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Introduction. 

As a consequence of Cohen's structur theorerll for commutativ com­

plete local rings (Theorem 1.3.2), we know that, if R is a commutativ 

finite ring with identity 1 whose order is a power of a prime p then R 

contains a unique subring 5 such that J(5) = pS (J(5) is the Jacobson 

radical of 5), and 51 p5 is naturally isomorphic to RI J (R). The xis­

tence and structure of such a subring 5 for cornrnutative finite rings was 

known to Krull ([14, §4, p. 20]). For a commutative finite ring R , we 

see that the subring 5 is a direct sum of Galois rings (see Chapter I, §8 

and Corollary 2.5 .2). 

In [20], R. Raghavendran proved that, if R is a finite local ring (not 

necessarily commutative), then R contains a unique (up to inner auto­

morphism of R) subring 5 such that 5 is isomorphic to a Galois ring 

and 51p5 is naturally isomorphic to RI J(R). 

On the other hand, if R is a finite ring whose characteristic is p, then 

by Wedderburn-Malcev theorem (Theorem 1.6,,3), R contains a uniqu 

(up to inner automorphism of R) semisimple subring 5 such that 5 

is naturally isomorphic to RI J(R). Such a subring 5 is a direct unl 

of matrix rings over finite fields. Extending this result to th case of 

characteristic pn in [6], W. E. Clark proved that, if R is a finit ring 

with 1 whose characteristic is pn, then R contains a subring 5 such that, 

5 is isomorphic to a direct sum of matrix rings over Galois rings, and 

51p5 is naturally isomorphic to RI J(R) (Corollary 2.5.2). 

Such subrings 5 of R, as above, are called coefficient subrings of R. 

In this paper, we shall show that the above results of Raghavendran 

and Clark can be naturally extended to certain infinite case, and estab­

lish structure theorems for such rings. 

In Chapter I, we shall describe, as basic concepts, Witt vectors, val­

uation rings and Galois theory of finite commutative local rings. Th n 
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we shall construct Galois rings and furth r their inductive limits. 

In Chapter II, we shall prove the existence of coeffici nt rings (which 

we call coefficient subrings, in this paper) for finite local rings, and con­

sider about their numbers. Further it will be shown that the abov 

results can be extended naturally to certain infinite case. There will 

be stated a counterexample which shows that the conjugacy statement, 

which is so prominent in the finite case, does not hold. 

In Chapter III, by applying above results to Everett's theory of ring 

extension ([21, §52]), we shall show that local rings stated in Chapt r II 

are given as algebraic structures called Everett sums. 

In Chapter IV, we shall establish algorithms to determine, for a given 

positive integer N > 1, all finite rings of order N. Any finite ring is 

the direct sum of finite rings of prime-power order. If R is a finite ring 

(not necessarily with 1) of characteristic pe, then we can regard R as an 

algebra over Zpe = Z j(pe). If the Abelian group of R is 

(al) EB (a2) EB· ·· EB (a m ), 

where (ai) is a cyclic group of order pe i generated by ai (1 ::; el ::; e2 ::; 

.. . ::; em = e), then the product on R is determined by the set of integer 

{Qijk} (structure constants) such that 

aiak = 2::7=1 Qijkaj (1 ::; i, k ::; m). 

Making use of this idea by J . Wiesenbauer ([33]), we can determin , for 

a given prime power pn, all finite rings of order pn. We can detennin 

existence of identity and decomposability for them. Also we can count 

orders of their Jacobson radicals. 

Acknowledgement . The author would like to express his indebtedness 

and gratitude to Prof. Takasi Nagahara, Prof. Yasuyuki Hirano, Dr. 

Hiroaki Komatsu and the late Prof. Hisao Tominaga for their sugg stions 

and valuable COlnments. 
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Chapter I 

Basic Concepts and Preliminary Results 

§1. Rings and Modules 

In what follows, by a ring we mean an associative ring with identity 1, 

unless otherwise stated. A ring R is said to be commutative, if ab = ba 

holds for any a, b E R. 

Let R be a ring . An element a of R is called a unit if there exists an 

element b of R such that ab = ba = 1. Such b is called the inverse of 

a, and is denoted by b = a-I. An element of R which is not a unit is 

called a non-unit. The set of all units of R forms a group with respect to 

multiplication, which is called the unit group of R and is denoted by R*. 

For any element a of R*, the least positive integer n such that an = 1, 

if exists, is called the multiplicative order of a, and is denoted by o( a). 

The set {a E R I ax = xa for any x E R} is called the center of R. 

An element a of R is said to be nilpotent if there exists a positive integer 

m such that am = o. A left (or right) ideal 1 of R is said to be nil, if 

any element of 1 is nilpotent . A left (or right) ideal 1 of R is said to be 

nilpotent if there exists a positive integer m such that 1m = 0 (that is, 

any product of m elements of 1 is 0) . The positive integer m such that 

1m
-

1 #- 0 , 1m = 0 

is called the nilpotency index of 1. 

A ring 1 (without identity) is said to be nilpotent if 1 itself is nilpo­

tent . 

An lement a of R is said to be left (resp . right) quasi-regular if there 
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exists an element b of R such that a + b - ba = () (1' sp. a + b - ab = 0). 

A subset U of R is said to be left (resp. right) quasi-regular jf any 

element of U is left (resp. right) quasi-regular. A subset U of R is said 

to be quasi-regular if any element of U is both left quasi-regular and 

right quasi-regular. 

The set J(R) = {x E R I xR is right quasi-regular} forms an ideal 

of R , which is called the Jacobson radical of R. As is well-known (se , 

for instance, [1, p. 166, Theorem 15.3]), J(R) is the intersection of all 

maximal left (or right) ideals of R. 

A ring R is said to be semisimple if J(R) = O. A ring R is said to be 

simple if R has no ideals except 0 and R itself. 

A subring S of R must contain the identity 1 of R. The subring of 

R generated by 1 is called the prime ring of R. The opposite ring RO of 

R is the ring with the same Abelian group of R and the multiplication 

x * y = yx. 

When R is a ring, (R)nxn denotes the ring of all n x n matrices having 

entries in R. 

When R is a commutative ring, R[X] denotes the ring of all polyno­

mials in the indeterminate X with coefficients in R. Similarly, for a s t 

{XdiEI of indeterminates, R[ {XdiEI] denotes the ring of all polynomial. 

in the indeterminates {XdiEI with coefficients in R. 

A local ring is a ring whose non-units form an ideal of R. If R is a 

local ring, the ideal of R consisting of all non-units of R coincides with 

the radical J(R) of R. A finite ring is a ring consisting of only finitely 

many elements. A division ring is a ring in which any non-zero elem nt 

is a unit. A field is a commutative division ring. 

The following theorem is known as Wedderburn's theorem. For a 

simple proof, see, for instance, [32, Kapitel 14, §112, p. 109]. 
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Theorem 1.1.1. A finit e division ring is a finite fi eld. 

Let R be a ring, and M a left (r sp. right) R-modul . The lllodul 

M is said to be finitely generated, if there exist finitely many elen1ents 

Xl, X2,' .. ,Xm of M such that 

M = RXI + RX2 + ... + RX m 

(resp. M = xlR + X2R + ... + xmR ). 

For X EM, the set {a E R I ax = O} (resp. {a E R I xa = O} is called 

the annihilator of X in R, and is denoted by Ann( x). A non-zero left 

(or right) R-module M is said to be indecomposable, if there exists no 

non-trivial direct SUlll decomposition 

M = MI EB M 2 • 

We say that M satisfies the ascending chain condition if, for any ascend-

ing chain 

Ml C M2 C ... C Mn C ... 

of R-submodules M, there exists a positive integer N such that 

Mi = M i+1 for any i ~ N. 

Also, we say that M satisfies the descending chain condition if, for any 

descending chain 

Ml => M2 => ... => Mn => .. . 

of R-subilloduies of M, there exists a positive integer N such that 

Mi = M i +1 for any i ~ N. 

A non-zero left (or right) R-module M is said to be simple, if M has 

no nontrivial submodules. 

A ring R itself can be regarded as a left (or right) R-module. A ring 

R is said to be left (resp. right) Noetherian, if the left (resp. right) 

R-module R satisfies the ascending chain condition. A ring R is said 

to be left (resp. right) Artinian, if the left (resp. right) R-module R 

satisfies the descending chain condition. 
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Let Rand S be rings. An Abelian group M is call d an (R , S )­

bimodule if M has the structure of both left R-modul and right S­

module such that 

(ax)b = a(xb) (a E R,x E M,b E S). 

Let Z denote the ring of all integers. For a positive integer n, Zn 

denotes the residue ring Z / nZ . 

The following is known as Wedderburn's structure theorem. 

Theorem 1.1.2. ([8, p. 175, Theorem 26.4J) A ring R is a semisimple 

left Artinian ring if and only if R is isomorphic to a finite direct sum oj 

matrix rings over divison rings. 

Let R be a ring. An element e of R is called an idempotent if e2 = 

e. L t I be an ideal of R, and R = R/ I. Let 7r : R ----+ R be the 

natural homomorphislll. Let e be an idempotent of R. We say that th 

idempotent e can be lifted to an idempotent e of R , if there xists an 

idempotent e of R such that 7r( e) = e. 

A ring R is said to be semiperfect, if R/ J(R) is left (and so necessarily 

right) Artinian, and if any idempotent of R/ J (R) can be lifted to an 

idempotent of R. 

A left (or right) Artinian ring is a semiperfect ring ([2, p. 153, The­

orem 6]). 

If R is a semi perfect ring, an idempotent e of R is called primitive if 

eRe is a local ring (see [2, p. 156, Theorem 12]). 

Theorem 1.1.3. ([2, p. 160, Theorem 21J) Let R be a semiperfect 

ring such that R/ J(R) is a simple ring. Then there exists a primitive 

idempotent e of R and a positive integer n such that R is isomorphic to 

the matrix ring (eRe)nxn. 



- - .. - --. - - ~. .... 

A set {e1' e2, ... , en} of iden1potents of R is said to be mutually or­

thogonal if eiej = 0 (i =I j). 

Theorem 1.1.4. ([2) p. 152) Theorem 4]) Let R be a semip rfect ring. 

Let R = R/ J(R) and 7r : R ----t R be the natural homomorphism. Let 

{e1' e2,·· ., en} be a set of mutually orthogonallidempotents of R. Then 

there exists a set {ell e2, ... , en} of mutually or'thogonal idempotents oj 

R such that 7r ( ei) = ei (1:::; i :::; n). 

Theorem 1.1.5. ([2) p. 158) Theorem 16J) Let R be a nng) and 

R = R/ J(R) . Let e) f be idempotents of R) e = e + J(R)) and J = 

f + J (R) E R/ J (R) . Then two left ideals Re and Rf of R are isomorphic 

as left R-modules if and only if Re and Rf aTe isomorphic as left R­

modules. 

Let R be a ring. Let M be a non-zero left R-m,odule. A finite sequen 

of n + 1 subn10dules of M 

M = Mo :J M1 :J ... :J Mn = 0 

( Mi -1 =I Mi , 1 :::; i :::; n) 

is called a composition series of finite length for lVI, if each M i - 1 /Mi (1 :::; 

i :::; n) is simple. We say that a left R-module M is of finite length, if 

there exists a composition series of finite length for M. 

The following theorem is known as Krull-Schmidt theorem (see, for 

instance, [1, p. 147]). 

TheoTem 1.1.6. Let R be a ring) and let M be a non-zero left R-module 

of finite length . Then M has a finite indecomposable decomposition 

M = EB i:::1 Mi 

such that) for any indecomposable decomposition 

M = EBj=l Ni ) 



it holds that m = n ! and there exists a permutation (J' of {I , 2, ... , n} 

such that 

M cr (i) ~ Ni (1::::; i ::::; n) 

and) for each 1 ::::; k ::::; n ) 

M = (EB7=1 Mcr( i )) EB(EBj=k+l Nj ). 

The following theorem is known as Nakayama's lemma (see [1 , p. 

169]). 

Theorem 1.1.7. Let R be a rzngJ and] a left ideal of R such that 

] C J (R) . If M is a finitely generated left "R-module and] M = !VI ! 

then M = o. 

Let R be a commutative ring. An ideal I of R is said to be principal , 

if there exists an element a of R such that] == Ra. An integral d0111ain 

is a commutative ring R in which xy = 0 (x, y E R) implies that eith r 

x = 0 or y = o. A principal ideal domain is an integral domain in which 

any ideal is principal. The proof of the following theorem is ess ntially 

identical with the proof of the fundamental theorem of finitely gen rat d 

Abelian groups ([32, §86]). 

Theorem 1.1.8. Let R be a principal ideal domain. Let M be a fin itely 

generated R-module. Then 

M = EB~l Rai) 

where Rai ~ R/ ](i) ]{i is a principal ideal of Il (1::::; i ::::; n). 

Moreover) if there is another decomposition 

M = EBj=l Rbj ) 

where Rbj ~ R/ Lj ! L j is a principal ideal of li (1::::; j ::::; m) J 

then n = m and there exists a permutation (J' of {I, 2, ... , n} such that 

](i = Lcr(i) (1::::; i::::; n). 



§2. Groups and Limits 

When S is a set, lSI denot s the cardinality of S. 

Let G be a group, and e the identity of G. Let N be a norn1al 

subgroup of G. A subgroup H of G is called a complement of N if 

G = N Hand N n H = {e}. In this case, we say that G is a semidir ct 

product of H with N, since any a EGis uniquely expressed as a = 

be (b EN, e E H). 

The following theorem is well-known as Schur-Zassenhaus theor m 

(see, for instance, [15, p. 84]). 

Theorem 1.2.1. Let G be a finite group, and let N be a normal sub­

group of G. Assume that INI and the inde:r IG : NI = IGI/INI are 

coprime. Then N has at least one complement H in G. Any two com­

plements of N in G are conjugate in G. 

Let G be a group. For subgroups Hl and H2 of G, let C[Hl' [[2] 

denote the subgroup of G generated by {a-1b-1ab I a E H1, b E H2}. 

Let 

Dl(G) = C[G, G], 

D i+ 1 (G) = C [D i ( G), G] (i ~ 1). 

Then we have a sequence of subgroups 

G ~ Dl(G) ~ D2(G) ~ ... ~ Dn(G) ~ ... , 

The group G is said to be nilpotent if there exists a positive integer 11 

such that Dn(G) = {e}. 

Theorem 1.2.2. ([10, Chapter 10, Theorem 10.3.4J) If G is a finite 

group whose order is a prime-power, then G is a nilpotent group. 

Let G be a finite group of order IGI = p~l p~2 ... p~n, where Pi (1 < 



i :::; n) are distinct primes, and ei (1 :::; i :::; n) ar positlv integ r . 

Then, for each Pi (1 :::; i :::; n), G has a subgroup Gi of order p:l. Such a 

subgroup Gi is called a Sylow subgroup of G corresponding to the prime 

divisor Pi of IGI. Any two Sylow subgroups of G COlT sponding to the 

same prime p are conjugate in G (see [10, Chapter 4, Theorem 4.2.2]). 

Theorem 1.2.3. ([10, Chapter 10, Theorem 10.3.4J) Let G be a finite 

group of order IGI = p~l p~2 ... p~n, where Pi (1 :::; i :::; n) are distinct 

primes, and ei (1 :::; i :::; n) are positive integers. Then the following (1) 

and (2) are equivalent. 

(1) G is nilpotent. 

(2) For each 1 :::; i :::; n, G has exactly one Sylow subgroup G i 

corresponding to the prime divisor Pi. And G is the direct product oj 

G i (1 :::; i :::; n). 

If I is a quasi-regular ring, then I has the structure of group by th 

operation 

x 0 y = x + y - xy (x, y E I). 

This group is called the circle group of I. 

Lemma 1.2.4. ([1, Chapter 4, § 15J, [18J) Al nil ring is quasi-r gular. 

If I is a nilpotent ring then the circle group of I is a nilpotent group. 

A group G is said to be locally finite if any finite subset of G gen rat s 

a finite subgroup of G. 

Theorem 1.2.5. ([22, Chapter 14, 14.3.1}) Let G be a group, and N 

a normal subgroup of G . If both Nand G / N are locally finite, then G 

is locally finite . 

A sequence of rings (or modules over a ring R) and homomorphisms 
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· .. --+ Ai- 1 --tai - 1 Ai --tai Ai+1 --t ... 

is said to be exact if the image I m( ai-I) of ai-1 coincid s with the kern 

I{ er( ai) of ai . 

