# Random walks and isotropic Markov chains on homogeneous spaces 

Akihito HORA*<br>(Received November 17 , 1995)


#### Abstract

Let $G$ be a topological group acting on $S$ transitively from the left with a compact stabilizer $K$. We show that every isotropic (i.e. spatially homogeneous w.r.t. the $G$-actions ) Markov chain on $S$ can be lifted to a right random walk on $G$ and give a one-to-one correspondence between the isotropic Markov chains on $S$ and the totality of sequences of probabilities ( $\nu, \mu_{1}, \mu_{2}, \cdots$ ) where $\nu$ is a probability on $G / K$ and each $\mu_{n}$ is that on $K \backslash G / K$.


Keywords: random walk, Markov chain
1991 Mathematics Subject Classification: 60B

## 1. Introduction and Main Result

In order to describe our problem, let us recall a well-known property of isotropic Markov chains on $\boldsymbol{R}^{\boldsymbol{d}}$. We mean by a Markov chain a Markov process with discrete time parameter ( $\in \boldsymbol{N}=\{0,1,2, \cdots\}$ ) and with an arbitrary state space. We identify those Markov chains which are equivalent in law. Let $M=\left(M_{n}\right)_{n \in \boldsymbol{N}}$ be a Markov chain on $\boldsymbol{R}^{d}$ with transition probability $P_{n}^{M}(x, E)\left(x \in \boldsymbol{R}^{d}, E \in \mathcal{B}\left(\boldsymbol{R}^{d}\right), n \in \boldsymbol{N}_{+}\right)$and with initial law $\mathbf{P}^{M_{0}}$, i.e. $\mathbf{P}\left(M_{n} \in E \mid M_{n-1}=x\right)=P_{n}^{M}(x, E)$ and $\mathbf{P}\left(M_{0} \in E\right)=\mathbf{P}^{M_{0}}(E)$. Here $\mathbf{P}$ is a probability and $\mathcal{B}\left(\boldsymbol{R}^{\boldsymbol{d}}\right)$ denotes the Borel subsets of $\boldsymbol{R}^{\boldsymbol{d}}$ and $\boldsymbol{N}_{+}=\boldsymbol{N} \backslash\{0\} . M$ is called isotropic if

$$
\begin{equation*}
P_{n}^{M}(x, E)=P_{n}^{M}(x+y, E+y) \quad \text { for } n \in N_{+}, x, y \in \boldsymbol{R}^{d}, E \in \mathcal{B}\left(\boldsymbol{R}^{d}\right) \tag{1}
\end{equation*}
$$

holds. Then, it is well-known that $M_{n}$ is expressed as a sum of independent random variables, namely there exist $\boldsymbol{R}^{d}$-valued independent random variables $Y_{0}, Y_{1}, Y_{2}, \cdots$ such that $M_{n}=Y_{0}+Y_{1}+\cdots+Y_{n} . M$ is thus regarded as a random walk on $\boldsymbol{R}^{d}$ (in a little wider sense). Put $\mu_{n}=\mathbf{P}^{Y_{n}}\left(n \in \boldsymbol{N}_{+}\right)$and $\nu=\mathbf{P}^{Y_{0}}$. Then $P_{n}^{M}(x, E)=\mathbf{P}\left(Y_{0}+\cdots+Y_{n} \in E \mid Y_{0}+\cdots+Y_{n-1}=x\right)=\mu_{n}(E-x)$. Hence we have one-to-one correspondence between
\{isotropic Markov chain on $\left.\boldsymbol{R}^{d}\right\} \quad$ and $\quad\left\{\left(\nu, \mu_{1}, \mu_{2}, \cdots\right) ; \nu, \mu_{n}\right.$ are probabilities on $\left.\boldsymbol{R}^{d}\right\}$.
$\boldsymbol{R}^{d}$ acts on $\boldsymbol{R}^{d}$ transitively as translations: $x \mapsto x+y$. Isotropy 1 of a Markov chain is the invariance of the transition probabilities with respect to these actions. In this note we show that a similar one-to-one correspondence as above holds also in a noncommutative situation.

