start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=133
end-page=147
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tsetlin library on p-colored permutations and q-analogue
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=K. Brown [1] studied the random to top shuffle (the Tsetlin libary) by semigroup method. In this paper, (i) we extend his results to the colored permutation groups, and (ii) we consider a q-analogue of Tsetlin library which is different from what is studied in [1]. In (i), the results also extends those results for the top to random shuffle [4],[5], [6] to arbitrary distribution of choosing cards, but we still have derangement numbers in the multiplicity of each eigenvalues. In (ii), a version of q-analogue of derangement numbers by Chen-Rota [3] appears in the multiplicity of eigenvalues.
en-copyright=
kn-copyright=
en-aut-name=NakagawaYuto
en-aut-sei=Nakagawa
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakanoFumihiko
en-aut-sei=Nakano
en-aut-mei=Fumihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Mathematical Institute, Tohoku University
kn-affil=
affil-num=2
en-affil=Mathematical Institute, Tohoku University
kn-affil=
en-keyword=Tsetlin library
kn-keyword=Tsetlin library
en-keyword=Left Regular Band
kn-keyword=Left Regular Band
en-keyword=colored permutation group
kn-keyword=colored permutation group
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=101
end-page=131
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The characterizations of an alternating sign matrices using a triplet
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An alternating sign matrix (ASM for short) is a square matrix which consists of 0, 1 and ?1. In this paper, we characterize an ASM by showing a bijection between alternating sign matrix and six vertex model, and a bijection between six vertex model and height function.
In order to show these bijections, we define a triplet (ai,j , ci,j , ri,j) for each entry of an ASM. We also define a track for each index of height function, and state more properties of height function.
en-copyright=
kn-copyright=
en-aut-name=OhmotoToyokazu
en-aut-sei=Ohmoto
en-aut-mei=Toyokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, Faculty of Science, Okayama University
kn-affil=
en-keyword=Alternating sign matrix
kn-keyword=Alternating sign matrix
en-keyword=six vertex model
kn-keyword=six vertex model
en-keyword=height function
kn-keyword=height function
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=75
end-page=99
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The best constant of the Sobolev inequality corresponding to a bending problem of a string with a rectangular spring constant
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Sobolev inequality shows that the supremum of a function defined on a whole line is estimated from the above by constant multiples of the potential energy. Among such constants, the smallest constant is the best constant. If we replace a constant by the best constant in the Sobolev inequality, then the equality holds for the best function. The aim of this paper is to find the best constant and the best function. In the background, there is a bending problem of a string with a rectangular spring constant. The Green function is an important function because the best constant and the best function consist of the Green function.
en-copyright=
kn-copyright=
en-aut-name=YamagishiHiroyuki
en-aut-sei=Yamagishi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KametakaYoshinori
en-aut-sei=Kametaka
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Tokyo Metropolitan College of Industrial Technology
kn-affil=
affil-num=2
en-affil=Faculty of Engineering Science, Osaka University
kn-affil=
en-keyword=Sobolev inequality
kn-keyword=Sobolev inequality
en-keyword=Green function
kn-keyword=Green function
en-keyword=reproducing kernel
kn-keyword=reproducing kernel
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=67
end-page=74
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Locally serially coalescent classes of Lie algebras
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We assume that a basic field k has zero characteristic. We show that any Fitting class is serially coalescent for locally finite Lie algebras. We also show that any class X satisfying N ? X ? ?Gr (e.g. Ft, B, Z, Gr, lN, rN, `e(?)?A, ?e(?)?A, `Gr) is locally serially coalescent for locally finite Lie algebras, and, for any locally finite Lie algebra L, the X-ser radical of L is locally nilpotent.
en-copyright=
kn-copyright=
en-aut-name=HondaMasanobu
en-aut-sei=Honda
en-aut-mei=Masanobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakamotoTakanori
en-aut-sei=Sakamoto
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences
kn-affil=
affil-num=2
en-affil=Department of Mathematics, University of Teacher Education Fukuoka
kn-affil=
en-keyword=Lie algebra
kn-keyword=Lie algebra
en-keyword=serial subalgebra
kn-keyword=serial subalgebra
en-keyword=locally coalescent class
kn-keyword=locally coalescent class
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=53
end-page=65
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The irreducibility and monogenicity of power-compositional trinomials
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A polynomial f(x) ∈ Z[x] of degree N is called monogenic if f(x) is irreducible over Q and {1, θ, θ2, . . . , θN?1} is a basis for the ring of integers of Q(θ), where f(θ) = 0. Define F(x) := xm+Axm?1+B. In this article, we determine sets of conditions on m, A, and B, such that
the power-compositional trinomial F(xpn) is monogenic for all integers n ? 0 and a given prime p. Furthermore, we prove the actual existence of infinite families of such trinomials F(x).
en-copyright=
kn-copyright=
en-aut-name=HarringtonJoshua
en-aut-sei=Harrington
en-aut-mei=Joshua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JonesLenny
en-aut-sei=Jones
en-aut-mei=Lenny
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Cedar Crest College
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Shippensburg University
kn-affil=
en-keyword=irreducible
kn-keyword=irreducible
en-keyword=monogenic
kn-keyword=monogenic
en-keyword=power-compositional
kn-keyword=power-compositional
en-keyword=trinomial
kn-keyword=trinomial
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=29
end-page=51
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Quillen model structure on the category of diffeological spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We construct on the category of diffeological spaces a Quillen model structure having smooth weak homotopy equivalences as the class of weak equivalences.
en-copyright=
kn-copyright=
en-aut-name=HaraguchiTadayuki
en-aut-sei=Haraguchi
en-aut-mei=Tadayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimakawaKazuhisa
en-aut-sei=Shimakawa
en-aut-mei=Kazuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Education for Human Growth, Nara Gakuen University
kn-affil=
affil-num=2
en-affil=Okayama University
kn-affil=
en-keyword=Diffeological space
kn-keyword=Diffeological space
en-keyword=Homotopy theory
kn-keyword=Homotopy theory
en-keyword=Model category
kn-keyword=Model category
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=28
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inseparable Gauss maps and dormant opers
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The present paper aims to generalize a result by H. Kaji on Gauss maps in positive characteristic and establish an interaction with the study of dormant opers and Frobenius-projective structures. We prove a correspondence between dormant opers on a smooth projective variety and closed immersions into a projective space with purely inseparable Gauss map. By using this, we determine the subfields of the function field of a smooth curve in positive characteristic induced by Gauss maps. Moreover, this correspondence gives us a Frobenius-projective structure on a Fermat hypersurface.
en-copyright=
kn-copyright=
en-aut-name=WakabayashiYasuhiro
en-aut-sei=Wakabayashi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Information Science and Technology, Osaka University
kn-affil=
en-keyword=Gauss map
kn-keyword=Gauss map
en-keyword=Frobenius-projective structure
kn-keyword=Frobenius-projective structure
en-keyword=dormant
kn-keyword=dormant
en-keyword=indigenous bundle
kn-keyword=indigenous bundle
en-keyword=oper
kn-keyword=oper
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=171
end-page=187
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Note on smoothness condition on tropical elliptic curves of symmetric truncated cubic forms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this work, we provide explicit conditions for the coeffi-cients of a symmetric truncated cubic to give a smooth tropical curve. We also examine non-smooth cases corresponding to some specific sub-division types.
en-copyright=
kn-copyright=
en-aut-name=TarmidiRani Sasmita
en-aut-sei=Tarmidi
en-aut-mei=Rani Sasmita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, Graduate School of Science, Osaka University
kn-affil=
en-keyword=tropical curves
kn-keyword=tropical curves
en-keyword=smooth tropical curves
kn-keyword=smooth tropical curves
en-keyword=symmetric truncated cubic
kn-keyword=symmetric truncated cubic
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=159
end-page=169
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Duality-reflection formulas of multiple polylogarithms and their ?-adic Galois analogues
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we derive formulas of complex and ?-adic multiple polylogarithms, which have two aspects: a duality in terms of indexes and a reflection in terms of variables. We provide an algebraic proof of these formulas by using algebraic relations between associators arising from the S3-symmetry of the projective line minus three points.
en-copyright=
kn-copyright=
en-aut-name=ShiraishiDensuke
en-aut-sei=Shiraishi
en-aut-mei=Densuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, Graduate School of Science, Osaka University
kn-affil=
en-keyword=multiple polylogarithm
kn-keyword=multiple polylogarithm
en-keyword=?-adic Galois multiple polylogarithm
kn-keyword=?-adic Galois multiple polylogarithm
en-keyword=duality-reflection formula
kn-keyword=duality-reflection formula
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=135
end-page=157
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Several homotopy fixed point spectral sequences in telescopically localized algebraic K-theory
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let n ? 1, p a prime, and T(n) any representative of the Bousfield class of the telescope v?1n F(n) of a finite type n complex. Also, let En be the Lubin-Tate spectrum, K(En) its algebraic K-theory spectrum, and Gn the extended Morava stabilizer group, a profinite group. Motivated by an Ausoni-Rognes conjecture, we show that there are two spectral sequences
IEs,t2 ⇒ πt?s((LT(n+1)K(En))hGn) ? IIEs,t2
with common abutment π?(?) of the continuous homotopy fixed points of LT(n+1)K(En), where IEs,t2 is continuous cohomology with coefficients in a certain tower of discrete Gn-modules. If the tower satisfies the Mittag-Leffler condition, then there are isomorphisms with continuous cochain cohomology groups:
IE?,?2 ? H?cts(Gn, π?(LT(n+1)K(En))) ? IIE?,?2.
We isolate two hypotheses, the first of which is true when (n, p) = (1, 2), that imply (LT(n+1)K(En))hGn ? LT(n+1)K(LK(n)S0). Also, we show that there is a spectral sequence
Hscts(Gn, πt(K(En) ? T(n + 1))) ⇒ πt?s((K(En) ? T(n + 1))hGn).
en-copyright=
kn-copyright=
en-aut-name=DavisDaniel G.
en-aut-sei=Davis
en-aut-mei=Daniel G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, University of Louisiana at Lafayette
kn-affil=
en-keyword=Algebraic K-theory spectrum
kn-keyword=Algebraic K-theory spectrum
en-keyword=continuous homotopy fixed point spectrum
kn-keyword=continuous homotopy fixed point spectrum
en-keyword=Lubin-Tate spectrum
kn-keyword=Lubin-Tate spectrum
en-keyword=Morava stabilizer group
kn-keyword=Morava stabilizer group
en-keyword=homotopy fixed point spectral sequence
kn-keyword=homotopy fixed point spectral sequence
en-keyword=telescopic localization
kn-keyword=telescopic localization
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=125
end-page=133
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A subclass of strongly close-to-convex functions associated with Janowski function
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this paper is to introduce a new subclass of strongly close-to-convex functions by subordinating to Janowski function. Certain properties such as coefficient estimates, distortion theorem, argument theorem, inclusion relations and radius of convexity are established for this class. The results obtained here will generalize various earlier known results.
en-copyright=
kn-copyright=
en-aut-name=SinghGagandeep
en-aut-sei=Singh
en-aut-mei=Gagandeep
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SinghGurcharanjit
en-aut-sei=Singh
en-aut-mei=Gurcharanjit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Khalsa College
kn-affil=
affil-num=2
en-affil=Department of Mathematics, G.N.D.U. College
kn-affil=
en-keyword=Analytic functions
kn-keyword=Analytic functions
en-keyword=Subordination
kn-keyword=Subordination
en-keyword=Janowski-type function
kn-keyword=Janowski-type function
en-keyword=Close-to-convex functions
kn-keyword=Close-to-convex functions
en-keyword=Distortion theorem
kn-keyword=Distortion theorem
en-keyword=Argument theorem
kn-keyword=Argument theorem
en-keyword=Coefficient bounds
kn-keyword=Coefficient bounds
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=115
end-page=124
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A combinatorial integration on the Cantor dust
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we generalize the Cantor function to 2-dimensional cubes and construct a cyclic 2-cocycle on the Cantor dust. This cocycle is non-trivial on the pullback of the smooth functions on the 2-dimensional torus with the generalized Cantor function while it vanishes on the Lipschitz functions on the Cantor dust. The cocycle is calculated through the integration of 2-forms on the torus by using a combinatorial Fredholm module.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaTakashi
en-aut-sei=Maruyama
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SetoTatsuki
en-aut-sei=Seto
en-aut-mei=Tatsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Engineering, Stanford University
kn-affil=
affil-num=2
en-affil=General Education and Research Center, Meiji Pharmaceutical University
kn-affil=
en-keyword=Fredholm module
kn-keyword=Fredholm module
en-keyword=Cantor dust
kn-keyword=Cantor dust
en-keyword=cyclic cocycle
kn-keyword=cyclic cocycle
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=103
end-page=113
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On G(A)Q of rings of finite representation type
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let (A,m) be an excellent Henselian Cohen-Macaulay local ring of finite representation type. If the AR-quiver of A is known then by a result of Auslander and Reiten one can explicity compute G(A) the Grothendieck group of finitely generated A-modules. If the AR-quiver is not known then in this paper we give estimates of G(A)Q = G(A) ?Z Q when k = A/m is perfect. As an application we prove that if A is an excellent equi-characteristic Henselian Gornstein local ring of positive even dimension with char A/m ≠ 2, 3, 5 (and A/m perfect) then G(A)Q ? Q.
en-copyright=
kn-copyright=
en-aut-name=PuthenpurakalTony J.
en-aut-sei=Puthenpurakal
en-aut-mei=Tony J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, IIT Bombay
kn-affil=
en-keyword=Grothendieck group
kn-keyword=Grothendieck group
en-keyword=finite representation type
kn-keyword=finite representation type
en-keyword=AR sequence
kn-keyword=AR sequence
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=85
end-page=102
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Positive solutions to a nonlinear three-point boundary value problem with singularity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we discuss the existence and uniqueness of positive solutions to a singular boundary value problem of fractional differential equations with three-point integral boundary conditions. The nonlinear term f possesses singularity and also depends on the first-order derivative u′. Our approach is based on Leray-Schauder fixed point theorem and Banach contraction principle. Examples are presented to confirm the application of the main results.
en-copyright=
kn-copyright=
en-aut-name=AkoredeMoses B.
en-aut-sei=Akorede
en-aut-mei=Moses B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ArawomoPeter O.
en-aut-sei=Arawomo
en-aut-mei=Peter O.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Faculty of Science, University of Ibadan
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Faculty of Science, University of Ibadan
kn-affil=
en-keyword=Fractional derivative
kn-keyword=Fractional derivative
en-keyword=positive solutions
kn-keyword=positive solutions
en-keyword=singularity
kn-keyword=singularity
en-keyword=three-point boundary value problem
kn-keyword=three-point boundary value problem
en-keyword=cone
kn-keyword=cone
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=71
end-page=83
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Harmonic partitions of positive integers and bosonic extension of Euler’s pentagonal number theorem
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we first propose a cohomological derivation of the celebrated Euler’s Pentagonal Number Theorem. Then we prove an identity that corresponds to a bosonic extension of the theorem. The proof corresponds to a cohomological re-derivation of Euler’s another celebrated identity.
en-copyright=
kn-copyright=
en-aut-name=JinzenjiMasao
en-aut-sei=Jinzenji
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TajimaYu
en-aut-sei=Tajima
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Mathematics, Graduate School of Science, Hokkaido University
kn-affil=
en-keyword=partitions of integers
kn-keyword=partitions of integers
en-keyword=cohomology
kn-keyword=cohomology
en-keyword=Euler number
kn-keyword=Euler number
en-keyword=Euler’s pentagonal number theorem
kn-keyword=Euler’s pentagonal number theorem
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=63
end-page=69
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Construction of families of dihedral quintic polynomials
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this article, we give two families of dihedral quintic polynomials by using the Weber sextic resolvent and a certain elliptic curve.