An ordered set (A, ~) is called a dir cted set if, for any /11, /12 E A, 

there exists some v E A with /11 ~ v, /12 ~ v. 

Let (A,~) be a directed set, and let {Aa, <P{Jc¥} be an inductive syst m 

of rings relative to A. That is, each Aa (a E A) is a ring, and for each 

a ~ {3, there exists a homomorphism <P{Ja : Aa --t A{J such that 

<Paa = idAa , <PrO' = <Pr{J 0 <P{Ja (a ~ (3 ~ I)' 

Then the inductive limit A = lim--+Aa is a ring . Let {EO', f{Ja} be an 

inductive system of left Aa-modules relative to A. That is , each EO' (a E 

A) is left Aa-module, and, for each a ~ {3 (a, (3 E A) , there exists an 

Abelian group homomorphism f{Ja : EO' --t E I'3 such that 

f aa = idEa , frO' = f r{J 0 f {Ja (a ~ (3 ~ I) ' 

Moreover, let us assume that, for any a ~ {3, 

f{Ja(AaXa) = <p{Ja(Aa)f{Ja(xa) (Aa E Aa , Xa E Ea). 

Then the inductive limit E = lim--+Ea naturally has the structur of a 

mod ule over A. In such a case, we shall say that {EO' , f {Ja } is an ind uctiv 

system of left Aa-IllOduies. 

Theorem 1.2.6. ([3, Chapitre 2, § 6, nO 6, Proposition 8J) Let {Aa} be 

an inductive system of rings relative to a directed set A. Let A = lim--+Aa 

be the inductive limit. Let {EO', f{Ja}' {E~, fba}and{E~, fga} be inductive 

systems of left Aa-modules relative to A. Let us suppose that, for each 

a E A, there exists an exact sequence of Aa-modules 

E~ --tUa EO' --tVa E~ 

such that, for any a ~ (3, 

U{J 0 fba = f{Ja 0 Ua , V{J 0 f{Ja = fga 0 Va· 

Then the sequence of left A-modules 
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lim-+E~ lim E" -+ 0' 

is exact, where u = lim-+ UO' and v = lim-+ VO" 

Let (A,::;) be a directed set, and {G(O'), p~O')} be an inverse system of 

groups relative to A. That is, each G(O') (a E: A) is a group, and for 

each a ::; (3, there exists a group homomorphisrll p~) : G(!3) ----+ G(O') 

such that 

p~O') = idc(o) , p~O') 0 p~(3) = p~O') (a::; (3 ::; I)' 

Let IIO'EA G(O') be the product set, and G be the set of all elem nts 

{x(O')} E IIO'EA G(O') such that 

p~O')(xUJ)) = x(O') (a::; (3). 

Then the set G naturally has the structure of a group, which is called the 

inverse limit of {G(O'),p~O')}, and is denoted by G = lim~G(O'). Let p(O') : 

G ---+ G(O') be the homomorphism given by lirn~G(O') ::J {x(O')} 1-----* x(O'). 

Theorem 1.2.7. ([4, Chapitre 3, §7, nO 2, Proposition 1}) Let 

{G(O'), p~O')} be an inverse system of groups relative to a directed s t A. 

Let G = lim+- G(O') be the inverse limit of {G(O'), p~O')}. Let PO' : G ---+ 

G(O') be as above. Let E be a group. Assurne that, for each a E A, 

there exists a group homomorphism fO' : E -----t G(O') such that f O' = 

p~O') 0 f{3 (a ::; (3). Then there exists a group homomorphism f : E ----+ G 

such that fO' = p(O') of (a E A). 

Theorem 1.2.8. ([4, Chapitre 3, §7, nO 2,Corollaire de Proposition 2}) 

Let {G(O'), p~O')} and {O(O'), p~)} be inverse systems of groups relative to 

a directed set A. Let G = lim+-G(O') and 0 = lim~O(O') be inverse limits. 

Let pO' : G ----+ G(O') and PO' : 0 ----+ 0(0') be the homomorphisms d fined 

above. Assume that, for each a E A, there exists a group isomorphi m 

fO' of G(O') onto 0(0') such that fO' 0 p~O') = p~O') 0 f{3 (a ::; (3). Then there 

exists an isomorphism f of G onto 0 such that fO' 0 PO' = PO' 0 f 
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(a E A). 

§3. Witt Vectors 

In this section, all rings must be commutative, and by a local ring w 

mean a commutative Noetherian local ring. When R is a local ring, the 

Jacobson radical J(R) is the ideal of R consisting of all non-units of R, 

which will be simply called the radical of R. The residue ring I{ = R/ M 

is a field, which is called the residue field of R. Let R be a local ring 

with radical M . We can make R into a topological space by taking 

{Mi} ~l to be the base of neighborhoods of o. The local ring R is said 

to be complete, if R is a complete space (that is, any Cauchy sequenc of 

elements of R has a limit in R) with respect to this topology. Let R b 

a complete local ring with radical M and residue field I( = R/ M. L t 

P be the characteristic of I( (p = 0 or p is a prime). The local ring R i 

said to be elementary if M = pR . An elementary compl te local ring is 

uniquely determined by its residue field and its characteristic. That is: 

Theorem 1.3.1. ([7, Corollary 2.3j, [11, Satz Blj, [23j) Let Rl and R2 

be elementary complete local rings. If ch Rl == ch R2 and R1 / J(Rl) ~ 

R2/ J(R2) , then Rl and R2 are isomorphic. 

A field I( is said to be perfect if any algebraic extension of I( is a s p­

arable extension. The following theorem is known as Cohen's structure 

theorem for complete local rings. 

Theorem 1.3.2. ([19, p. 106, Theorem 31.1 and p. 111, Corollary 
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31.10J) A complete local ring R contains a subTing 5 which satisfies the 

following: 

(1) 5 is an elementary complete local ring. 

(2) J(5) = 5 n J(R). 

(3) R/ J(R) is naturally isomorphic to 5/ J(5) , that is, R = 5 + 
J(R). 

Assume further that R/ J(R) is of characte1~istic p :f O. Then such a 

subring 5 of R is unique if and only if R/ J(R) is a perfect field. 

Such a sub ring 5, as above, is called a coefficient ring of R. 

Let p denote a fixed prime. Let Z[p-l] denote the subring of the field 

of rational nUll1bers consisting of elements of the form a/pi, where a E Z, 

and i is a non-negative integer. Let X o, Xl, ... ,Xn ,' .. be a sequence of 

indeterminates. Let us consider the following polynomials: 

Wo = X o, 

WI =Xb+pXl , 

Wn = 2.:7=0 pi Xr n

-

i 

X
pn Xpn-l nx 

= ° +p 1 +"'+p no 

These polynomials are called Witt polynomials ([36]). It is clear that 

each Xi can be expressed as polynomials of Wj with coefficients in Z[p-l]. 

That is: 

X o = Wo, 

Xl = p-l WI - W6', .. ·etc. 

Let Yo, 1';" .. , Yn , ... be another sequence of indeterminates. Then, by 

induction, we see that there exists uniquely a sequence 

of elements of Z[Xo, Yo, Xl, Yl ,' .. ,Xn , Yn , ' .. ] such that 

Wn(50 , 51,"', 5n, " ') = Wn(XO, Xl, ... ) + Wn(YO, Yl ,"') 
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and 

W (Ro PI ... p ... ) = W (Xo Xl .. ·)W (Yro Y,l ... ) n , , ,n, n" n" 

(n=O,l,"')' 

That is, if we write X = (Xo, Xl,"', X n," .) and 

Y = (Yo, Yl,"', Yn," .), 

So(X, Y) = X o + Yo, 

Po(X, Y) = XoYo, 

SI(X, Y) = Xl + Yl + (ljp){Xg + Yt - (Xo + Yo)P}, 

PI(X, Y) = Yt Xl + ylxg + pXIYI, 

... etc. 

Let I( be a commutative ring, and n a positive integer. For a 

(ao, al,"', an-d, b = (bo, bl ,"', bn- l ) E I(n, we set 

a + b = ( So ( a , b), S I ( a , b), ... , S n-l ( a , b) ) and 

ab = (Po(a, b),PI(a, b)"", Pn-l(a, b)). 

Then we can see that the set I(n together with above sum and l11ul­

tiplication forms a commutative ring. This ring Wn(I() is called th 

ring of Witt vectors of length n ([25, Chapter II, §6]). It is obvious that 

° = (0,0" . . ,0) is the zero of Wn(I(), and e = (1,0, ... ,0) is th id ntity 

of Wn(I(), where 1 is the identity of Ie Also we have WI(I() = Ie 

Let p : Wn(I() ----t Wn- l (I() be the ring homomorphism given by 

We have the following basic property of Wn(I(). 

Theorem 1.3.3. ([12) p. 131) Theorem 11 and Chapter V) § 7J) Let I( 

be a perfect field of characteristic p( # 0). Then the ring Wn (I<) of Witt 

vectors of length n is an elementary complete local ring with radical 

]V = {(O,al,'" ,an-I)} 

and residue field I( ~ Wn (I() j N . 

For 1 ~ i < j, there exists a homomorphism pj-i Wj(I()----t 
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Wi(I{). So there exists the projective lirrilt W(I{) = lim_Wn(Ii). 

This ring W(I{) , consisting of elements of the form a = (ao, al,'" , 

an," .), is called the ring of Witt vectors of infinite length ([25, chapter 

II, §6)). 

§4. Valuation Rings 

Let I{ be a field. A real valuation v of I{ is a mapping of I{ into the 

field of real numbers such that 

(1) v(a) ~ 0, 

(2) v(a) = 0 if and only if a = 0, 

( 3 ) v ( a b) = v ( a ) v ( b), an d 

(4) v(a + b) ~ v(a) + v(b). 

A real valuation v is said to be Archimedean if v( n) > 1 for som 

integer n (= 1 + 1 + ... + 1 , n times), in the prime field of I{. Otherwis 

the valuation v is said to be non-Archimedean. 

Let us suppose that v is a non- Archimedean real valuation of the fi lel 

I{. Then the subset Ov of elelTIents a E I{ such that v( a) ~ 1 is a subring 

of I(. This ring Ov is called the valuation ring of v. The subs t N of Ov 

consisting of the elements b E Ov such that v(b) < 1 is an ideal of Ov' W 

see that N is the set of all non-units of Ov' Hence Ov is a commutative 

local ring and N is the radical of Ov' The set r = {v( a) I a E I{ , a -# O} 

is a subgroup of the multiplicative group of all positive numbers. This 

r is called the value group of v. The valuation v is said to be discrete if 

r is a cyclic group. 

Let us suppose that v is a discrete valuation of the fil d Ii. Let d b 
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an element of I{ such that v( d) is the largest element among th set of 

all elements of r less than 1. Then N = (d), and any non-zero elenlent 

of I{ has the form rdm, where m E Z and r is a unit of Ov, 

Proposition 1.4.1 ([12, Chapter V, § 51) A discrete valuation ring is a 

commutative local ring which is a unique factorization domain. 

Now, let I{ be a perfect field of characteristic p(#- 0), and W(I() be 

the ring of Witt vectors of infinite length. 

Proposition 1.4-2. ([12, Chapter V, § 7}) Let I{ be a perfect field oj 

characteristic p #- O. Then the ring W(I{) of Witt vectors of infinite 

length is a discrete valuation ring whose residue field is I{. The ring 

Wn(I{) of Witt vectors of length n is a homornorphic image of W(I{). 

§5. Polynomials over Commutative Artinian Rings 

Throughout this section, R will denote a commutative Artinian local 

ring with radical M and residue field I{ = RIM. Let 7r : R ----t I( d not 

the natural homomorphism given by a r---+ 0, = a+M E RIM. Let R[X] 

denote the ring of polynomials in the indeterrninate X with coefficients 

in R . Let f.1 : R[X] ----t I{[X] denote the natural homomorphism given 

by L:i=o aiXi r---+ L:i=o o'iXi (ai E R , o'i E }(). We can regard R as a 

subring of R[X] , and we see f.1IR = 7r. 

Let f(X) = L:r=o aiXi (aT #- 0) be an element of R[X). The nUlTIber r 

is called the degree of f(X), and is denoted by deg f(X). The polynomial 

f(X) is said to be monic if aT = 1. The polynomial f(X) is said to be 
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regular if f(X) is not a zero-divisor in R[X]. 

Let f(X) be a monic polynomial of R[X]. 'Ne see that, if l-l(f(X)) is 

irreducible in ]([X], then f(X) is irreducible in R[X]. When this is the 

case, we say that f(X) is monic basic irreducible. 

As a consequence of Hensel's lemma ([32, Kapitel VIII, §144]), we 

have the following. 

Theorem 1.5.1. ([1'l) p. 292} Lemma XV.l}) Let R be a commutativ 

Artinian local ring. Let]( be the residue field of R ) and 7r : R ---+ ]( be 

the natural homomorphism. Let f(X) be a regular polynomial of R[X]. 

Assume that l-l(f(X)) has a simple zero a in }C. Then f(X) has exactly 

one zero ex in R such that 7r( ex) = a. 

§6. Separability 

Let R be a ring. An exact sequence of left R-modules 

o ---+ A ---+ a B ---+!3 C ---+ 0 

is said to split if there exists an R-homomorphism 

)":C---+B 

such that (3 0 ).. = ide. In this case, we have 

B = AEB )"(C). 

Such)" is called a splitting homomorphism of (3. 

A left module M over a ring R is said to be projective if, for any 

exact sequence of left R-modules 

B ---+ cP A ---+ 0 

and any R-homolTIorphism ex : M ---+ A, there exists an 
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R-homomorphism f3 : M ---t B such that 'P 0 ,8 = Q'. 

Theorem 1.6.1. ([1) p. 300, Corollary 26.7J) A left (or right) module 

M over a local ring R is p7~ojective if and only if M is a free R-module. 

Let M be a left module over a ring R. The modul M is said to be 

injective if, for any exact sequence 

o ---t A ---t <P B 

and for any R-homomorphism Q' : A ---t M, there exists an 

R-homomorphism f3 : B ---t M such that f3 0 'P = a. 

Theorem 1.6.2. (Baer's criterion) [1, p. 205} 18.3.}) Let R be a ring. 

A left module M over a ring R is injective if and only if} for any left 

ideal I of R and any R-homomorphism 1/; : I .~ M} there exists x E M 

such that 1/;( a) = ax for any a E I. 

Let R be a commutative ring. The ring R~ is said to b self-inj ctiv 

if R itself is injective as R-module (see [24, p. 453]). A ring T is call d 

an algebra over R if there exists a ring homomorphism a from R into 

the center of T. The algebra T over R is regarded as a left R-modul by 

the operation 

ax = a(a)x (a E R, x E T). 

The algebra T over R is said to be finitely generated over R if it is finitely 

generated as R-module. 

Let T be a finitely generated algebra over R. 

Then, by tensor product, we get the enveloping algebra Te = T ® R TO 

(TO is the opposi te ring of T ). 

The algebra T is regarded as a left Te-module by the operation 

(al ® a2)x = alxa2 (aI, a2, x E T). 

There is a natural left Te-module homomorphism 
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¢ : T E ---7 T 

given by 

al ® a2 r------+ ala2· 

This mapping gives rise to an exact s quence of TE-modules 

o ---7 I{ er ¢ ---7 TE ---7 ¢ T ---7 o. 
The algebra T is said to be separable over R (or T is a separable extension 

of R ) if T is projective as a left TE-module. 

Theorem 1.6.3. (Wedderburn-Malcev theorem, [8, p. 491J) Let A 

be a finitely generated algebra over a field Ii. Assume that AI J(A) 

separable over Ii. Then A contains a subalgebra B such that: 

(1) B is semisimple. 

(2) A = B ED J(A) (as vector spaces over Ii). 

(3) The homomorphism 

A : B -+ AI J(A) defined by b r------+ b + J(A.) (b E B) 

is an isomorphism of B onto AI J(A). 

§7. Galois Theory of Finite Commutative Local Rings 

In this section, we shall investigate Galois theory of finite comn1uta­

tive local rings. To begin with, we shall state a simple lemma. 

Lemma 1.7.1. ([17, p. 111, Theorem VII. 7J) A finite ring R (which 

need not be commutative) is a local ring if and only if R has no nontrivial 

idempotents. 

In what follows, let T be a finite commutative local ring with radical 
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N and residue field L = TIN. Let R be a subring of T. Not that, 

under this assumption, R must be a commutative local ring, by Lelnn1a 

1.7.1. 

