The Gap Condition for S_{5} and GAP Programs

Masaharu MORIMOTO* and Mamoru YANAGIHARA ${ }^{\dagger}$

(Received November 17, 1995)

Abstract

In transformation groups on manifolds, it has been an interesting problem to ask whether for a given finite group G, there exists a real G-module V such that $\operatorname{dim} V^{P}>2 \operatorname{dim} V^{>P}$ for all subgroups P of prime power order and such that $V^{H}=0$ for certain large subgroups H of G. This paper provides GAP programs to show that S_{5} does not admit such a real S_{5}-module V.

KEYwords: GAP, fixed point, gap condition.
1991 Mathematics Subject Classification: 57R91, 20C15, 68Q40.

1. Introduction

Let G be a finite group. A real G-module V is said to satisfy the gap condition if $\operatorname{dim} V^{P}>2 \operatorname{dim} V^{>P}$ for all subgroups P of prime power order and such that $V^{H}=0$ for certain large subgroups H of G (precisely to say, for all $H \in \mathcal{L}(G)$ defined below). The existence problem of such modules is closely related to equivariant surgery theory (cf. [PR], [M1]) and construction of exotic actions on closed, smooth manifolds. Our purpose in the present paper is to show that S_{5} the symmetric group of degree 5 does not admit a real S_{5}-module satisfying the gap condition, employing the computer software GAP (Groups, Algorithms, and Programming) [S]. This result was announced in [MY] (1994) and the present paper includes the details.

Let G be a finite group. Let $\mathcal{S}(G)$ denote the set of all subgroups of G and $\mathcal{P}(G)$ the set of all subgroups of G of prime power order. (Particularly, the trivial group $\{1\}$ belongs to $\mathcal{P}(G)$.) For each prime p we define a characteristic subgroup G^{p} by

$$
G^{p}=\bigcap\{H \triangleleft G| | G / H \mid \text { is a power of } p\}
$$

Then the set $\mathcal{L}(G)$ mentioned above is defined by

$$
\mathcal{L}(G)=\left\{H \leq G \mid H \supset G^{p} \text { for some prime } p\right\}
$$

Let $\mathcal{M}(G)$ denote the complementary set $\mathcal{S}(G) \backslash \mathcal{L}(G)$. If p and q are primes or 1 and n is a positive integer, let $\mathcal{G}_{p}^{q}[n]$ denote the family of all finite groups K having a series $P \triangleleft H \triangleleft K$ such that P is of p-power order, H / P is a cyclic group of order n, and K / H is of q-power order. Set

$$
\mathcal{G}_{p}^{q}=\bigcup_{n} \mathcal{G}_{p}^{q}[n], \quad \mathcal{G}_{p}=\bigcup_{q} \mathcal{G}_{p}^{q}, \quad \mathcal{G}^{q}=\bigcup_{p} \mathcal{G}_{p}^{q}, \quad \mathcal{G}=\bigcup_{q} \mathcal{G}^{q}, \quad \text { and } \quad \mathcal{G}_{\text {odd }}^{\text {odd }}[2]=\bigcup_{p, q \text { odd }} \mathcal{G}_{p}^{q}[2]
$$

If a finite group K does not belong to \mathcal{G} then K is called an Oliver group. By [O, Theorem 7], a finite group K is an Oliver group if and only if K has a smooth fixed-point free action on a disk. These sets $\mathcal{L}(G)$ and

[^0]$\mathcal{M}(G)$ of subgroups of G play very important roles if G is an Oliver group (cf. [LM], [M2]). We proved the next theorem in [MY].

Theorem 1.1. Let G be a finite group not of prime power order. If $G^{2}=G$ or
(OC) $G^{p} \neq G$ for some odd prime p and $G \notin \mathcal{G}_{\text {odd }}^{\text {odd }}[2]$,
then there exist real G-modules satisfying the gap condition.
The remainder of the current paper is devoted to giving GAP programs to confirm the next theorem.
Theorem 1.2. The symmetric group S_{5} of degree 5 does not admit a real S_{5}-module satisfying the gap condition.