en-copyright=
kn-copyright=
en-aut-name=KishiYasuhiro
en-aut-sei=Kishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaMei
en-aut-sei=Yamada
en-aut-mei=Mei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Faculty of Education, Aichi University of Education
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Faculty of Education, Aichi University of Education
kn-affil=
en-keyword=Quintic polynomials
kn-keyword=Quintic polynomials
en-keyword=Galois group
kn-keyword=Galois group
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=45
end-page=61
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dirac pairs on Jacobi algebroids
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We define Dirac pairs on Jacobi algebroids, which is a generalization of Dirac pairs on Lie algebroids introduced by Kosmann-Schwarzbach. We show the relationship between Dirac pairs on Lie and on Jacobi algebroids, and that Dirac pairs on Jacobi algebroids characterize several compatible structures on Jacobi algebroids.
en-copyright=
kn-copyright=
en-aut-name=NakamuraTomoya
en-aut-sei=Nakamura
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Academic Support Center, Kogakuin University
kn-affil=
en-keyword=Dirac pair
kn-keyword=Dirac pair
en-keyword=Dirac structure
kn-keyword=Dirac structure
en-keyword=Jacobi algebroid
kn-keyword=Jacobi algebroid
en-keyword=Lie algebroid
kn-keyword=Lie algebroid
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=31
end-page=44
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Game positions of multiple hook removing game
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Multiple Hook Removing Game (MHRG for short) introduced in [1] is an impartial game played in terms of Young diagrams. In this paper, we give a characterization of the set of all game positions in MHRG. As an application, we prove that for t ∈ Z?0 and m, n ∈ N such that t ? m ? n, and a Young diagram Y contained in the rectangular Young diagram Yt,n of size t × n, Y is a game position in MHRG with Ym,n the starting position if and only if Y is a game position in MHRG with Yt,n?m+t the starting position, and also that the Grundy value of Y in the former MHRG is equal to that in the latter MHRG.
en-copyright=
kn-copyright=
en-aut-name=MotegiYuki
en-aut-sei=Motegi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Pure and Applied Sciences, University of Tsukuba
kn-affil=
en-keyword=Young diagram
kn-keyword=Young diagram
en-keyword=hook
kn-keyword=hook
en-keyword=combinatorial game
kn-keyword=combinatorial game
en-keyword=Grundy value
kn-keyword=Grundy value
END
start-ver=1.4
cd-journal=joma
no-vol=66
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=30
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Equivalence classes of dessins d’enfants with two vertices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let N be a positive integer. For any positive integer L ? N and any positive divisor r of N, we enumerate the equivalence classes of dessins d’enfants with N edges, L faces and two vertices whose representatives have automorphism groups of order r. Further, for any non-negative integer h, we enumerate the equivalence classes of dessins with N edges, h faces of degree 2 with h ? N, and two vertices whose representatives have automorphism group of order r. Our arguments are essentially based upon a natural one-to-one correspondence between the equivalence classes of all dessins with N edges and the equivalence classes of all pairs of permutations whose entries generate a transitive subgroup of the symmetric group of degree N.
en-copyright=
kn-copyright=
en-aut-name=HorieMadoka
en-aut-sei=Horie
en-aut-mei=Madoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Science, Tohoku University
kn-affil=
en-keyword=dessin d’enfants
kn-keyword=dessin d’enfants
en-keyword=symmetric group
kn-keyword=symmetric group
en-keyword=combinatorics
kn-keyword=combinatorics
en-keyword=Riemann surface
kn-keyword=Riemann surface
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220922
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=反応拡散方程式における進行波解とその反応項への摂動に対する剛健さ
kn-title=Traveling Front Solutions to Reaction-Diffusion Equations and Their Robustness for Perturbation on Reaction Terms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WahWah
en-aut-sei=Wah
en-aut-mei=Wah
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=1
article-no=
start-page=145
end-page=173
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Positivity and Hierarchical Structure of four Green Functions Corresponding to a Bending Problem of a Beam on a half line
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We consider the boundary value problem for fourth order linear ordinary differential equation in a half line (0,∞), which represents bending of a beam on an elastic foundation under a tension. A tension is relatively stronger than a spring constant of elastic foundation. We here treat four self-adjoint boundary conditions, clamped, Dirichlet, Neumann and free edges, at x = 0. We show the positivity and the hierarchical structure of four Green functions.
en-copyright=
kn-copyright=
en-aut-name=KametakaYoshinori
en-aut-sei=Kametaka
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeKohtaro
en-aut-sei=Watanabe
en-aut-mei=Kohtaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaiAtsushi
en-aut-sei=Nagai
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakemuraKazuo
en-aut-sei=Takemura
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamagishiHiroyuki
en-aut-sei=Yamagishi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Engineering Science, Osaka University
kn-affil=
affil-num=2
en-affil=Department of Computer Science, National Defense Academy
kn-affil=
affil-num=3
en-affil=Department of Computer Sciences, College of Liberal Arts, Tsuda University
kn-affil=
affil-num=4
en-affil=College of Science and Technology, Nihon University
kn-affil=
affil-num=5
en-affil=Tokyo Metropolitan College of Industrial Technology
kn-affil=
en-keyword=Green function
kn-keyword=Green function
en-keyword=boundary value problem
kn-keyword=boundary value problem
en-keyword=positivity
kn-keyword=positivity
en-keyword=hierarchical structure
kn-keyword=hierarchical structure
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=1
article-no=
start-page=125
end-page=143
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Traveling front solutions for perturbed reaction-diffusion equations
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Traveling front solutions have been studied for reaction-diffusion equations with various kinds of nonlinear terms. One of the interesting subjects is the existence and non-existence of them. In this paper, we prove that, if a traveling front solution exists for a reaction-diffusion equation with a nonlinear term, it also exists for a reaction-diffusion equation with a perturbed nonlinear term. In other words, a traveling front is robust under perturbation on a nonlinear term.
en-copyright=
kn-copyright=
en-aut-name=WahWah
en-aut-sei=Wah
en-aut-mei=Wah
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TANIGUCHIMasaharu
en-aut-sei=TANIGUCHI
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=traveling front
kn-keyword=traveling front
en-keyword=existence
kn-keyword=existence
en-keyword=perturbation
kn-keyword=perturbation
en-keyword=reaction-diffusion equation
kn-keyword=reaction-diffusion equation
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=1
article-no=
start-page=117
end-page=123
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Note on Fields Generated by Jacobi Sums
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the present paper, we study fields generated by Jacobi sums. In particular, we completely determine the field obtained by adjoining, to the field of rational numbers, all of the Jacobi sums “of two variables” with respect to a fixed maximal ideal of the ring of integers of a fixed prime-power cyclotomic field.
en-copyright=
kn-copyright=
en-aut-name=HoshiYuichiro
en-aut-sei=Hoshi
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Research Institute for Mathematical Sciences, Kyoto University
kn-affil=
en-keyword=Jacobi sum
kn-keyword=Jacobi sum
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=1
article-no=
start-page=97
end-page=116
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An improvement of the integrability of the state space of the Φ43-process and the support of the Φ43-measure constructed by the limit of stationary processes of approximating stochastic quantization equations
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This is a remark paper for the Φ43 -measure and the associated flow on the torus which are constructed in [1] by the limit of the stationary processes of the stochastic quantization equations of approximation measures. We improve the integrability of the state space of the Φ43 -process and the support of the Φ43 -measure. For the improvement, we improve the estimates of the Hölder continuity in time of the solutions to approximation equations. In the present paper, we only discuss the estimates different from those in [1].
en-copyright=
kn-copyright=
en-aut-name=KusuokaSeiichiro
en-aut-sei=Kusuoka
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, Graduate School of Science, Kyoto University
kn-affil=
en-keyword=stochastic quantization
kn-keyword=stochastic quantization
en-keyword= quantum field theory
kn-keyword= quantum field theory
en-keyword=singular SPDE
kn-keyword=singular SPDE
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=1
article-no=
start-page=83
end-page=96
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Non-Modular Solution of the Kaneko-Zagier Equations with respect to Fricke Groups of Low Levels
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pavel Guerzhoy show that the Kaneko-Zagier equation for SL2(Z) has mixed mock mock modular solutions in certain weights. In this paper, we show that the Kaneko-Zagier equations for the Fricke groups of level 2 and 3 also have mixed mock modular solutions in certain weights.
en-copyright=
kn-copyright=
en-aut-name=KinjoToshiteru
en-aut-sei=Kinjo
en-aut-mei=Toshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Mathematics, Kyushu University
kn-affil=
en-keyword=mixed mock modular forms
kn-keyword=mixed mock modular forms
en-keyword=weak harmonic Maass forms
kn-keyword=weak harmonic Maass forms
en-keyword=Kaneko-Zagier equation
kn-keyword=Kaneko-Zagier equation
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=1
article-no=
start-page=35
end-page=81
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Affine Kac-Moody Groups as Twisted Loop Groups obtained by Galois Descent Considerations
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We provide explicit generators and relations for the affine Kac-Moody groups, as well as a realization of them as (twisted) loop groups by means of Galois descent considerations. As a consequence, we show that the affine Kac-Moody group of type X(r) N is isomorphic to the
fixed-point subgroup of the affine Kac-Moody group of type X(1) N under an action of the Galois group.
en-copyright=
kn-copyright=
en-aut-name=MoritaJun
en-aut-sei=Morita
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PianzolaArturo
en-aut-sei=Pianzola
en-aut-mei=Arturo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShibataTaiki
en-aut-sei=Shibata
en-aut-mei=Taiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Mathematics, University of Tsukuba
kn-affil=
affil-num=2
en-affil=Department of Mathematical and Statistical Sciences, University of Alberta
kn-affil=
affil-num=3
en-affil=Department of Applied Mathematics, Okayama University of Science
kn-affil=
en-keyword=Affine Kac-Moody groups
kn-keyword=Affine Kac-Moody groups
en-keyword=Loop groups
kn-keyword=Loop groups
en-keyword=Twisted Chevalley groups
kn-keyword=Twisted Chevalley groups
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=1
article-no=
start-page=23
end-page=34
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=E(2)-local Picard graded beta elements at the prime three
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let E(2) be the second Johnson-Wilson spectrum at the prime 3. In this paper, we show that some beta elements exist in the homotopy groups of the E(2)-localized sphere spectrum with a grading over the Picard group of the stable homotopy category of E(2)-local spectra.
en-copyright=
kn-copyright=
en-aut-name=KatoRyo
en-aut-sei=Kato
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Faculty of Fundamental Science National Institute of Technology, Niihama college
kn-affil=
en-keyword=Stable homotopy of spheres
kn-keyword=Stable homotopy of spheres
en-keyword=Picard group
kn-keyword=Picard group
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=22
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A characterization of the class of Harada rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=There are many characterizations of Harada rings. In this paper, we characterize right co-Harada rings by giving a characterization of the class of basic right co-Harada rings.
en-copyright=
kn-copyright=
en-aut-name=KoikeKazutoshi
en-aut-sei=Koike
en-aut-mei=Kazutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=National Institute of Technology, Okinawa College
kn-affil=
en-keyword=Harada rings
kn-keyword=Harada rings
en-keyword=QF rings
kn-keyword=QF rings
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=215
end-page=225
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A note on a Hecke ring associated with the Heisenberg Lie algebra
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This paper focuses on the theory of the Hecke rings associated with the general linear groups originally studied by Hecke and Shimura et al., and moreover generalizes its notions to Hecke rings associated with the automorphism groups of certain algebras. Then, in the case of the Heisenberg Lie algebra, we show an analog of the classical theory.
en-copyright=
kn-copyright=
en-aut-name=HyodoFumitake
en-aut-sei=Hyodo
en-aut-mei=Fumitake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Health Informatics Faculty of Health and Welfare Services Administration Kawasaki University of Medical Welfare
kn-affil=
en-keyword=Hecke rings
kn-keyword=Hecke rings
en-keyword=noncommutative rings
kn-keyword=noncommutative rings
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=191
end-page=213
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On Hook Formulas for Cylindric Skew Diagrams
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We present a conjectural hook formula concerning the number of the standard tableaux on "cylindric" skew diagrams. Our formula can be seen as an extension of Naruse's hook formula for skew diagrams. Moreover, we prove our conjecture in some special cases.
en-copyright=
kn-copyright=
en-aut-name=SuzukiTakeshi
en-aut-sei=Suzuki
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ToyosawaYoshitaka
en-aut-sei=Toyosawa
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Faculty of Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=187
end-page=190
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Symbolic powers of monomial ideals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let K be a field and consider the standard grading on A = K[X1, ... ,Xd]. Let I, J be monomial ideals in A. Let In(J) = (In : J∞) be the nth symbolic power of I with respect to J. It is easy to see that the function fI J (n) = e0(In(J)/In) is of quasi-polynomial type, say of period g and degree c. For n ≫ 0 say
fIJ (n) = ac(n)nc + ac?1(n)nc?1 + lower terms,
where for i = 0, ... , c, ai : N → Q are periodic functions of period g and ac ≠0. In [4, 2.4] we (together with Herzog and Verma) proved that dim In(J)/In is constant for n ≫ 0 and ac(?) is a constant. In this paper we prove that if I is generated by some elements of the same degree and height I ? 2 then ac?1(?) is also a constant.
en-copyright=
kn-copyright=
en-aut-name=PuthenpurakalTony J.
en-aut-sei=Puthenpurakal
en-aut-mei=Tony J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
en-keyword=quasi-polynomials
kn-keyword=quasi-polynomials
en-keyword=monomial ideals
kn-keyword=monomial ideals
en-keyword=symbolic powers
kn-keyword=symbolic powers
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=153
end-page=186
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bijective proofs of the identities on the values of inner products of the Macdonald polynomials
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this article, we introduce some identities obtained from the inner products of some symmetric polynomials including the Macdonald polynomials. These identities are obtained not only from the inner products, but also by constructing certain bijections. The bijections are constructed through transforming the Young diagrams of partitions.
en-copyright=
kn-copyright=
en-aut-name=NishiyamaYuta
en-aut-sei=Nishiyama
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Science and Technology, Kumamoto University
kn-affil=
en-keyword=Macdonald polynomials
kn-keyword=Macdonald polynomials
en-keyword=Young diagram
kn-keyword=Young diagram
en-keyword=bijective proof
kn-keyword=bijective proof
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=143
end-page=151
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Quantum Sylvester-Franke Theorem
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A quantum version of classical Sylvester-Franke theorem is presented. After reviewing some representation theory of the quantum group GLq (n, C), the commutation relations of the matrix elements are verified. Once quantum determinant of the representation matrix is defined, the theorem follows naturally
en-copyright=
kn-copyright=
en-aut-name=AokageKazuya
en-aut-sei=Aokage
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TabataSumitaka
en-aut-sei=Tabata
en-aut-mei=Sumitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaHiro-Fumi
en-aut-sei=Yamada
en-aut-mei=Hiro-Fumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Mathematics, National Institute of Technology, Ariake College
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Kumamoto University
kn-affil=
affil-num=3
en-affil=Department of Mathematics, Kumamoto University
kn-affil=
en-keyword=Quantum general linear group
kn-keyword=Quantum general linear group
en-keyword=Sylvester-Franke theorem
kn-keyword=Sylvester-Franke theorem
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=117
end-page=141
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=τ-tilting finiteness of two-point algebras I
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=As the first attempt to classify τ-tilting finite two-point algebras, we have determined the τ-tilting finiteness for minimal wild two-point algebras and some tame two-point algebras.
en-copyright=
kn-copyright=
en-aut-name=WangQi
en-aut-sei=Wang
en-aut-mei=Qi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University
kn-affil=
en-keyword=Support τ-tilting modules
kn-keyword=Support τ-tilting modules
en-keyword=τ-tilting finite
kn-keyword=τ-tilting finite
en-keyword=two-point algebras
kn-keyword=two-point algebras
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=109
end-page=116
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Notes on the filtration of the K-theory for abelian p-groups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let p be a prime number. For a given finite group G, let gr*γ(BG) be the associated ring of the gamma filtration of the topological K-theory for the classifying space BG. In this paper, we study gr*γ(BG) when G are abelian p-groups which are not elementary. In particular, we extend related Chetard’s results for such 2-groups to p-groups for odd p.
en-copyright=
kn-copyright=
en-aut-name=YagitaNobuaki
en-aut-sei=Yagita
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Faculty of Education Ibaraki University
kn-affil=
en-keyword=K-theory
kn-keyword=K-theory
en-keyword=gamma fitration
kn-keyword=gamma fitration
en-keyword=abelian p-group
kn-keyword=abelian p-group
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=75
end-page=107
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Criteria for good reduction of hyperbolic polycurves
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We give good reduction criteria for hyperbolic polycurves, i.e., successive extensions of families of curves, under some assumptions. These criteria are higher dimensional versions of the good reduction criterion for hyperbolic curves given by Oda and Tamagawa.
en-copyright=
kn-copyright=
en-aut-name=NagamachiIppei
en-aut-sei=Nagamachi
en-aut-mei=Ippei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Research Institute for Mathematical Sciences, Kyoto University
kn-affil=
en-keyword=good reduction,
kn-keyword=good reduction,
en-keyword= hyperbolic curve,
kn-keyword= hyperbolic curve,
en-keyword=polyucurve,
kn-keyword=polyucurve,
en-keyword=?tale fundamental group.
kn-keyword=?tale fundamental group.