An R-algebra automorphism of T is an automorphisrll of T which 

leaves the elements of R fixed. We say that T is an unramified ext nsion 

of R if J(T) = T J(R). 

Theorem 1.7.2. ([17) p. 287) Theorem XIV.8}) Let T be a commu­

tative finite local ring) and R a subring of T. Then T is separable ov r 

R if and only if there exists a monic basic irreducible polynomial f(X) 

of R[X] such that T is isomorphic to R[X]/(f(X)) by an isomorphism 

which leaves the elements of R fixed. 

By Theorem 1.7.2, we see that, if a commutative finite local ring T i 

separable over its subring R, then T is a free R~-module of rank n, where 

n = ITIJ(T): RIJ(R)I. SO, in such a case, we shall say that T js all 

n-dimensional separable extension of R. 

Let R be a commutative finite local ring. Let T and U be cornrnuta­

tive finite local rings both contain R as a subring. Then the residu filed 

]( of R is naturally regarded as a subfield of both TIJ(T) and UIJ(U). 

Under this assumption, we get the following. 

Theorem 1.7.3. ([17) p. 293) Theorem XV.2}) Let R be a commuta­

tive finite local ring with radical M and residue field ]( = RIM. Let T 

be a commutative finite local ring which is a separabl extension of R. 

Let U be a commutative finite local ring which is an extension of R uch 

that U I J( U) is isomorphic to T I J(T). Then) for each ]( -algebra iso­

morphism a- : T I J(T) ---t U I J(U)) there ex£sts uniquely an R-algebra 

homomorphism a : T ---t U which induces a- rnodulo the radicals. More­

over) a is an R-algebra isomorphism if and only if U i separable over 
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R. 

Let T be a commutative finite local ring and R be a subring of T. L t 

AutR(T) denote the group consisting of all R-algebra automorphism of 

T. For a subgroup H of AutR(T), let 

TH = {a E T I a( a) = a for all a E H} 

be the fixed subring of H. 

Let G = AutR(T). We say that T is a Galois extension of R with 

Galois group G, jf 

(1) TG = R, and 

(2) T is separable over R. 

Then, by Theorem 1.7.3, we get the following . 

Corollary 1.7.4. ([17, p. 294, Corollary XV.3]) Let T be a com'mu­

tative finite local ring which is separable over ds subring R. Then: 

(1) T is a Galois extension of R with Galois group 

AutR(T) . 

(2) AutR(T) ~ AutR/J(R)(T/J(T)). 

(3) AutR(T) is a cyclic group of order 

IT / J(T) : R/J(R)I · 

Corollary 1.7.5. ([17, p. 295, Corollary XV.4}) Let T be a commu­

tative finite local ring, and R a subring of T. Then the following are 

equivalent. 

(1) T is a Galois extension of R with Galois group AutR(T). 

(2) T is separable over R. 

(3) T is an unramified extension of R. 
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§8. Galois Rings 

Let p be a prime, and Zpk = Z/(pk). By Theorem 1.7.2 and TheorelTI 

1. 7 .3, we see that, for any positive integ r r ther exists uniqu ly (up 

to Zpk-algebra automorphism) an r-dimensional Galois ext nsion of Zpk. 

This ring is called the Galois ring of characteristic pk and rank r, and is 

denoted by G R(pk , r). In particular, G R(p, r) is the fini te field G F (pT). 

The Galois ring was first noticed by Krull [14], and was later redis­

covered by Janusz [13] and Raghavendran [20]. 

By our previous discussion, Theorem 1.3.1 and Theorem 1.3.3, w 

already have the following property of Galois rings. 

Proposition 1.8.1. 

(1) If f(X) is a monic, basic irreducible polynomial of Z pk [X] with 

degree r, then Zpk [Xli (f(X)) is isomorphic to the Galois ring G R(pk, r). 

(2) The Galois ring R = G R(pk, r) is a commutative, el 7n ntary 

complete local ring with characteristic pk whose radical is pR = (p) and 

whose residue field is R/pR = GF(pT). 

(3) The Galois ring GR(pk,r) is isomorphic to the ring Wk(GF(pT)) 

of Witt vectors of length k, having entries in G F(pT). 

(4) Any ideal of the Galois ring R = GR(pk, r) zs of the forrn 

pi R (0 ~ i ~ k). 

(5) The Galois ring G R(pk, r) is self-injective. 

(6) For any divisor r' of r, the ring G l~(pk , r) contains a unzque 

subring which is isomorphic to G R(pk, r') ([2'0, Proposition 1}). 

(7) Any subring of G R(pk, r) is of the form G R(pk, r') (r' is a divi or 

of r, [20, Proposition 1}). 

(8) Let kl' k2' rl and r2 be positive integers. Then 

GR(pkl, rl) ®z GR(pk2, r2) ~ EBd GR(pn, rn) (as rings), 

where n is the minimum of {kl' k2}, d is the greatest common divisor oj 
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{rl' r2}, and m is the least common multiple of 

{rl,r2} ([34, Proposition 2.1}). 

§9. Inductive Limits of Galois Rings 

We shall call a ring R an inductive limit of Galois rings if there ex­

ists a sequence {Rd~l of subrings of R such that Ri C Ri+1 , Ri ~ 

GR(pn,ri) (i 2:: 1) and R = U~l R i , where {rd~l is a sequence of posi­

tive integers such that ri Iri+l (i 2:: 1). Being long, the term an "inductive 

limit of Galois rings" will hereinafter be abbreviated as an "IG-ring". If 

R is an IG-ring described above, then Ri is the only subring of R which 

is isomorphic to GR(pn, ri)' So we can write II = U~l G R(pn, ri)' 

Let p be a prime, n a positive integer and 1 = rl ~ r2 ~ .... an 

infinite sequence of positive integers such that ri Iri+l' By Proposition 

1.8.1 (6) and (7), there exists a natural embedding d+1 
: GR(pn, ri) ----+ 

G R(pn, ri+d for each i 2:: 1. Let us put L~ = idCR(pn,T.) and d = L~-l 0 

L}=; 0···· od+1 for 1 ~ i ~ j. Then we see that {GR(pn,ri), L{} 

is an inductive system. The ring R = lim_, G R(pn, ri) is an IG-ring. 

Conversely, any IG-ring can be constructed in this way. An IG-ring 

R = U~l G R(pn, ri) is a Galois ring if IRI is finite. A subring S of a ring 

A is called an IG-subring of A if S is an IG-ring. 

Proposition 1.9.1. Let R = U~l GR(pn, rd be an IG-ring. Then: 

(1) R is a commutative local ring with radical J(R) = pRo The 

residue field R/ pR is U~l G F(pTi). 

(2) If e is a positive integer such that 1 ~ e ~ n , then R/ pe R is 
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naturally isomorphic to the IG-1'ing U~l GR(pe, ri)' 

(3) R is a proper homomorphic image of a discrete valuation ring 

whose radical is generated by p. 

(4) Any ideal of R is of the form pe R (O~; e ::; n). 

(5) R is self-injective. 

(6) Aut(R) ~ lim_ Aut(GR(pn, rd) ~ lim~_ Aut(GF(pTi)) 

~ Aut(U~l GF(pTi)) . 

Proof. (1) and (2). For each i 2:: 1 , 

o --t peG R(pn, ri) --t G R(pn, ri) --t G R(pe, ri) --t 0 

is an exact sequence of GR(pn, ri)-modules. So we get the result by 

Theorem 1.2.6. 

(3) This is an immediate consequence of Theorem 1.3.1, Theorem 

1.3.3 and Proposition 1.4.2. 

(4) If R is a discrete valuation ring with radical pR, then by Propo­

sition 1.4.1, any ideal of R is of the form piI1~ (j 2:: 0), so the result is 

clear from (3). 

(5) By Baer's criterion (Theorem 1.6.2), we see that a proper ho­

momorphic image of a principal ideal domain is self-injective. So (5) is 

immediate from (3). 

(6) Suppose i ::; j. If T is an automorphism of G F(pr)), the restriction 

T' = TlcF(pri) is an automorphism of GF(pri). So n-y) : T f----7 TlcF(prt) 

is a group homomorphism of Aut( G F(pr))) onto Aut( G F(pri)). We s 

that {Aut( G F(pri)), n-y)} forms an inverse system on the directed set 

N = {1,2, .. ·,n, .. ·}. 
An automorphism a of G R(pk, ri) induces an automorphism a- of 

GF(pri) modulo radicals. By Theorem 1.7.3, this correspondence A(i) : 

a f----7 a- is an isolTIorphism of Aut(GR(pk,ri)) onto Aut(GF(pTt)). Let 

us put 
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7ry) = (A(i))-I 0 7fy) 0 AU) (1 ~ i ~ j). 

Then {Aut(GR(pk,ri)))' 7ry)} also forms an inverse syst m on N, and 

we see that 

A(i) 07r]i) = 7f)i) 0 AU) (i ~ j). 

So, by Theorem 1.2.8, there exists an group isomorphism A of 

lim+-Aut(GR(pk,ri)) onto lim+-Aut(GF(pT,)). 

Let T be an isomorphism of 1< = U~I G ~F(pTi). Then the restric­

tion TIGF(pri) is an automorphism of GF(pTi). So, the mapping 'Pi : 

T 1------+ TIGF(pri) is a group homomorphism of Aut(I<) onto Aut(GF(pTi)). 

Let Pi : lim+-Aut(GF(pTi)) -----* Aut(GF(pTi)) be the natural homo1110r­

phism given by {O"i} 1------+ O"i. As 

7f y) 0 cP j = CPi (i ~ j) , 

by Theorem 1.2.7, there exists a group homomorphism cP of Aut(I{) to 

lim+-Aut( G F(pT,)) such that Pi 0 'P = 'Pi (i ~ 1). It is easy to check that 

this 'P is an isomorphism of Aut(I<) onto lim .... _Aut(GF(pTi)). 

Similarly we see 

Let {re}~1 be an infinite sequence of positive integers such that 

rl = 1 and relre+I(£ ~ 1). Let S = U~I GR(pn,re) be an IG-ring 

of characteristic pn. Let n = nl ~ n2 ~ . . .. ~ nt be a d crea -

ing sequence of positive integers. Let us put Sj = U~I G R(pn] , re) for 

1 ~ j ~ t . Let 'Pj : S -----* Sj be the natural homomorphism followed 

by the isomorphism S/pnJs ~ Sj of Proposition 1.9.1 (2). Let us put 

U(S; nl, n2,· ... , nt) = {(aij) E (S)txt I aij E pnJ-niS if i > j}. It 

is easy to see that U(S; nl, n2,· .. . , nt) forms a subring of (S)txt. Let 

M(S; nl, n2,· . .. , nt) denote the set of all txt matrices (aij), wher 

aij E Sj, and aij E pnj-ni Sj for i > j. Let <P be the mapping of 

U(S; nl, n2,· ... , nt) onto M(S; nl, n2,·· .. , nt) defined by (aij) 1------+ (aij), 
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where aij = <pj(aij). It is easy to check that addition and multipli ation 

in M(S; nl, n2, .... , nt) can be defined by stipulating that <I> pr s rv s 

addition and multiplication. We shall call M(S; nl, n2,· ... , nt) a ring of 

Szele matrices ov r S. 

Lemma 1.9.2. (cf. [35, Lemma 2.1}) Let Ii be a ring with 1 which 

contains an IG-subring S of characteristic pn. If R is finitely generated 

as a left S -module, then there exists a decreasing sequence n = nl 2:: 

n2 2:: .... 2:: nt of positive integers such that R is isomorphic to a subring 

of M(S; nl, n2,· ... , nt) . 

Proof. By Proposition 1.9.1 (5), there exists a submodule N of R 

such that R = S EB N as left S-module. By Proposition 1.9.1 (3), there 

exist a discrete valuation ring Wand a homomorphism <p of W onto S. 

By defining 

ay = <p(a)y (a E W, YEN), 

N is a finitely generated W-module. By Theorem l.l.8, th r xi t 

YI, Y2,· .. . , Ys E N such that N = EBi=1 WYi . Let t = + 1, Xl = 1 and 

Xi = Yi-l (2 ::; i ::; t). Then we get R = EB~=1 SXi. Let SXi ~ S/pn·s 

as S-module (nl = n). Without loss of generality, we may assum 

nl 2:: n2 2:: .. .. 2:: nt· For each a E R , we can write 

Xia = I:j=laijXj (aij E S). 

Since 

by Proposition l.9.1 (4), aij E pnJ-niS if i > j. As aij is uniqu ly 

detennined modulo pn) S by a , we can define 'lj; : R ---t M (S; nl, n2, .. 

.. , nt) by a I--------t ('lj;j (aij)). It is easy to see that 'lj; is an injective ring 

homomorphism. 
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Chapter II 

Coefficient Subrings 

§1. Coefficient Subrings of Finite Local Rings 

Throughout this section, let R denote a finite local ring (not necessar­

ily commutative) with radical M and residue field]{ = RIM. Though R 

needs not be commutative, by Wedderburn's theorem (Theorem 1.1.1), 

the residue field ]( is commutative. 

A fini te ring S is called a p- ring (p a prime) if the order I S I of S is a 

power of p. 

As a finite ring is the direct sum of finite ]O-rings, a finite local ring 

must be a p-ring for a prime p. 

Theorem 2.1.1. ([20) Theorem 2}) Let R be a finite local ring with 

radical M and residue field ](. Then: 

(1) We can write IRI = pnT, IMI = p(n-l)T and 1](1 = pT) where p is 

a prime} and n, r are positive integers. 

(2) Mn = O. 

(3) ch R = pk} where k is a positive integer not greater than n. 

Proof. (1) Since ]( is a finite field, ]( = G.F(pT) for a prime p and a 

positive integer r. Let m be the nilpotency index of M. Each Mil M i +1 

(1 :::; i :::; m - 1) has the structure of left ]{ -space by the operation 

(a + M)(x + M i+1 ) = ax + M i+1 (a + ME ]( = RIM, x + lVI i+1 
E 

Mi IMi+1 ). 

So IMi I Mi+11 IS a power of pT. Let us put IMi I Mi+11 = pTki (1 < 
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i ~ 1TI - 1) and n = kl + k2 + .. , km - 1 + 1. Then IMI = p(n-l)r. As 

R/M = I{, so IRI = IMI· II{I. Hence IRI = pm'. 

(2) is obvious from n - 1 = kl + k2 + ... + km - 1 2: m - 1. 

(3) Let us suppose ch R = pk and k > n. As pR eM, we get 

o = Mn ~ M k- 1 ~ (pR)k-l =f. 0, 

which is a contradiction. 

Proposition 2.1.2. ([30, Lemma 1.1j) Let R be a finite local ring with 

characteristic pk whose residue field is I{ = G F(pr). Then: 

(1) R* contains an element v such that o( v) = pr - 1. 

(2) If v E R* satisfies o( v) = pr - 1, then v generates a subring oj 

R which is isomorphic to G R(pk, r). 

Proof. Let 7r : R ---+ I( = R/ M be the natural homomorphism. Let 

Uo be a generator of 1(* , and let f(X) E Zpk [X] be a monic polynomial of 

degree r such that the image J(X) in Zp[X] gives the minimal polynomial 

of uo. By Theorem 1.5.1, there exists u E R such that 7r( u) = Uo and 

f( u) = O. Let S = Zpk [u], and consider the natural homomorphislTI 

given by X f-----+ u. 

We shall claim that in R, 

Z k + Z kU + ... + Z kU
r

-
1 

p p p 

is a direct sum. Suppose that there exists a non-trivial expression 

ao + alu + .,. + ar_lUr- 1 = 0 (ai E Zpk) 

with some ai =f. O. We can write 

ai = pei a~ (0 ~ ei ~ k, a~ are uni ts, 0 ~ i :S; r - 1). 

Let ej be the smallest among {eo, el, ... , er-l}. If ej = k, then all ai = 0, 

which contradicts our assumption. So we see ej < k. We have 

peJ(peo-eja~ + ... + aju j + ... + per-l-eJa~_lur-l) = 0 
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in R Then peo-eJa' + ... + alu j + ... + per-l-eJa' u
T

-
1 is in !VI so w . 0 J T-l ' 

have 

peo-eJ a~ + ... + aju j + ... + per-l-eJ a~_l uT
-·
1 = ° 

in 1(. As aj i- 0, this contradicts the fact that Zpk1+Zpku+·· .+ZpkU
T

-

1 

is a direct sum in 1(. 

