

学 位 論 文内容の要旨

【緒言】

口腔癌の治療に用いられる放射線は腫瘍細胞のDNA 2 本鎖切断を引き起こし，アポト ーシスへ誘導する。しかし，ある細胞集団は放射線抵抗性を示し，アポトーシスを回避 する。この放射線に抵抗性を持った細胞集団は，口腔癌における放射線治療を困難にし ている要因のひとつである。放射線感受性の違いを示す理由のひとつとして，DNA 2 本鎖切断修復能の差が関与していると考えられている。また，近年，腫瘍細胞が多様化し ていく過程には DNA のメチル化が関与することが明らかになってきた。そこで，口腔癌での放射線抵抗性の誘導メカニズムにおける癌細胞のDNA メチル化の関わりについ て検討した。
【材料および方法】

1）細胞株

同一舌癌患者の未治療原発巣の生検組織から浸潤•転移能の違いにより当科で樹立 した口腔扁平上皮癌細胞株 UM1，UM2 を用いた。これらの細胞株は，UM1 細胞は高浸潤•高転移能を示す一方で，UM2 細胞は低浸潤•低転移能を示すという性質の違い がある。また，両細胞間ではメチル化にも差がみられ，UM1 細胞ではE－カドヘリンの プロモーター領域における DNA のメチル化により，その発現が抑制されている。
2）放射線感受性試験
UM1 細胞と UM2 細胞における放射線感受性を検討するために，細胞に X 線を 0 か ら12Gy まで2Gy 間隔で照射し，照射3日後に生細胞数を計測し，細胞生存率を求め た。
3）培養状態でのゲノムDNA の安定性および修復能の検討
培養状態でのゲノム DNA の安定性は Comet Assayを用いて行い，Tail moment の値 を DNA 損傷の指標とした。培養状態での DNA 2 本鎖切断修復能は，プロモーターと コーディング領域との間を制限酵素で切断し直鎖状になった DsRed2 の発現ベクター を細胞に遺伝子導入し，DsRed2の発現の有無により DNA 修復能を検討した。
4）細胞周期の解析
UM1 細胞，UM2 細胞の細胞周期の解析は，フローサイトメトリーを用いて行った。 5）DNA 2 本鎖切断修復関連酵素の遺伝子の発現量の検討

DNA 2 本鎖切断修復に関する酵素の遺伝子発現量は定量的 real time RT－PCR を用い て検討した。
6）UM1 細胞における脱メチル化の影響の検討
UM1 細胞を脱メチル化剤 5－Azacytidineで処理後，放射線感受性試験，DNA 修復能解析，細胞周期解析，定量的 RT－PCR を行い，処理前の UM1 細胞と比較検討した。

低線量では UM1 細胞，UM2 細胞で放射線感受性に差は見られなかったが，6Gy 以上 になると，両者の感受性に有意な差がみられ，UM1 細胞は放射線高感受性であったのに対して，UM2 細胞では放射線抵抗性であることが明らかとなった。
放射線感受性と，DNA 損傷修復との関連を検討するために行った Comet Assayにおい て，UM1 細胞では断片化した DNA が核内から流れ出て，彗星の尾のように流れる像が多く観察されたが，UM2 細胞ではそのような像は少なく，DNA が核内にとどまってい る像が観察された。Tail moment の値でも，有意な差がみられ，UM1 細胞は損傷を負っ た DNA が蓄積されていたのに対して，UM2 細胞では損傷を負った DNA は少なく健康 な状態にあることが明らかとなった。
細胞内での DNA 2 本鎖切断修復能を検討したところ，UM1 細胞は DsRed2 を発現しな かったがUM2細胞ではDsRed2を発現したことから，UM1 細胞は培堆状熊においてDNA 2 本鎖切断修復能を持たないが，UM2 細胞は修復能を持つことがわかった。