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=63
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Note on totally odd multiple zeta values
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A partial answer to a conjecture about the rank of the matrix CN,r introduced by Francis Brown in the study of totally odd multiple zeta values is given.
en-copyright=
kn-copyright=
en-aut-name=TasakaKoji
en-aut-sei=Tasaka
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
en-keyword=Multiple zeta values
kn-keyword=Multiple zeta values
en-keyword=Period polynomials
kn-keyword=Period polynomials
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=47
end-page=61
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On Weakly Separable Polynomials in skew polynomial rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The notion of weakly separable extensions was introduced by N. Hamaguchi and A. Nakajima as a generalization of separable extensions. The purpose of this article is to give a characterization of weakly separable polynomials in skew polynomial rings. Moreover, we shall show the relation between separability and weak separability in skew polynomial rings of derivation type.
en-copyright=
kn-copyright=
en-aut-name=YamanakaSatoshi
en-aut-sei=Yamanaka
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Integrated Science and Technology National Institute of Technology, Tsuyama College
kn-affil=
en-keyword=separable extension
kn-keyword=separable extension
en-keyword=weakly separable extension
kn-keyword=weakly separable extension
en-keyword=skew polynomial ring
kn-keyword=skew polynomial ring
en-keyword=derivation
kn-keyword=derivation
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=31
end-page=45
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The best constant of the discrete Sobolev inequalities on the complete bipartite graph
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We have the best constants of three kinds of discrete Sobolev inequalities on the complete bipartite graph with 2N vertices, that is, KN,N. We introduce a discrete Laplacian A on KN,N. A is a 2N ×2N real symmetric positive-semidefinite matrix whose eigenvector corresponding to zero eigenvalue is 1 = t(1, 1, … , 1)∈ C2N. A discrete heat kernel, a Green’s matrix and a pseudo Green’s matrix play important roles in giving the best constants.
en-copyright=
kn-copyright=
en-aut-name=YamagishiHiroyuki
en-aut-sei=Yamagishi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Tokyo Metropolitan College of Industrial Technology
kn-affil=
en-keyword=Discrete Sobolev inequality
kn-keyword=Discrete Sobolev inequality
en-keyword=Discrete Laplacian
kn-keyword=Discrete Laplacian
en-keyword=Green’s matrix
kn-keyword=Green’s matrix
en-keyword=Reproducing relation
kn-keyword=Reproducing relation
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=13
end-page=29
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The d-Smith sets of Cartesian products of the alternating groups and finite elementary abelian 2-groups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let G be a finite group. In 1970s, T. Petrie defined the Smith equivalence of real G-modules. The Smith set of G is the subset of the real representation ring consisting of elements obtained as differences of Smith equivalent real G-modules. Various results of the topic have been obtained. The d-Smith set of G is the set of all elements [V ]?[W] in the Smith set of G such that the H-fixed point sets of V and W have the same dimension for all subgroups H of G. The results of the Smith sets of the alternating groups and the symmetric groups are obtained by E. Laitinen, K. Pawa lowski and R. Solomon. In this paper, we give the calculation results of the d-Smith sets of the alternating groups and the symmetric groups. In addition, we give the calculation results of the d-Smith sets of Cartesian products of the alternating groups and finite elementary abelian 2-groups.
en-copyright=
kn-copyright=
en-aut-name=SeitaKohei
en-aut-sei=Seita
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Real G-module
kn-keyword=Real G-module
en-keyword=Smith equivalence
kn-keyword=Smith equivalence
en-keyword=Oliver group
kn-keyword=Oliver group
en-keyword=alternating group
kn-keyword=alternating group
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=11
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Note on Torsion Points on Ample Divisors on Abelian Varieties
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the present paper, we consider torsion points on ample divisors on abelian varieties. We prove that, for each integer n ≤ 2, an effective divisor of level n on an abelian variety does not contain the subgroup of n-torsion points. Moreover, we also discuss an application of this result to the study of the p-rank of cyclic coverings of curves in positive characteristic.
en-copyright=
kn-copyright=
en-aut-name=HoshiYuichiro
en-aut-sei=Hoshi
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Research Institute for Mathematical Sciences, Kyoto University
kn-affil=
en-keyword=abelian variety
kn-keyword=abelian variety
en-keyword=torsion point
kn-keyword=torsion point
en-keyword=curve
kn-keyword=curve
en-keyword=p-rank
kn-keyword=p-rank
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=2
article-no=
start-page=189
end-page=194
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1958
dt-pub=195812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Galois theory of simple rings IV
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NagaharaTakasi
en-aut-sei=Nagahara
en-aut-mei=Takasi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NobusawaNobuo
en-aut-sei=Nobusawa
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TominagaHisao
en-aut-sei=Tominaga
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=
kn-affil=
affil-num=3
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=2
article-no=
start-page=181
end-page=188
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1958
dt-pub=195812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On generating elements of Galois extensions of division rings IV
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NagaharaTakashi
en-aut-sei=Nagahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=2
article-no=
start-page=143
end-page=179
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1958
dt-pub=195812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tangent bundles of order 2 and general connections
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OtsukiTominosuke
en-aut-sei=Otsuki
en-aut-mei=Tominosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=2
article-no=
start-page=133
end-page=142
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1958
dt-pub=195812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On normal basis theorems and strictly Galois extensions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NagaharaTakasi
en-aut-sei=Nagahara
en-aut-mei=Takasi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnoderaTakesi
en-aut-sei=Onodera
en-aut-mei=Takesi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TominagaHisao
en-aut-sei=Tominaga
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=
kn-affil=
affil-num=3
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=2
article-no=
start-page=125
end-page=131
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1958
dt-pub=195812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Some remarks on homotopy equivalences and H-spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SugawaraMasahiro
en-aut-sei=Sugawara
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=2
article-no=
start-page=117
end-page=123
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1958
dt-pub=195812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A note on Galois theory of primary rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TominagaHisao
en-aut-sei=Tominaga
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=2
article-no=
start-page=107
end-page=116
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1958
dt-pub=195812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Note on curvature of Finsler manifolds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=?tsukiTominosuke
en-aut-sei=?tsuki
en-aut-mei=Tominosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=106
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1958
dt-pub=19586
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Poincar?sche Vermutung in Topologie
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KosekiKen'iti
en-aut-sei=Koseki
en-aut-mei=Ken'iti
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=201
end-page=217
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Linear stability of radially symmetric equilibrium solutions to the singular limit problem of three-component activator-inhibitor model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We show linear stability or instability for radially symmet-ric equilibrium solutions to the system of interface equation and two parabolic equations arising in the singular limit of three-component activator-inhibitor models.
en-copyright=
kn-copyright=
en-aut-name=KojimaTakuya
en-aut-sei=Kojima
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OshitaYoshihito
en-aut-sei=Oshita
en-aut-mei=Yoshihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate school of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Okayama University
kn-affil=
en-keyword=singular limit problem
kn-keyword=singular limit problem
en-keyword=equilibrium solutions
kn-keyword=equilibrium solutions
en-keyword=linear stability
kn-keyword=linear stability
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=183
end-page=199
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On H-epimorphisms and co-H-sequences in two-sided Harada rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In [8] M. Harada studied a left artinian ring R such that every non-small left R-module contains a non-zero injective submodule. And in [13] K. Oshiro called the ring a left Harada ring (abbreviated left H-ring). We can see many results on left Harada rings in [6] and many equivalent conditions in [4, Theorem B]. In this paper, to characterize two-sided Harada rings, we intruduce new concepts “co-H-sequence” and “H-epimorphism” and study them.
en-copyright=
kn-copyright=
en-aut-name=BabaYoshitomo
en-aut-sei=Baba
en-aut-mei=Yoshitomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Education Osaka Kyoiku University
kn-affil=
en-keyword=Harada ring
kn-keyword=Harada ring
en-keyword=Artinian ring
kn-keyword=Artinian ring
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=175
end-page=182
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On some families of invariant polynomials divisible by three and their zeta functions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this note, we establish an analog of the Mallows-Sloane bound for Type III formal weight enumerators. This completes the bounds for all types (Types I through IV) in synthesis of our previous results. Next we show by using the binomial moments that there exists a family of polynomials divisible by three, which are not related to linear codes but are invariant under the MacWilliams transform for the value 3/2. We also discuss some properties of the zeta functions for such polynomials.
en-copyright=
kn-copyright=
en-aut-name=ChinenKoji
en-aut-sei=Chinen
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, School of Science and Engineering, Kindai University
kn-affil=
en-keyword=Binomial moment
kn-keyword=Binomial moment
en-keyword=Divisible code
kn-keyword=Divisible code
en-keyword=Invariant polynomial ring
kn-keyword=Invariant polynomial ring
en-keyword=Zeta function for codes
kn-keyword=Zeta function for codes
en-keyword=Riemann hypothesis
kn-keyword=Riemann hypothesis
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=167
end-page=173
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On pg-ideals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let (A, m) be an excellent normal domain of dimension two. We de?ne an m-primary ideal I to be a pg -ideal if the Rees algebra A[It] is a Cohen-Macaulay normal domain. If A has in?nite residue ?eld then it follows from a result of Rees that the product of two pg ideals is pg . When A contains an algebraically closed ?eld k ?= A/m then Okuma, Watanabe and Yoshida proved that A has pg -ideals and furthermore product of two pg -ideals is a pg ideal. In this article we show that if A is an excellent normal domain of dimension two containing a ?eld k ?= A/m of characteristic zero then also A has pg -ideals.
en-copyright=
kn-copyright=
en-aut-name=PuthenpurakalTony J.
en-aut-sei=Puthenpurakal
en-aut-mei=Tony J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, IIT Bombay
kn-affil=
en-keyword=pg -ideal
kn-keyword=pg -ideal
en-keyword=normal Rees rings
kn-keyword=normal Rees rings
en-keyword=Cohen-Macaulay rings
kn-keyword=Cohen-Macaulay rings
en-keyword=stable ideals
kn-keyword=stable ideals
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=153
end-page=165
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The d-Smith sets of direct products of dihedral groups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let G be a ?nite group and let V and W be real G-modules. We call V and W dim-equivalent if for each subgroup H of G, the H-?xed point sets of V and W have the same dimension. We call V and W are Smith equivalent if there is a smooth G-action on a homotopy sphere Σ with exactly two G-?xed points, say a and b, such that the tangential G-representations at a and b of Σ are respectively isomorphic to V and W . Moreover, We call V and W are d-Smith equivalent if they are dim-equivalent and Smith equivalent. The di?erences of d-Smith equivalent real G-modules make up a subset, called the d-Smith set, of the real representation ring RO(G). We call V and W P(G)-matched if they are isomorphic whenever the actions are restricted to subgroups with prime power order of G. Let N be a normal subgroup. For a subset F of G, we say that a real G-module is F-free if the H-?xed point set of the G-module is trivial for all elements H of F. We study the d-Smith set by means of the submodule of RO(G) consisting of the di?erences of dim-equivalent, P(G)-matched, {N}-free real G-modules. In particular, we give a rank formula for the submodule in order to see how the d-Smith set is large.
en-copyright=
kn-copyright=
en-aut-name=SeitaKohei
en-aut-sei=Seita
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Real G-module
kn-keyword=Real G-module
en-keyword=Smith equivalence
kn-keyword=Smith equivalence
en-keyword=representation ring
kn-keyword=representation ring
en-keyword=Oliver group
kn-keyword=Oliver group
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=133
end-page=151
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rectangular Hall-Littlewood symmetric functions and a specific spin character
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We derive the Schur function identities coming from the tensor products of the spin representations of the symmetric group Sn. We deal with the tensor products of the basic spin representation V (n) and any spin representation V λ (λ ∈ SP (n)). The characteristic map
of the tensor product ζn ? ζλ is described by Stembridge[4] for the case of odd n. We consider the case n is even.
en-copyright=
kn-copyright=
en-aut-name=AokageKazuya
en-aut-sei=Aokage
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, National Institute of Technology, Ariake College
kn-affil=
en-keyword=symmetric group
kn-keyword=symmetric group
en-keyword=symmetric function
kn-keyword=symmetric function
en-keyword=projective representation
kn-keyword=projective representation
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=123
end-page=131
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Differential operators on modular forms associated to Jacobi forms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Given Jacobi forms, we determine associated Jacobi-like forms, whose coe?cients are quasimodular forms. We then use these quasimodular forms to construct di?erential operators on modular forms, which are expressed in terms of the Fourier coe?cients of the given Jacobi forms.
en-copyright=
kn-copyright=
en-aut-name=LeeMin Ho
en-aut-sei=Lee
en-aut-mei=Min Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, University of Northern Iowa
kn-affil=
en-keyword=Jacobi forms
kn-keyword=Jacobi forms
en-keyword=Jacobi-like forms
kn-keyword=Jacobi-like forms
en-keyword=modular forms
kn-keyword=modular forms
en-keyword=quasimodular forms
kn-keyword=quasimodular forms
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=107
end-page=122
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A note on products in stable homotopy groups of spheres via the classical Adams spectral sequence
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In recent years, Liu and his collaborators found many non-trivial products of generators in the homotopy groups of the sphere spectrum. In this paper, we show a result which not only implies most of their results, but also extends a result of theirs.
en-copyright=
kn-copyright=
en-aut-name=KatoRyo
en-aut-sei=Kato
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Shimomurakatsumi
en-aut-sei=Shimomura
en-aut-mei=katsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Fundamental Science, National Institute of Technology, Niihama College
kn-affil=
affil-num=2
en-affil=Department of Mathematics, faculty of Science and Technology, Kochi University
kn-affil=
en-keyword=Stable homotopy of spheres
kn-keyword=Stable homotopy of spheres
en-keyword=Adams spectral sequence
kn-keyword=Adams spectral sequence
en-keyword=May spectral sequence
kn-keyword=May spectral sequence
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=87
end-page=105
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A weak Euler formula for l-adic Galois double zeta values
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The fact that the double zeta values ζ(n, m) can be written in terms of zeta values, whenever n+m is odd is attributed to Euler. We shall show the weak version of this result for the l-adic Galois realization.
en-copyright=
kn-copyright=
en-aut-name=Zdzis?awWojtkowiak
en-aut-sei=Zdzis?aw
en-aut-mei=Wojtkowiak
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Universit? de Nice-Sophia Antipolis, D?artement de Math ?matiques Laboratoire Jean Alexandre Dieudonn?