So we see 

151 ? pkT = IZpk (X]/(f(X))I, 

which implies that 'ljJ is an isomorphism of Zpk(X]/(f(X)) onto 5. This 

is the Galois ring GR(pk,r). 

Since an element a of R is a unit if and only if 7f( a) is a unit of 1(, so 

the restriction 7f* = 7f IR. induces an exact sequence of groups 

1 ---t 1 + M ---t R* ]{* ---t 1. 

Let u and 5 = Zpk (u] be as above. As 

1 ---t 1 + p5 ---t 5* ---t
7r

•
ls• ](* --+ 1 

is an exact sequence, we can write o(u) = pm(pT -1) (m is a nonn gative 

integer) . Let us put v = upm
. Then o(v) =: pT - 1. As 7f(v) is also a 

generator of ](*, we see that Zpk (u] = Zpk (v]. 

Now let us suppose that an element v' of R* satisfi s o( v') = pT - 1. 

By Schur-Zassenhaus theorem (Theorem 1.2.1), two cyclic subgroups 

(v) and (v') are conjugate in R* . So there exists some a E R* such that 

5' = a- 1 5a. 

Let R be a finite local ring with characteristic pk whose residu fi ld 

is G F(pT). A subring of R which is isomorphic to G R(pk, r) is call d a 

coefficient ring of R ((6]) . However, in this paper, from our standpoint to 

consider the whole number of them, we shall call it a coefficient subring 

of R. 

Theorem 2.1.3. ([20, Theorem 8}) Let .R be a finite local ring with 

residue field G F(pT) . Then: 
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(1) R contains at least one coefficient subning. 

(2) If Sand S' are coefficient sub1'ings of f1~, then there exists a unit 

a of R such that S' = a-I Sa. 

(3) If S is a coefficient subring of R, then ther exists an (S, S)­

sub module N of M such that 

R=SffiN 

as (S, S)-bimodules. 

Proof. (1) and (2) will be clear by Proposition 2.1.2 and its proof. 

(3) By Proposition 1.8.1 (5) and (8), the inclusion 0 ----+ S ----+ R 

splits as modules over se = S®RS (and hence as (S,S)-bimodules). So 

S is a direct summand of R as (S, S)- bimodules. Considering R as a left 

S-module, we have 

sR = Sbl ffi Sb2 ffi· .. ffi Sbt . 

As S is a direct summand of R, we can take bl = 1. And we can take 

other bi such that Anns(bi) = 0 (1 ~ i ~ r) and Anns(bi) =I 0 (r + 1 ~ 

i ~ t). So bi E M for r + 1 ~ i ~ t. For 2 ~ i ~ t, r plac bi by 

b~ = bi - ri, where ri is an element of S such that 7r(ri) = 7r(bi ). Then it 

is easy to see that again 

sR = Sbl ffi Sb~ ffi· .. ffi Sb~, 

w here the annihilators are unchanged, and moreover, b~,···, b~ belong 

to M. Thus 

M = Sp ffi ( ffi ;=2 SbD 

as left S-modules. Let 

M = ffi f=1 Sai 

be a decomposition of M as (S, S)-bimodules. Since this d composition 

is also a decomposition as left S-modules, by Krull-Schmidt theorem 

(Theorem 1.1.6), we have d = t, and, after renumbering, Anns(at} = 

(pA-I) and Anns(ad = Anns(bD (2 ~ i:::; t). In particular, one can see 
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that {I, a2,"', ad} are S-free. So, 

Sl ffi Sa2 ffi· .. ffi SaT 

is an (S, S)-submodule of R. This submodule is injective and hence a 

direct summand of R as an (S, S)-bimodule. That is, 

R = [S ffi(ffii=2 Sai)] ffi W 

as (S, S)-bimodules, where W is an (S, S)-submodule of R. W can 

express W = 61j::; SCj as a direct sum of left S-modules. Then we hav 

R = [S 61( 61i=2 Sai)] 61[61}~; SCj]. 

Again, by Krull-Schmidt theorem, Anns(cj) i-: 0 for 1:::; j:::; t - r. So 

Cj EM (1:::; j:::; t - r) and We M. By taking N = (61i=2Sai)61W, 

we complete the proof. 

Note that, Theorem 2.1.1 and Theorem 2.1.3 forms a generalization 

of Wedderburn's theorem (Theorem 1.1.1). For, let F be a finite di­

vision ring. As ch F = p, by Theorem 2.1.1, IFI = pn. By Theorem 

2.1.3, F must contain GR(p, r) = GF(pT). So F = GF(pT), which is a 

commutative field. 

In the above proof, we have already proved the following. 

Theorem 2.1.4. ([26) Theorem}) Let R be a finite local ring) and S 

a coefficient subring of S . Let f be an inner automorphism of R. Ij 

f( S) c S) then the restriction fls is the identity mapping of S. 

Proof. Let M be the radical of R, and I{ == RIM = GF(pT). Let pk 

be the characteristic of R, and let S ~ G R(pk, r) be a coefficient subring 

of R. 

By Proposition 2.1.2 (1), there exists u E R:* such that o(u) = pT-1 

and S = Zpk [u]. Let Ia denote the inner automorphism of R giv 11 by 

x ~ a-1xa (x E R). Suppose Ia(S) C S. 
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Since R* is a semidirect prod uct of (u) with 1 + M, w can writ 

a = u i (l + x) (i ~ 0, x EM). 

Then, we can easily see that 

Ia(u) - u = I1+X(U) - u E M. 

Combining this with Ia(u) E S, we ready obtain 

I1+X(U) - U = Yo E pS. 

By Theorem 2.1.3 (3), R = S EB M' with some (S, S)-submodule M' of 

M . Let x = Xo + x' with Xo E S and x' EM'. Since S is commutative, 

(1 + X){I1+X(U) - u} = (1 + x)yo 

simplifies to 

ux' - x'u - x'yo = (1 + xo)Yo. 

Obviously, the last belongs to S n M' = 0, and hence (1 + xo)yo = 0. 

Since Xo is in pS , it follows yo = 0. We conclude therefore 

Ia(u) = I1+X(U) = u, 

which proves that Ia induces the identity mapping on S. 

Corollary 2.1.5. ([26}) Let R be a finite local ring with radical M 

and residue field I( = G F(pT). Let u be an element of R such that 

o(u) = pT - 1, and let 

N={xEMlxu=ux}. Then: 

(1) The number of all coefficient subrings of R is equal to 1M : NI· 

(2) R has exactly one coefficient subring if and only if R* is nilpotent. 

Proof. (1) Let S = Zpk[U]. Two coefficient subrings Sl = a-
1
Sa and 

S2 = b-1Sb (a, b E R*) coincide if and only if a-1b E {x E R* I xS = 

Sx}. So, the number of all coefficient subrings of R is given by IR* : LI, 

where L = {a E R* I Ia(S) = S}. By Theore:m 2.1.4, we see that 

L = {a E R* I Ia( u) = u} = {u i (1 + x) I ;z:u = ux , x EM, 1 :S; i :S; 

pT _ 1}. 

Hence, 
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so we obtain 

IR* : LI = (pT - 1)IMI/(pT - 1)INI 

=IM:NI· 

(2) R contains exactly one coefficient subring if and only if M = N. 

Since R* is a semidirect product of (u) with 1 + M, this condition means 

that R* is a direct product of (u) and 1 + M. By Theorem 1.2.3 and 

Lemma 1.2.4, this implies that R* is a nilpotent group. 

Corollary 2.1.6. ([27, Corollary}) Let R be a finite local ring with 

residue field G F(p). Then R has a unique coefficient subring. 

Proof. Let M be the radical of R. Let u and N be as in Corollary 

2.1.5 . As ]( is the prime field, we see N = M. So by Corollary 2.1.5, R 

has a unique coefficient subring. 

The following theorem also is a generalization of W dd rburn's th 0-

rem (Theorem 1.1.1) . 

Theorem 2.1. 7. ([6, Lemma 2}) Let R be a finite local ring whose 

order is a power of a prime p. Then R is a Galois ring if and only iJ 

J(R) = pRo 

Proof. Let R/ J(R) = GF(pT), and let pk be the characteristic of R. 

Suppose that J(R) = pRo Let S be a coefficient subring of R. Sinc 

S + pR = R, we have 

R = S + p(S + pR) = S + p2 R = . .. = S + pk R = S. 

So R must be commutative. The rest of the proof will be clear by 

Theorem 1.7.2 and Corollary 1.7.5. 
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§2. Coefficient Subrings of Certain Infinite Local Rings 

Let G be a group, and N a normal subgroup of G. Let p : G ---t H = 

G / N be the natural homomorphism. A monomorphism ,\ : H ---t G 

will be called a right inverse of p if p 0 ,\ = idH . If ,\ is a right inver e of 

p , then G is a semidirect product of Nand '\(H). 

The following lemma is a variation of Schur-Zassenhaus theorem (The-

orem 1.2.1). 

Lemma 2.2.1. Let G be a group, and N a normal subgroup of G. Let 

p : G ---t H = G / N be the natural homomorphism. Assume that N i 

locally finite, and there exists a sequence {Hd~1 of finite subgToup ~ oj 

H such that Hi C Hi+1 (i ~ 1), U~I Hi = H and, for any a E Nand 

any i ~ 1 , o( a) and IHi I are coprime. Then: 

(1) There exists a right inverse ,\ : H ---t G of p. 

(2) If, for some m ~ 1 , there exists a monomorphism J-l' : H m ---t G 

such that p 0 J-l' = idHm , then there exists a right inverse J-l : H ---t G 

of p such that J-l IHm = J-l'. 

(3) If J-l' : Hm ---t G and J-l" : Hm ---t G are monomorphisms such 

that p 0 J-l' = po J-l" = idHm , then J-l'(Hm) and J-l"(Hm) are conjugate in 

G. 

(4) Assume further that both Hand N are nilpotent. Then there 

exists a unique right inverse of p if and only :if G is a nilpotent group. 

Proof. (1) By Theorem 1.2.5, G is locally finite. For each x E HI W 

can choose an element gx of G such that p(gx) = x. The subgroup GI of 

G generated by {gX}XEH
l 

is finite, and plGl is a homomorphism of GI onto 

HI' Let us put NI = I{ er(pIGl ). Since INII and IHII are coprime, by 

Schur-Zassenhaus theorem (Theorem 1.2.1), there exists a right inverse 
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Al : HI ---+ GI of plG 1 • Next, let {g~}YEH2 be a set of lem nts of G 

such that p(g~) = y for any y E H2, and {g;t: }XEH1 C {g~}YEH2· Let 

G2 be the finite subgroup of G generated by {g~}YEH2· Then plG2 ]s a 

homomorphism of G2 onto H 2 . Again by Schur-Zassenhaus theorem, 

there exists a complement subgroup L of N2 = I( er(pIG2) in G2 such 

that L :) AI(HI). The mapping A2 : H2 --+ G2 defined by fI2 = 

G2/ N2 :1 bN2 r----t b (b E L) is a right inverse of p1G2. For any a E H l , 

A2(a)-1 AI(a) E N2 n L = {1}, hence we see A21 H l = AI. Continuing this 

process inductively, we get a sequence G I C G2 C .... of finite subgroups 

of G and a sequence {Ai} ~l of right inverses A'i : Hi ---+ Gi of P IGi such 

that Aj IHi = Ai for any 1 ::; i ::; j. Then A = li :m~ Ai : H = U~l Hi --t 

G is a right inverse of p . 

(2) can also be proved in the same way by starting from J-l' : Hm ---+ 

J-l'(Hm). 

(3) Let L be the finite subgroup of G generated by J-l '(Hm) U J-l"(I-Im). 

Then plL is a homomorphisn1 of L onto Hm. Since II( er(piL)1 = IN n 
LI and IHml are coprime, by Schur-Zassenhaus theorem, J-l'(Hm) and 

J-l"(Hm) are conjugate in L. 

(4) Assume that A : H ---+ G is the unique right inverse of p. Th n 

G is a semidirect product of Nand A(H). V\!e shall show that this is 

the direct product . Suppose that there exist c E Nand Z E H such that 

CA(Z) i A(Z)C. Let us define J-l : H ---+ G by J-l(b) = Z-lA(b)z. Th n J-l 

is a right inverse of p different fron1 A, which contradicts our hypoth sjs. 

So G is the direct product of Nand A(H) . Hence G is nilpotent. 

Conversely, let us suppose that G is nilpotent, and A and J-l are right 

inverses of p. For each i ~ 1, let G i be the subgroup of G generated by 

A(Hi) U J-l(Hi ). Then piG. is a homomorphism of G i onto Hi . Both A(Hi) 

and J-l(Hi ) are complement subgroups for Ni == I( er(plGJ in G i . Since 

G i is a finite nilpotent group, for each prime divisor q of IGil, Gi contains 
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a unique q-Sylow subgroup. Each G i is the direct product of such Sylow 

subgroups. As IHil and INil are coprirne, we have )..(Hi) = J-l(Hd· SO 

)..IH, = J-lIHi' Since this holds for each i ~ 1 , we see).. = J-l. 

Let G, N, Hand p : G --t H be as in Le:mma 2.2.1. We say that 

G has property (GC) with respect to N if, for any two right inverses J-l 

and v of p, J-l(H) and v(H) are conjugate in G. If H is finite, then by 

Lemma 2.2.1 (3), G has the property (GC) with respect to N. 

Let R be a ring. Let S be a subring of R , and I = J(R) n S. The 

homomorphism of S / I to R/ J (R) defined by a + I f----t a + J (R) (a E S) 

is injective. We shall say that S / I is naturally isomorphic to R/ J( R) if 

this homomorphism is onto. If S is a local subring of a local ring Rand 

if J(S) is nilpotent, then J(S) = J(R) n S. 

N ow we shall state the main theorems of this section, which general­

ize the result of R. Raghavendran [17, p. 373, Theorem XIX.4]. 

Theorem 2.2.2. ([30, Theorem 2.2J) Let R be a local ring with radical 

M. Assume that M is nilpotent, and!( = R/ All is a commutative field oj 

characteristic p (p a prime) which is algebraic over G F(p). Then ther 

exists an IG-subring S of R such that S / pS is naturally isomorphic to ]{ . 

Proof. Since ]( is algebraic over G F(p), I]{ I is either finite or count­

ably infinite. So there exists a sequence {]( }i:~1 of finite subfields of ]{ 

such that ]( C ](+1 (i ~ 1) and U~l !(i = !(. Let !(i = G F(pTi). Th 

natural homomorphism 'Jr : R --t ]( induces a group homomorphism 

'Jr* = 'JrIR* of R* onto ](*. Each (1 + Mi)/(l + Mi+1
) is isomorphic 

to the additive group Mi / Mi+1. As pMi C Mi+I, the order of each 

element of 1 + M = ]( er 'Jr* is a power of p. By th isomorphism 
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1 + M :7 1 + x ~ -x, we see that 1 + M is isomorphic to th cirel 

group of M. So, by Lemma 1.2.4, 1 + M is a nilpot nt group. Fur­

thermore, ]<* == U~11(* , where 1](;1 == pT\ -- 1 is coprime to p. So, 

by Lemma 2.2.1 (1), there exists a right inverse,\ : 1(* ----7 R* of 7r*. 

For each i ~ 1, let ai be a generator of 1<;. By Proposition 2.1.2 (2), 

the subring Si == ('\(ai)) of R is isomorphic to GR(pn,ri), where pn is 

the characteristic of R. Consequently, S == (,\( ](*)) == U~l Si is an IG­

subring of R, and S / pS is naturally isomorphic to ](. 

Such a subring S of R stated in Theorem 2.2.2 will be called a coef­

ficient subring of R. When R is a commutative local ring satisfying the 

assumption of Theorem 2.2.2, S coincides with the subring described in 

Theorem 1.3.2. 

Let R, M, Sand ]< == U~l G F(pTi) be as in Theorem 2.2.2, wh r 

{rd~l is a sequence of positive integers such that rilri+l (i ~ 1). L t 

pn be the characteristic of R. Let S' be another co ffici nt sub ring of 

R. By Theorem 1.3.1 and Proposition 1.9.1 (1), S' ~ U~l GR(pn, 1'i), 

which is isomorphic to S. By Proposition 1.9.1 (5), there exists a left 

S'-submodule N of R such that R == s' EB N as left S'-modules. 

If ,\ : ](* ----7 R* is a right inverse of 7r* , then by the proof of Theorem 

2.2.2, S == (,\(](*)) is a coefficient subring of ll. 