2 本鎖切断修復関連遺伝子の発現量の解析

DNA 2 本鎖切断修復能における違いを検討するために行った 2 本鎖切断修復関連遣伝子の発現量の解析では，Ku70，Ku80，DNK－PKcs，Nbs1，Rad50，XRCC3 の発現量が UM2 と比較し UM1 で低下していた。Ku70，Ku80，DNA－PKcs は 2 本鎖切断修復の経路 のうち，非相同性断端結合（Non－homologous end joining，以下 NHEJ）経路おいて 2 本鎖切断端を認識する役目をしており，XRCC3 は相同組換え（Homologous recombination，以下 HR）経路においてRad51 とともに Strand invasion の際に働く酵素である。Nbs1，Rad50 は 2 本鎖切断修復経路の NHEJ と HR の両方において， 2 本鎖切断端を認識し下流の修復酵素を誘導して修復を促進する。これらの修復酵素の発現が UM1 細胞では UM2 細胞 に比べて低かったことから，放射線高感受性の UM1 細胞では DNA 2 本鎖切断修復の初期の段階での修復に欠陥があることが明らかとなった。

細胞周期の解析

UM1 細胞は UM2 細胞に比べて，G2 期の細胞が少ないことが明らかとなうたが，損傷修復経路において，NHEJ 経路は細胞周期の全期で活動を行うことができるのに対して， HR 経路は S 期後半からG2期においてのみ働くが，HR とNHEJの両方の経路が活性化 されるときには両方が DNA 損傷を修復する。UM2 細胞での修復能が UM1 細胞に比べ て高いのは，修復酵素の発現量の差に加えて HR とNHEJ の両方の経路で修復が行われ ているため考えられた。 UM1 細胞での脱メチル化の影響
UM1 を5－Aza で脱メチル化処理を行うと，UM2 と同程度の放射線抵抗性を示し，ま た，培掏状熊で DNA 2 本鎖切断修復能を獲得した。修復遺伝子発現量の解析では，UM1細胞で発現量が低下していた遺伝子の発現量が，5－Aza 処理後にはUM2 と同程度まで増加した。細胞周期分析では，5－Aza の処理によって G2 期の細胞が増加した。これは， UM2 細胞と同様に，HR とNHEJ の両方の経路を利用しての修復能を高めている可能性 が示唆された。
【結論】
DNA メチル化によりDNA 2 本鎖切断修復酵素の発現が抑制されたことで，放射線に よって引き起こされる DNA 2 本鎖切断修復能が低下し，さらにこの修復能低下が癌細胞 を放射線抵抗性減弱へと導いたことが示唆された。

文萆查の結果の要旨

口腔癌の治療に用いられる放射線は，腫瘍細胞の DNA 2 本鎖切断を引き起こし，細胞死へと誘導するが，ある細胞集団は放射線抵抗性を示す。この放射線に抵抗性 を持った細胞集団は，口腔癌における放射線治療を困難にしている要因のひとつで ある。放射線感受性の違いを示す要因として，DNA 2 本鎖切断修復能の差が関与し ている。また，腄場細胞が多様化していく過程には DNA のメチル化が関与するこ とが明らかになってきている。そこで，口腔扁平上皮癌での放射線抵抗性の誘導機構の解明と，その機構における DNA メチル化の関わりについて検討し，以下の点 を明らかにした。

1．放射線高感受性の UM1 細胞では，DNA 2 本鎖切断修復能を持たなかったが， これは，DNA 2 本鎖切断修復醿素遺伝子の発現量が，放射線抵抗性の UM2 細胞と比べて，UM1 細胞では低下していたことによることが明らかとなった。このことか ら，DNA 2 本鎖切断修復能力が低いものでは放射線高感受性になると考えられた。
2． 2 本鎖切断修復関連遺伝子の DNAメチル化と放射線感受性の関係
UM1 細胞を脱メチル化剤の 5－Azacytidineで脱メチル化することで，DNA 2 本銆切断修復能を獲得し，放射線感受性が下がった。また，脱メチル化後にDNA 2 本鎖切断修復関連遺伝子の発現量が UM2 細胞と同程度まで上昇した。このことから，UM1細胞ではDNA 2 本鎖切断修復酵素がDNA のメチル化により発現抑制されているこ とにより修復能が欠如しており，さらには修復能の欠如が放射線高感受性へと誘導 していたことが示唆された。

これらの知見は，放射線治療を困難にしている放射線耐性細胞を標的とした治療 の開発に重要な方向性を示す価値のある研究である。
従って，本申請論文は博士（歯学）の学位授与に値するものであると判定した。