kn-affil=
en-keyword=multiple zeta values
kn-keyword=multiple zeta values
en-keyword=Galois groups
kn-keyword=Galois groups
en-keyword=fundamental groups
kn-keyword=fundamental groups
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=61
end-page=86
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Defining relations of 3-dimensional quadratic AS-regular algebras
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Classi?cation of AS-regular algebras is one of the main interests in non-commutative algebraic geometry. Recently, a complete list of superpotentials (de?ning relations) of all 3-dimensional AS-regular algebras which are Calabi-Yau was given by Mori-Smith (the quadratic case) and Mori-Ueyama (the cubic case), however, no complete list of de?ning relations of all 3-dimensional AS-regular algebras has not appeared in the literature. In this paper, we give all possible de?ning relations of 3-dimensional quadratic AS-regular algebras. Moreover, we classify them up to isomorphism and up to graded Morita equivalence in terms of their de?ning relations in the case that their point schemes are not elliptic curves. In the case that their point schemes are elliptic curves, we give conditions for isomorphism and graded Morita equivalence in terms of geometric data.
en-copyright=
kn-copyright=
en-aut-name=ItabaAyako
en-aut-sei=Itaba
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsunoMasaki
en-aut-sei=Matsuno
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, faculty of Science, Tokyo University of Science
kn-affil=
affil-num=2
en-affil=Graduate School of Science and Technology, Shizuoka University
kn-affil=
en-keyword=AS-regular algebras
kn-keyword=AS-regular algebras
en-keyword=geometric algebras
kn-keyword=geometric algebras
en-keyword=quadratic algebras
kn-keyword=quadratic algebras
en-keyword=nodal cubic curves
kn-keyword=nodal cubic curves
en-keyword=elliptic curves
kn-keyword=elliptic curves
en-keyword=Hesse form
kn-keyword=Hesse form
en-keyword=Sklyanin algebras
kn-keyword=Sklyanin algebras
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=53
end-page=60
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Remark on a Paper by Izadi and Baghalaghdam about Cubes and Fifth Powers Sums
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= In this paper, we re?ne the method introduced by Izadi and Baghalaghdam to search integer solutions to the Diophantine equation
. We show that the Diophantine equation has in?nitely many positive solutions.
en-copyright=
kn-copyright=
en-aut-name=IokibeGaku
en-aut-sei=Iokibe
en-aut-mei=Gaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, Graduate School of Science, Osaka University
kn-affil=
en-keyword=Diophantine equations
kn-keyword=Diophantine equations
en-keyword=Elliptic Curves
kn-keyword=Elliptic Curves
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=15
end-page=52
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Differential geometry of invariant surfaces in simply isotropic and pseudo-isotropic spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study invariant surfaces generated by one-parameter subgroups of simply and pseudo isotropic rigid motions. Basically, the simply and pseudo isotropic geometries are the study of a three-dimensional space equipped with a rank 2 metric of index zero and one, respectively. We show that the one-parameter subgroups of isotropic rigid motions lead to seven types of invariant surfaces, which then generalizes the study of revolution and helicoidal surfaces in Euclidean and Lorentzian spaces to the context of singular metrics. After computing the two fundamental forms of these surfaces and their Gaussian and mean curvatures, we solve the corresponding problem of prescribed curvature for invariant surfaces whose generating curves lie on a plane containing the degenerated direction.
en-copyright=
kn-copyright=
en-aut-name=da SilvaLuiz C. B.
en-aut-sei=da Silva
en-aut-mei=Luiz C. B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Physics of Complex Systems, Weizmann Institute of Science
kn-affil=
en-keyword=Simply isotropic space
kn-keyword=Simply isotropic space
en-keyword=pseudo-isotropic space
kn-keyword=pseudo-isotropic space
en-keyword=singular metric
kn-keyword=singular metric
en-keyword=invariant surface
kn-keyword=invariant surface
en-keyword=prescribed Gaussian curvature
kn-keyword=prescribed Gaussian curvature
en-keyword=prescribed mean curvature
kn-keyword=prescribed mean curvature
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=14
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the stability, boundedness, and square integrability of solutions of third order neutral delay differential equations
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, su?cient conditions are established for the stability, boundedness and square integrability of solutions for some non-linear neutral delay di?erential equations of third order. Lyapunov’s direct method is used to obtain the results.
en-copyright=
kn-copyright=
en-aut-name=GraefJohn R.
en-aut-sei=Graef
en-aut-mei=John R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BeldjerdDjamila
en-aut-sei=Beldjerd
en-aut-mei=Djamila
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RemiliMoussadek
en-aut-sei=Remili
en-aut-mei=Moussadek
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Mathematics, University of Tennessee at Chattanooga
kn-affil=
affil-num=2
en-affil=Oran’s High School of Electrical Engineering and Energetics
kn-affil=
affil-num=3
en-affil=Department of Mathematics, University of Oran 1 Ahmed Ben Bella
kn-affil=
en-keyword=boundedness
kn-keyword=boundedness
en-keyword=stability
kn-keyword=stability
en-keyword=square integrability
kn-keyword=square integrability
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=1
article-no=
start-page=197
end-page=210
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Existence and stability of stationary solutions to the Allen-Cahn equation discretized in space and time
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The existence and stability of the Allen?Cahn equation discretized in space and time are studied in a finite spatial interval. If a parameter is less than or equals to a critical value, the zero solution is the only stationary solution. If the parameter is larger than the critical value, one has a positive stationary solution and this positive stationary solution is asymptotically stable.
en-copyright=
kn-copyright=
en-aut-name=Amy Poh Ai Ling
en-aut-sei=Amy Poh Ai Ling
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TaniguchiMasaharu
en-aut-sei=Taniguchi
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Division of Mathematics and Physics, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Allen?Cahn equation
kn-keyword=Allen?Cahn equation
en-keyword=stationary solution
kn-keyword=stationary solution
en-keyword=comparison theorem
kn-keyword=comparison theorem
en-keyword=discretized
kn-keyword=discretized
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=1
article-no=
start-page=179
end-page=195
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Analytic extension of exceptional constant mean curvature one catenoids in de Sitter 3-space
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Catenoids in de Sitter 3-space S31 belong to a certain class of
space-like constant mean curvature one surfaces. In a previous work, the authors
classified such catenoids, and found that two different classes of countably many exceptional elliptic catenoids are not realized as closed subsets in S31 . Here we show that such exceptional catenoids have closed analytic extensions in S31 with interesting properties.
en-copyright=
kn-copyright=
en-aut-name=FujimoriShoichi
en-aut-sei=Fujimori
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawakamiYu
en-aut-sei=Kawakami
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KokubuMasatoshi
en-aut-sei=Kokubu
en-aut-mei=Masatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=RossmanWayne
en-aut-sei=Rossman
en-aut-mei=Wayne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UmeharaMasaaki
en-aut-sei=Umehara
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamadaKotaro
en-aut-sei=Yamada
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Mathematics, Hiroshima University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Kanazawa University
kn-affil=
affil-num=3
en-affil=Department of Mathematics, School of Engineering, Tokyo Denki University
kn-affil=
affil-num=4
en-affil=Department of Mathematics, Faculty of Science, Kobe University
kn-affil=
affil-num=5
en-affil=Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
kn-affil=
affil-num=6
en-affil=Department of Mathematics, Tokyo Institute of Technology
kn-affil=
en-keyword=constant mean curvature
kn-keyword=constant mean curvature
en-keyword=de Sitter space
kn-keyword=de Sitter space
en-keyword=analytic extension
kn-keyword=analytic extension
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=1
article-no=
start-page=87
end-page=178
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Crystal interpretation of a formula on the branching rule of types Bn, Cn, and Dn
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The branching coefficients of the tensor product of finite-dimensional irreducible Uq(g)-modules, where g is so(2n + 1, C) (Bn-type), sp(2n,C) (Cn-type), and so(2n,C) (Dn-type), are expressed in
terms of Littlewood-Richardson (LR) coefficients in the stable region. We give an interpretation of this relation by Kashiwara’s crystal theory by providing an explicit surjection from the LR crystal of type Cn to the disjoint union of Cartesian product of LR crystals of An?1-type and by proving that LR crystals of types Bn and Dn are identical to the corresponding LR crystal of type Cn in the stable region.
en-copyright=
kn-copyright=
en-aut-name=HiroshimaToya
en-aut-sei=Hiroshima
en-aut-mei=Toya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University
kn-affil=
en-keyword=Kashiwara crystals
kn-keyword=Kashiwara crystals
en-keyword=Littlewood-Richardson crystals
kn-keyword=Littlewood-Richardson crystals
en-keyword=Kashiwara-Nakashima tableaux
kn-keyword=Kashiwara-Nakashima tableaux
en-keyword=Branching rule
kn-keyword=Branching rule
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=1
article-no=
start-page=27
end-page=86
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unstable higher Toda brackets
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OshimaHideaki
en-aut-sei=Oshima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OshimaKatsumi
en-aut-sei=Oshima
en-aut-mei=Katsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Ibaraki University
kn-affil=
affil-num=2
en-affil=
kn-affil=
en-keyword=Toda bracket
kn-keyword=Toda bracket
en-keyword=Unstable higher Toda bracket
kn-keyword=Unstable higher Toda bracket
en-keyword=Higher composition
kn-keyword=Higher composition
en-keyword=Cofibration
kn-keyword=Cofibration
en-keyword=Coextension
kn-keyword=Coextension
en-keyword=Extension
kn-keyword=Extension
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=25
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A representation for algebraic K-theory of quasi-coherent modules over affine spectral schemes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= In this paper, we study K-theory of spectral schemes by using locally free sheaves. Let us regard the K-theory as a functor K on affine spectral schemes. Then, we prove that the group completion
?BG(BGGL) represents the sheafification of K with respect to Zariski (resp. Nisnevich) topology G, where BGGL is a classifying space of a colimit of affine spectral schemes GLn.
en-copyright=
kn-copyright=
en-aut-name=OharaMariko
en-aut-sei=Ohara
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematical Sciences Shinshu University
kn-affil=
en-keyword=Infinity category
kn-keyword=Infinity category
en-keyword=Derived algebraic geometry
kn-keyword=Derived algebraic geometry
en-keyword= K-theory
kn-keyword= K-theory
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=199
end-page=204
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Terwilliger Algebras of Some Group Association Schemes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The Terwilliger algebra plays an important role in the theory of association schemes. The present paper gives the explicit structures of the Terwilliger algebras of the group association schemes of the finite groups PSL(2, 7), A6, and S6.
en-copyright=
kn-copyright=
en-aut-name=HamidNur
en-aut-sei=Hamid
en-aut-mei=Nur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OuraManabu
en-aut-sei=Oura
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Mathematics and Physics, Kanazawa University
kn-affil=
affil-num=2
en-affil=Faculty of Mathematics and Physics, Kanazawa University
kn-affil=
en-keyword=Terwilliger algebragroup association scheme
kn-keyword=Terwilliger algebragroup association scheme
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=187
end-page=198
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Passage of property (Bw) from two operators to their tensor product
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= A Banach space operator satisfies property (Bw) if the complement of its B-Weyl spectrum in its the spectrum is the set of finite multiplicity isolated eigenvalues of the operator. Property (Bw) does not transfer from operators T and S to their tensor product T ? S. We give necessary and /or sufficient conditions ensuring the passage of property (Bw) from T and S to T ? S. Perturbations by Riesz operators are considered.
en-copyright=
kn-copyright=
en-aut-name=RashidM.H.M.
en-aut-sei=Rashid
en-aut-mei=M.H.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics& Statistics Faculty of Science P.O.Box(7) Mu’tah University
kn-affil=
en-keyword=property (Bw)
kn-keyword=property (Bw)
en-keyword=SVEP
kn-keyword=SVEP
en-keyword=tensor product
kn-keyword=tensor product
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=173
end-page=186
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the classification of ruled minimal surfaces in pseudo-Euclidean space
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= This paper gives, in generic situations, a complete classification of ruled minimal surfaces in pseudo-Euclidean space with arbitrary index. In addition, we discuss the condition for ruled minimal surfaces to exist, and give a counter-example on the problem of Bernstein type.
en-copyright=
kn-copyright=
en-aut-name=SatoYuichiro
en-aut-sei=Sato
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematical Sciences Tokyo Metropolitan University
kn-affil=
en-keyword=minimal surface
kn-keyword=minimal surface
en-keyword=ruled surface
kn-keyword=ruled surface
en-keyword=pseudo-Euclidean space
kn-keyword=pseudo-Euclidean space
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=167
end-page=172
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Factorization of 2 and 3 in Cyclic Quartic Fields
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Due to a theorem of Dedekind, factoring ideals generated by prime numbers in number fields is easily done given that said prime number does not divide the index of the field. In this paper, we determine the prime ideal factorizations of both 2 and 3 in cyclic quartic fields whose index is divisible by one of or both of these primes.
en-copyright=
kn-copyright=
en-aut-name=BrownStephen C.
en-aut-sei=Brown
en-aut-mei=Stephen C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DavisChad T.
en-aut-sei=Davis
en-aut-mei=Chad T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Computer Science, Mathematics, Physics and Statistics I.K. Barber School of Arts and Sciences University of British Columbia
kn-affil=
affil-num=2
en-affil=Department of Computer Science, Mathematics, Physics and Statistics I.K. Barber School of Arts and Sciences University of British Columbia
kn-affil=
en-keyword=Cyclic quartic field
kn-keyword=Cyclic quartic field
en-keyword=Prime ideal factorization
kn-keyword=Prime ideal factorization
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=159
end-page=166
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The number of simple modules in a block with Klein four hyperfocal subgroup
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= A 2-block of a finite group having a Klein four hyperfocal subgroup has the same number of irreducible Brauer characters as the corresponding 2-block of the normalizer of the hyperfocal subgroup.
en-copyright=
kn-copyright=
en-aut-name=TasakaFuminori
en-aut-sei=Tasaka
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=National Institute of Technology Tsuruoka College
kn-affil=
en-keyword=group theory
kn-keyword=group theory
en-keyword=modular representation
kn-keyword=modular representation
en-keyword=hyperfocal subgroup
kn-keyword=hyperfocal subgroup
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=141
end-page=158
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cesaro Orlicz sequence spaces and their Kothe-Toeplitz duals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The present paper focus on introducing certain classes of Ces?ro Orlicz sequences over n-normed spaces. We study some topological and algebraic properties of these spaces. Further, we examine relevant relations among the classes of these sequences. We show that these spaces are made n-BK-spaces under certain conditions. Finally, we compute the K?the-Toeplitz duals of these spaces.
en-copyright=
kn-copyright=
en-aut-name=RajKuldip
en-aut-sei=Raj
en-aut-mei=Kuldip
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AnandRenu
en-aut-sei=Anand
en-aut-mei=Renu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PandohSuruchi
en-aut-sei=Pandoh
en-aut-mei=Suruchi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=School of Mathematics Shri Mata Vaishno Devi University
kn-affil=
affil-num=2
en-affil=School of Mathematics Shri Mata Vaishno Devi University
kn-affil=
affil-num=3
en-affil=School of Mathematics Shri Mata Vaishno Devi University
kn-affil=
en-keyword=Orlicz function
kn-keyword=Orlicz function
en-keyword=Musielak-Orlicz function
kn-keyword=Musielak-Orlicz function
en-keyword=n-normed spaces
kn-keyword=n-normed spaces
en-keyword=difference sequence spaces
kn-keyword=difference sequence spaces
en-keyword=K?the-Toeplitz dual
kn-keyword=K?the-Toeplitz dual
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=129
end-page=139
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A limit transition from the Heckman-Opdam hypergeometric functions to the Whittaker functions associated with root systems
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We prove that the radial part of the class one Whittaker function on a split semisimple Lie group can be obtained as an appropriate limit of the Heckman-Opdam hypergeometric function.