Let $G$ be a topological group acting on a set $S$ transitively from the left. We consider a Markov chain $M=\left(M_{n}\right)_{n \in N}$ on $S$ with transition probability $P_{n}^{M}(x, A)\left(x \in S, A \in \mathcal{B}(S), n \in N_{+}\right)$.
Definition $\quad M$ is called isotropic if its transition probabilities satisfy

$$
\begin{equation*}
P_{n}^{M}(g x, g A)=P_{n}^{M}(x, A) \quad \text { for } \quad n \in N_{+}, x \in S, g \in G, A \in \mathcal{B}(S) \tag{2}
\end{equation*}
$$

[^0]Let us fix a point $x_{0} \in S$ and put $K=\left\{g \in G ; g x_{0}=x_{0}\right\}$ (the stabilizer of $x_{0}$ ). Throughout this note we assume that $K$ is compact in $G$. Denote by $\pi$ the canonical projection of $G$ onto $G / K(\simeq S)$ and by $\sigma$ that of $G / K$ onto $G / / K$ where we write $G / / K$ instead of $K \backslash G / K$ to denote a double coset space.

Theorem 1 A one-to-one correspondence between

$$
\begin{aligned}
\mathcal{M} & =\{\text { isotropic Markov chain on } S\} \quad \text { and } \\
\mathcal{P} & =\left\{\left(\nu, \mu_{1}, \mu_{2}, \cdots\right) ; \nu \text { is a probability on } G / K, \mu_{n} \text { is a probability on } G / / K\right\}
\end{aligned}
$$

exists. The correspondence is given as follows.
$[\mathcal{P} \longrightarrow \mathcal{M}]$ For given $\left(\nu, \mu_{1}, \mu_{2}, \cdots\right) \in \mathcal{P}$, lifting canonically (and uniquely) $\nu$ and $\mu_{n}$ to $K$-right invariant probability $\tilde{\nu}$ and $K$-bi-invariant one $\tilde{\mu}_{n}$ on $G$ respectively and taking $G$-valued independent random variables $Y_{0}, Y_{1}, Y_{2}, \cdots$ such that $\tilde{\nu}=\mathbf{P}^{Y_{0}}$ and $\tilde{\mu}_{n}=\mathbf{P}^{Y_{n}}$, we have $\left(\pi\left(Y_{0} Y_{1} \cdots Y_{n}\right)\right)_{n \in N} \in \mathcal{M}$.
$[\mathcal{M} \longrightarrow \mathcal{P}]$ For given $M=\left(M_{n}\right) \in \mathcal{M}$, we have

$$
\begin{equation*}
\mu_{n}(\Lambda)=P_{n}^{M}\left(x_{0}, \sigma^{-1} \Lambda\right) \quad \text { for } \Lambda \in \mathcal{B}(G / / K) \quad \text { and } \quad \nu=\mathbf{P}^{M_{0}} \tag{3}
\end{equation*}
$$

Before proving Theorem 1 (in the next section), we note some remarks on Theorem 1.
Remark 1 Taking the left and right random walks on $G$ consisting of $Y_{0}, Y_{1}, Y_{2}, \cdots$ in Theorem 1, we get two systems of random variables on $G / K: L_{n}=\pi\left(Y_{n} \cdots Y_{1} Y_{0}\right), M_{n}=\pi\left(Y_{0} Y_{1} \cdots Y_{n}\right)$. Since $L_{n}=Y_{n} \cdots Y_{1} \pi\left(Y_{0}\right)$, $\left(L_{n}\right)$ is clearly a Markov chain on $G / K$. As the following simple example shows, however, $\left(L_{n}\right)$ is not isotropic with respect to the left actions of $G$ (even if ( $G, K$ ) is a Gel'fand pair), while ( $M_{n}$ ) is an isotropic Markov chain on $G / K$ (Lemma 1, 3, 4).
Example Let $G=\mathcal{S}_{3}, S=\{1,2,3\}$ and $x_{0}=1$. Then, $K=\{1,(23)\}, G / / K=\left\{R_{0}, R_{1}\right\}$ where $R_{0}=K, R_{1}=\{(1,2),(13),(123),(132)\}$. Put $\mu\left(R_{0}\right)=a, \mu\left(R_{1}\right)=b$. Then its $K$-bi-invariant lift $\tilde{\mu}$ satisfies $\tilde{\mu}(1)=\tilde{\mu}((23))=a / 2, \tilde{\mu}((12))=\tilde{\mu}((13))=\tilde{\mu}((123))=\tilde{\mu}((132))=b / 4$. Put $\nu=\delta_{1}$ on $S$ and hence $\tilde{\nu}(1)=\tilde{\nu}((23))=1 / 2$. Take $L_{n}=\pi\left(Y_{n} \cdots Y_{1} Y_{0}\right)$ as in above Remark, and its transition probability $P_{n}^{L}(x, y)$ satisfies:

