授与した学位
専攻分野の名称
学位授与の番号
学位与授与付
学位与の要件
学位論文題名
妹 尾 京 子

医歯学総合研究科病態制御科学専攻（学位規則第 4 条第 1 項該当）
ラット創傷歯髄から単離したFIP－2 遺伝子の発現動態およびその炎症制御因子と細胞死に与える影響
論文審査委員 教授 高柴 正悟 教授 福井 一博助教授長塚 仁

学 位 論 文内容の要旨

【緒言】

歯觩炎症のメカニズムを解明するため，これまでにサブトラクション法を用いて，創傷歯髄において発現量が変化した遺伝子群を単離した。そのなかでヒト Adenovirus E3－14．7 kDa－interacting protein（FIP）－2 のラットにおける相同性分子（ラット FIP－2） が，創傷歯觛において発現量が顕著に増加していた。本研究では，炎症条件下での FIP－2 の発現動態，さらに FIP－2 の発現を抑制した細胞における炎症制御因子の産生および細胞死に関する影響を検討することによって，FIP－2 分子の機能を探ることを目的とし た。

【材料および方法】

1．細胞培埥と試薬：ラット歯髄線維芽細胞（RPC－C2A）およびラット腎臓上皮細胞 （NRK）を用いた。炎症および細胞死を誘導するための刺激は，腫瘍壊死因子ア ルファ（TNF－α ）および過酸化水素を用いた。阻害剤実験には nuclear factor－kappaB阻害剤，c－jun N－terminal kinase（JNK）阻害剤，extracellular signal－regulated kinase阻害剤を使用した。
2．全 RNA の抽出と定量 PCR 法：TNF－α で刺激した細胞から全 RNAを抽出し，逆転写反応を行った。作製した cDNA を定量 PCR 法に用いて FIP－2 mRNA 量または MCP－I mRNA 量を測定した。
3．ウエスタンブロット法：細胞から抽出したタンパクを，SDS－PAGEにて分画し， ウエスタンブロットにて FIP－2タンパクを検出した。
4．免疫染色法：細胞をチャンバースライド上に固定後，FIP－2タンパクの細胞内局在 を，酵素抗体法にて検出した。
5．FIP－2 の発現を抑制した NRK 細胞株の作製：FIP－2 に特異的な small interfering RNA を含む発現べクターをNRKにリポフェクション法にて遺伝子導入した。抗生剤で選択培羲しFIP－2を発現抑制した細胞株（FIP－2－KD）および，陰性対照の細胞株（mock） を作製した。
6．サイトカインアレイと ELISA 法：TNF－α で 24 時間刺激後の FIP－2－KDあるいは mock の培養上清中のサイトカインをサイトカインアレイにて検出した。さらに上清中 の MCP－1 量の測定を ELISA 法にて調べた。
7．細胞増殖能の測定：テトラゾリウム塩の分解を測定し細胞増殖能を調べた。

8．抗体アレイ解析：1）未刺激の状態，2）TNF－α で 30 分間刺激した状態，3）過酸化水素で 30 分間刺激した状態の mock と FIP－2－KD から回収した細胞内タンパクを抗体アレイにて解析し，mock を基準として FIP－2－KD でのシグナル強度に差が あったタンパクの相互関係を Ingenuity データーベースで解析した。
9．統計学的解析：定量 PCR 法，ELISA 法，細胞増殖能測定の統計学的解析は Student＇s－t検定にて行った。