Set $\mathcal{G}_{p}^{q}(G)=\mathcal{S}(G) \cap \mathcal{G}_{p}^{q}, \mathcal{G}_{p}(G)=\mathcal{S}(G) \cap \mathcal{G}_{p}, \mathcal{G}^{q}(G)=\mathcal{S}(G) \cap \mathcal{G}^{q}$, and $\mathcal{G}(G)=\mathcal{S}(G) \cap \mathcal{G}$,

$$
\begin{aligned}
\mathcal{P U}(G)= & \{(P, H) \in \mathcal{P}(G) \times \mathcal{S}(G) \mid P<H\}, \\
\mathcal{P} 2 \mathcal{S}(G)= & \{(P, H) \in \mathcal{P U}(G) \mid P<H,[H: P]=2, \\
& {\left.\left[H G^{2}: P G^{2}\right\}=2, \text { and } P G^{q}=G(\forall q \text { odd prime })\right\}, \text { and } } \\
\mathcal{P} 2 \mathcal{S}(G)_{\text {odd }}= & \{(P, H) \in \mathcal{P} 2 \mathcal{S}(G) \mid P \text { is of odd order }\} .
\end{aligned}
$$

The organization of the paper is as follows. In Section 2, we give programs to determine the sets $\mathcal{P}(G)$, $\mathcal{L}(G)$ and $\mathcal{P} 2 \mathcal{S}(G)_{\text {odd. }}$. In Section 3, we present programs to compute the fixed point dimensions of real S_{5}-modules, related to the gap condition. In Section 4, we explain how to use the obtained results in Section 3 in order to prove Theorem 1.2.

2. Structure of subgroups of \mathbf{G}

We perform computation using the computer software GAP. Let us begin with giving GAP the definition of the group G for which we perform computation. As a usual method in GAP, definition of a group is described by generators being permutations. This is done with the built-in function Group(-). For example, since the symmetric group S_{5} of degree 5 is generated by the cyclic permutations $(1,2,3,4,5)$ and $(1,2)$, we can make GAP realize the definition of S_{5} in the form:

```
G := Group((1,2,3,4,5), (1,2));;
```

The set of all conjugacy classes $C C S(G)(=$ CCSG) of subgroups of G is obtained by the built-in function ConjugacyClassesSubgroups(-):

```
CCSG := ConjugacyClassesSubgroups(G);
```

and the complete set $\operatorname{RCCS}(G)(=\mathrm{RCCSG})$ of representatives of $C C S(G)$ is obtained by the built-in function List(-,-):

RCCSG := List(CCSG, h \rightarrow Representative(h));
For example, we obtain the following result in the case $G=S_{5}$.
Result 2.1. There are 19 conjugacy classes of subgroups of S_{5}. They have the following representatives.

```
RCCSG[1] = Subgroup( G, [ ] ),
RCCSG[2] = Subgroup( G, [ (4,5)] ),
RCCSG[3] = Subgroup( G, [ (2,3) (4,5) ] ),
RCCSG[4] = Subgroup( G, [ (3,4,5) ] ),
RCCSG[5] = Subgroup( G, [ (2,3) (4,5), (2,4)(3,5)] ),
RCCSG[6] = Subgroup(G, [ (2,3) (4,5), (2,4,3,5)] ),
RCCSG[7] = Subgroup( G, [ (4,5), (2,3) ] ),
RCCSG[8] = Subgroup( G, [ (1,2,3,4,5)] ),
RCCSG[9] = Subgroup( G, [ (3,4,5), (4,5) ] ),
RCCSG[10] = Subgroup( G, [ (3,4,5), (1,2) (4,5) ] ),
RCCSG[11] = Subgroup( G, [ (4,5), (1,3,2) ] ),
RCCSG[12] = Subgroup( G, [ (4,5), (2,3), (2,4) (3,5) ] ),
RCCSG[13] = Subgroup(G, [ (1,2,3,4,5), (2,5) (3,4)] ),
RCCSG[14] = Subgroup( G, [ (2,3) (4,5), (2,4)(3,5), (3,4,5)] ),
RCCSG[15] = Subgroup( G, [ (4,5), (1,3,2), (2,3) ] ),
RCCSG[16] = Subgroup( G, [ (1,2,3,4,5), (2,5) (3,4), (2,3,5,4)]),
RCCSG[17] = Subgroup( G, [ (2,3) (4,5), (2,4)(3,5), (3,4,5), (4,5) ] ),
RCCSG[18] = Subgroup( G, [ (1,3,2), (2,4,3), (2,3) (4,5) ] ),
RCCSG[19] = Subgroup( G, [ (1,2,3,4,5), (1,2) ] ) = G.
```