We shall show that, if ,\ and fl are different right inverses of 7r*, th n 

(,\(]<*)) =I- (fl(](*))· Let us suppose (,\(](*)) == (fl(]{*)) and denot 

it by S. Let {](}~1 be a sequence of finite subfields of ]< such that 

]<i ~ G F(pTi) , ](i C ](+1 (i ~ 1) and U~l 1<i == ](. As ,\ =I- fl, ther 

exist a number j ~ 1 and an element a of ](j such that '\(a) =I- Il(a). 

By Proposition 2.1.2 (2), both T == (,\(1<j)) and T' == (fl(]<j)) ar 

isomorphic to GR(pn,rj). As S == U~l('\(]<;))' there exists a numb r 

40 



R ~ 1 such that T U T' C ()"(I<;)). Since ()"(I(;)) is a Galois ring , 

T ~ T' implies T = T'. The restriction 7rIT- is a homomorphism of T* 

onto I<J'!'. Both )..II<- and J.LII<- are right inverses of 7rIT-, so T* is th 
J J 

direct product of ),,(1<;) and 1< er(7rIT-) = 1 + pT , and is also the direct 

product of J.L(I(;) and 1 + pT. As 11<;1 and 11 + pTI are coprime, we have 

),,(1<;) = J.L(I<;). So there exists some (3 E I<:i such that )..(0') = J.L({3). 

Then 0' = 7r* 0 )..(0') = 7r* 0 J.L({3) = (3, which rneans )..(0') = J.L(O')' This 

contradicts our choice of 0'. 
By making use of Lemma 2.2.1 (1), we can easily see that, if 5 is a 

coefficient subring of R, there exists a right inverse).. : 1<* --+ 5* of 7r* 

such that 5 = ()..(I(*)). 

Summarizing the above, we obtain the following theorem. 

Theorem 2.2.3. ([30, Theorem 2.3}) Let R be a local ring with radical 

M . Assume that M is nilpotent, and 1< == R/ M is a commutativ 

field of characteristic p (p a prime) which is algebraic over GF(p). L t 

7r* : R* --+ 1(* be the group homomorphism induced by the natural ring 

homomorphism 7r : R --+ 1<. Then: 

(1) If 5' is a coefficient subring of R , then there exists a 5' -submodule 

N of R such that R = 5' EB N as left 5' -modules. 

(2) All coefficient subrings of Rare isom,orphic. 

(3) If)..: 1<* --+ R* is a right inverse of 7r* , then 5 = ()"(I<*)) z a 

coefficient subring of R. Conversely, if 5 is a coefficient subring of R , 

then there exists uniquely a right inverse).. : 1<* --+ R* of 7r* such thai 

5 = ().. (I{*) ) . 

(4) All coefficient subrings of R are conjugate in R if and only if R* 

has property (CO) with respect to 1 + M. 
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With the same notation as in Th orem 2.2.3" M 1M2 is regard d as a 

left ]( -space by the operation 

ax = a-x (a E ]( = RIM, x E MIM2). 

Theorem 2.2.4. ([30, Theorem 2.4J) Let R be a local ring with radical 

M. Assume that M is nilpotent, and ]{ = RI ~vf is a commutative field 

of characteristic p (p a prime) which is algebraic over G F(p). Let S 

be a coefficient subring of R. Then R is finitely generated as a left S­

module if and only if M 1M2 is a finite dimensional left ]( -space. In this 

case, there exists a finitely generated left S -subrnodule N of M such that 

R = SED N as left S -modules, and there exists a decreasing sequence 

nl 2: n2 2: .... 2: nt of positive integers (pnl is the characteristic of R) 

such that R is isomorphic to a subring of M(S;nl,n2,·· .·,nt). 

Proof. Assulue that R is finitely generated as a left S-module. Th n R 

is a Noetherian left S-module, since S is a Noetherian ring by Proposition 

1.9.1 (4). As M is a left S-submodule of R, M is a finitely gen rat d 1 ft 

S-module. This implies that M I M2 is a finite dimensional left ]( -spac . 

Conversely, let us assume that M 1M2 is a finite dimensional] ft J(­

space. Let w be the nilpotency index of M. Let Xl, X2, .... , Xd be elem nts 

of M whose images modulo M2 forn1 a ](-basis of MIM2. As Sip IS 

naturally isomorphic to ]{, any element y of A1 is written as 

y = Lf=l aixi + y' (ai E S, y' E M
2
). 

Let 

z = L1=1 bjxj + z' (bj E S, z' E M2) 

be another element of M. Then 

yz = Lf,j=l aiXibjXj + w" (w" E M
3

). 

Each Xibj is written as 
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b - ~d + I ( S 'M2) Xi j - L...,k=l CkijXk Wij Cki j E , W i j E . 

So we see that any element v' of M2 can be written as 

Continuing in this way, we see that any element of M is written as an 

S-coefficient linear combination of distinct products of w - 1 or f wer 

xi's. So M is a finitely generated left S-module. Also I( = R/!v! i 

a finitely generated left S-module, hence R is a finitely generat d 1 ft 

S-module. 

Now suppose that R is finitely generated as left S-module. By The­

orem 2.2.3 (1), there exists a finitely generated left S-submodule N' 

of R such that R = S EB N' as left S-modules. By Proposition 1.9.1 

(3), there exist a discrete valuation ring V and a homomorphism ~ of 

V onto S. Defining ay = ~(a)y (a E V, y E N') , we can regard N ' 

as a left V-module. Then there exist Xl,X2, " ",Xt E N' such that 

N ' = EB;=l V Xi = EB;=l SXi' By putting Xo = 1, we get R = EB;=o SXi. 

Let Cl, C2, .... , Ct be elements of S such that Ci = Xi under th nat ural 

homomorphism 7r : R ---+ I(. Let us put Yo == 1 and Yi = Xi - Ci for 

1 ::; i ::; t. Then Yi E M (1 ::; i ::; t) and R = H1~=o SXi = EB~=o SYi. So 

N = EB~=l SYi has the desired property. The last statement is immediate 

from Lemma 1.9.2. 

As a corollary, we get the following. 

Corollary 2.2.5. ([35, Lemma 2.1), [17, p. 371, Corollary XIX.3}) 

Let R be a finite local ring with characteristic pk. Then R contains a 

coefficient subring S, and R is isomorphic to a subring of a ring of Szele 

matrices M(S;nl,n2,"',nt), where k = nl 2:: n2 2:: ... 2:: nt· 
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§3. Number of Coefficient Subrings 

Let R be a local ring described in Th orem 2.2.2. Th n R may hay 

more than one coefficient subrings. Concerning this subject, first we can 

state the following. 

Theorem 2.3.1. ([3D) Theorem 3.1}) Let T be an IG-ring of character­

istic pn different from G R(pn, 1). Then} for any infinite cardinal number 

X} there exists a local ring R such that 

(1) M = J(R) is nilpotent} 

(2) I{ = R/ M is a commutative field of characteristic p (p a prime) 

which is algebraic over G F(p) 

(3) coefficient subrings of R are isomorphic to T} 

(4) all coefficient subrings of R are conjugate in R} and 

(5) X is the number of all coefficient subrings of R. 

Proof. Let T = U~l GR(pn, rJ, where {rd~l is a sequenc of po i­

tive integers such that rilri+l (i ~ 1). Let I{ == T/pT and 7r' : T --t I{ 

be the natural homomorphism. As I{ is a proper extension of G F(p), 

there exists an automorphism (j of I{ different from idK . Let cr be th au­

tomorphism of T which induces (j modulo pT (see Proposition 1.9.1 (6)). 

Let A be a set of cardinality X, and V = EBaE:A T be a free T-module. 

The abelian group T EB V together with the multiplication 

(a,x)(a',x') = (aa', ax' + cr(a')x) 

forms a ring, which w denote by R. Let 7r : R --t I{ be the homomor­

phism defined by (a, x) r------+ 7r' (a), and M = I{ er 7r . As R/ M ~ I{ and 

Mn+l = 0, R is a local ring with radical M whose residue field i I{. 

By Theorem 2.2 .3 (3), there exists a one-to-one correspondence between 
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the set of all coefficient sub rings of R and the set Y of all right inverses 

of 7r* = 7r IR. : R* -----t 1(*. 

By the embedding T 3 a f----t (a, 0) E R, T is regarded as a co fficl nt 

subring of R. So, by Theorem 2.2.3 (3), there exists a right invers 

,\ : 1(* -----t R* of 7r* such that (,\(1(*)) = T. Since 1( = U~l GF(pr.) 

there exists a number j ~ 1 such that jj is not the identity on G F(prJ ). 

Let, be a generator of GF(prJ)*, and e = ,\(,). It is easy to see that, 

for any z E V , R* :1 h = (e, z) is of multiplicative order prj - 1. So, for 

each z E V , we can define a group homomorphism J-l~ : G F(prJ)* -----t R* 

by ,i ~ (e, z)i. By Lemma 2.2.1 (2), we can extend J-l~ to J-lz E Y. If 

V:1 Zl,Z2 and Zl =I- Z2, then J-lZl =I- J-lZ2· SO IYI ~ IVI = X· 

Let S be a coefficient subring of R. We shall show that S is conj ugate 

to T. By Theorem 2.2.3 (3), there exists a right inverse ,\' : 1(* -----t R* 

of 7r* such that S = (,\'(1(*)). Let '\'(,) = (e', z), where e' E T and 

z E V. Let U be the finite subgroup of R* generated by ,\(,) and 

N (,). As the restriction 7r lu is a homomorphism of U onto G F(prJ)*, 

by Schur- Zassenhaus theorem, there exists (b, w) E R* (b E T w E V) 

and an integer i such that N(,) = (b,W)-l,\(,.yi)(b,w). Then, (e',z) = 

(b,w)-l(ei,O)(b,w) , which implies e' = ei
. As 7r'(e') = 7r('\'(e')) =, = 

7r('\(,)) = 7r'(e), so e' = e and '\'(,) = (e, z). Let x = {e - a(e)}-lz. 

Suppose that a E 1( satisfies am = , for some integer m . Let ,\( a) = a. 

Then, by the same reason as above, we can wri te N (a) = (a, y) for om 

y E V. As 

(e, z) = '\'(,) = N(am) = (a, y)m = (am, {am - (a(a))m}{a - a(a)} -ly), 

we get e = am and z = {e - a(e)}{a - a(a)}-ly. So (l,x)'\'(a) 

= (a,y + a(a)x) = (a,ax) = ,\(a)(l,x). As 1(* is the union of cyclic 

subgroups generated by such a which contain G F(prJ)* (generated by 

,), this proves S = (N(1(*)) = (l,x)-lT(l,x). SO IYI, the number of all 

coefficient subrings of R , does not exce d x· As we have seen IY I ~ X , 
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we get \Y\ == x· 

Next we shall consider the uniqueness of coefficient subrings. 

A finite local ring T is said to be of type (e) if T is generated by two 

units a and b such that 

(1) ab -I ba, 

(2) a - b E J(T), and 

(3) o(a) == o(b) == \T/J(T)\-1. 
If T is a finite local ring of type (e), then T* is not a nilpotent group. 

Let us suppose that T is a finite local ring of type (.). Let a and b be 

generators of T satisfying (1) - (3) . Let A and B be cycic subgroups 

of T* generated by a and b respectively. Let I< == T / J (T) = G F (pT) . 

Then IAI == IBI = pr - 1 is coprime to IJ(T)I· If T* is nilpotent, then 

A == B, as both A and B are complement subgroups of 1 + J(T) in T*. 

This contradicts (1), so we see that T* is not nilpotent. 

Theorem 2.3.2. ([30) Theorem 3.2}) Let R be a local ring with radical 

M. Assume that M is nilpotent) and I{ == R/ M is a commutative fi ld 

of characteristic P (p a prime) which is algebraic over G F(p). Then the 

following are equivalent. 

(1) R has a unique coefficient subring. 

(2) R* is a nilpotent group. 

(3) R* is isomorphic to the direct product of I<* and 1 + M. 

(4) R* has no finite local subring of type (e). 

Proof. (1) {=} (2) . Clear from Lemma 2.2.1 (4) and Theorem 2.2.3 

(3). 
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(1) ==? (3). Let 7r* = 7rIR. : R* ~ I{* be the group homomorphism 

induced by the natural homomorphism 7r : R ~ I{. Since R has a 

unique coefficient subring, by Theorem 2.2.3 (2:), there exists a uniqu 

right inverse A of 7r*. Then R* is a semi direct product of 1 + M and 

I{*. Let z be any fixed element of 1 + M. The mapping J1 : I{* ~ R* 

defined by I{* :1 ex ~ Z-l A (ex) z is a right inverse of 7r*, so J1 = A by 

our hypothesis. This implies that each element of A(I{*) commutes with 

each element of 1 + M. Hence R* is the direct product of 1 + M and 

A(I{*). 

(3) ==> (4) . Let us suppose that R contains a finite local subring 

U of type (. ). By Theorem 1.2.4, 1 + M, which is isomorphic to the 

circle group of M, is a nilpotent group . If R* is isomorphic to the direct 

product of I{* and 1 + M, then R* is nilpotent . So U* is nilpotent, which 

is a contradiction. 

(4) ==;. (1). Assume that R has at least two different coefficient 

subrings . Then there exist at least two different right invers s A and J1 

of 7r* . Let {I{J~l be a sequence of finite subfields of I{ such that Ie c 

I{i+l and U~l I{i = I{. There exists a number j such that A IK; #- J111\;' 

Let, be a generator of I{j. Then the subring (A(,),J1(,)) of R is a finit 

local ring of type (. ). 

§4. Counterexample 

Viewing Theoren1 1.2.1, Theorem 2.1.3 and the proof of Theorem 

2.3 .1, one may expect that, in Theorem 2.2.~~ , any two coefficient sub­

rings of R are always conjugate. However, from the following exampl , 
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we see that this is incorrect. 

Let ]( = U~l G F(pT\), where {1'd ~1 is a strictly incr asing sequenc 

of positive integers such that rilri+1 (i ~ 1). Let {O"d~ l be automor­

phisms of ]( such that O"i is not the identi ty on G F(pT\) (i ~ 1) and , for 

j < i, O"i is the identity on GF(pTJ). Let V =: EB~lI{X i be a left I{ ­

vector space with basis {Xd~l' We can regard V as a (I{, I{)-bimodule 

by defining 

(2:i cixi)a = 2:i ciO"i(a)xi (2:i CiXi E V,a E ](). 

The Abelian group R = I{ EB V together with the multiplication 

( a, y) ( b, z) = (a b, a z + y b) ( a, b E I{, y, z E V) 

forms a local ring with radical M = (0, V), which satisfies the as­

sumption of Theorem 2.2.3. The homomorphism 7r : R ----* ]{ de­

fined by (a, x) f----+ a gives the isomorphism ill M ~ IC The subring 

S = {(a,O) I a E ]{} of R is a coefficient subring of R. 

By our definition, for any positive integer t and any 

({3, 2:"]=1 bjXj) E R ((3, bj E I{) , 

it holds that 

((3,2:5=1 bjXj)t 

= ({3t, 2:5=1 {(3t-l + (3t- 20"j ((3) + ... + O"j ((3)t-l } aj x j). 

For each i ~ 1 , let ,i be a generator of G F(pTi)*. Then we can wri t 

,i = ,~\ for a suitable integer rni. We shall define elements {ud ~1 of 

R* inductively as follows: 

Let U1 = (,1, xd . For Un = (,n, 2:"]=1 rjxj) (rj E I<) , let 

aj = {,n - O"j(,n)}-l{,n+l - O"j(,n+1)}rj (1:::; j :::; n) 

and 

Un+1 = (,n+1, 2:"]=1 ajX j + xn+d· 

Then 

Uf:\-l = (,f~i1-t, 2:~=1 {,f~il-2 + ... + O"j(,i+1)pr i
-

2 }ajxj 

+{,f~\1-2 + ... + O"i+1(,i+1)pr i
-

2 }Xi+1), 
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w here we see that 
r 0 1 

""T! 1- = 1 and 
It' 

prj -2 ()pri 2 
I'i+l + ... + O"j I'i+l -

= {I'i+l - O"j( I'i+d} -1 . {l'r~'1-1 - O"j( l'i+d
pr'

-
1

} 

= {I'i+l - O"j(l'i+d}-l . {I - I} 

=0 

for 1 ~ j ~ i + 1. So we see O(Ui) = pTi - 1. Also, 

( 
mi ,\",i {mi-1 + + ( )mi-1} = l'i+1, L..Jj=l l'i+1 . . . O"j l'i+1 ajx j 

+{ mi-l + + ( )m o-1} ) l'i+1 . . . O"i+1 I'i+l I Xi+1, 

where 

{1';:i1-
1 + ... + O"j(-)'i+1)m i-1 }aj 

= {I'i+l - O"j(l'i+l)}-l. {1';:i1 - O"j(l'i+1)mi }a.i 

= {l'i+1 - O"j(l'i+d}-l. {I'i - O"j(l'i)}aj 

= r j (1 ~ j ~ i), and 

l';:i1-
1 + ... + O"i+1 (l'i+1)m ,-1 

Hence we have 

for each i ~ 1. 