en-copyright=
kn-copyright=
en-aut-name=ShimenoNobukazu
en-aut-sei=Shimeno
en-aut-mei=Nobukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=School of Science and Technology Kwansei Gakuin University
kn-affil=
en-keyword=root system
kn-keyword=root system
en-keyword=hypergeometric function
kn-keyword=hypergeometric function
en-keyword=Whittaker function
kn-keyword=Whittaker function
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=99
end-page=128
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Complex interpolation of smoothness Triebel-Lizorkin-Morrey spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= This paper extends the result in [8] to Triebel-Lizorkin-Morrey spaces which contains 4 parameters p, q, r, s. This paper reinforces our earlier paper [8] by Nakamura, the first and the third authors in two different directions. First, we include the smoothness parameter s and the second smoothness parameter r. In [8] we assumed s = 0 and r = 2. Here we relax the conditions on s and r to s ∈ R and 1 < r ? ∞. Second, we apply a formula obtained by Bergh in 1978 to prove our main theorem without using the underlying sequence spaces.
en-copyright=
kn-copyright=
en-aut-name=HakimDenny Ivanal
en-aut-sei=Hakim
en-aut-mei=Denny Ivanal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NogayamaToru
en-aut-sei=Nogayama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SawanoYoshihiro
en-aut-sei=Sawano
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Mathematics and Information Sciences, Tokyo Metropolitan University
kn-affil=
affil-num=2
en-affil=Department of Mathematics and Information Sciences, Tokyo Metropolitan University
kn-affil=
affil-num=3
en-affil=Department of Mathematics and Information Sciences, Tokyo Metropolitan University
kn-affil=
en-keyword=smoothness Morrey spaces
kn-keyword=smoothness Morrey spaces
en-keyword=Triebel-Lizorkin-Morrey spaces
kn-keyword=Triebel-Lizorkin-Morrey spaces
en-keyword=complex interpolation
kn-keyword=complex interpolation
en-keyword=square function
kn-keyword=square function
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=85
end-page=98
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the structure of the profile of finite connected quandles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We verify some cases of a conjecture by C. Hayashi on the structure of the profile of a finite connected quandle.
en-copyright=
kn-copyright=
en-aut-name=WatanabeTaisuke
en-aut-sei=Watanabe
en-aut-mei=Taisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
en-keyword=connected quandle
kn-keyword=connected quandle
en-keyword=finite quandle
kn-keyword=finite quandle
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=75
end-page=84
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the Diophantine equation in the form that a sum of cubes equals a sum of quintics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=IzadiFarzali
en-aut-sei=Izadi
en-aut-mei=Farzali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BaghalaghdamMehdi
en-aut-sei=Baghalaghdam
en-aut-mei=Mehdi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Mehdi Baghalaghdam Department of Mathematics Faculty of Science Azarbaijan Shahid Madani University
kn-affil=
affil-num=2
en-affil=Mehdi Baghalaghdam Department of Mathematics Faculty of Science Azarbaijan Shahid Madani University
kn-affil=
en-keyword=Diophantine equations
kn-keyword=Diophantine equations
en-keyword=Cubes
kn-keyword=Cubes
en-keyword=Quintics
kn-keyword=Quintics
en-keyword=Elliptic curves
kn-keyword=Elliptic curves
en-keyword=Rank
kn-keyword=Rank
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=37
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Reconstruction of inertia groups associated to log divisors from a configuration space group equipped with its collection of log-full subgroups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= In the present paper, we study configuration space groups. The goal of this paper is to reconstruct group-theoretically the inertia groups associated to various types of log divisors of a log configuration space of a smooth log curve from the associated configuration space group equipped with its collection of log-full subgroups.
en-copyright=
kn-copyright=
en-aut-name=HigashiyamaKazumi
en-aut-sei=Higashiyama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Research Institute for Mathematical Sciences Kyoto University
kn-affil=
en-keyword=anabelian geometry
kn-keyword=anabelian geometry
en-keyword=configuration space
kn-keyword=configuration space
en-keyword= log divisor
kn-keyword= log divisor
en-keyword= log-full subgroup
kn-keyword= log-full subgroup
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=35
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Berezin-Weyl quantization of Heisenberg motion groups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We introduce a Schr¨odinger model for the generic representations of a Heisenberg motion group and we construct adapted Weyl correspondences for these representations by adapting the method introduced in [ B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177-190].
en-copyright=
kn-copyright=
en-aut-name=CahenBenjamin
en-aut-sei=Cahen
en-aut-mei=Benjamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=D´epartement de math´ematiques Universit´e de Lorraine
kn-affil=
en-keyword=Weyl correspondence
kn-keyword=Weyl correspondence
en-keyword=Berezin quantization
kn-keyword=Berezin quantization
en-keyword=Heisenberg motion group
kn-keyword=Heisenberg motion group
en-keyword=Schr¨odinger representation
kn-keyword=Schr¨odinger representation
en-keyword=Bargmann-Fock representation
kn-keyword=Bargmann-Fock representation
en-keyword=Segal-Bargmann transform
kn-keyword=Segal-Bargmann transform
en-keyword=unitary representation
kn-keyword=unitary representation
en-keyword=coadjoint orbit
kn-keyword=coadjoint orbit
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=18
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the existence of non-finite coverings of stable curves over complete discrete valuation rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let R be a complete discrete valuation ring with algebraically residue field of characteristic p > 0 and X a stable curve over R. In the present paper, we study the geometry of coverings of X. Under certain assumptions, we prove that, by replacing R by a finite extension of R, there exists a morphism of stable curves f : Y → X over R such that the morphism fη : Yη → Xη induced by f on generic fibers is finite ?tale and the morphism fs : Ys → Xs induced by f on special fibers is non-finite.
en-copyright=
kn-copyright=
en-aut-name=YangYu
en-aut-sei=Yang
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Research Institute for Mathematical Sciences Kyoto University
kn-affil=
en-keyword=stable curve
kn-keyword=stable curve
en-keyword=stable covering
kn-keyword=stable covering
en-keyword=vertical point
kn-keyword=vertical point
en-keyword=admissible covering
kn-keyword=admissible covering
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=233
end-page=240
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the profinite abelian Beckmann-Black problem
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The main topic of this paper is to generalize the problem of Beckmann-Black for pro?nite groups. We introduce the Beckmann-Black problem for complete systems of ?finite groups and for unramified extensions. We prove that every Galois extension of profi?nite abelian group over a ψ-free fi?eld is the specialization of some tower of regular Galois extensions of the same group.
en-copyright=
kn-copyright=
en-aut-name=GhaziNour
en-aut-sei=Ghazi
en-aut-mei=Nour
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=University of Damascus, Faculty of Sciences, Department of Mathematics
kn-affil=
en-keyword=Inverse Galois theory
kn-keyword=Inverse Galois theory
en-keyword=algebraic covers
kn-keyword=algebraic covers
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=221
end-page=231
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A binomial-coefficient identity arising from the middle discrete series of SU(2,2)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this paper is to answer the question in Remark 8.2 of Takahiro Hayata, Harutaka Koseki, and Takayuki Oda, Matrix coefficients of the middle discrete series of SU(2; 2), J. Funct. Anal. 185 (2001), 297{341, by giving an elementary proof of certain identities on binomials.
en-copyright=
kn-copyright=
en-aut-name=HayataTakahiro
en-aut-sei=Hayata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaMasao
en-aut-sei=Ishikawa
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Science and Engineering, Yamagata University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=binomial-coefficient identity
kn-keyword=binomial-coefficient identity
en-keyword=middle discrete series
kn-keyword=middle discrete series
en-keyword= real semi-simple Lie groups.
kn-keyword= real semi-simple Lie groups.
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=209
end-page=219
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Necessary and sufficient Tauberian conditions for the A^r method of summability
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=M?ricz and Rhoades determined the necessary and sufficient Tauberian conditions for certain weighted mean methods of summability in [Acta. Math. Hungar. 102(4) (2004), 279{285]. In the present paper, we deal with the necessary and sufficient Tauberian conditions for the Ar method which was introduced by Bas?ar in [F?rat ?niv. Fen & M?h. Bil. Dergisi 5(1)(1993), 113{117].
en-copyright=
kn-copyright=
en-aut-name=Talo?zer
en-aut-sei=Talo
en-aut-mei=?zer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Bas?arFeyzi
en-aut-sei=Bas?ar
en-aut-mei=Feyzi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics Faculty of Science and Letters Manisa Celal Bayar University
kn-affil=
affil-num=2
en-affil=?n?n? University
kn-affil=
en-keyword=Summability by Ar methods
kn-keyword=Summability by Ar methods
en-keyword=one-sided and two-sided Tauberian conditions
kn-keyword=one-sided and two-sided Tauberian conditions
en-keyword=slowly oscillating sequences
kn-keyword=slowly oscillating sequences
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=175
end-page=208
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Indecomposability of various profinite groups arising from hyperbolic curves
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we prove that the etale fundamental group of a hyperbolic curve over an arithmetic field [e.g., a finite extension field of Q or Qp] or an algebraically closed field is indecomposable [i.e., cannot be decomposed into the direct product of nontrivial profinite groups]. Moreover, in the case of characteristic zero, we also prove that the etale fundamental group of the configuration space of a curve of the above type is indecomposable. Finally, we consider the topic of indecomposability in the context of the comparison of the absolute Galois group of Q with the Grothendieck-Teichmuller group GT and pose the question: Is GT indecomposable? We give an affirmative answer to a pro-l version of this question
en-copyright=
kn-copyright=
en-aut-name=MinamideArata
en-aut-sei=Minamide
en-aut-mei=Arata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Research Institute for Mathematical Sciences Kyoto University
kn-affil=
en-keyword=indecomposability
kn-keyword=indecomposability
en-keyword=etale fundamental group
kn-keyword=etale fundamental group
en-keyword=hyperbolic curve
kn-keyword=hyperbolic curve
en-keyword=con?guration space
kn-keyword=con?guration space
en-keyword=Grothendieck-Teichmuller group
kn-keyword=Grothendieck-Teichmuller group
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=165
end-page=173
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An alternative proof of some results on the framed bordism classes of low rank simple Lie groups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We present a uni?ed proof of some known results on the framed bordism classes of low rank simple Lie groups.
en-copyright=
kn-copyright=
en-aut-name=MinamiHaruo
en-aut-sei=Minami
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Nara University of Education
kn-affil=
en-keyword=framed manifolds
kn-keyword=framed manifolds
en-keyword=simple Lie groups
kn-keyword=simple Lie groups
en-keyword=stable homotopy groups
kn-keyword=stable homotopy groups
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=155
end-page=164
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Arithmetic of positive integers having prime sums of complementary divisors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study a class of integers called SP numbers (Sum Prime numbers). An SP number is by de?nition a positive integer d that gives rise to a prime number (a + b)=gcd(4; 1 + d) from every factorization d = ab. We also discuss properties of SP numbers in relations with arithmetic of imaginary quadratic ?elds (least split primes, exponents of ideal class groups). Further we point out that special cases of SP numbers provide the problems of distribution of prime numbers (twin primes, Sophi-Germain primes, quadratic progressions). Finally, we consider the problem whether there exist in?nitely many SP numbers.
en-copyright=
kn-copyright=
en-aut-name=ShimizuKenichi
en-aut-sei=Shimizu
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
en-keyword=SP number
kn-keyword=SP number
en-keyword=prime number
kn-keyword=prime number
en-keyword= imaginary quadratic fi?eld
kn-keyword= imaginary quadratic fi?eld
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=137
end-page=153
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A non-symmetric diffusion process on the Wiener space
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We discuss a non-symmetric diffusion process on the Wiener space. The process we consider is generated by A = L + b, L being the Ornstein-Uhlenbeck operator and b being a vector ?eld. Under suitable integrability condition for b, we show the existence of associated diffusion process. We also investigate the domain of the generator. Further we consider a similar problem in the ?nite dimensional Euclidean space.
en-copyright=
kn-copyright=
en-aut-name=ShigekawaIchiro
en-aut-sei=Shigekawa
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Graduate School of Science Kyoto University
kn-affil=
en-keyword=non-symmetric Dirichlet form
kn-keyword=non-symmetric Dirichlet form
en-keyword=Wiener space
kn-keyword=Wiener space
en-keyword=logarithmic Sobolev inequality
kn-keyword=logarithmic Sobolev inequality
en-keyword=generator domain
kn-keyword=generator domain
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=109
end-page=135
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A remark on a central limit theorem for non-symmetric random walks on crystal lattices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recently, Ishiwata, Kawabi and Kotani [4] proved two kinds of central limit theorems for non-symmetric random walks on crystal lattices from the view point of discrete geometric analysis developed by Kotani and Sunada. In the present paper, we establish yet another kind of the central limit theorem for them. Our argument is based on a measure-change technique due to Alexopoulos [1].
en-copyright=
kn-copyright=
en-aut-name=NambaRyuya
en-aut-sei=Namba
en-aut-mei=Ryuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Sciences, Okayama University
kn-affil=
en-keyword=crystal lattice
kn-keyword=crystal lattice
en-keyword=central limit theorem
kn-keyword=central limit theorem
en-keyword=non-symmetric random walk
kn-keyword=non-symmetric random walk
en-keyword=(modi?ed) harmonic realization
kn-keyword=(modi?ed) harmonic realization
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=91
end-page=108
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Primary decompositions in abelian R-categories
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We shall generalize the theory of primary decomposition and associated prime ideals of ?nitely generated modules over a noetherian ring to general objects in an abelian R-category where R is a noetherian commutative ring.
en-copyright=
kn-copyright=
en-aut-name=SatoKenichi
en-aut-sei=Sato
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshinoYuji
en-aut-sei=Yoshino
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=73
end-page=89
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Stable splittings of the complex connective K-theory of BSO(2n+1)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We give the stable splittings of the complex connective K-theory of the classifying space BSO(2n + 1), n?1.
en-copyright=
kn-copyright=
en-aut-name=WuTsung-Hsuan
en-aut-sei=Wu
en-aut-mei=Tsung-Hsuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics National Tsing Hua University
kn-affil=
en-keyword=stable splitting
kn-keyword=stable splitting
en-keyword=complex connective K-theory
kn-keyword=complex connective K-theory
en-keyword=classifying space
kn-keyword=classifying space
en-keyword=Adams spectral sequence
kn-keyword=Adams spectral sequence
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=59
end-page=72
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Absolute continuity of the representing measures of the transmutation operators attached to the root system of type BC2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We prove in this paper the absolute continuity of the representing measures of the transmutation operators Vk, tVk and VkW, tVkW associated respectively to the Cherednik operators and the Heckman-Opdam theory attached to the root system of type BC2.
en-copyright=
kn-copyright=
en-aut-name=Trim?cheKhalifa
en-aut-sei=Trim?che
en-aut-mei=Khalifa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Faculty of sciences of Tunis University
kn-affil=
en-keyword=Transmutation operators
kn-keyword=Transmutation operators
en-keyword=Absolute continuity of the representing measures
kn-keyword=Absolute continuity of the representing measures
en-keyword=Cherednik operators
kn-keyword=Cherednik operators
en-keyword=Heckman-Opdam theory
kn-keyword=Heckman-Opdam theory
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=37
end-page=58
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tomita-Takesaki theory and its application to the structure theory of factors of type III
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We give a survey of Tomita-Takesaki theory and the development of analysis of structure of type III factors, which started from Tomita-Takesaki theory.
en-copyright=
kn-copyright=
en-aut-name=MasudaToshihiko
en-aut-sei=Masuda
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Mathematics, Kyushu University
kn-affil=
en-keyword=Tomita-Takesaki theory
kn-keyword=Tomita-Takesaki theory
en-keyword= type III factors
kn-keyword= type III factors
en-keyword= injective factors
kn-keyword= injective factors
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=36
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Review on higher homotopies in the theory of H-spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Higher homotopy in the theory of H-spaces started from the works by Sugawara in the 1950th. In this paper we review the development of the theory of H-spaces associated with it. Mainly there are two types of higher homotopies, homotopy associativity and homotopy commutativity. We give explanations of the polytopes used as the parameter spaces of those higher forms.
en-copyright=
kn-copyright=
en-aut-name=HemmiYutaka
en-aut-sei=Hemmi
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Faculty of Science and Technology Kochi University
kn-affil=
en-keyword=H-space
kn-keyword=H-space
en-keyword=higher homotopy associativity
kn-keyword=higher homotopy associativity
en-keyword=An-form
kn-keyword=An-form
en-keyword=higher homotopy commutativity
kn-keyword=higher homotopy commutativity
en-keyword=associahedra
kn-keyword=associahedra
en-keyword=multiplihedra
kn-keyword=multiplihedra
en-keyword=permutohedra
kn-keyword=permutohedra
en-keyword=resultohedra
kn-keyword=resultohedra
en-keyword=permuto-associahedra
kn-keyword=permuto-associahedra
en-keyword=cyclohedra
kn-keyword=cyclohedra
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=175
end-page=218
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Blowup and global existence of a solution to a semilinear reaction-diffusion system with the fractional Laplacian
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we deal with the semilinear reaction diffusion system with the fractional Laplacian.