In our computation of $\mathcal{L}(G)$, we use

$$
\mathcal{L}(G)_{\text {normal }}=\{H \in \mathcal{L}(G) \mid H \triangleleft G\} \quad(=\text { LGnormal })
$$

and the next function makeLGnormal(-) computes the set $\mathcal{L}(G)_{\text {normal }}$.

```
makeLGnormal := function()
    local S, H, i, ns, ni;
    S := [];
    ns := Length(RCCSG);
    for i in [1..ns] do
                H := RCCSG[i];
                ni := Index(G, H) ;
                if IsPrimePowerInt(ni) and IsNormal(G,H) then
                    Add(S, i);
        elif ni = 1 then
                            Add(S, i);
    fi;
    od;
    return S;
end;
```

Program 2.2.

After making GAP read Program 2.2 , we can obtain $\mathcal{L}(G)_{\text {normal }}$ by typing

```
LGnormal := makeLGnormal();
```

in GAP.

Next we give a function testLG(-) which checks whether a subgroup H lies in $\mathcal{L}(G)$ or not. If $H \in \mathcal{L}(G)$ then testLG(-) returns true and else false. This testLG(-) is given by a program including a function isSubConjugate $(-,-)$ that assigns to subgroups RCCSG[h] and RCCSG[k], true if RCCSG[h] is conjugate to a subgroup of RCCSG $[k]$ and false otherwise.

```
isSubConjugate := function(k, h)
    local size_k, size_h, conj, hh;
    size_k := Size(RCCSG[k]);
    size_h := Size(RCCSG[h]);
    if (size_k = Size(G)) or (k = h) then
        return true;
    fi;
    if not (IsInt(size_k/size_h)) then
        return false;
    fi;
    if size_k = size_h then
        return false;
    fi;
    for hh in Elements(CCSG[h]) do
        if IsSubgroup(RCCSG[k], hh) then
                return true;
        fi;
    od;
    return false;
end;
```

Program 2.3.
The function testLG(-) is given by the program:

```
testLG := function(h)
    local h1;
    for h1 in LGnormal do
            if isSubConjugate(h, h1) then
                return true;
            fi;
    od;
    return false;
end;
```

Program 2.4.
The set $\mathcal{L}(G)(=L G)$ is computed by the function makeLG():

```
makeLG := function()
    local S, n, i;
    S := [];
    n := Length(RCCSG);
    for i in [1..n] do
        if testLG(i) then
```

```
                                    Add(S, i);
                fi;
    od;
    return S;
end;
LG := makeLG();
```

Program 2.5.

Result 2.6. If $G=S_{5}$ then $\operatorname{LG}=[18,19]$, i.e. $\mathcal{L}(G)=[R C C S G[18], R C C S G[19]]$.
Let $\operatorname{Prime}(G)(=\operatorname{PrimeG})$ be the set of primes dividing $|G|$ (the order of G). Prime (G) is computed by

```
PrimeG := Set(Factors(Size(G)));
```

The next function coSylow(-) assigns to a prime $p \in \operatorname{Prime}(G)$ the normal subgroup G^{p} (called the coSylow p-subgroup of G):

```
coSylow := function(p)
    local ind, max_ind, Gp, h;
    max_ind := 1;
    Gp := Length(RCCSG);
    for h in LG do
        ind := Index(G, RCCSG[h]);
        if IsInt(ind / p) and (max_ind < ind) then
                max_ind := ind;
                Gp := h
            fi;
    od;
    return Gp;
end;
```

Program 2.7.
The set $\operatorname{CoSylow}(G)=\left\{\left(p, G^{p}\right) \mid p \in \operatorname{Prime}(G)\right\}(=\operatorname{CoSylowG})$ is obtained by the function makeCoSylow():

```
makeCoSylow := function()
    local S, n, i;
    S := [];
    n := Length(PrimeG);
    for i in [1..n] do
        S[i] := [PrimeG[i], coSylow(PrimeG[i])];
    od;
    return S;
end;
CoSylowG := makeCoSylow();
```