Now let Ii : GF(pTi)* ---? R* be defined by I'f f-----7 U~ (t E Z). Since 

fi ICF(pr))* = Ij for j ~ i, there exists f = lim-+ Ii : ]{* ---? R*. As I is a 

right inverse of 7r* = 7r IR* : R* ---? ]{*, so 51 == (f( ](*)) is a coeffici nt 

su bring of R. 

We shall show that 51 and 5 are not conjugate in R. Let us suppos 

that there exists an element v = (5, Li diXi) E R* (5 E J{*, di E J{) such 

that 51 = v-15v. Then, for each i ~ 1, there exists some bi E J{* such 

that I(l'i) = v- l (bi ,O)v. Then, 

49 



Ui = (,i, L:~::l rjXj + Xi) (rj E Ii) 

= v- 1 (bi , O)v 

= (S-l, -S-l(L:i diXi)S-l )(bi , O)(s, L:i diXi) 

= (bi, L:~=l(S-lbidj - s- l djO"j(bi))xj), 

which yields 

1 = s -1 {bi - 0" i ( bi ) } di . 

So, for any i ~ 1 , we see di =f. O. This contradicts that L:i diXi is an 

element of the direct sum V = EB~l !( Xi· 

§5. A Generalization of W. E. Clark's Theorem 

In this section, we shall state a theorem which is a generalization of 

[6, Theorem]. 

Theorem 2.5.1 . ([30, Theorem 4-1}) Let R be a ring with 1. Assume 

that J(R) is nilpotent. Let 

R/ J(R) = (!(dn] xn] EB(!(2) n2xn2 EB· ... EB(](d) ndxnd' 

where each ](i (1 ~ i ~ d) is a commutative field of characteristic p (p 

a prime) which is algebraic over G F(p). Then there exists a subring 1 

of R which satisfies the following. 

(1) R = T EB N (as Abelian groups), where N zs an additive 

subgroup of J(R). 

(2) T is isomorphic to a finite direct sum, of matrix rings over IG-

nngs. 
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(3) J(T) = Tn J(R) = pT. 

(4) T IpT is naturally isomorphic to Rj J(R). 

Moreover, if T' is another subring of R satisfying (2) - (4), then T' 

is isomorphic to T. 

Proof. Let R = RI J(R) = ReI EB Re2 EB ·· ... EB Red, where each 

Rei (1 ~ i ~ d) is a silllple component of R, and ei is a central iden1po­

tent of R. Let Rei = (I()nixni' where IC is a commutative field which i 

algebraic over GF(p). Let 7r : R ---t R be the natural homomorphism. 

There are mutually orthogonal idempotents el, e2,· ... , ed of R such that 

el + e2 + .... +ed = 1 and 7r( eJ = ei (1 ~ i ~ d). Then, 

R = el ReI EB e2 Re2 EB .... EB edRed EB( EBi#j eiRej) 

as abelian groups. Since each eiRei is semiperfect and 

eiRed J( eiRei) ~ Rei = (IC)n, Xni' 

by Theorelll 1.1.3, there exist a local ring Si and an isomorphislTl 'Pi of 

eiRei onto (Si)ni xn,. Let 

'P = 'PI + 'P2 + .... +'Pd : eIRe} EB e2 Re2 EB .... EB edRed ---t 

A = (Sdnlxnl EB(S2) n2xn2 EB· ... EB(Sd) ndxnd 

be the isomorphism. Since Sd J(Si) ~ I(i, by Theorem 2.2.2 and Theo-

rem 2.2.3 (1), there exist an IG-subring Ti and a left Ti-submodule Ni of 

Si such that Si = Ti EB Ni (as Abelian groups), and TdpTi is naturally 

isomorphic to Sd J(Si). Then 

B = (Tdnl Xnl EB(T2) n2xn2 EB· ... EB(Td)nd xnd 

is a subring of A. Let T = 'P-I(B). As J(eiReJ n 'P-I((Ti)nixnJ 

= J('P-}((Ti)nixnJ), we see J(T) = Tn J(R) = pT and that TlpT is 

naturally isomorphic to 

(e}Re} EB e2Re2 EB .... EB edRed) I J( eIRe} EB e2 Re2 EB .... EB edRed) 

= RjJ(R). 
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Let us put 

N = <p-l{(Ndnl Xnl EB(N2)n2Xn2 EB· ., . EB(Nct)ndXnd} 

EB{ EBi#j eiRej} . 

Then we see R = TEBN. 

Now, let us suppose that T' is a subring of R satisfying (2) - (4). 

Let e and f be primitive idempotents of T'. Vve claim that Re ~ Rf 

(as left R-modules) if and only if T'e ~ T'f (as left T'-modules). Let 

7r( e) = e and 7r(f) = I. Assume that Re ~ Rf· Then Re ~ RI as left 

R-modules. Both Re and Rf are minimal left ideals of R, so they ar 

contained in the same simple component of R, which implies that J(R) 

does not include eRf. Conversely, if J (R) does not include eRf, then 

Re ~ RI, which means Re ~ Rf by TheorerIl 1.1.5. Thus we see that 

Re ~ Rf (as left R-modules) if and only if J(R) does not include eRf· 

Similarly, T'e ~ T' f (as left T'-modules) if and only if J(T') = pT' does 

not include eT'f. Since T' /pT' is naturally iSOlmorphic to R/ J(R), J(R) 

includes eRf if and only if pT' includes eT' f· So we s e that Re ~ Rf 

(as left R-modules) if and only if T' e ~ T' f (as left T' -modul ). 

By making use of matrix units, 1 of R is written in T as 

1 = (ell + e12 + .... +elnl) + (e21 + e22 + .... +e2n2)+ 

.... +( edl + ed2 + .... +ednJ, 

where eki are mutually orthogonal primitive idempotents of T, and 

Teki ~ Teej (as left T-modules) if and only if k =.e. Similarly, 

1 = (fll + f12 + .... + flml) + (f21 + f22 + .... + f2m2)+ 

.... +(fdl + fd2 + .... + fdmJ, 

where fki are mutually orthogonal primitive idempotents of T', and 

T' fki ~ T' fej (as left T'-modules) if and only if k =.e. 
As ekiTekdpekiTeki ~ ekiRekdekiJ(R)eki' we see that eki and fej ar 

primitive idempotents of R. Then R = EB Reki = EB Rfej are indecom-

posable decompositions. 
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By what was stat d above, Krull-Schmidt theoren1 t lls us that there 

exists a permutation (J of {1, 2, .. ", d} such that ni = ma(i) and R eik ~ 

RJa(i)e as left R-modules (1 ~ i ~ d , 1 ~ k, f ~ ni). By renumbering, 

we may assume ni = mi and Reik ~ RJd (1 ~ i ~ d , 1 ~ k, e ~ ni)' 

Now, 

T ~ (enTen)nl Xnl EB(e21Te2dn2xn2 EB·· .. EH(edlTedl)ndxnd 

and 

T' ~ (JnT'Jn)nlxnl EB(J2lT'J2dn2xn2 EB···· EB(JdlT'Jddndxnd' 

where eilTeil and JjlT' Jjl are IG-rings. Hence, to complete the proof it 

will be suffice to show eil Teil ~ Jil T' !il. 

As eilTeil is an IG-ring which is naturally isomorphic to 

eilReil/eilJ(R)eil, so eilTeil is a coefficient sub ring of eilReil' Similarly, 

JilT'Jil is a coefficient subring of JilRJil' As eilReil ~ End(RReil) ~ 

End(RRJid ~ JilRJil' we see eilTeil ~ JilT' Jil by Theorem 2.2.3 (2). 

As a corollary of this theorem, we have the following. 

Corollary 2.5.2. ([6, Theorem}'[17, p. 376, Theorem XIX.5}) Let R 

be a finite ring with 1 oj characteristic pn. Then R contains a subring 

T such that: 

(1) R = T EB N as Abelian groups, where J(T) = pT and N zs an 

additive subgroup oj J (R). 

(2) TlpT is naturally isomorphic to RIJ(R). 

(3) T is isomorphic to EB~=l(Ri)niXnt' where Ri (1 < < t) are 

Galois 1'ings. 
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Chapter III 

Everett Ring Extensions 

§l. Double Homothetisms 

In this section, we shall give additional informations concerning the 

structure of rings considered in Theorem 2.2.2. The following description 

is based on [21, §52 and §53]. 

Let I be a ring not necessarily contain 1 . Let El (I) denote the right 

I-endomorphism ring of I, and E2 (I) denote the left I-endoll1.orphism 

ring of I. Any element of El(I) or E2(I) will act on I from the left. Let 

E' (I) be the Abelian group 

El(I) EB E2(I) = {f = (fl, f2) I fl E E1 (I), f2 E E2(I)}. 

Defining the multiplication on E'(I) by 

(f\ f2)(g\ g2) = (flg\ g2 f2), 

we see that E'(I) forms a ring. An element f = (fl, f2) E E'(I) is call d 

a double homothetism of I if 

(51) (f2x)y = X(fly), and 

(52) f2(f 1x) = fl(f2x) (x, y E I). 

We denote by DH(I) the set of all double homothetisms of I. Although 

DH(I) is closed under addition, it is not nece:ssarily closed under mul-

ti plication. 

Given a E I, we define [a] = (a\ a2
) by 

a1 x = ax , a2 x = xa (x E I). 

This [a] is called the inner double homothetisno. induced by a. 

Two double homothetisms f = (f\ f2) and g = (g\ g2) are said to 
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be related if 

(83) fl(g2X) = g2(f1x) 

(84) f2(glx) = gl(f2x) (x E I). 

This property is symmetric and reflexive, however, not transitive. Each 

inner double homothetism of I is related to any double homothetism of 

I. A set S of double homothetisms of I is said to be r lated if any two 

elements of S are related. 

In [9], C. J. Everett gave a solution for 8chreier's problem for exten-

sions of rings. 

Let A and I be rings (not necessarily contain 1). We shall say that R 

is an Everett extension of I by A, if I is an ideal of R and there exists 

an isomorphism c.p of R/ I onto A. 

In what follows, we shall write elements of A by ex, {3, ... , and elen1ents 

of I by x, y, .. '. We shall denote the zero of A by 0, and the zero of I 

by O. 

A set ([ , ], ( , ), d) of mappings 

[, ]:AxA----+I 

(, ):AxA----+I 

d : A ----+ DH(I) 

is called an Everett function triple for A and I if the following (85) -

(816) are satisfied. 

(85) [0, ex] = [ex,o] = 0 

(86) (0, ex) = (ex,o) = 0 

(87) d~x = d~x = 0 

(88) d~+{3x + [ex, {3]x = d~x + d~x 
(89) d;+{3x + x[ex, {3] = d;x + d~x 

(810) d~{3x + (ex, (3)x = d~(d~x) 

(811) d;{3x + x(ex, (3) = d~(d;x) 
(812) [ex, {3] = [(3, ex] 
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(SI3) [a, /3] + [a + /3,,] = [a, /3 + ,] + [/3,,] 

(SI4) (0'/3,,) + d;((a,/3)) = (0',/3,) + d;(( /3,,)) 

(SI5) d;([a,/3]) + ("a + /3) = [,0',,/3] + ("a) + (,,/3) 

(SI6) d;([a, /3]) + (a + /3,,) = [a" /3,] + (0',,) + (/3, ,) 

(a, /3" E A, x E J) 
Let ([ , ], ( , ), d) be an Everett function triple for A and J. Then the 

set A x J together with the operations 

( a, x) + (/3, y) = (a + /3, [a, /3] + x + y), 

(a,x)(/3,y) = (0'/3, (0',/3) + d;y + d~x + xy) 

forms a ring. This ring is called the Everett surn of A and J correspond-

ing to the Everett function triple ([ , ], ( , ), d), and will be denoted by 

ADJ. By the homomorphism 

J3X~(O,X), 

J is regarded as an ideal of ADJ. By the homomorphism 

(0',0) ~ a, 

we have the isomorphism ADJ / J ~ A. 

Theorem 3.1.1 . (fundamental them'em of Everett for ring exten ions, 

[21, §52, Satz 112, Satz 113}) Let A and J be rings. Let ([, ],( , ),d) 

be an Everett function triple for A and J. Then the Everett sum corre­

sponding to ([ , ], ( , ), d) is an Everett extension of J by A. 

Conversely, let R be an Everett extension of J by A. Then there exist 

an Everett function triple ([ , ], ( , ), d) for A and J, and an isomorphism 

of the Everett sum ADJ corresponding to ([ , ], ( , ), d) onto R which 

leaves the elements of J fixed and induces the identity mapping of A 

modulo J. 

Proof. The first half will be clear. Let us suppose that R is an Ev rett 

extension of J by A. We can take a choice function 

f: a ~ f(a) EO' 
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of A = R/I to R such that f(o) = O. L t us put 

[a,,8] = f(a) + f(,8) - f(a + ,8), 

(a,,8) = f(a)f(,8) - f(a,8), 

d;x = f(a)x, and 

d;x = xf(a). 

Then it is easy to check that this ([ , ], ( , ), d) is an Everett function 

triple for A and I, and the homomorphism 

(a,x) r------+ f(a) + x 

is an isomorphism of ADI to R with the desired property. 

§2. Everett Function Couple 

By the proof of Theorem 3.1.1, we see that, if ther exists a choic 

function 

a r------+ f(a) E A 

of A = R/I to Rsuch that f(o) = 0 and f(a,8) = f(a)f(,8) (a, ,8 E A), 

then we can take (a,,8) == O. 

Let A be a ring wi th 1. Let ([ , ], d) be a set of mappings 

[ , ] : A x A ----+ I and 

d : A ---+ DH(I) 

which satisfies (S5) , (S7), (S8), (S9), (SI2), (SI21) and the following (SI7) 

- (S21). 

(817) da (3 = da d(3 

(SI8) d~([a,,8]) = [,a, ,,8] 

(SI9) d~( [a,,8]) = [a" ,8,] 

(S20) d;( d~x) = d~( d;x) 
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(S 21 ) d~ x = di x = x ( a, (3, I E A, x E I) 

Such a couple of mappings ([ , ], d) will be called an Ever tt function 

couple for A and I. It is easy to check that the set A x ] forms a ring 

concerning the operations defined by 

(S22) (a, x) + ((3, y) = (a + (3, [a, (3] + x + y) 

(S23) (a, x )((3, y) = (a(3, d;y + d~x + xy). 

This ring will be called an Everett sum of A and I corresponding to 

the Everett function couple ([ , ], d), and denoted by AD] (cf. [21 

§52]). Obviously, e = (1,0) is the identity of A[J]. By the mapping 

x f----+ (0, x), ] is regarded as an ideal of AD], and the residue ring 

(ADI) / I is naturally identified with A. 

Conversely, let R be a ring with 1, ] an ideal of R, and A = R/]. Let 

7r : R ----+ A be the natural h0l110morphism. A mapping f : A ----+ R is 

called a multiplicativ cross-section if (i) f(a(3) = f(a)f((3) (a, (3 E A) 

,(ii) f(o) = 0 , and (iii) 7r 0 f = idA. 

Theorem 3.2.1. ([29) Theorem 1}) Let R be a ring with 1) ] an id al oj 

R) and A = R/ I. Suppose that there exists a multiplicative cross-section 

f : A f----+ R. Then there exists an Everett function couple ([ , ], d) for A 

and] such that R is isomorphic to the Everett SU1n AD] corresponding 

to ([ , ], d). 

Proof. Let f : A ---+ R be a multiplicative cross-section. We can 

define the mapping [ , ] : A x A ---+ ] and the mapping d : A ---+ D H (]) 

by 

(S24) [a, (3] = f(a) + f((3) - f(a + (3), 

(S25) d;x = f(a)x, and 

(S26) d;x = xf( a). 