$$
\begin{aligned}
P_{n}^{L}(1,2) & =\tilde{\mu}(\{(12),(123)\})=b / 2 \\
P_{n}^{L}((123) 1,(123) 2) & =P_{n}^{L}(2,3)=\tilde{\mu}(\{(23),(123)\})=a / 2+b / 4
\end{aligned}
$$

Hence $\left(L_{n}\right)$ is not isotropic unless $2 a=b$.
Remark 2 Furstenberg defined a discrete Brownian motion on a homogeneous space $G / K$ in [2] as follows. Let $\mu$ be a $K$-left invariant absolutely continuous probability on $G, Y_{1}, Y_{2}, \cdots G$-valued i.i.d. random variables with law $\mu$ and $Y_{0}$ another $G$-valued random variable independent of $Y_{i}$ 's. Put $W_{n}=Y_{0} Y_{1} \cdots Y_{n}$ (right random walk) and $U_{n}=\pi\left(W_{n}\right)$ where $\pi: G \longrightarrow G / K .\left(U_{n}\right)_{n \in N}$ is called a discrete Brownian motion on $G / K$. Note that $K$-left invariance of $\mu$ is sufficient to ensure the Markovian property of $\left(U_{n}\right)$ (See Lemma 1, 3). Theorem 1 immediately yields the following characterization.

Corollary 1 The discrete Brownian motions on $G / K$ coincide with the temporally homogeneous isotropic Markov chains on $G / K$ with absolutely continuous transition probabilities.
This fact is already shown by Chassaing (See [1]).
Remark 3 Denote by $M^{b}(G / / K)$ the bounded measure algera on $G / / K$ with convolution products. For $\mu \in M^{b}(G / / K)$ and $\lambda \in M^{b}(G / K)$ (the linear space of bounded measures on $\left.G / K\right)$, we have $\lambda * \mu \in$ $M^{b}(G / K)$. Let $M=\left(M_{n}\right)$ be an isotropic Markov chain on $S=G / K$ and $\left(\nu, \mu_{1}, \mu_{2}, \cdots\right)$ its corresponding sequence of probabilities described in Theorem 1. Then $n$-fold transition probability $P^{(n)}\left(x_{0}, A\right)$ is given by

$$
\begin{equation*}
\int_{S} \cdots \int_{S} P_{1}^{M}\left(x_{0}, d x_{1}\right) \cdots P_{n-1}^{M}\left(x_{n-2}, d x_{n-1}\right) P_{n}^{M}\left(x_{n-1}, A\right)=\delta_{x_{0}} * \mu_{1} * \cdots * \mu_{n} \tag{4}
\end{equation*}
$$

If $(G, K)$ is a Gel'fand pair therefore $M^{b}(G / / K)$ is commutative, we thus see that $Y_{n}$ 's in Theorem 1 satisfy

$$
M_{n}=\pi\left(Y_{0} Y_{1} \cdots Y_{n}\right)=\pi\left(Y_{0} Y_{\tau(1)} \cdots Y_{\tau(n)}\right) \quad \text { (in law) } \quad \text { for } n \in N_{+}, \tau \in \mathcal{S}_{n}
$$

though $Y_{0} Y_{1} \cdots Y_{n}=Y_{0} Y_{\tau(1)} \cdots Y_{\tau(n)}$ (in law) may not hold. For measure algebras on Gel'fand pairs, see e.g. [3] and [4].