Program 2.8.
Result 2.9. If $G=S_{5}$ then $\operatorname{CoSylow}(G)=\{(2, \operatorname{RCCSG}[18]),(3, \operatorname{RCCSG}[19]),(5, \operatorname{RCCSG}[19])\}$.
We compute $\mathcal{P} 2 \mathcal{S}(G)_{\text {odd }}$ (= P2SGodd) as follows. The function subgProduct(-,-) defined below assigns a subgroup $H N$ to a subgroup H and a normal subgroup N of G.

```
subgProduct := function(H, N)
    local gen;
    gen := Union(H.generators, N.generators);
    return Subgroup(G, gen);
end;
```

Program 2.10.
We also use $\mathcal{P}(G)(=\mathrm{PG})$ in our computation of $\mathcal{P} 2 \mathcal{S}(G)_{\text {odd }}$, and the function makePG() computes $\mathcal{P}(G)$.

```
makePG := function()
    local pg, i, ns, size;
    pg := [];
    ns := Length(RCCSG);
    for i in [1..ns] do
                size := Size(RCCSG[i]);
                if IsPrimePowerInt(size) or (size = 1) then
                        Add(pg, i);
            fi;
    od;
    return pg;
end;
PG := makePG();
```

Program 2.11.

If RCCSG[i] is in PG, we check whether (RCCSG[i], $\operatorname{RCCSG[j]}$) is in $\mathcal{P} 2 \mathcal{S}(G)(=\mathrm{P} 2 \mathrm{SG})$ or not, with the function $\operatorname{testP2SG(-,-):~}$

```
testP2SG := function(i, j)
    local P, H, gsize, pair, p, Gp, K1, K2;
    P := RCCSG[i];
    H := RCCSG[j];
    if not (Size(H) / Size(P) = 2) then
        return false;
    fi;
    if isSubConjugate(j, i) = false then
        return false;
    fi;
    gsize := Size(G);
    for pair in CoSylowG do
        p := pair[1];
        Gp := RCCSG[pair[2]];
        K1 := subgProduct(P, Gp);
        if p = 2 then
            K2 := subgProduct(H, Gp);
                if not (Index(K2, K1) = 2) then
                return false;
                fi;
```

```
        else
            if not (Size(K1) = gsize) then
                        return false;
                fi;
            fi;
od;
return true;
end;
```

Program 2.12.
We can obtain the list $\mathcal{P} 2 \mathcal{S}(G)$ using the function makeP2SG():

```
makeP2SG := function()
    local S, np, ns, i, j;
    S := [];
    np := Length(PG);
    ns := Length(RCCSG);
    for i in [1..np] do
                for j in [1..ns] do
                if testP2SG(PG[i], j) then
                                    Add(S, [PG[i], j]);
                fi;
                od;
    od;
    return S;
end;
P2SG := makeP2SG();
```

Result 2.14. If $G=S_{5}$ then one obtains the result:

$$
\left.\begin{array}{rl}
\mathcal{P} 2 \mathcal{S}(G)=\{ & (R C C S G[1], R C C S G[2]), \\
& (R C C S G[3], R C C S G[7]), \\
& (R C C S G[3], R C C S G[6]), \\
& (R C C S G[4], R C C S G[11]),
\end{array} \quad(R C C S G[5], R C C S G[12])\right\} .
$$

The set $\mathcal{P} 2 \mathcal{S}(G)_{\text {odd }}$ is computed by the function makeP2SGodd():

```
makeP2SGodd := function()
    local S, n, i;
    S := [];
    n := Length(P2SG);
    for i in [1..n] do
        if not IsInt(P2SG[i][1] / 2) then
                Add(S, P2SG[i]);
        fi;
    od;
    return S;
```

end;
P2SGodd := makeP2SGodd();
Program 2.15.
Result 2.16. If $G=S_{5}$ then one obtains the result:

$$
\begin{aligned}
& \mathcal{P} 2 \mathcal{S}(G)_{\text {odd }}=\{\quad(R C C S G[1], R C C S G[2]),(R C C S G[3], R C C S G[6]), \\
& \text { (} R C C S G[3], R C C S G[7]),(R C C S G[5], R C C S G[12]) \text {) }
\end{aligned}
$$

3. H-Fixed point dimensions of irreducible G-representations

The built-in function CharTable(-) gives the character table of irreducible representations. Before using this function, we must set G.conjugacyClasses.