It is easy to check that ([ , ], d) is an Everett function couple for A and 

] . So we can construct the Everett sum AD] corresponding to ([, ],d). 
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Let us define (J": R --+ ADI by a ~ (7r(a),a - f(7r(a))). We se that 

(J" is an isomorphism of R onto ADI. 

§3. Structure Theorem for Certain Local Rings 

In this section, we shall study the structure of local rings stated in 

Theorem 2.2.3. 

Theorem 3.3.1. (cf. [29) Theorem 2}) Let At be a nilpotent nng) 

and ]( be a commutative field of characteristic p (p a prime) which is 

algebraic over G F(p). 

If ([ , ], d) is an Everett function couple fOT ]( and M) then the 

Everett sum ](DM correspond£ng to ([ , ], d) is a local ring with rad£cal 

M whose residue field is 1(. In particular) if [a,,8] == 0) then I(DM i 

of characterictic p. 

Conversely) if R is a local ring with radical Nt whose residue field is 

I() then there exists an Everett function couple ([ , ], d) for ]( and M 

such that R is isomorphic to the Everett sum ]{DM corresponding to 

([ , ], d). If furthermore R is of characteristic p, then there exists such 

an Everett couple with [a,,8] == O. 

Proof. Assume that ([ , ], d) is an Everett function couple for ]( 

and M, and R = ](DM is the Everett sum corresponding to it. As 

RIM ~ ]( is simple as a left I(-module, M is a maximal left id alof 

R. So we see M :) J (R). On the other hand, as M is a nil ideal of R, 

M c J(R). Hence we have M = J(R), which innplies that R is a local 

ring with radical M. 
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If [a,,8] == 0, then p(l, 0) = (p,O) = 0, so ](ONJ is of characteristic p. 

Conversely, let R be a local ring with radicalNJ whose r sidu field is 

](. By the proof of Theorem 2.2.2, we see that there exists a multiplica­

tive cross-section f : ]( ---+ R. Then by Theorem 3.2.1, th re xists 

an Everett function couple ([ , ], d) for ]( and M, and the Ever tt sunl. 

]{OM corresponding to ([ , ], d) is isomorphic to R. Suppose further 

that eh R = p. Then by Theorem 2.2.2, R contains a coefficient sub­

ring ]{', which is a copy of ](. By Theorem 2.2.~3 (1), R = ]('EBM' as 

Abelian groups, where M' is a submodule of M. So we can define a mul­

tiplicative cross-section f : ]( ---+ R such that f(a +,8) = f(a) + f(,8)· 

So (S24) becomes [a,,8] == o. 

In what follows, let M be a nilpotent ring, and ]{ be a commutative 

field of characteristic p (p a prime) which is algebraic over GF(p). Let 

([ , ], d) be an Everett function couple for ]( and M, and ](OM be the 

Everett sum corresponding to ([ , ], d). Then the unit group (](OM)* 

is an extension of 1 + M by ](*, and is a semidirect product of ](* and 

1 + M. Note that the group structure of 1 + M is completely det rmin d 

by the ring structure of M, and does not depend on the whole structur 

of ](01\11. 

We shall say that an Everett function couple ([ , ], d) is symm tri if 

d;x =d;x (a E ](, x EM). 

Theorem 3.3.2. (cf. [29, Theorem 3}) Let M be a nilpotent nng, 

and ]( be a commutative field of characteristic p (p a prime) which i 

algebraic over GF(p). Let ](OM be the Everett sum corresponding to 

an Everett function couple ([ , ], d) for ]( and 1\1/. Let N be the subring 

of M generated by { [a,,8] I a,,8 E ](}. Then: 

(1) S = {(a, x) E ](OM I a E ](, x E N} is a coefficient subring oj 

](OM. 
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(2) S is the only coefficient subring of l(DM if and only if ([ , ], d) 

is symmetric. 

Proof. (1) Let R = l(DM, and ch R = pk. Let W = {(u,O) E 

l(DM I u E 1(}. Then by Theorem 2.2.3 (3), the subring U of R 

generated by W is a coefficient subring of R. It is clear that S is a ring 

containing W. On the other hand, 

(0, [a, jJ]) = (a, 0) + (jJ, 0) - (a + jJ, 0) E U. 

This implies S C U, and so S = U. 

(2) Let us assume that S is the only coefficient sub ring of R. Suppos 

that d;xo #- d;xo for some, E 1( and Xo E }\.1. Let 1(' be a finite 

subfield of 1( which contains,. Let Nl be the subring of M generated 

by {d~(d~xo), [a,jJ] I a,jJ E 1{'} . Then Rl = {(a,x) I a E 1{', x E N1 } 

is a finite local ring with residue field 1{. By Theorem 2.2.3 (3) and 

Lemma 2.2.1 (3), Rl contains a coefficient subring, which is unique by 

our assumption. Then, by Corollary 2.1.5 (2), "R'; is nilpotent. So, by 

Theorem 1.2.3, R'; is the direct product of B = {(a, 0) I a E (1<')*} and 

1 + N 1 . Then 

Cy,d~xo) = ("O)(l,xo) = (l,xo)("O) = ("d:;xo), 

which contradicts d;xo #- d;xo. 

Conversely, let us assume that ([ , ], d) is syrnmetric. Then (l(DM)* 

is the direct product of 1{* and 1 + M. By Lemma 1.2.4, 1 + M is 

nilpotent . So (l{DM)* is nilpotent. Hence, by Theorem 2.3.2, l(DM 

has a unique coefficient subring. 

§4. Equivalence of Extensions 
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Let] and A be rings. Assume that there exist two Everett xtensions 

Rand R' of ] by A. Two extensions Rand R' are said to be equival IlL 

if there exists an isomorphism of R onto R' which leaves the elements of 

] fixed and induces the identity mapping of A modulo] ([21, §52]). 

Theorem 3.4.1. ([29, Theorem 4}) Let M be a nilpotent ring and ]{ 

be a commutative field of characteristic p (p a pr£me) which is algebTaic 

over GF(p) . Let ]{DM and ]{ITM be two Everett sums of ]{ a'nd M 

corresponding to two Everett function couples ([ , ], d) and ([ , ~ ], J), 
respectively. Then ]{DM and ]{ITM are equivalent (as extensions of M 

by ]() if and only if there exists a mapping A : ]( ---t M such that 

(S27) A(a + (3) - A(a) - A(f3) = [a,-f3] - [a, /3], 

(S 28) A ( a (3) - A ( a ) A (f3) = J~ ( A (f3)) + J~ ( A ( a ) ) , 

(S29) A(a)x = d~x - J~x, and 

(S30) xA(a)=d~x-J;x (a,(3EI(, XEM). 

When this is the case, {dex } exEK U {Jex } exEK is a related s t of doubl 

homothetisms of M. 

Proof. If (J" : ]{DM ---t ]{ITM is an isomorphism which leaves th 

elements of M fixed and induces the identity mapping of ]{ modulo M, 

then we can write 

(J"(a, 0) = (a,A(a)) 

for some mapping A : ]{ --t M. We can deduce (S27) - (S30) from th 

fact that (J" is a ring homomorphism having the above described property. 

Conversely, suppose that A : ]{ ---t M satisfies (S27) - (S30). Then 

(J" : ]{DM ---t ]{ITM defined by (a,x) ~ (a,x + A(a)) is the desired 

isomorphism. 

If ](DM and I{ITM are equivalent, then by (S20), (S30) and th 

definition of double homothetisms, 

d~(J~x) = d~(d~x - XA(f3)) = d~(d~x) - (d~X)A(f3) 
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= d~(d~x). 

This proves the final assertion. 

Let Nand H be groups. A group G is called an xtension of N 

by H if N is a normal subgroup of G and there exists an isomorphism 

G / N ~ H . Two extensions G and G' of N by H are said to be equivalent 

if there exists an isomorphism of G onto G' which leaves the elem nts of 

N fixed and induces the identity mapping of H modulo N. If ](DM is 

an Everett sum of a ring ]( with 1 and a nil ring M, then (](DM)* is 

an extension of 1 + M by ](*. 

Theorem 3.4.2. ([29) Theorem 51) Let M be a nilpotent ring and ]{ 

be a commutative field of characteristic p (p a prime) which is algebraic 

over GF(p) . Let ](DM and ]{ITM be two Everett sums of ]{ and M 

corresponding to two Everett function couples ([ , ], d) and ([ ,-], d) ) re­

spectively. Then (]( 0 M)* and (]{ ITM)* are equi1IJalent (as group ext n­

sions of 1 + M by ](*) if and only if there exists a 1napping f-L : ](* ---+ M 

such that 

(S 31) f-L ( ex (3) - f-L ( ex ) f-L (f3) = d~ (f-L (f3)) + d~ (f-L ( C~ )) and 

(S 32) f-L ( ex ) ( d; -1 x) - (d; -1 X ) f-L ( ex) = d; ( d; -1 x) - d~ ( d; -1 X ) 

( ex, f3 E ]( *, x EM). 

Proof. If T : (](DM)* ---+ (](ITM)* is an isornorphism which leav s 

the elements of 1+M fixed and maps every class modulo 1+M onto itself, 

then we can write T(ex, 0) = (ex, f-L(ex)) for some mapping f-L : ](* ---+ M. 

It is easy to check that this f-L satisfies (831) and (832). Conversely, 

suppose that f-L : ](* ---+ M satisfies (831) and (832) . Then we can 

define T : (]{DM)* ---+ (](ITM)* by 

T ( ex, x) = (ex, d~ ( d; -1 x) + f-L ( ex) + f-L ( ex ) ( d; -1 X ) ) . 

It is obvious that T leaves the elements of 1 + M' fixed and maps every 
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class modulo 1 + M onto itself. By 

T(a, O)T(l, x) = T((a, 0)(1, x) ), 

T(a,x)T(;3,O) = T((a ,x)(;3,O)), and 

T(a,x)T(l,y) = T((a,x)(l,y)), 

it is a routine to verify that T is a group isomorphism. 

It is obvious that, if ]{DM and ](ITM are equivalent as ring exten­

sions of M by J(, then (J(DM)* and (J(ITM)* are equivalent as group 

extensions of 1 + M by J(*. However, the following example shows that 

the converse is not true. 

Let M = {O, a, 2a} be a zero ring (M2 = 0) of order 3. We shall 

define two Everett function couples ([ , ], d) and ([ ,-], d) for ]( = GF(3) 

and M as follows: 

[a,O] = [O,a] = ° 
[1,1] = a, [1,2] = [2,1] = 0, [2,2] = 2a 

[a ,-;3] == ° 
d6x = d6x = d6x = d6x = 0 

dix = dix = dix = dix = x 

d~x = d~x = d~x = d~x = 2x (x EM). 

It is easy to check that ([ , ],d) and ([ ,- ],d) are Everett function 

couples for J{ and M. Let J(DM and J(ITM be Everett sums corre­

sponding to ([ , ], d) and ([ ,-], d), respectively. Since ch (J(DM) = 9 

and ch (J(ITM) = 3, we see that J(DM and J(eJM are not equivalent. 

Whereas, by putting Ji(a) == ° in Theorem 3.4.2., we see that (J(DM)* 

and (J(ITM)* are equivalent. 
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§5. Finite Local Rings with Many Coefficient Subrings 

Let R be a finite local ring with IRI = pnr and IJ(R)I = p(n -l)r 

(see Theorem 2.1.1 (1)). Then, by Corollary 2.1.5, the number v of all 

coefficient subrings of R satisfies the inequality 1 ~ v ~ p(n-l)r. 

Concerning the case v = 1, we have already considered in Corollary 

2.1.5. (2) and Theorem 3.3.2 (2). In this section, we shall consider the 

case v = p(n-l)r. 

Let rand n be positive integers with r 2:: 2, n ~ 2. Let ]( = GF(pr). 

Let V be a finite nilpotent ring, and moreover two-sided vector space 

over]( with dimension n -1 which satisfies the following (VI) - (V5). 

(VI) a(xy) = (ax)y 

(V2) (xy)a = x(ya) 

(V3) (ax)f3 = a( xf3) 

(V4) (xa)y = x(ay) (a,f3 E ](, X,y E V) 

(V5) If x is a non-zero element of V, then there exists som a E ]{ 

such that ax f- xa. 

Let us define d : ]( ----t D H (V) and [ , ] : ]{ x ]( ----t V by 

d;x = ax, d~x = xa (a E ](, x E V) and 

[a, f3] == o. 
We see that this ([ , ], d) is an Everett function couple for ]{ and], 

so we can construct a finite local ring ]{DV by (S22) and (S23). Let u 

be a generator of ]{*, and u' = (u, 0) E ]{DV. As x = 0 is the only 

element of V such that u'x = xu', by Corollary 2 . .1 .5 (1), the number of 

all coefficient subrings of ]{DV is p(n-l)r. 

Theorem 3.5.1. ([28, Theorem 3}) Let R be a finite local ring with 

radical M whose residue field is ]( = G F(pr). Assume that IRI = pnr 

and IMI = p(n-l)r, where n 2:: 2 and r 2:: 2. If the number of all coeffi­

cient subrings of R is p(n-l)r, then R is isomorphic to ]{DV, constructed 
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above. 

Proof. Let us assume that ch R = pk and k ~ 2. By Proposition 

2.1. 2 and its proof, R contains a unit u such that o( u) = pr - 1, and 

L:i"=1 ZpkU i is a direct sum in R. Let N = {x E: M I ux = xu}. As 

L:i"=1 pZpkU i is a subset of N consisting of p(k-1)r elements, by Corollary 

2.1.5 (1), the number of all coefficient subrings of R is 

1M : NI ::; p(n-1)r /p(k-1)r ::; p(n-2)r, 

which contradicts our assumption. So we see ch R = p. By Theorem 

2.1.3 (3), there exists a subfield ](', which is a copy of ](, and R = 

](' (f) M as (]{', ](')-spaces. Let u' be an elernent of (](')* with o( u') = 

pr _ 1. By Corollary 2.1.5 (1), N' = {x E M I u'x = xu'} consists of 

only one element, so x = ° is the only element of M with u' x = xu'. 

By Theorem 3.3.1 and its proof, there exists an isomorphism of R onto 

]('DM. 

One may doubt that really there exists such a nilpotent ring V satis­

fying (VI) - (V5). 

Let V be a left vector space over ]( = G F (pr) of dimension n - 1. L t 

{X1,X2,···,Xn-1} be a basis of Vas left ]{-space. Let 0"1,0"2,···,O"n-1 

be automorphisms of ]{ with O"i -1= idK (1 ::; i ::; n - 1). Let us defin 

the right ]{ -space structure on V by 

(2::i:::} cixi)a = 2::7:11 O"i( a )CiXi (Ci, a E ](). 

(distinguished basis, see [20, §1]). We can define the product on V to 

satisfy (VI) - (V4), for instance, xy == ° (x, y E V). 

Note that, by [29, Theorem 2] and the proof of Theorem 2.2.2, our 

theorems 3.3.1, 3.3.2, 3.4.1 and 3.4.2 are valid even under the assumption 

that M is a nil ring, and ]{ is a finite field. 

66 



Chapter IV 

Algorithms to Determine Finite Rings 

In chapters II and III, we have seen some theorems on the structure 

of finite rings. In this chapter, we shall consider an algorithm to find, 

for a given positive integer N > 1, all finite rings of order N . 

As is easily seen, a finite ring is the direct sum of finite rings of prime­

power order. So, without loss of generality, we can consider only finite 

rings of prime-power order. 

In this chapter, a finite ring does not necessarily contain 1. First, we 

shall introduce structure constants of finite rings. 

§1. Structure Constants 

When p is a prime, C(pe) denotes the finite cyclic group of order pe. 

Let (a) denote the cyclic group generated by a. An Abelian group A is 

said to be of type (ph, nd (ph, n2) .. . (pit, nt) , where nl, n2, ... ,nt and 

II < 12 < ... < It are positive integers, if A is isomorphic to the direct 

sum of nl copies of C (ph) , n2 copies of C (ph), ... , and nt copies of 

C(pit). 

When R is a ring, R+ denotes the additive group of R. 

Letel:; e2 :; . .. :; en be an increasing sequence of positive integers. 