## 2. Proof of Theorem 1

Throughout this section we use the following notations.

- $X=\left(X_{n}\right)_{n \in N}$ : a Markov chain on $G$
o $M=\left(M_{n}\right)_{n \in N}$ : a Markov chain on $G / K$
- $P_{n}^{X}(g, E)=\mathbf{P}\left(X_{n} \in E \mid X_{n-1}=g\right)$ : the $n$-th transition probability of $X$ on $G$
- $P_{n}^{M}(x, A)=\mathbf{P}\left(M_{n} \in A \mid M_{n-1}=x\right)$ : the $n$-th transition probability of $M$ on $G / K$
- $\mathbf{P}^{X_{0}}=\mathbf{P}\left(X_{0} \in \cdot\right)$ : the law of $X_{0}$
- $\left(Y_{n}\right)_{n \in \boldsymbol{N}}: G$-valued independent random variables
- $\mu_{n}:$ a probability on $G / / K$
- $\quad \nu$ : a probability on $G / K$
- $\tilde{\mu}_{n}, \tilde{\nu}$ : probabilities on $G$

○ $\pi: G \longrightarrow G / K, \sigma: G / K \longrightarrow G / / K:$ the canonical projections

- $\pi_{*} \tilde{\mu}$ : the push-forward of $\tilde{\mu}$ by $\pi$ onto $G / K$
- $l_{x}$ : the uniform probability supported by fibre $\pi^{-1} x(\subset G)$ for $x \in G / K$

If $P_{n}^{\pi X}=P_{n}^{M}\left(\forall n \in N_{+}\right)$and $\mathbf{P}^{\pi X_{0}}=\mathbf{P}^{M_{0}}$ hold, we call $X=\left(X_{n}\right)$ a lift of $M=\left(M_{n}\right)$. We prove Lemma 1-6 and then complete the proof of Theorem 1.

Lemma 1 If Markov chain $X=\left(X_{n}\right)$ on $G$ satisfies

$$
\begin{equation*}
P_{n}^{X}\left(g, \pi^{-1} A\right)=P_{n}^{X}\left(g k, \pi^{-1} A\right) \quad \text { for } \quad n \in N_{+}, g \in G, k \in K, A \in \mathcal{B}(G / K) \tag{5}
\end{equation*}
$$

then $\pi X=\left(\pi X_{n}\right)$ is also a Markov chain on $G / K$ and satisfies

$$
\begin{equation*}
P_{n}^{\pi X}(\pi g, A)=P_{n}^{X}\left(g, \pi^{-1} A\right) \quad \text { for } \quad n \in N_{+}, g \in G, A \in \mathcal{B}(G / K) \tag{6}
\end{equation*}
$$

Proof We denote by $\mathcal{E}_{n}, \mathcal{F}_{n}, \mathcal{E}^{(n)}$ and $\mathcal{F}^{(n)}$ the $\sigma$-algebras generated by $\left\{X_{0}, \cdots, X_{n}\right\},\left\{\pi X_{0}, \cdots, \pi X_{n}\right\}$, $\left\{X_{n}\right\}$ and $\left\{\pi X_{n}\right\}$ respectively. Condition 5 is equivalent to $\mathcal{F}^{(n)}$-measurability of $\mathbf{E}\left[\phi\left(\pi X_{n+1}\right) \mid \mathcal{E}^{(n)}\right]$ for any bounded measurable function $\phi$ on $G / K$. Hence, using Markovian property of $\left(X_{n}\right)$, we have

$$
\begin{aligned}
\mathbf{E}\left[\phi\left(\pi X_{n+1}\right) \mid \mathcal{F}_{n}\right] & =\mathbf{E}\left[\mathbf{E}\left[\phi\left(\pi X_{n+1}\right) \mid \mathcal{E}_{n}\right] \mid \mathcal{F}_{n}\right]=\mathbf{E}\left[\mathbf{E}\left[\phi\left(\pi X_{n+1}\right) \mid \mathcal{E}^{(n)}\right] \mid \mathcal{F}_{n}\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[\phi\left(\pi X_{n+1}\right) \mid \mathcal{F}^{(n)}\right] \mid \mathcal{F}_{n}\right]=\mathbf{E}\left[\phi\left(\pi X_{n+1}\right) \mid \mathcal{F}^{(n)}\right]
\end{aligned}
$$