The character table will be obtained in the order of G.conjugacyClasses. Set
G.conjugacyClasses := ConjugacyClasses(G);;

Result 3.1. If $G=S_{5}$ then one obtains the result:

```
c1 = G.conjugacyClasses[1] = ConjugacyClasses(G, () ),
c2 = G.conjugacyClasses[2] = ConjugacyClasses( G, (4,5) ),
c3 = G.conjugacyClasses[3] = ConjugacyClasses( G, (3,4,5) ),
c4 = G.conjugacyClasses [4] = ConjugacyClasses( G, (2,3)(4,5) ),
c5 = G.conjugacyClasses[5] = ConjugacyClasses( G, (2,3,4,5) ),
c6 = G.conjugacyClasses[6] = ConjugacyClasses( G, (1,2) (3,4,5) ),
c7 = G.conjugacyClasses[7] = ConjugacyClasses( G, (1,2,3,4,5) ).
```

Next apply the function:

```
CTG := CharTable(G);;
```

The irreducible character table is tabulated by CTG.irreducibles from the data CTG, and the value of the i-th irreducible character on the j-th conjugacy class is given by CTG.irreducibles[$\mathbf{i}][\mathbf{j}]$.

Result 3.2. If $G=S_{5}$ then one obtains the result:

	conjugacy classes						
	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
$\chi_{1}=$ CTG.irreducibles [1]	1	1	1	1	1	1	1
$\chi_{2}=$ CTG.irreducibles[2]	1	-1	1	1	-1	-1	1
$\chi_{3}=$ CTG.irreducibles[3]	4	-2	1	0	0	1	-1
$\chi_{4}=$ CTG.irreducibles[4]	4	2	1	0	0	-1	-1
$\chi_{5}=$ CTG.irreducibles[5]	5	1	-1	1	-1	1	0
$\chi_{6}=$ CTG.irreducibles[6]	5	-1	-1	1	1	-1	0
$\chi_{7}=$ CTG.irreducibles[7]	6	0	0	-2	0	0	1

Table 3.2 : Irreducible Characters of S_{5}

In order to regard the data in CTG of a irreducible character as a function from G to the complex number field, we prepare the function irrCharacter(-, -). This function assigns $\chi_{j}(x)$ to the j-th irreducible character χ_{j} and $x \in G$.

```
irrCharacter := function(j, x)
    local k, n;
    n := Length(CTG.irreducibles);
    for k in [1..n] do
        if x in G.conjugacyClasses[k] then
                            return CTG.irreducibles[j][k];
        fi;
    od;
end;
```

Program 3.3.
Let V be a complex G-representation. The dimension $\operatorname{dim}_{\mathbf{C}} V^{H}$ of H-fixed point set V^{H} is calculated with the formula

$$
\operatorname{dim}_{\mathbf{C}} V^{H}=\frac{1}{|H|} \sum_{h \in H} \chi_{V}(h)
$$

where χ_{V} is the character of G, canonically identified with V. We give the function fixedDim(-, -) assigning $\operatorname{dim}_{\mathbf{C}} V^{H}$ to the i-th subgroup $H=$ RCCSG[i] in RCCSG and the j-th irreducible character $V=$ CTG.irreducibles[j] of G by

```
fixedDim := function(i, j)
    local h, x, s, d;
    if (i = Length(RCCSG)) then
                if (j = 1) then
                return 1;
            else
                return 0;
            fi;
    fi;
    h := RCCSG[i];
    s := Size(h);
    d := Sum(Elements(h), x -> irrCharacter(j, x)) / s;
    return d;
end;
```


Program 3.4.

Now we make the table FDT of the fixed dimensions. For a subgroup RCCSG[i], FDT [i] is a list of the fixed dimension of the j-th irreducible representation by the i-th subgroup.

```
FDT[i] := List([1..n], j -> fixedDim(i, j));
```

Result 3.5. If $G=S_{5}$ then one obtains the result:

	irreducible modules						
	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}	V_{7}
RCCSG[1]	1	1	4	4	5	5	6
RCCSG[2]	1	0	1	3	3	2	3
RCCSG[3]	1	1	2	2	3	3	2
RCCSG[4]	1	1	2	2	1	1	2
RCCSG[5]	1	1	1	1	2	2	0
RCCSG[6]	1	0	1	1	1	2	1
RCCSG[7]	1	0	0	2	2	1	1
RCCSG[8]	1	1	0	0	1	1	2
RCCSG[9]	1	0	0	2	1	0	1
RCCSG[10]	1	1	1	1	1	1	0
RCCSG[11]	1	0	1	1	1	0	1
RCCSG[12]	1	0	0	1	1	1	0
RCCSG[13]	1	1	0	0	1	1	0
RCCSG[14]	1	1	1	1	0	0	0
RCCSG[15]	1	0	0	1	1	0	0
RCCSG[16]	1	0	0	0	0	1	0
RCCSG[17]	1	0	0	1	0	0	0
RCCSG[18]	1	1	0	0	0	0	0
RCCSG[19]	1	0	0	0	0	0	0