where p,q > 1 and 0 < α < 1. We study the existence of a global in time solution, the blowup of a solution, and the life span of the blowup solution to the above reaction-diffusion system for sufficiently small initial data.
en-copyright=
kn-copyright=
en-aut-name=KakehiTomoyuki
en-aut-sei=Kakehi
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OshitaYoshihito
en-aut-sei=Oshita
en-aut-mei=Yoshihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Okayama University
kn-affil=
en-keyword=Reaction diffusion system
kn-keyword=Reaction diffusion system
en-keyword=fractional Laplacian
kn-keyword=fractional Laplacian
en-keyword=global existence
kn-keyword=global existence
en-keyword=blowup
kn-keyword=blowup
en-keyword=life span
kn-keyword=life span
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=149
end-page=174
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Scattering and semi-classical asymptotics for periodic Schrödinger operators with oscillating decaying potential
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the semi-classical regime (i.e., h ↘ 0), we study the effect of an oscillating decaying potential V (hy, y) on the periodic Schrödinger operator H. The potential V (x, y) is assumed to be smooth, periodic with respect to y and tends to zero as |x| → ∞. We prove the existence of O(h?n) eigenvalues in each gap of the operator H + V (hy, y). We also establish a Weyl type asymptotics formula of the counting function of eigenvalues with optimal remainder estimate. We give a weak and pointwise asymptotic expansions in powers of h of the spectral shift function corresponding to the pair (H + V (hy, y),H). Finally, under some analytic assumption on the potential V we prove the existence of shape resonances, and we give their asymptotic expansions in powers of h1/2. All our results depend on the Floquet eigenvalues corresponding to the periodic Schrödinger operator H +V (x, y), (here x is a parameter).
en-copyright=
kn-copyright=
en-aut-name=DimassiMouez
en-aut-sei=Dimassi
en-aut-mei=Mouez
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Anh Tuan Duong
en-aut-sei=Anh Tuan Duong
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Universit´e Bordeaux I, Institut de Math´ematiques de Bordeaux
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Hanoi National University of Education
kn-affil=
en-keyword=Periodic Schrödinger operator
kn-keyword=Periodic Schrödinger operator
en-keyword=oscillating potential
kn-keyword=oscillating potential
en-keyword=spectral shift function
kn-keyword=spectral shift function
en-keyword=asymptotic expansions
kn-keyword=asymptotic expansions
en-keyword=resonances
kn-keyword=resonances
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=141
end-page=147
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the (1 ? C2) condition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we give some results on (1 ? C2)?modules and 1?continuous modules.
en-copyright=
kn-copyright=
en-aut-name=Le Van An
en-aut-sei=Le Van An
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Nguyen Thi Hai Anh
en-aut-sei=Nguyen Thi Hai Anh
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Ngo Sy Tung
en-aut-sei=Ngo Sy Tung
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Natural Education, Ha Tinh University
kn-affil=
affil-num=2
en-affil=Department of Natural Education, Ha Tinh University
kn-affil=
affil-num=3
en-affil=Department of Mathematics, Vinh University
kn-affil=
en-keyword=injective module
kn-keyword=injective module
en-keyword=continuous module
kn-keyword=continuous module
en-keyword=uniform module
kn-keyword=uniform module
en-keyword=UC module
kn-keyword=UC module
en-keyword=distributive module
kn-keyword=distributive module
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=131
end-page=140
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Higher-dimensional absolute versions of symmetric, Frobenius, and quasi-Frobenius algebras
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we define and discuss higher-dimensional and absolute versions of symmetric, Frobenius, and quasi-Frobenius algebras. In particular, we compare these with the relative notions defined by Scheja and Storch. We also prove the validity of codimension two-argument for modules over a coherent sheaf of algebras with a 2-canonical module, generalizing a result of the author.
en-copyright=
kn-copyright=
en-aut-name=HashimotoMitsuyasu
en-aut-sei=Hashimoto
en-aut-mei=Mitsuyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Faculty of Science, Okayama University
kn-affil=
en-keyword=canonical module
kn-keyword=canonical module
en-keyword=symmetric algebra
kn-keyword=symmetric algebra
en-keyword=Frobenius algebra
kn-keyword=Frobenius algebra
en-keyword=quasi-Frobenius algebra
kn-keyword=quasi-Frobenius algebra
en-keyword=n-canonical module
kn-keyword=n-canonical module
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=117
end-page=130
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A note on balance equations for doubly periodic minimal surfaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Most known examples of doubly periodic minimal surfaces in R3 with parallel ends limit as a foliation of R3 by horizontal noded planes, with the location of the nodes satisfying a set of balance equations. Conversely, for each set of points providing a balanced configuration, there is a corresponding three-parameter family of doubly periodic minimal surfaces. In this note we derive a differential equation that is equivalent to the balance equations for doubly periodic minimal surfaces. This allows for the generation of many more solutions to the balance equations, enabling the construction of increasingly complicated surfaces.
en-copyright=
kn-copyright=
en-aut-name=ConnorPeter
en-aut-sei=Connor
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematical Sciences, Indiana University South Bend
kn-affil=
en-keyword=minimal surfaces
kn-keyword=minimal surfaces
en-keyword=doubly periodic
kn-keyword=doubly periodic
en-keyword=balance equations
kn-keyword=balance equations
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=113
end-page=116
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A remark on the Lavallee-Spearman-Williams-Yang family of quadratic fields
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In [4], M. J. Lavallee, B. K. Spearman, K. S. Williams and Q. Yang introduced a certain parametric D5-quintic polynomial and studied its splitting field. The present paper gives an infinite family of quadratic fields with class number divisible by 5 by using properties of its polynomial.
en-copyright=
kn-copyright=
en-aut-name=KimKwang-Seob
en-aut-sei=Kim
en-aut-mei=Kwang-Seob
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KishiYasuhiro
en-aut-sei=Kishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=School of Mathematics, Korea Institute for Advanced Study
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Aichi University of Education
kn-affil=
en-keyword=Class numbers
kn-keyword=Class numbers
en-keyword=Quadratic fields
kn-keyword=Quadratic fields
en-keyword=D5-polynomials
kn-keyword=D5-polynomials
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=93
end-page=111
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gauss maps of cuspidal edges in hyperbolic 3-space, with application to flat fronts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study singularities of de Sitter Gauss map images of cuspidal edges in hyperbolic 3-space. We show relations between singularities of de Sitter Gauss map images and differential geometric properties of cuspidal edges. Moreover, we apply this result to flat fronts in hyperbolic 3-space.
en-copyright=
kn-copyright=
en-aut-name=OgataYuta
en-aut-sei=Ogata
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TeramotoKeisuke
en-aut-sei=Teramoto
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Graduate School of Science, Kobe University
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Graduate School of Science, Kobe University
kn-affil=
en-keyword=cuspidal edge
kn-keyword=cuspidal edge
en-keyword=swallowtail
kn-keyword=swallowtail
en-keyword=de Sitter Gauss map image
kn-keyword=de Sitter Gauss map image
en-keyword=singularity
kn-keyword=singularity
en-keyword=flat front
kn-keyword=flat front
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=81
end-page=92
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An arithmetic function arising from the Dedekind ψ function
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We define ψ‾ to be the multiplicative arithmetic function that satisfies

for all primes p and positive integers α. Let λ(n) be the number of iterations of the function ψ‾ needed for n to reach 2. It follows from a theorem due to White that λ is additive. Following Shapiro's work on the iterated φ function, we determine bounds for λ. We also use the function λ to partition the set of positive integers into three sets S1, S2, S3 and determine some properties of these sets.
en-copyright=
kn-copyright=
en-aut-name=DefantColin
en-aut-sei=Defant
en-aut-mei=Colin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, University of Florida
kn-affil=
en-keyword=Iterated function
kn-keyword=Iterated function
en-keyword=Dedekind function
kn-keyword=Dedekind function
en-keyword=additive function
kn-keyword=additive function
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=71
end-page=79
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of convolution sums and some remarks on cusp forms of weight 4 and level 12
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this note, we evaluate certain convolution sums and make some remarks about the Fourier coefficients of cusp forms of weight 4 for Γ0(12). We express the normalized newform of weight 4 on Γ0(12) as a linear combination of the (quasimodular) Eisenstein series (of weight 2) E2(dz), d|12 and their derivatives. Now, by comparing the work of Alaca-Alaca-Williams [1] with our results, as a consequence, we express the coefficients c1,12(n) and c3,4(n) that appear in [1, Eqs.(2.7) and (2.12)] in terms of linear combination of the Fourier coefficients of newforms of weight 4 on Γ0(6) and Γ0(12). The properties of c1,12(n) and c3,4(n) that are derived in [1] now follow from the properties of the Fourier coefficients of the newforms mentioned above. We also express the newforms as a linear combination of certain eta-quotients and obtain an identity involving eta-quotients.
en-copyright=
kn-copyright=
en-aut-name=RamakrishhanB.
en-aut-sei=Ramakrishhan
en-aut-mei=B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SahuBrundaban
en-aut-sei=Sahu
en-aut-mei=Brundaban
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Harish-Chandra Research Institute
kn-affil=
affil-num=2
en-affil=School of Mathematical Sciences National Institute of Science Education and Research
kn-affil=
en-keyword=convolution sums of the divisor function
kn-keyword=convolution sums of the divisor function
en-keyword=Fourier coeffificients
kn-keyword=Fourier coeffificients
en-keyword=newforms of integral weight
kn-keyword=newforms of integral weight
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=41
end-page=70
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On a non-abelian generalization of the Bloch?Kato exponential map
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The present paper establishes a non-abelian generalization of the Bloch?Kato exponential map. Then, we relate p-adic polylogarithms introduced by Coleman to `-adic polylogarithms introduced by Wojtkowiak. This formula is another analog of the Coleman?Ihara formula obtained by Nakamura, Wojtkowiak, and the author.
en-copyright=
kn-copyright=
en-aut-name=SakugawaKenji
en-aut-sei=Sakugawa
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Graduate School of Science, Osaka University
kn-affil=
en-keyword=Bloch?Kato exponential map
kn-keyword=Bloch?Kato exponential map
en-keyword=Non-abelian p-adic Hodge theory
kn-keyword=Non-abelian p-adic Hodge theory
en-keyword=Coleman?Ihara formula
kn-keyword=Coleman?Ihara formula
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=27
end-page=40
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The degree of set-valued mappings from ANR spaces to homology spheres
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An admissible mapping is a set-valued mapping which has a selected pair of continuous mappings. In this paper, we study the degree of admissible mappings from ANR spaces to homology spheres and prove the uniqueness of the degree under some conditions.
en-copyright=
kn-copyright=
en-aut-name=ShitandaYoshimi
en-aut-sei=Shitanda
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=School of political science and economics, Meiji University
kn-affil=
en-keyword=Gysin-Smith sequence
kn-keyword=Gysin-Smith sequence
en-keyword=Vietoris-Begle mapping theorem
kn-keyword=Vietoris-Begle mapping theorem
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=21
end-page=25
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Some examples of non-tidy spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We construct a free Z2-space Xn for a positive integer n such that w1(Xn)n ≠ 0 but there is no Z2-map from S2 to Xn.
en-copyright=
kn-copyright=
en-aut-name=MatsushitaTakahiro
en-aut-sei=Matsushita
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Mathematical Sciences, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=19
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Categorical characterization of strict morphisms of fs log schemes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the present paper, we study a categorical characterization of strict morphisms of fs log schemes. In particular, we prove that strictness of morphisms of fs log schemes is preserved by an arbitrary equivalence of categories between suitable categories of fs log schemes. The main result of the present paper leads us to a relatively simple alternative proof of a result on a categorical representation of fs log schemes proved by S. Mochizuki.
en-copyright=
kn-copyright=
en-aut-name=HoshiYuichiro
en-aut-sei=Hoshi
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakayamaChikara
en-aut-sei=Nakayama
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Research Institute for Mathematical Sciences, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Economics, Hitotsubashi University
kn-affil=
en-keyword=fs log scheme
kn-keyword=fs log scheme
en-keyword=strict morphism
kn-keyword=strict morphism
en-keyword=fs log point
kn-keyword=fs log point
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=183
end-page=198
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The positivity of the transmutation operators associated to the Cherednik operators for the root system $BC_2$
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We consider the transmutation operators Vk, tVk and V W k , tV W k associated respectively with the Cherednik operators and the Heckman-Opdam theory attached to the root system BC2, called also in [8, 9, 10] the trigonometric Dunkl intertwining operators, and their dual. In this paper we prove that the operators Vk, tVk and VWk , tVWk are positivity preserving and allows positive integral representations. In particular we deduce that the Opdam-Cherednik and the Heckman-Opdam kernels are positive definite.
en-copyright=
kn-copyright=
en-aut-name=TRIM?CHEKhalifa
en-aut-sei=TRIM?CHE
en-aut-mei=Khalifa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Faculty of Science of Tunis University Tunis El-Manar
en-keyword=Cherednik operators-Root system of type BC2
kn-keyword=Cherednik operators-Root system of type BC2
en-keyword=Transmutation operators
kn-keyword=Transmutation operators
en-keyword=The trigonometric Dunkl intertwining operator and its dual
kn-keyword=The trigonometric Dunkl intertwining operator and its dual
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=169
end-page=182
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On weakly separable polynomials and weakly quasi-separable polynomials over rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Separable extensions of noncommutative rings have already been studied extensively. Recently, N. Hamaguchi and A. Nakajima introduced the notions of weakly separable extensions and weakly quasiseparable extensions. They studied weakly separable polynomials and weakly quasi-separable polynomials in the case that the coefficient ring is commutative. The purpose of this paper is to give some improvements and generalizations of Hamaguchi and Nakajima's results. We shall characterize a weakly separable polynomial f(X) over a commutative ring by using its derivative f′(X) and its discriminant δ(f(X)). Further, we shall try to give necessary and sufficient conditions for weakly separable polynomials in skew polynomial rings in the case that the coefficient ring is noncommutative.
en-copyright=
kn-copyright=
en-aut-name=YamanakaSatoshi
en-aut-sei=Yamanaka
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Graduate School of Natural Science and Technology Okayama University
en-keyword=separable extension
kn-keyword=separable extension
en-keyword=quasi-separable extension
kn-keyword=quasi-separable extension
en-keyword=weakly separable extension
kn-keyword=weakly separable extension
en-keyword=weakly quasi-separable extension
kn-keyword=weakly quasi-separable extension
en-keyword=skew polynomial ring
kn-keyword=skew polynomial ring
en-keyword=derivation
kn-keyword=derivation
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=159
end-page=167
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Restriction on Galois groups by prime inert condition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we study number fields K with the property that every prime factor of the degree of K remains prime in K. We determine all types of Galois groups of such K up to degree nine and find that Wang's non-existence in cyclic octic case is exceptionally undetermined by our group-theoretic criterion.