$\mathcal{F}^{(n)}$-measurability of $\mathbf{E}\left[1_{A}\left(\pi X_{n+1}\right) \mid \mathcal{E}^{(n)}\right]$ implies

$$
\mathbf{E}\left[1_{A}\left(\pi X_{n+1}\right) \mid \pi X_{n}=\pi g\right]=\mathrm{E}\left[1_{\pi^{-1} A}\left(X_{n+1}\right) \mid X_{n}=g\right]
$$

i.e. 6 .

Lemma 2 Every Markov chain $\left(M_{n}\right)$ on $G / K$ admits a unique lift $\left(X_{n}\right)$ on $G$ satisfying

$$
\begin{align*}
P_{n}^{X}(g, E) & =P_{n}^{X}(g, E k) \quad \text { for } \quad g \in G, k \in K, E \in \mathcal{B}(G)  \tag{7}\\
\mathbf{P}^{X_{0}}(E) & =\mathbf{P}^{X_{0}}(E k) \quad \text { for } \quad k \in K, E \in \mathcal{B}(G) \tag{8}
\end{align*}
$$

(i.e. $K$-right invariance of the transition probabilities and the initial law) and 5.

Proof Put

$$
\begin{align*}
P_{n}^{X}(g, E) & =\int_{G / K} l_{x}(E) P_{n}^{M}(\pi g, d x) \text { for } g \in G, E \in \mathcal{B}(G)  \tag{9}\\
\mathbf{P}^{X_{0}}(E) & =\int_{G / K} l_{x}(E) \mathbf{P}^{M_{0}}(d x) \text { for } \quad E \in \mathcal{B}(G) \tag{10}
\end{align*}
$$

Markov chain $X=\left(X_{n}\right)$ defined by 9 and 10 obviously satisfies 5,7 and $8 .\left(X_{n}\right)$ is a lift of $\left(M_{n}\right)$ since

$$
\begin{aligned}
\mathbf{P}^{\pi X_{0}}(A) & =\int_{G / K} l_{y}\left(\pi^{-1} A\right) \mathbf{P}^{M_{0}}(d y)=\int_{G / K} 1_{A}(y) \mathbf{P}^{M_{0}}(d y)=\mathbf{P}^{M_{0}}(A), \\
P_{n}^{\pi X}(x, A) & =P_{n}^{X}\left(g, \pi^{-1} A\right)=\int_{G / K} l_{y}\left(\pi^{-1} A\right) P_{n}^{M}(x, d y)=P_{n}^{M}(x, A)
\end{aligned}
$$

where $x=\pi g \in G / K, A \in \mathcal{B}(G / K)$.
Combining $K$-right invariance 7 and 8 with $P_{n}^{\pi X}=P_{n}^{M}$ and $\mathbf{P}^{\pi X_{0}}=\mathbf{P}^{M_{0}}$, we see that $P_{n}^{X}$ and $\mathbf{P}^{X_{0}}$ must have the expression 9 and 10 respectively (by virtue of the uniqueness of disintegration induced by $\pi: G \longrightarrow G / K)$. This implies the uniqueness of lifting.

QED

Let $W_{n}=Y_{0} Y_{1} \cdots Y_{n}$ be a right random walk on $G$ with $\mathbf{P}^{Y_{0}}=\tilde{\nu}$ and $\mathbf{P}^{Y_{n}}=\tilde{\mu}_{n}$. We call $W=\left(W_{n}\right)_{n \in \boldsymbol{N}}$ the right random walk on $G$ generated by ( $\tilde{\nu}, \tilde{\mu}_{n}, n \in N_{+}$).
Lemma 3 If every $\pi_{*} \tilde{\mu}_{n}$ is $K$-invariant (in particular if every $\tilde{\mu}_{n}$ is $K$-left invariant), then $P_{n}^{W}$ satisfies 5.