Table 3.6 : S_{5}-Fixed Dimensions

In order to obtain such FDT, we give the function makeFixedDimTable():

```
makeFixedDimTable := function()
    local S, nr, ni, i, j;
    S := [];
    nr := Length(RCCSG);
    ni := Length(CTG.irreducibles);
    for i in [1..nr] do
        S[i] := List([1..ni], j -> fixedDim(i, j))
    od;
    return S;
end;
FDT := makeFixedDimTable();
```


Program 3.7.

Let $\operatorname{Irr}(G)$ denote the set of all isomorphism classes of irreducible complex G-representations. A complete set of representatives of $\operatorname{Irr}(G)$ is denoted by $\operatorname{RIr}(G)$. The set $\operatorname{RIrr}(G)$ is identified with the set of all irreducible characters of G. Let $\operatorname{Irr}(G, \mathcal{M}(G))$ be the set of all isomorphism classes of irreducible complex G-representations V such that $V^{H}=0$ for all $H \in \mathcal{L}(G)$. Let $\operatorname{RIrr}(G, \mathcal{M}(G))$ be a complete set of representatives of $\operatorname{Irr}(G, \mathcal{M}(G))$. The next function testrrmG(-) tells whether an irreducible G-representation belongs to $\operatorname{Irr}(G, \mathcal{M}(G))$ or not.

```
testIrrMG := function(i)
    local j;
    for j in LG do
        if not (FDT[j][i] = 0) then
```

```
                return false;
    fi;
od;
return true;
```

end;

Program 3.8.

A set $\operatorname{RIr}(G, \mathcal{M}(G))$ is obtained by the function:

```
makeRIrrMG := function()
    local S, i, n;
    S := [];
    n := Length(CTG.irreducibles);
    for i in [1..n] do
        if testIrrMG(i) then
            Add(S, i);
        fi;
    od;
```

Program 3.9

Result 3.10. If $G=S_{5}$ then one obtains the result: $\operatorname{RIrr}(G, \mathcal{M}(G))=\left\{V_{3}, V_{4}, V_{5}, V_{6}, V_{7}\right\}$.
Two irreducible complex G-representations V and W are said to be Galois conjugate if $\operatorname{dim}_{\mathbf{C}} V^{H}=$ $\operatorname{dim}_{\mathbf{C}} W^{H}$ for all subgroups H of G. Let $G C C I r r(G, \mathcal{M}(G))$ be the set of all Galois conjugate classes of representations in $\operatorname{Irr}(G, \mathcal{M}(G))$, and let $R G C C \operatorname{Irr}(G, \mathcal{M}(G))$ be a complete set of representatives of $G C C I r r(G, \mathcal{M}(G))$. The next function testGaloisConjugate(-, -) checks whether, given a set S of irreducible representations, a irreducible representation is Galois conjugate to an element in S or not.

```
testGaloisConjugate := function(Irrs, i)
    local n, j, k, s;
    n := Length(RCCSG);
    for j in Irrs do
            s := Sum([1..n], k -> AbsInt(FDT[k][i] - FDT[k][j]));
            if (s = 0) then
                return true;
            fi;
        od;
    return false;
end;
```

Program 3.11.

We can find a set $R G C C \operatorname{Irr}(G, \mathcal{M}(G))$ by the next function:

```
makeRGaloisCCIrrMG := function()
    local a, i, j, k, gcc;
    gcc := [RIrrMG[1]];
    for i in RIrrMG do
```

if not testGaloisConjugate (gcc, i) then
Add (gcc, i);
fi;
od;
return gcc;
end;
RGCCIrrMG := makeRGaloisCCIrrMG();
Program 3.12.