【結果】

1）FIP－2 の発現動態：RPC－C2A をTNF－α で 2 時間刺激した際の FIP－2 mRNA 量は，無刺激の細胞と比較して約 2 倍に増加した。FIP－2タンパク量も，TNF－α の浱度依存的に増加した。
2）炎症性シグナル阻害剤の効果：RPC－C2A にJNK 阻害剤を作用させると，FIP－2タ ンパク量は減少した。
3）FIP－2 の細胞内局在の変化：無刺激およびTNF－α 刺激時の RPC－C2A では，細胞質内に多く FIP－2タンパクを検出した。一方，過酸化水素で 30 分間刺激すると，核内の FIP－2 タンパクが増加した。
4）FIP－2 の発現抑制の確認：正常細胞および mock と比較して FIP－2－KD での FIP－2 の発現抑制を，定量 PCR 法，ウエスタンブロット法，免疫染色法によって確認し た。
5）炎症性サイトカインの検出と FIP－2 発現抑制による MCP－1 産生量および MCP－1 mRNA 量の変化：mock，FIP－2－KD において monocyte chemoattractant protein－1 （MCP－1），tissue inhibitors of matrix metalloproteinases 1 （TIMP－1），そして vascular endothelial growth factor（VEGF）が強く発現していた。mockに比較して FIP－2－KD では，上清中の MCP－1 の産生量および MCP－1 mRNA 量が減少していた。
6）細胞増殖能の測定 ：mock と比較して FIP－2－KD では細胞増殖能活性が約 40% 増加 した。
7）抗体アレイ解析：1）未刺激の状態；増殖制御因子，細胞周期因子のシグナルが増強し，細胞死制御因子のシグナルが減弱していた。2）TNF－α で刺激した状態；ほ とんどの細胞周期因子は顕著に減弱していたが，シグナルが増強する傾向がある分子も点在していた。細胞死制御因子には，シグナルが増強するものと減弱する ものが混在していた。3）過酸化水素で刺激した状態；細胞周期因子，細胞増殖制御因子，細胞死制御因子の発現が顕著に抑制されていた。

【考察】

歯膸炎症の際に産生されるTNF－α により FIP－2 の発現が誘導され，これはJNKを介するシグナル伝達経路が関わっている可能性がある。過酸化水素の刺激によって FIP－2タンパクが核内へ移行したことは，FIP－2 が細胞死関連の遺伝子群の転写を調節 している可能性を示唆する。炎症反応の過程において，FIP－2 分子の発現が上昇するこ とによって炎症制御因子および細胞死制御因子が上昇し，炎症や細胞死が増悪してい くことが示唆された。

【結論】

創傷歯髄から単離された FIP－2 は，TNF－α 刺激によって発現が増強し，過酸化水素 によって細胞死を誘導すると核内へ移行した。FIP－2 は，細胞の炎症性反応を増悪させ，細胞死を促進させる可能性がある。

文客查の結果の要旨

歯餚炎症のメカニズムを解明するため，これまでにcDNA サブトラクション法を用い て，創傷歯髄において発現量が変化した遣伝子群を単離した。そのなかでヒト Adenovirus E3－14．7 kDa－interacting protein（FIP）－2 のラットにおける相同性分子（ラット FIP－2）の遺伝子が，創傷歯髄において発現量を顕著に増加させていた。本研究では，ラット培養歯髄線維芽細胞を用いて炎症条件下での FIP－2 の発現動態を，さらに FIP－2 の発現を抑制したラット腎臓上皮細胞における炎症制御因子の産生および細胞死に関する影響を検討することによって，FIP－2 分子の機能を探ることを目的とした。

申請論文は以下の内容を示すものであった。
1．FIP－2 は，TNF－α 刺激によって mRNA の蓄積量と細胞質内のタンパク量が増強され た
2．c－Jun N－terminal kinase 阻害剤によって，TNF－α 刺激で誘導される FIP－2 タンパク量 が減少した
3．細胞死を誘導する過酸化水素の刺激によって FIP－2タンパクは核内へ移行した
4．Small interference RNA を用いて FIP－2 タンパクの産生を抑制すると，上清中の monocyte chemoattractant protein－1（MCP－1）の産生量と MCP－1 mRNA 量が減少した
5．FIP－2 タンパクの産生を抑制すると，細胞周期や細胞死に関連する因子が減少した。 それらと他の因子との関連性をデータベース上で解析すると，FIP－2 分子は炎症や細胞死に関与することが示唆された
以上の知見によって，炎症反応の過程における FIP－2 分子の発現動態を明らかにした。 さらに創傷歯髄において FIP－2 分子が上昇することによって，炎症制御因子および細胞死制御因子の活性化あるいは産生が変動し，炎症や細胞死が増悪していくことが考察さ れている。このことから本研究は，FIP－2 分子の機能の一部の解明に貢献するものであ る。

以上によって，本申請論文は博士（歯学）の学位授与に値するものと判断した。