Proof Since $\left(W_{n}\right)$ is generated by $\left(\tilde{\nu}, \tilde{\mu}_{n}, n \in N_{+}\right)$, its transition probability is given by

$$
\begin{equation*}
P_{n}^{W}(g, E)=\tilde{\mu}_{n}\left(g^{-1} E\right) \quad \text { for } \quad n \in N_{+}, g \in G, E \in \mathcal{B}(G) \tag{11}
\end{equation*}
$$

In particular,

$$
P_{n}^{W}\left(g, \pi^{-1} A\right)=\tilde{\mu}_{n}\left(g^{-1} \pi^{-1} A\right)=\pi_{*} \tilde{\mu}_{n}\left(g^{-1} A\right)=\pi_{*} \tilde{\mu}_{n}\left(k^{-1} g^{-1} A\right)=P_{n}^{W}\left(g k, \pi^{-1} A\right)
$$

for $A \in \mathcal{B}(G / K)$ and $k \in K$.
QED
From Lemma 1 and Lemma 3, a right random walk ( $W_{n}$ ) on $G$ generated by ( $\tilde{\nu}, \tilde{\mu}_{n}, n \in N_{+}$) such that $\pi_{*} \tilde{\mu}_{i}$ is $K$-invariant can be projected to a Markov chain ( $\pi W_{n}$ ) on $G / K$ with transition probability

$$
\begin{equation*}
P_{n}^{\pi W}(\pi g, A)=\pi_{*} \tilde{\mu}_{n}\left(g^{-1} A\right) \quad \text { for } \quad n \in N_{+}, g \in G, A \in \mathcal{B}(G / K), \tag{12}
\end{equation*}
$$

which satisfies:
Lemma $4\left(\pi W_{n}\right)$ is an isotropic Markov chain i.e. satisfies 2.
Proof We get from 12

$$
P_{n}^{\pi W}(g \pi h, g A)=P_{n}^{\pi W}(\pi(g h), g A)=\pi_{*} \tilde{\mu}_{n}\left((g h)^{-1} g A\right)=P_{n}^{\pi W}(\pi h, A)
$$

for $g, h \in G$ and $A \in \mathcal{B}(G / K)$.

Lemma 5 For probability $\tilde{\mu}$ on $G, K$-right invariance of $\tilde{\mu}$ and $K$-invariance of $\pi_{*} \tilde{\mu}$ imply $K$-biinvariance of $\tilde{\mu}$.
Proof Since $\tilde{\mu}$ is $K$-right invariant, it is expressed as $\tilde{\mu}=\int_{G / K} l_{x} \pi_{*} \tilde{\mu}(d x)$. Denote by $k_{*} \tilde{\mu}$ the push-forward of $\tilde{\mu}$ by the map $x \in G \mapsto k x \in G$. Then

$$
k_{*} \tilde{\mu}=\int_{G / K} k_{*} l_{x} \pi_{*} \tilde{\mu}(d x)=\int_{G / K} l_{k x} \pi_{*} \tilde{\mu}(d x)=\int_{G / K} l_{y} \pi_{*} \tilde{\mu}(d y)=\tilde{\mu}
$$

(The third equality follows from $K$-invariance of $\pi_{*} \tilde{\mu}$.) i.e. $\tilde{\mu}$ is $K$-left invariant.
QED
Lemma 6 Let $X=\left(X_{n}\right)_{n \in \boldsymbol{N}}$ be an isotropic Markov chain on $G$. Put $\tilde{\nu}=\mathbf{P}^{X_{0}}, \tilde{\mu}_{n}=P_{n}^{X}(e, \cdot)$ and $Y_{0}=X_{0}, Y_{1}=X_{0}^{-1} X_{1}, \cdots, Y_{n}=X_{n-1}^{-1} X_{n}, \cdots$. Then $\left\{Y_{n}\right\}_{n \in N}$ is a system of $G$-valued independent random variables satisfying $\mathbf{P}^{Y_{n}}=\tilde{\mu}_{n}$ for $\forall n \in \boldsymbol{N}_{+}$. Thus $X$ is a right random walk on $G$ generated by $\left(\tilde{\nu}, \tilde{\mu}_{n}, n \in \boldsymbol{N}_{+}\right)$.
Proof For $E \in \mathcal{B}(G)$,