en-copyright=
kn-copyright=
en-aut-name=KomatsuToru
en-aut-sei=Komatsu
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Faculty of Science and Technology Tokyo University of Science
en-keyword=Inverse Galois theory
kn-keyword=Inverse Galois theory
en-keyword=prime factorization
kn-keyword=prime factorization
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=141
end-page=158
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alternative approach for Siegel's lemma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this article, we present an alternative approach to show a generalization of Siegel's lemma which is an essential tool in Diophantine problems. Our main statement contains the so-called analytic Siegel's lemma as well as the Bombieri-Vaaler lemma. Our proof avoids relying on the ordinary geometry of numbers.
en-copyright=
kn-copyright=
en-aut-name=NagataMakoto
en-aut-sei=Nagata
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Osaka University of Pharmaceutical Sciences
en-keyword=Siegel’s lemma
kn-keyword=Siegel’s lemma
en-keyword=geometry of numbers
kn-keyword=geometry of numbers
en-keyword=height
kn-keyword=height
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=133
end-page=140
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On finite rings over which every free codes is splitting
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we study the structure of finite rings over which all free codes are splitting. In particular, we show that over the matrix rings over finite local rings all free codes are splitting.
en-copyright=
kn-copyright=
en-aut-name=HiranoYasuyuki
en-aut-sei=Hirano
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Naruto university of Education
en-keyword=finite rings
kn-keyword=finite rings
en-keyword=ring-linear codes
kn-keyword=ring-linear codes
en-keyword=free codes
kn-keyword=free codes
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=125
end-page=132
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On a duality of Gras between totally positive and primary cyclotomic units
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let K be a real abelian field of odd degree over Q, and C the group of cyclotomic units of K. We denote by C+ and C0 the totally positive and primary elements of C, respectively. G. Gras found a duality between the Galois modules C+/C2 and C0/C2 by some ingenious calculation on cyclotomic units. We give an alternative proof using a consequence (=“Gras conjecture”) of the Iwasawa main conjecture and the standard reflection argument. We also give some related topics.
en-copyright=
kn-copyright=
en-aut-name=IchimuraHumio
en-aut-sei=Ichimura
en-aut-mei=Humio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Faculty of Science, Ibaraki University
en-keyword=cyclotomic units
kn-keyword=cyclotomic units
en-keyword=reflection argument
kn-keyword=reflection argument
en-keyword=ideal class group
kn-keyword=ideal class group
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=109
end-page=123
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Another description of quasi tertiary composition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We give another description of quasi tertiary composition in terms of horizontal and vertical compositions. As an application of the description and a modified result of Hardie-Kamps-Marcum-Oda, we see that any quasi tertiary composition has an indeterminacy.
en-copyright=
kn-copyright=
en-aut-name=?shimaHideaki
en-aut-sei=?shima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=?shimaKatsumi
en-aut-sei=?shima
en-aut-mei=Katsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Ibaraki University
affil-num=2
en-affil=
kn-affil=
en-keyword=Toda bracket
kn-keyword=Toda bracket
en-keyword=tertiary composition
kn-keyword=tertiary composition
en-keyword=quasi tertiary composition
kn-keyword=quasi tertiary composition
en-keyword=horizontal composition
kn-keyword=horizontal composition
en-keyword=vertical composition
kn-keyword=vertical composition
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=79
end-page=108
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Aharonov--Bohm effect in resonances of magnetic Schr?dinger operators in two dimensions III
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study the Aharonov?Bohm effect (AB effect) in quantum resonances for magnetic scattering in two dimensions. The system consists of four scatters, two obstacles and two scalar potentials with compact support, which are largely separated from one another. The obstacles by which the magnetic fields are completely shielded are vertically placed between the supports of the two potentials. The system yields a two dimensional model of a toroidal scattering system in three dimensions. The resonances are shown to be generated near the real axis by the trajectories trapped between two supports of the scalar potentials as the distances between the scatterers go to infinity. We analyze how the AB effect influences the location of resonances. The result heavily depends on the width between the two obstacles as well as on the magnetic fluxes. The critical case is that the width is comparable to the square root of the distance between the supports of the two potentials.
en-copyright=
kn-copyright=
en-aut-name=TamuraHideo
en-aut-sei=Tamura
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Okayama University
en-keyword=Aharonov?Bohm effect
kn-keyword=Aharonov?Bohm effect
en-keyword=magnetic Schr?dinger operator
kn-keyword=magnetic Schr?dinger operator
en-keyword=resonances
kn-keyword=resonances
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=41
end-page=78
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Aharonov--Bohm effect in resonances of magnetic Schr?dinger operators in two dimensions II
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study the Aharonov?Bohm effect (AB effect) in quantum resonances for magnetic scattering in two dimensions. The system consists of four scatters, two obstacles and two scalar potentials with compact support, which are largely separated from one another. The obstacles by which the magnetic fields are completely shielded are horizontally placed between the supports of the two potentials. The fields do not influence particles from a classical mechanical point of view, but quantum particles are influenced by the corresponding vector potential which does not necessarily vanish outside the obstacle. This quantum phenomenon is called the AB effect. The resonances are shown to be generated near the real axis by the trajectories trapped between two supports of the scalar potentials as the distances between the scatterers go to infinity. We analyze how the AB effect influences the location of resonances. The result is described in terms of the backward amplitudes for scattering by each of the scalar potentials, and it depends heavily on the ratios of the distances between the four scatterers as well as on the magnetic fluxes of the fields.
en-copyright=
kn-copyright=
en-aut-name=TamuraHideo
en-aut-sei=Tamura
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Okayama University
en-keyword=Aharonov?Bohm effect
kn-keyword=Aharonov?Bohm effect
en-keyword=magnetic Schr?dinger operator
kn-keyword=magnetic Schr?dinger operator
en-keyword=resonances
kn-keyword=resonances
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=39
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Asymptotic properties in forward directions of resolvent kernels of magnetic Schr?dinger operators in two dimensions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study the asymptotic properties in forward directions of resolvent kernels with spectral parameters in the lower half plane (unphysical sheet) of the complex plane for magnetic Schr?dinger operators in two dimensions. The asymptotic formula obtained has an application to the problem of quantum resonances in magnetic scattering, and it is especially helpful in studying how the Aharonov?Bohm effect influences the location of resonances. Here we mention only the results without proofs.
en-copyright=
kn-copyright=
en-aut-name=TamuraHideo
en-aut-sei=Tamura
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Okayama University
en-keyword=Aharonov?Bohm effect
kn-keyword=Aharonov?Bohm effect
en-keyword=magnetic Schr?dinger operator
kn-keyword=magnetic Schr?dinger operator
en-keyword=resolvent kernel
kn-keyword=resolvent kernel
en-keyword=resonances
kn-keyword=resonances
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=173
end-page=200
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ZERO MEAN CURVATURE SURFACES IN LORENTZ-MINKOWSKI 3-SPACE AND 2-DIMENSIONAL FLUID MECHANICS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Space-like maximal surfaces and time-like minimal surfaces
in Lorentz-Minkowski 3-space R31 are both characterized as zero mean
curvature surfaces. We are interested in the case where the zero mean
curvature surface changes type from space-like to time-like at a given
non-degenerate null curve. We consider this phenomenon and its interesting connection to 2-dimensional fluid mechanics in this expository
article.
en-copyright=
kn-copyright=
en-aut-name=FujimoriShoichi
en-aut-sei=Fujimori
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimYoung Wook
en-aut-sei=Kim
en-aut-mei=Young Wook
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KohSung-Eun
en-aut-sei=Koh
en-aut-mei=Sung-Eun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=RossmanWayne
en-aut-sei=Rossman
en-aut-mei=Wayne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShinHeayong
en-aut-sei=Shin
en-aut-mei=Heayong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UmeharaMasaaki
en-aut-sei=Umehara
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamadaKotaro
en-aut-sei=Yamada
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YangSeong-Deog
en-aut-sei=Yang
en-aut-mei=Seong-Deog
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Faculty of Science, Okayama University
affil-num=2
en-affil=
kn-affil=Department of Mathematics, Korea University
affil-num=3
en-affil=
kn-affil=Department of Mathematics, Konkuk University
affil-num=4
en-affil=
kn-affil=Department of Mathematics, Faculty of Science, Kobe University
affil-num=5
en-affil=
kn-affil=Department of Mathematics, Chung-Ang University
affil-num=6
en-affil=
kn-affil=Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
affil-num=7
en-affil=
kn-affil=Department of Mathematics, Tokyo Institute of Technology
affil-num=8
en-affil=
kn-affil=Department of Mathematics, Korea University
en-keyword=maximal surface
kn-keyword=maximal surface
en-keyword=type change
kn-keyword=type change
en-keyword=zero mean curvature
kn-keyword=zero mean curvature
en-keyword=subsonic flow
kn-keyword=subsonic flow
en-keyword=supersonic flow
kn-keyword=supersonic flow
en-keyword=stream function
kn-keyword=stream function
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=159
end-page=172
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ENUMERATIVE COMBINATORICS ON DETERMINANTS AND SIGNED BIGRASSMANNIAN POLYNOMIALS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=As an application of linear algebra for enumerative combinatorics,
we introduce two new ideas, signed bigrassmannian polynomials
and bigrassmannian determinant. First, a signed bigrassmannian
polynomial is a variant of the statistic given by the number of bigrassmannian
permutations below a permutation in Bruhat order as Reading
suggested (2002) and afterward the author developed (2011). Second,
bigrassmannian determinant is a q-analog of the determinant with respect
to our statistic. It plays a key role for a determinantal expression
of those polynomials. We further show that bigrassmannian determinant
satisfies weighted condensation as a generalization of Dodgson,
Jacobi-Desnanot and Robbins-Rumsey (1986).
en-copyright=
kn-copyright=
en-aut-name=KobayashiMasato
en-aut-sei=Kobayashi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Graduate School of Science and Engineering Department of Mathematics Saitama University
en-keyword=Bigrassmannian permutations
kn-keyword=Bigrassmannian permutations
en-keyword=Bruhat order
kn-keyword=Bruhat order
en-keyword=Permutation statistics
kn-keyword=Permutation statistics
en-keyword=Robbins-Rumsey determinant
kn-keyword=Robbins-Rumsey determinant
en-keyword=Symmetric Groups
kn-keyword=Symmetric Groups
en-keyword=Tournaments
kn-keyword=Tournaments
en-keyword=Vandermonde determinant
kn-keyword=Vandermonde determinant
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=149
end-page=158
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON ∅-RECURRENT CONTACT METRIC MANIFOLDS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we prove that evry 3-dimensional manifold
M is a ∅-recurrent N(k)-contact metric manifold if and only if it is flat.
Then we classify the ∅-recurrent contact metric manifolds of constant
curvature. This implies that there exists no ∅-recurrent N(k)-contact
metric manifold, which is neither symmetric nor locally ∅-symmetric.
en-copyright=
kn-copyright=
en-aut-name=PeyghanEsmaeil
en-aut-sei=Peyghan
en-aut-mei=Esmaeil
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NasrabadiHassan
en-aut-sei=Nasrabadi
en-aut-mei=Hassan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TayebiAkbar
en-aut-sei=Tayebi
en-aut-mei=Akbar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Faculty of Science Arak University
affil-num=2
en-affil=
kn-affil=Department of Mathematics, Faculty of Science Arak University
affil-num=3
en-affil=
kn-affil=Department of Mathematics, Faculty of Science University of Qom
en-keyword=Constant curvature
kn-keyword=Constant curvature
en-keyword=Locally ∅-symmetric
kn-keyword=Locally ∅-symmetric
en-keyword=N(k)-contact metric manifold
kn-keyword=N(k)-contact metric manifold
en-keyword=∅-recurrent
kn-keyword=∅-recurrent
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=129
end-page=148
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=AN EXPLICIT EFFECT OF NON-SYMMETRY OF RANDOM WALKS ON THE TRIANGULAR LATTICE
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the present paper, we study an explicit effect of non-symmetry on asymptotics of the n-step transition probability as n → ∞
for a class of non-symmetric random walks on the triangular lattice. Realizing the triangular lattice into R2 appropriately, we observe that the
Euclidean distance in R2 naturally appears in the asymptotics. We characterize this realization from a geometric view point of Kotani-Sunada’s
standard realization of crystal lattices. As a corollary of the main theorem, we obtain that the transition semigroup generated by the non-symmetric random walk approximates the heat semigroup generated by
the usual Brownian motion on R2.
en-copyright=
kn-copyright=
en-aut-name=IshiwataSatoshi
en-aut-sei=Ishiwata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawabiHiroshi
en-aut-sei=Kawabi
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeruyaTsubasa
en-aut-sei=Teruya
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematical Sciences, Faculty of Science Yamagata University
affil-num=2
en-affil=
kn-affil=Department of Mathematics, Faculty of Science Okayama University
affil-num=3
en-affil=
kn-affil=The Okinawa Kaiho Bank, Ltd.
en-keyword=Non-symmetric random walk
kn-keyword=Non-symmetric random walk
en-keyword=asymptotic expansion
kn-keyword=asymptotic expansion
en-keyword=triangular lattice
kn-keyword=triangular lattice
en-keyword=standard realization
kn-keyword=standard realization
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=123
end-page=128
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=THE EQUIVARIANT SIMPLICIAL DE RHAM COMPLEX AND THE CLASSIFYING SPACE OF A SEMI-DIRECT PRODUCT GROUP
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We show that the cohomology group of the total complex
of the equivariant simplicial de Rham complex is isomorphic to the cohomology
group of the classifying space of a semi-direct product group.
en-copyright=
kn-copyright=
en-aut-name=SuzukiNaoya
en-aut-sei=Suzuki
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Graduate School of Mathematics, Nagoya University
en-keyword=simplicial de Rham complex
kn-keyword=simplicial de Rham complex
en-keyword=classifying space
kn-keyword=classifying space
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=111
end-page=122
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=THE CANONICAL LINE BUNDLES OVER EQUIVARIANT REAL PROJECTIVE SPACES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A generator of the reduced KO-group of the real projective space of dimension n is related to the canonical line bundle γ. In
the present paper, we will prove that for a finite group G of odd order and a real G-representation U of dimension 2n, in the reduced G-equivariant KO-group of the real projective space associated with the
G-representation R ? U, the element 2n+2[γ] is equal to zero.
en-copyright=
kn-copyright=
en-aut-name=QiYan
en-aut-sei=Qi
en-aut-mei=Yan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Graduate School of Natural Science and Technology Okayama University
en-keyword=equivariant real vector bundle
kn-keyword=equivariant real vector bundle
en-keyword=group action
kn-keyword=group action
en-keyword=real projective space
kn-keyword=real projective space
en-keyword=canonical line bundle
kn-keyword=canonical line bundle
en-keyword=product bundle
kn-keyword=product bundle
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=99
end-page=110
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SUPPLEMENTED MORPHISMS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the present paper, left R-modules M and N are studied
under the assumptions that HomR(M,N) is supplemented. It is shown
that Hom(M,N) is (?, G*, amply)-supplemented if and only if N is
(?, G*, amply)-supplemented. Some applications to cosemisimple modules,
refinable modules and UCC-modules are presented. Finally, the
relationship between the Jacobson radical J[M,N] of HomR(M,N) and
HomR(M,N) is supplemented are investigated. Let M be a finitely generated,
self-projective left R-module and N ∈ Gen(M). We show that if
Hom(M,N) is supplemented and N has GD2 then Hom(M,N)/J(M,N)
is semisimple as a left EM-module.