Result 3.13. If $G=S_{5}$ then one obtains $\operatorname{RGCCIrr}(G, \mathcal{M}(G))=\left\{V_{3}, V_{4}, V_{5}, V_{6}, V_{7}\right\}$.
The function fixedDimDiff(,--) below assigns to Pairs (a set consisting of pairs (H, K) of subgroups of G) and a set Irrs of irreducible representations, the list of $\operatorname{dim}_{\mathbf{C}} V^{H}-2 \operatorname{dim}_{\mathbf{C}} V^{K}$, where (H, K) runs over Pairs and V does over Irrs.

```
fixedDimDiff := function(Pairs, Irrs)
    local S, pair, h, k, i, b;
    S:= [];
    for pair in Pairs do
            h := pair[1];
            k := pair[2];
            b := List(Irrs, i -> FDT[h][i] - 2 * FDT[k][i]);
            Add(S, b);
    od;
    return S;
end;
```

Program 3.14.
Result 3.15. If $G=S_{5}$ then by fixedDimDiff(P2SG, RGCCIrrMG), one obtains the result:

	irreducible modules				
	V_{3}	V_{4}	V_{5}	V_{6}	V_{7}
(RCCSG[1], RCCSG[2])	2	-2	-1	1	0
(RCCSG[3], RCCSG[6])	0	0	1	-1	0
(RCCSG[3], RCCSG[7])	2	-2	1	1	0
(RCCSG[4], RCCSG[9])	2	-2	-1	1	0
(RCCSG[4], RCCSG[11])	0	0	-1	1	0
(RCCSG[5], RCCSG[12])	1	-1	0	0	0

Table 3.16 : Differences of S_{5}-Fixed Dimensions

4. Proof of Theorem 1.2

Let $G=S_{5}$. If V is a real G-module satisfying the gap condition then the complex module $\mathbf{C} \otimes_{\mathbf{R}} V$ satisfies the gap condition with respect to complex dimension. That is, the function

$$
f_{V}(P, H)=\operatorname{dim}_{\mathbf{C}} V^{P}-2 \operatorname{dim}_{\mathbf{C}} V^{H}
$$

is positive for all $P \in \mathcal{P}(G)$ and $H>P$, and in addition, $\operatorname{dim}_{\mathbf{C}} V^{K}=0$ for all $K \in \mathcal{L}(G)$. Suppose that there exists a complex G-module satisfying the gap condition. Replacing each irreducible summand by a Galois conjugate module in $R G C C \operatorname{Irr}(G, \mathcal{M}(G))$, we obtain a complex G-module

$$
V=a_{3} V_{3} \oplus a_{4} V_{4} \oplus a_{5} V_{5} \oplus a_{6} V_{6} \oplus a_{7} V_{7},
$$

where a_{i} are nonnegative integers, satisfying the gap condition. Since

$$
f_{V}(P, H)>0 \quad \text { for } \quad(P, H)=(R C C S G[3], R C C S G[0]) \text { and }(R C C S G[4], R C C S G[11])
$$

it follows from Table 3.16 that $a_{5}-a_{6}>0$ and $-a_{5}+a_{6}>0$. This is a contradiction. Thus there never exists a real G-module satisfying the gap condition if $G=S_{5}$.

References

[LM] Laitinen, E. and Morimoto, M.; Finite groups with smooth one fixed point actions on spheres, Reports Dept. Math. Univ. Helsinki no. 25, Helsinki, 1993.
[M1] Morimoto, M.; Bak groups and equivariant surgery, K-Theory 2 (1989), 465-483.
\qquad ; Equivariant surgery theory: Construction of equivariant normal maps, Publ. RIMS Kyoto Univ. 31 (1995), 145-167.
[MY] Morimoto, M. and Yanagihara, M.; On gap conditions of finite group actions, Preprint 1994.
[O] Oliver, R.; Fixed point sets of group actions on finite acyclic complexes, Comment. Math. Helvetici 50 (1975), 155-177.
[PR] Petrie, T. and Randall, J. D.; Transformation Groups on Manifolds, Dekker, New York, 1984.
[S] Schönert, M. et.al.; GAP-Groups, Algorithms, and Programming (fourth ed.), Lehrstuhl D für Mathematik, RWTH, Aachen, 1994.

[^0]: * Department of Environmental and Mathematical Sciences, Faculty of Environmental Science and Technology,

 Okayama University, Okayama, 700 Japan.
 ${ }^{\dagger}$ Department of Industrial and Information Studies, Komatsu College, Komatsu, Ishikawa, 923 Japan.