$$
\begin{align*}
\mathbf{P}^{Y_{n}}(E) & =\mathbf{P}\left(Y_{n} \in E\right)=\int_{G} \mathbf{P}\left(Y_{n} \in E \mid X_{n-1}=g\right) \mathbf{P}^{X_{n-1}}(d g) \\
& =\int_{G} \mathbf{P}\left(X_{n} \in g E \mid X_{n-1}=g\right) \mathbf{P}^{X_{n-1}}(d g)=\int_{G} P_{n}^{X}(g, g E) \mathbf{P}^{X_{n-1}}(d g) \\
& =\int_{G} P_{n}^{X}(e, E) \mathbf{P}^{X_{n-1}}(d g)=P_{n}^{X}(e, E)=\tilde{\mu}_{n}(E) \tag{13}
\end{align*}
$$

We show that $\left\{Y_{0}, Y_{1}, \cdots, Y_{n}\right\}$ is an independent system for $\forall n \in N$ using induction on $n$. Assuming $\mathbf{P}^{\left(Y_{0}, Y_{1}, \cdots, Y_{n-1}\right)}=\tilde{\nu} \times \tilde{\mu}_{1} \times \cdots \times \tilde{\mu}_{n-1}$, we have, for $E_{0}, E_{1}, \cdots, E_{n} \in \mathcal{B}(G)$,

$$
\begin{aligned}
& \mathbf{P}\left(Y_{0} \in E_{0}, \cdots, Y_{n} \in E_{n}\right) \\
= & \int_{E_{0} \times \prod_{i=1}^{n-1} E_{i}} \mathbf{P}\left(Y_{n} \in E_{n} \mid Y_{0}=g_{0}, \cdots, Y_{n-1}=g_{n-1}\right) \mathbf{P}^{\left(Y_{0}, \cdots, Y_{n-1}\right)}\left(d g_{0} \cdots d g_{n-1}\right) \\
= & \int_{E_{0} \times \prod_{i=1}^{n-1} E_{i}} \mathbf{P}\left(X_{n} \in g_{0} \cdots g_{n-1} E_{n} \mid X_{n-1}=g_{0} \cdots g_{n-1}\right) \tilde{\nu} \times \prod_{i=1}^{n-1} \tilde{\mu}_{i}\left(d g_{0} d g_{1} \cdots d g_{n-1}\right) \\
= & \int_{E_{0} \times \prod_{i=1}^{n-1} E_{i}} P_{n}^{X}\left(e, E_{n}\right) \tilde{\nu} \times \prod_{i=1}^{n-1} \tilde{\mu}_{i}\left(d g_{0} d g_{1} \cdots d g_{n-1}\right) \quad \text { (by isotropy 2) } \\
= & \tilde{\nu}\left(E_{0}\right) \prod_{i=1}^{n} \tilde{\mu}_{i}\left(E_{i}\right) .
\end{aligned}
$$

Hence $\mathbf{P}^{\left(Y_{0}, Y_{1}, \cdots, Y_{n}\right)}=\tilde{\nu} \times \prod_{i=1}^{n} \tilde{\mu}_{i}$.
QED

Proof of Theorem 1 Denote the correspondence described in Theorem 1 by $\Phi: \mathcal{P} \longrightarrow \mathcal{M}$ and $\Psi:$ $\mathcal{M} \longrightarrow \mathcal{P}$. We show $\Psi \circ \Phi=i d_{\mathcal{P}}$ and $\Phi \circ \Psi=i d_{\mathcal{M}}$. (Recall that Markov chains equivalent in law are identified.)
For $\left(\nu, \mu_{n}, n \in N_{+}\right) \in \mathcal{P}$, we take $G$-valued independent random variables $Y_{0}, Y_{1}, Y_{2}, \cdots$ defined in Theorem 1. Put $X_{n}=Y_{0} Y_{1} \cdots Y_{n}$. We see $\left(\pi X_{n}\right)_{n \in N} \in \mathcal{M}$ from Lemma 3, Lemma 1 and Lemma 4. Moreover, 12 yields for $\Lambda \in \mathcal{B}(G / / K)$

$$
P_{n}^{\pi X}\left(x_{0}, \sigma^{-1} \Lambda\right)=P_{n}^{\pi X}\left(\pi e, \sigma^{-1} \Lambda\right)=\pi_{*} \tilde{\mu}_{n}\left(\sigma^{-1} \Lambda\right)=\mu_{n}(\Lambda)
$$