Let Sn = {(aij) E Znxn I aij == 0 mod pej-e i for i < j}. It is easy to 
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check that Sn is a subring of (Z) nxn" For (aij ) and (bij ) of Sn , we shall 

write (a ij) == (bij ) if aij == bij mod peJ (1 ~ i, j ~ n). Let 0 denot th 

zero matrix of Sn , and let I = {(aij ) E Sn I (aij ) == a}. We s that 

I is an ideal of Sn. Let Sn = Sn/ I , and c.p : Sn --t Sn b the natural 

projection. An element (aij) E Sn is said to be ntOn-singular if c.p ( (aij )) 

is an invertible element of Sn. 

Let 7r : Sn ~ (Z/pZ) nxn be the natural hornomorphism given by 

( aij) f-----t (CLij). 

Theorem 4.1.1. ([33, Satz 2]) Let R be a finite p-ring whose additive 

group zs 

R+ = (al) EB (a2) EB ... EB (an) , 

where (ai) ~ C(pei ) (1 ~ i ~ n) and 1 ~ el ~ e2 < ... ~ en ' Let us 

write 

(1) aiak = 2:j=l Ciijkaj (1 ~ i, k ~ n) , 

where Qijk are integers such that 

(2) 0 ~ Qijk ~ peJ - 1 (1 ~ i, j, k ~ n). 

Then it holds that 

(3) Qijk == 0 mod peJ- ek for 1 ~ k < j ~ n , 

(4) Qijk == 0 mod peJ- ei for 1 ~ i < j ~ n , 

and 

(5) (1 ~ i,j,r, s ~ n). 

Conversely, let 

(6) A = (al ) EB (a2) EB .. . EB (an) 

( ( ai) ~ C (pei ), 1 ~ el ::; e2 ::; ... ::; en) 

be a finite Abelian p-group . If Qijk (1 ::; i, j, k ::; n) are integers which 

satisfy (2) , (3) , (4) and (5) , then we can make A into a ring by defining 

the multiplication on A by (1). By this manne1' we can construct all 

rings which have the Abelian group A as their additive group. 
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Proof. Assume that R forms a ring under the rnultiplication given by 

Since pet ai = 0, 

= pet (L7=1 Dijkaj) 

= L5=1 pet Dijkaj' 

Similarly we have 

Dijk E pe)-e k for k < j. 

For each 1 :::; r, i, s :::; n, 

(arai )as = (2: k=1 Drkiak )as 

= 2:k=1 Drki(akas) 

= 2:k=1 Drki(2:7=1 Dkjsaj) 

= L7=1 (Lk=1 DrkiDkjs )aj. 

On the other hand, by the associativity of R , this is equal to 

ar (aias) = 2:5=1 (Lk=1 DiksDrjk)aj, 

so we have 

mod pel (1 :::; i,j, r, s :::; n). 

N ow the converse will be clear. 

By Theorem 4.1.1, for a given prime power pe , we can construct all 

rings of order pe, since the additive group of any ring of order pe has the 

additive group of type (ph, nd(ph, n2) ... (pIt, nt), where fl n l + f2 n2 + 
... + ftnt = e. 

When Dijk (1:::; i,j, k :::; n) are integers which satisfy (2), (3), (4) 

and (5), we call {Dijk}~j,k=1 a set of structure constants for the Abelian 

group (6). 

Let {Dijk}~j,k=1 and {,Bijk}~j,k=1 be two sets of structure constants for 
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the Abelian group (6). We shall say that {aijk}i:j,k=l and {,Bijk}i,j,k=l 

are equivalent if there exists a non-singular element (tij) E Sn such that 

L~/;=l ,Bijktjs == 'Lj=l 'L~=l tijtkrajsr mod pes 

(1 ::; i, k, s ::; n). 

The01'em 4.1.2. ([33) Satz 5}) Let {aijk} i,j,k=l and {,Bijk} i,j,k=l b two 

sets of structure constants for the Abelian group (6). Let R be the ring 

whose additive group is (6) and whose multiplication is defined by 

aiak = 'Lj=l aijkaj (1::; i, k ::; n). 

Let R' be the ring whose additive group is (6) and whose multiplication 

o is defined by 

ai 0 ak = 'Lj=l ,Bijkaj (1::; i, k ::; n). 

Then Rand R' are isomorphic if and only if { aijk} i,j,k=l and 

{,Bijk}i,j,k=l are equivalent. 

Proof. Let us aSSUlue that there exists a ring isomorphism c.p : R' -t 

R. Then we can write 

c.p( ai) = 'Lj=l tijaj (1 ::; i ::; n) 

and 

c.p-l(ai) = 'Lj=l t~jaj (1 ::; i ::; n), 

with (tij), (t~j) E Sn. From <p 0 c.p-l = c.p-l 0 c.p = id, we have 

(tij)(t~j) == (t~j)(tij) == En. 

So we see that both (tij) and (t~j) are non-singular. For each 1 ::; i, k ::; 

n, 

c.p( ai )c.p( ak) = ('Lj=l tijaj) ('L~=l thar) 

= 'Lj=l 'L~=l tijt kr ( ajar) 

= 'Lj=l 'L~=l tijtkr('L~=l ajsras) 

= 'L~=l ('Lj=l 'L~=l tijtkrajsr )as. 

On the other hand, this is equal to 

c.p(ai 0 ak) = c.p('Lj=l ,Bijkaj) 
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= L:,j=l (3ijkCP( aj) 

= L:,j=l {3ijk (L:,~=1 t jsas) 

= L:,~=1 (L:,j=l {3ijk t js)as' 

So we have 

2:j=l {3ijk t js == 2:j=l 2:~=1 tijtkrajsr mod pe$ 

(l~i,k,s~n). 

The converse will be certified similarly. 

§2. Indecomposability of Rings 

N ow we shall consider an algorism to determine decomposability of 

a given finite ring. Let {aijk}~j,k=l be a set of structure constants for 

the Abelian group (6). We shall say that {aijk}~j,k=l is decomposable if 

there exists a partition {l, 2" .. ,n} = J1 U J2 such that (i) J1 n J2 = cjJ, 

(ii) J1 i= <p, J2 i= cjJ, (iii) if i E J1 ,j E J2 and ei := ej , then i < j, and 

(i v ) if, i E J 1 and j E J2 , or, i E J 2 and j E J 1, or, j E J 1 and k E J 2, 

or, j E J2 and k E J1, then aijk = O. By the following theorem, we can 

see whether a ring with given structure constants is indecomposable or 

not. 

Theorem 4.2.1. ([31, Theorem 3}) Let {aijk}~j,k=l be a set of structure 

constants for the Abelian group (6). Let R be the ring whose additive 

group is (6) and whose multiplication is defined by 

aiak = 2:j=l aijkaj (1 ~ i, k ~ n). 

Then R is indecomposable if and only if there exists no set of structuTe 

constants for the Abelian group (6) which is decom,posable and equivalent 

to {aijk} ~j,k=l . 
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Proof. Let us suppose that the Abelian group (6) is of typ (ph , nl) 

(ph, n2) ... (pit, nt), where nl + n2 + ... + nt = nand fl n l + f2 n 2 + ... + 
ftnt = el + e2 + ... + en. Let us assume that there exist non-trivial ideals 

11 and 12 of R such that R = 11 EB 12. Let {bdi=1 be a basis of It and 

{ bd ~s+ 1 a basis of Ii , that is, 

11 = (b1) EB (b2) EB . . . EB (b s ) 

and 

12 = (bs+1) EB (b s+2) EB ··· EB (bn). 

Then {b i } i=1 is a basis of R+. After renumbering, we can set {b i } as 

follows: 

R+ = (b1) EB (b2) EB ... EB (bm1 ) 

EB (bm1 +1) EB (bm1 +2) EB ... EB (bn1 ) 

EB (bn1 +1 ) EB (bn1 +2 ) EB ... EB (bn1+mJ 

EB (bnl+m2+1) EB (bnl+m2+2) EB · .. EB (bn1+nJ 

EB ... EB (bn1 +n2+· .. +nt-l +1) EB ... EB (bn1 +n2+··+nt-·l +mt) 

EB (bnl+n2+.··+nt-l+mt+l) EB ··· EB (bnl+n2+···+nt-l+nt) , 

where ch bi = ph (1:S; i :s; nd,ch bi = ph (nl + 1 :s; i :s; nl + 

n2),···, ch bi = pit (nl +n2+·· ·+nt-l +1 :s; i :s; nl +n2+·· ·+nt-l +nt) , 

11 = (b1) EB (b2) EB . . . EB (bm 1 ) 

EB (bn1 +1) EB (bn1 +2 ) EB ... EB (bn1+mJ 

EB ··· EB (bnl+n2+···+nt_l+l) EB (bnl+n2+··+nt-l+2) EB ... 

and 

12 = (bm 1 + 1) EB (bm 1 + 2) EB . . . EB (bn 1 ) 

EB (bnl+m2+1) EB (bnl+m2+2) EB ··· EB (bn1 +n2 ) 

EB ·· . EB (bnl+n2+· ··nt_l+mt+l) EB (bnl+n2+···nt_l+mt+2) EB ... 

EB (bn1 +n2+···+nt-l +nt)· 

Let J1 = {I, 2,· .. ,ml, nl + 1, nl + 2,·· . ,nl + m2, 

... ,nl + n2 + ... + nt-l + 1, nl + n2 + ... + nt-l + 2, 
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... , nl + n2 + ... + nt-l + mt} 

and 

J2 = {ml + 1, ml + 2,···, n1, 

nl + m2 + 1, nl + m2 + 2,···, n1 + n2, 

... , n1 + n2 + ... + nt-l + mt + 1, n1 + n2 + .. " + nt-l + mt + 2, 

... , n1 + n2 + ... + nt-1 + nt}. 

It is clear that {1, 2, ... , n} = J1 U J2 and J1 n J2 = ¢>. As Ii =/:- 0 , so 

Ji =/:- ¢> (i = 1, 2). Let 

(7) bibk = Lj=l (3ijkbj (0 ~ (3ijk ~ peJ - 1) 

in R. It is easy to see that {(3ijk}i,j,k=l satisfy (2), (3), (4) and (5). If 

i E J1 , j E J2 and ei = ej , then ch bi = ch bj ,so by our renumbering, 

i < j. If i E J1 , then bi E II. So, for each 1 ~ k :::; n, 

bibk = Lj=l (3ijk bj E II . 

This is a linear combination of {bj } JEJl , so (3ijk = 10 for j E J2 . Similarly 

we see that, if, i E J2 and j E J1 , or, k E J2 and j E J1 , or, k E J1 

and j E J2 , then (3ijk = o. So the set of structure constants {(3ijk} i,j,k=l 

is decomposable. We shall show that {CYijk} i,j,k=1 and {(3ijk} i,j,k=1 are 

equivalent. There are integers t ij and t~j (1 ~ i, j ~ n) such that 

(8) bi = Lj=1 tijaj , ai = Lj=1 t~jbj (0 ~ tij, t~j ~ peJ - 1). 

It is easy to see that <p( (tij) )<p( (t~j)) = En in Sn, so (tij) is a non-

singular element of Sn. We have 

bibk = (Lj=1 tijaj )(Le=1 tHae) 

= L5=1 Le=1 tijtkeajae 

= L5=1 Lf=1 tijtH(L~=1 CYjrear) 

= 2:~=1 (2:5=1 2: f=1 tijtHCYjre)ar. 

On the other hand, by (7) and (8), 

bibk = Lj=1 (3ijk(L~=l tjrar) 

= L~=1 (2:j=1 (3ijk t j1' )ar. 

So we get 
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(9) '£,5=1 '£,~=1 tijtkeQjre == '£,5=1 f3ijk t jr mod per 

(1 ~ r ~ n). 

Now, let S be the ring whose additiv group is (6) and whose ll1Ulti-

plication 0 is defined by 

ai 0 ak = '£,5=1 f3ijkaj (1::; i, k ::; n). 

We can define a group homomorphism T : S+ --t R+ by 

Tai = '£,5=1 tijaj (1 ~ i ~ n). 

Since 

T( ai 0 ak) = T('£,5=1 f3ijk a j) 

= '£,5=1 f3ijk Ta j 

= '£,5=1 f3ijk ('£,~=1 tjrar ) 

= '£,~=1 ('£,5=1 f3ijk t jr )ar 

and 

(Tai) (Tak) = ('£,5=1 tijaj) ('£,~=1 tkeaf.) 

= '£,5=1 '£,~=1 tijtkeajae 

= '£,5=1 '£,~=1 tijtke('£,~=l Qjrear) 

= 2::~=1 (2::5=1 2::~=1 tijtkeQjre)an 

from (9), we see that 

T(ai 0 ak) = (Tai)(Tak) . 

This means that T is a ring isomorphism of S onto R. So, by Theorem 

4.1.2, {Qijk}~j,k=l and {f3ijk}~j,k=l are equivalent. 

Conversely, let us assume that there exists a set of decomposabl 

structure constants {f3ijk}~j,k=l for the Abelian group (6) which is equiv­

alent to {Qijk}~j,k=l. Let {1,2,·· · ,n} = J1 U J2 be the partition satis­

fying the condition (i) - (iv). Let S be the ring whose additive group is 

(6) and whose ll1ultiplication is defined by 

aiak = '£,5=1 f3ijk a j (1 ~ i, k ~ n) . 

Let I j = EBiEJj (ai) (j = 1,2). Then, by what was stated above, there 

exists a non-trivial ideal decomposition S = 11 EB 12 (11 =I ¢,I2 =I ¢). 
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Then R is not indecomposable, since R is isomorphic to S by Theoren1 

4.1.2. 

§3. Identity and Jacobson Radical 

In [33, Satz 6], there was shown an algorism to determine whether or 

not a given finite ring has identity elements. 

However, the following theorem will give a more practical algorisn1 

to determine existence of identity elements. In what follows, 8ij denotes 

the Kronecker's delta. 

Theorem 4.3.1. ([31, Theorem 4J) Let {(}:ijk} i,j,k:=l be a set of structure 

constants for the Abelian group (6) . Let R be the ring whose additive 

group is (6) and whose multiplication is defined by 

aiak = L:,j=l (}:ijkaj (1::; i, k ::; n). 

Then: 

(I) R has a left (resp. right) identity if and only if there exist int gers 

Cll C2, ... , Cn such that 0 ::; Ci ::; pei 
- 1 (1::; i ::; n) and 

L:,7=1 Ci(}:ijk == 8jk (resp. L:,7=1 Ci(}:kji == 8jk ) rnod pel 

(1::; j,k::; n). 

(II) R has an identity if and only if there exist integers 

Cl,C2, · ·· ,Cn such that 0::; Ci::; pe,-l (1::; i::; n) and 

(1::; j,k::; n). 

Proof. Let u = L:,~l Ciai (0::; Ci ::; pel - 1) be a left identity of R. 

For each 1 ::; k ::; n, it holds that 
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= 2:~1 ciaiak 

= 2:7=1 Ci(2:j=l Ciijkaj) 

= 2:j=l (L:~1 CiCiijk)aj. 

So we get 

2:7=1 CiCiijk = 8jk mod peJ (1 ~ j, k ~ n). 

N ow the rest of the proof would be clear. 

Finally, we shall giv an algorisil1 to count the order of J(R). 

Theorem .4. 3. 2. ([31, Theorem 5]) Let {Ciijk} ~j,k=:l be a set of structure 

constants for the Abelian group (6). Let R be the ring whose additive 

group is (6) and whose multiplication is defined by 

aiak = 2:j=l Ciijkaj (1 ~ i, k ~ n). 

Then, b = 2:7=1 Uiai (0 ~ Ui ~ pe i 
- 1, 1 ~ i ~ n) belongs to J(R) 

if and only it for any n integers Xl, X2, ... ,Xn satisfying 0 :::; Xi :::; 

pe i _ 1 (1 < i :::; n), there exist n integers Yl, Y2, ... ,Yn such that 

o ~ Yi :::; pe i - 1 (1:::; i :::; n) and 

(l:::;r:::;n). 

Proof. An element b of R belongs to J (R) if and only if bx is right 

quasi-regular for any X E R (see Chapter I). Let us put X = 2:~1 Xiai 

and Y = 2:7=1 Yiai (0:::; Xi, Yi :::; pe i 
- 1,1 :::; i :::; n). Then 

bx + Y - bxy = 

(2:7=1 Ui ai)(2:j=l xjaj) + 2:~=1 Yrar 

- (2:7=1 Ui ai)(L:j=l xjaj)(L:~=l Ykak) 

= 2:~=1 {L:~j=l UiXjCiirj + Yr - 2:~j,k,t=l UiXjCiikjYtCikrdar, 

which proves our assertion. 
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