ）， 12 時間までに pH4．9～5． 2 （CAT 値 1.5 ）， 48 時間後の終末 pH は $4.6 \sim 4.7$（CAT 値 2．0）に低下した。 $\mathrm{TiO} 2+$ 電池群 において pH 低下が抑制されていることが示された。このことから，棒状半導体 $\mathrm{Ti} \mathrm{O}_{2}$ 光触媒反応に よりS．mutansに対して酸産生抑制効果が生じることが示唆された。

2．生菌数の変化

48 時間後の S．mutans の生菌数は， $\mathrm{TiO}_{2}+$ 電池群において $1.1 \times 10^{2} \mathrm{CFU} / \mathrm{ml}$ であった。他の 4 群 においては，S 群と電極なし群において $1.0 \times 10^{5} \mathrm{CFU} / \mathrm{ml}$ ， $\mathrm{S}+$ 電池群において $9.0 \times 10^{4} \mathrm{CFU} / \mathrm{ml}, \mathrm{Ti} \mathrm{O}_{2}$群において $4.3 \times 10^{4} \mathrm{CFU} / \mathrm{ml}$ であった。棒状半導体 $\mathrm{TiO} 0_{2}$ 光触媒反応により S ．mutans に対して抗菌効果が生じることが示唆された。

3． pH 低下抑制領域および抗菌領域の判定
$\mathrm{Ti} 0_{2}$ 群および $\mathrm{TiO}_{2}+$ 電池群において，カリオスタット寒天培地上の一極周囲に pH 低下抑制を示 す領域（青色部）が観察された。その直径の平均値は各々 $3.2 \mathrm{~mm}, 13.7 \mathrm{~mm}$ であった。実体顕微鏡下においては， TiO_{2} 群および $\mathrm{Ti} \mathrm{O}_{2}$＋電池群の一極周囲にコロニー非形成領域が観察された。 TiO_{2}光触媒効果は $\mathrm{Ti} 0_{2}$ 電極棒接触部位から周囲にも拡大することが示された。

4．アパタイトペレットへの付着試験

電極を付与しない群， $\mathrm{TiO} \mathrm{O}_{2}$ 群， $\mathrm{Ti} \mathrm{O}_{2}+$ 電池群のエリスロシン染色部の計測値（ドット $/ 100 \mathrm{~mm}$ ）は各々218． $0 \pm 16.2,143.9 \pm 27.9,58.0 \pm 13.8$（mean \pm SD）であった。 TiO_{2} 群， $\mathrm{TiO} \mathrm{O}_{2}+$ 電池群は電極を付与しない群と比較して有意に低値を示した（ $p<0.001, p<0.001$ ）。また， TiO_{2} 群と $\mathrm{Ti} 0_{2}+$ 電池群間にも有意差が認められた（ $p<0.001$ ）。電極を付与しない群を 100% とした時の $\mathrm{Ti}_{2} \mathrm{O}_{2}$ 群およ び $\mathrm{TiO}_{2} \mathrm{~T}+$ 電池群の付着率は各々 $65.6 \%, 26.6 \%$ であった。棒状半導体 TiO_{2} の光触媒反応によりア パタイトペレットへの付着抑制効果が認められた。
また，太陽電池を付与することにより，酸産生抑制，抗菌，付着抑制効果など $\mathrm{Ti} 0_{2}$ 単独の光触媒効果が増強されることが示された。

酸産生抑制，抗菌，付着抑制効果が認められた $\mathrm{Ti} 0_{2}$ 電極の実際的な臨床応用としては， $\mathrm{Ti} 0_{2}$ 電極 を装着した歯ブラシの他，カリエスリスクが高い乳幼児のおしゃぶり，咬合誘導装置などへの装着も有効な蠚蝕予防効果が期待できると考えられる。

文客查の結果の票旨

本研究は，化学的に安定で光触媒としての特性を有する酸化チタン $\left(\mathrm{TiO}_{2}\right)$ に着目し，太陽電池を付与した半導体 TiO_{2} の弓蝕原性細菌 Streptococcus mutans 標準菌株で ある ATCC 25175 株（血清型c）に対する光触媒作用による抗う蝕効果について検討し たものである。すなわち，ステンレス（S ）電極，太陽電池付き S 電極， TiO_{2} 電極，太陽電池付き TiO_{2} 電極を各々作成し，S．mutans の酸産生抑制，抗菌作用，さらにハイドロ キシアパタイトペレットへの付着抑制効果について調べている。

その結果，試験した試料の中では，太陽電池付き TiO_{2} 電極が最も S．mutans の酸産生抑制，抗菌作用，ハイドロキシアパタイトペレットへの付着抑制効果が高く， TiO_{2} 単独での光触媒効果が太陽電池を付与することでさらに増強されることが判明した。

なお，これらの成果は，小児歯科学雑誌 第 44 巻•第 4 号 p．567－57（平成 18 年 9月 25 日発行）および同雑誌 第 44 巻•第5号 p．709－712（平成 18 年 12 月 25 日発行）に筆頭著者として掲載されている。

これらの結果は，半導体 TiO_{2} 電極に太陽電池を付与することで，より光触媒効果を高め，S．mutansに対する抗う蝕活性増強効果を示した基礎研究として，新しい抗う蝕器具や機材の開発，歯科臨床応用に繋がることが期待できる先駆的研究であり，価値 ある業績と認めた。

以上のように，本論文は歯科臨床，特にら蝕予防研究分野に十分貢献するもので，学術上，また臨床応用へ貢献するところが大である。

したがって，本申請論文は博士（歯学）の学位授与に値するものと判断した。