(The last equality follows from $K$-bi-invariance of $\tilde{\mu}_{n}$.) We thus obtain $\Psi \circ \Phi=i d_{\mathcal{P}}$.
For $M=\left(M_{n}\right)_{n \in N} \in \mathcal{M}$, we take its lift $X=\left(X_{n}\right)_{n \in N}$ described in Lemma 2 (explicitly by 9 and 10). $X$ is isotropic since we have, for $g, g^{\prime} \in G$ and $E \in \mathcal{B}(G)$,

$$
\begin{aligned}
P_{n}^{X}\left(g^{\prime} g, g^{\prime} E\right) & =\int_{G / K} l_{x}\left(g^{\prime} E\right) P_{n}^{M}\left(\pi\left(g^{\prime} g\right), d x\right)=\int_{G / K} l_{g^{\prime-1} x}(E) P_{n}^{M}\left(g^{\prime} \pi g, d x\right) \\
& =\int_{G / K} l_{y}(E) P_{n}^{M}\left(g^{\prime} \pi g, g^{\prime} d y\right)=\int_{G / K} l_{y}(E) P_{n}^{M}(\pi g, d y)=P_{n}^{X}(g, E)
\end{aligned}
$$

using 9 and isotropy 2 of $M$. Hence $X$ is a right random walk on $G$ by Lemma 6. Let ( $\tilde{\nu}, \tilde{\mu}_{n}, n \in \boldsymbol{N}_{+}$) be the sequence which generates $X$ (defined in Lemma 6). In order to see $\Phi \circ \Psi(M)=M$, it suffices to show that $\tilde{\mu}_{n}$ [resp. $\tilde{\nu}$ ] is the $K$-bi-invariant [resp. $K$-right invariant] lift of $\mu_{n}$ [resp. $\nu$ ] defined by 3. The assertion for $\tilde{\nu}$ is trivial (by 10 ). $\tilde{\mu}_{n}=P_{n}^{X}(e, \cdot)$ is $K$-right invariant by 9 . Moreover, 12 yields for $A \in \mathcal{B}(G / K)$ and $k \in K$

$$
\pi_{*} \tilde{\mu}_{n}(A)=P_{n}^{M}\left(x_{0}, A\right)=P_{n}^{M}\left(k x_{0}, k A\right)=P_{n}^{M}\left(x_{0}, k A\right)=\pi_{*} \tilde{\mu}_{n}(k A)
$$

Hence $\tilde{\mu}_{n}$ is $K$-bi-invariant by Lemma 5 . Using 12 again, we obtain

$$
(\sigma \pi)_{*} \tilde{\mu}_{n}(\Lambda)=\pi_{*} \tilde{\mu}_{n}\left(\sigma^{-1} \Lambda\right)=P_{n}^{M}\left(x_{0}, \sigma^{-1} \Lambda\right)=\mu_{n}(\Lambda)
$$

for $\Lambda \in \mathcal{B}(G / / K)$. This completes the proof of $\Phi \circ \Psi=i d_{\mathcal{M}}$.
QED

## References

1. Chassaing, P. (1991). Processus de Markov transitifs et marches aléatoires sur les groupes. C. R. Acad. Sci. Paris 312, Série I, 291-296.
2. Furstenberg, H. (1963). Noncommuting random products. Trans. Amer. Math. Soc. 108, 377-428.
3. Heyer, H. (1983). Convolution semigroups of probability measures on Gelfand pairs. Expo. Math. 1, 3-45.
4. Letac, G. (1981). Problèmes classiques de probabilité sur un couple de Gel'fand. In Lect. Notes Math. 861, Springer, Berlin Heidelberg New York, 93-120.

[^0]:    * Department of Environmental and Mathematical Sciences, Faculty of Environmental Science and Technology, Okayama University, Okayama, 700 Japan.