en-copyright=
kn-copyright=
en-aut-name=K?rArda
en-aut-sei=K?r
en-aut-mei=Arda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=QuynhTruong Cong
en-aut-sei=Quynh
en-aut-mei=Truong Cong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=?ahinkayaSerap
en-aut-sei=?ahinkaya
en-aut-mei=Serap
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Ko?anMuhammet Tamer
en-aut-sei=Ko?an
en-aut-mei=Muhammet Tamer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Gebze Institute of Technology
affil-num=2
en-affil=
kn-affil=Department of Mathematics Danang University
affil-num=3
en-affil=
kn-affil=Department of Mathematics, Gebze Institute of Technology
affil-num=4
en-affil=
kn-affil=Department of Mathematics, Gebze Institute of Technology
en-keyword=regular module
kn-keyword=regular module
en-keyword=supplemented module
kn-keyword=supplemented module
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=85
end-page=98
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=STEENROD-?ECH HOMOLOGY-COHOMOLOGY THEORIES ASSOCIATED WITH BIVARIANT FUNCTORS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let NG0 denote the category of all pointed numerically
generated spaces and continuous maps preserving base-points. In [SYH],
we described a passage from bivariant functors NG0op
× NG0 → NG0
to generalized homology and cohomology theories. In this paper, we
construct a bivariant functor such that the associated cohomology is
the ?ech cohomology and the homology is the Steenrod homology (at
least for compact metric spaces).
en-copyright=
kn-copyright=
en-aut-name=YoshidaKohei
en-aut-sei=Yoshida
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Kyoto Rakuhoku High School
en-keyword=?ech cohomologies
kn-keyword=?ech cohomologies
en-keyword=Steenrod homologies
kn-keyword=Steenrod homologies
en-keyword=bivariant functors
kn-keyword=bivariant functors
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=79
end-page=84
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON MODEL STRUCTURE FOR COREFLECTIVE SUBCATEGORIES OF A MODEL CATEGORY
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HaraguchiTadayuki
en-aut-sei=Haraguchi
en-aut-mei=Tadayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of General Education Oita National College of Technology
en-keyword=model category
kn-keyword=model category
en-keyword=Quillen equivalence
kn-keyword=Quillen equivalence
en-keyword=numerically generated space
kn-keyword=numerically generated space
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=13
end-page=78
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=QUASI TERTIARY COMPOSITIONS AND A TODA BRACKET IN HOMOTOPY GROUPS OF SU(3)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We revise the theories of tertiary compositions studied by
Ôguchi and Mimura. As a byproduct, we determine a Toda bracket
in homotopy groups of SU(3) which solves an ambiguity in a previous
paper of Maruyama and the first author.
en-copyright=
kn-copyright=
en-aut-name=?shimaHideaki
en-aut-sei=?shima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=?shimaKatsumi
en-aut-sei=?shima
en-aut-mei=Katsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Ibaraki University
affil-num=2
en-affil=
kn-affil=
en-keyword=Toda bracket
kn-keyword=Toda bracket
en-keyword=tertiary composition
kn-keyword=tertiary composition
en-keyword=quasi tertiary composition
kn-keyword=quasi tertiary composition
en-keyword=homotopy group
kn-keyword=homotopy group
en-keyword=special unitary group
kn-keyword=special unitary group
en-keyword=Samelson product
kn-keyword=Samelson product
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=12
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=MODULAR DIFFERENTIAL EQUATIONS WITH REGULAR SINGULARITIES AT ELLIPTIC POINTS FOR THE HECKE CONGRUENCE SUBGROUPS OF LOW-LEVELS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we give explicit expressions of modular differential equations with regular singularities at elliptic points for the Hecke
subgroups of level 2, 3, and 4, and their solutions expressed in terms of
the Gauss hypergeometric series. We also give quasimodular-form solutions for some modular differential equations.
en-copyright=
kn-copyright=
en-aut-name=SakaiYuichi
en-aut-sei=Sakai
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimizuKenichi
en-aut-sei=Shimizu
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=
kn-affil=
en-keyword=modular/quasimodular form
kn-keyword=modular/quasimodular form
en-keyword=differential equations
kn-keyword=differential equations
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=179
end-page=198
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON THE SOLVABILITY OF CERTAIN (SSIE) WITH OPERATORS OF THE FORM B(r, s)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Given any sequence z = (zn)n?1 of positive real numbers
and any set E of complex sequences, we write Ez for the set of all
sequences y = (yn)n?1 such that y/z = (yn/zn)n?1 ∈ E; in particular,
sz(c)
denotes the set of all sequences y such that y/z converges. In this
paper we deal with sequence spaces inclusion equations (SSIE), which
are determined by an inclusion each term of which is a sum or a sum
of products of sets of sequences of the form Xa(T) and Xx(T) where
a is a given sequence, the sequence x is the unknown, T is a given
triangle, and Xa(T) and Xx(T) are the matrix domains of T in the set X
. Here we determine the set of all positive sequences x for which the
(SSIE) sx(c)
(B(r, s)) sx(c)⊂
(B(r', s')) holds, where r, r', s' and s are real
numbers, and B(r, s) is the generalized operator of the first difference
defined by (B(r, s)y)n = ryn+syn?1 for all n ? 2 and (B(r, s)y)1 = ry1.
We also determine the set of all positive sequences x for which
ryn + syn?1 /xn
→ l implies
r'yn + s'yn?1
/xn
→ l (n → ∞) for all y
and for some scalar l. Finally, for a given sequence a, we consider the
a?Tauberian problem which consists of determining the set of all x such
that sx(c) (B(r, s)) ⊂ sa(c) .
en-copyright=
kn-copyright=
en-aut-name=MalafosseBruno de
en-aut-sei=Malafosse
en-aut-mei=Bruno de
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MalkowskyEberhard
en-aut-sei=Malkowsky
en-aut-mei=Eberhard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=LMAH Universit? du Havre
affil-num=2
en-affil=
kn-affil=Fatih University
en-keyword=Matrix transformations
kn-keyword=Matrix transformations
en-keyword=BK space
kn-keyword=BK space
en-keyword=the spaces sa, sa0 and sa(c)
kn-keyword=the spaces sa, sa0 and sa(c)
en-keyword=(SSIE)
kn-keyword=(SSIE)
en-keyword=(SSE) with operator
kn-keyword=(SSE) with operator
en-keyword=band matrix B(r, s)
kn-keyword=band matrix B(r, s)
en-keyword=Tauberian result
kn-keyword=Tauberian result
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=171
end-page=178
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CONVEXITY PROPERTIES OF A NEW GENERAL INTEGRAL OPERATOR OF p-VALENT FUNCTIONS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we introduce a new general integral operator
and obtain the order of convexity of this integral operator.
en-copyright=
kn-copyright=
en-aut-name=BulutSerap
en-aut-sei=Bulut
en-aut-mei=Serap
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Kocaeli University Civil Aviation College Arslanbey Campus
en-keyword=Analytic function
kn-keyword=Analytic function
en-keyword=Multivalent function
kn-keyword=Multivalent function
en-keyword=Starlike function
kn-keyword=Starlike function
en-keyword=Convex function
kn-keyword=Convex function
en-keyword=Integral operator
kn-keyword=Integral operator
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=157
end-page=169
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=STUDY OF A PARABOLIC PROBLEM IN A CONICAL DOMAIN
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper we consider the heat equation with Dirichlet
boundary conditions in a conical domain. We look for a sufficient condition
on the lateral surface of the cone in order to have the optimal
regularity of the solution in an anisotropic Sobolev space when the right
hand side of the equation is in a Lebesgue space.
en-copyright=
kn-copyright=
en-aut-name=SadallahBoubaker-Khaled
en-aut-sei=Sadallah
en-aut-mei=Boubaker-Khaled
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Lab. PDE & Hist. Maths Ecole Normale Sup?rieure
en-keyword=Heat equation
kn-keyword=Heat equation
en-keyword=Parabolic equation
kn-keyword=Parabolic equation
en-keyword=Nonregular domain
kn-keyword=Nonregular domain
en-keyword=Cone
kn-keyword=Cone
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=145
end-page=155
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=THE BEST CONSTANT OF Lp SOBOLEV INEQUALITY CORRESPONDING TO DIRICHLET-NEUMANN BOUNDARY VALUE PROBLEM
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We have obtained the best constant of the following Lp
Sobolev inequality
sup
0?y?1|
u(j)(y)|
?C (∫ 01
|
u(M)(x)|
p
dx)1/p
,
where u is a function satisfying u(M) ∈ Lp(0, 1), u(2i)(0) = 0 (0 ?i ?
[(M ? 1)/2]) and u(2i+1)(1) = 0 (0 ? i ? [(M ? 2)/2]), where u(i) is
the abbreviation of (d/dx)iu(x). In [9], the best constant of the above
inequality was obtained for the case of p = 2 and j = 0. This paper
extends the result of [9] under the conditions p > 1 and 0 ? j ? M ?1.
The best constant is expressed by Bernoulli polynomials.
en-copyright=
kn-copyright=
en-aut-name=YamagishiHiroyuki
en-aut-sei=Yamagishi
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeKohtaro
en-aut-sei=Watanabe
en-aut-mei=Kohtaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KametakaYoshinori
en-aut-sei=Kametaka
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Tokyo Metropolitan College of Industrial Technology
affil-num=2
en-affil=
kn-affil=Department of Computer Science, National Defense Academy
affil-num=3
en-affil=
kn-affil=Faculty of Engineering Science, Osaka University
en-keyword=Lp Sobolev inequality
kn-keyword=Lp Sobolev inequality
en-keyword=Best constant
kn-keyword=Best constant
en-keyword=Green function
kn-keyword=Green function
en-keyword=Reproducing kernel
kn-keyword=Reproducing kernel
en-keyword=Bernoulli polynomial
kn-keyword=Bernoulli polynomial
en-keyword=H?lder inequality
kn-keyword=H?lder inequality
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=129
end-page=143
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=GROWTH OF SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This paper is devoted to studying the growth of solutions
of the higher order nonhomogeneous linear differential equation
f(k) + Ak?1f(k?1) + ... + A2f
"
+ (D1 (z) + A1 (z) eP(z)) f
'
+ (D0 (z) + A0 (z)e Q(z)) f = F (k ? 2) ,
where P (z) , Q(z) are nonconstant polynomials such that deg P =
degQ = n and Aj (z) (j = 0, 1, ..., k ? 1) , F (z) are entire functions
with max{p(Aj) (j = 0, 1, ..., k ? 1) , p(Dj) (j = 0, 1)} < n. We also
investigate the relationship between small functions and the solutions of
the above equation.
en-copyright=
kn-copyright=
en-aut-name=FarissiAbdallah El
en-aut-sei=Farissi
en-aut-mei=Abdallah El
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Bela?diBenharrat
en-aut-sei=Bela?di
en-aut-mei=Benharrat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Laboratory of Pure and Applied Mathematics University of Mostaganem (UMAB)
affil-num=2
en-affil=
kn-affil=Department of Mathematics Laboratory of Pure and Applied Mathematics University of Mostaganem (UMAB)
en-keyword=Linear differential equations
kn-keyword=Linear differential equations
en-keyword=Entire solutions
kn-keyword=Entire solutions
en-keyword=Order of growth
kn-keyword=Order of growth
en-keyword=Exponent of convergence of zeros
kn-keyword=Exponent of convergence of zeros
en-keyword=Exponent of convergence of distinct zeros
kn-keyword=Exponent of convergence of distinct zeros
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=117
end-page=127
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=WEIL ALGEBRAS ASSOCIATED TO FUNCTORS OF THIRD ORDER SEMIHOLONOMIC VELOCITIES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The structure of Weil algebras associated to functors of
third order semiholonomic velocities is completely described including
the explicit expression of widths.
en-copyright=
kn-copyright=
en-aut-name=Kure?Miroslav
en-aut-sei=Kure?
en-aut-mei=Miroslav
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Institute of Mathematics Brno University of Technology
en-keyword=Weil algebra
kn-keyword=Weil algebra
en-keyword=product preserving bundle
kn-keyword=product preserving bundle
en-keyword=semiholonomic jets
kn-keyword=semiholonomic jets
en-keyword=higher order velocities
kn-keyword=higher order velocities
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=91
end-page=115
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=EQUIVARIANT STABLE HOMOTOPY THEORY FOR PROPER ACTIONS OF DISCRETE GROUPS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Following ideas of Graeme Segal [Segal(1973)], [Segal(1968)],
Christian Schlichtkrull [Schlichtkrull(2007)] and Kazuhisa Shimakawa
[Shimakawa(1989)] we construct equivariant stable homotopy groups for
proper equivariant CW complexes with an action of a discrete group.
en-copyright=
kn-copyright=
en-aut-name=B?rcenasNo?
en-aut-sei=B?rcenas
en-aut-mei=No?
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Hausdorff Center for Mathematics Mathematisches Institut
en-keyword=proper actions
kn-keyword=proper actions
en-keyword=equivariant homotopy theory
kn-keyword=equivariant homotopy theory
en-keyword=configuration spaces
kn-keyword=configuration spaces
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=75
end-page=89
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A MODEL FOR THE WHITEHEAD PRODUCT IN RATIONAL MAPPING SPACES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We describe the Whitehead products in the rational homo-
topy group of a connected component of a mapping space in terms of
the Andr?-Quillen cohomology. As a consequence, an upper bound for
the Whitehead length of a mapping space is given.
en-copyright=
kn-copyright=
en-aut-name=NaitoTakahito
en-aut-sei=Naito
en-aut-mei=Takahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematical Sciences, Faculty of Science, Shinshu University
en-keyword=mapping space
kn-keyword=mapping space
en-keyword=Whitehead product
kn-keyword=Whitehead product
en-keyword=rational homotopy theory
kn-keyword=rational homotopy theory
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=65
end-page=74
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PRIME, MAXIMAL AND PRIMITIVE IDEALS IN SOME SUBRINGS OF POLYNOMIAL RINGS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper we describe prime, maximal and primitive
ideals in some graded subrings of polynomial rings. As applications the
corresponding radicals are determined.
en-copyright=
kn-copyright=
en-aut-name=FerreroMiguel
en-aut-sei=Ferrero
en-aut-mei=Miguel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MirandaEdilson Soares
en-aut-sei=Miranda
en-aut-mei=Edilson Soares
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Instituto de Matem?tica Universidade Federal do Rio Grande do Sul
affil-num=2
en-affil=
kn-affil=Departamento de Ci?ncias Centro de Ci?ncias Exatas Universidade Estadual de Maring?
en-keyword=admissible
kn-keyword=admissible
en-keyword=polynomial rings
kn-keyword=polynomial rings
en-keyword=prime ideal
kn-keyword=prime ideal
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=51
end-page=63
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SUMS OF TWO BIQUADRATES AND ELLIPTIC CURVES OF RANK ? 4
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=If an integer n is written as a sum of two biquadrates in
two different ways, then the elliptic curve y2 = x3 ? nx has positive
rank. We utilize Euler’s parametrization to introduce some homoge-
neous equations to prove that En has rank ? 3. If moreover n is odd
and the parity conjecture is true, then the curve has even rank ? 4.
Finally, some examples of ranks equal to 4, 5, 6, 7, 8 and 10, are also
obtained.
en-copyright=
kn-copyright=
en-aut-name=IzadiF.A.
en-aut-sei=Izadi
en-aut-mei=F.A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KhoshnamF.
en-aut-sei=Khoshnam
en-aut-mei=F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NabardiK.
en-aut-sei=Nabardi
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Mathematics Department, Azarbaijan Shahid Madani University
affil-num=2
en-affil=
kn-affil=Mathematics Department, Azarbaijan Shahid Madani University
affil-num=3
en-affil=
kn-affil=Mathematics Department, Azarbaijan Shahid Madani University
en-keyword=elliptic curves
kn-keyword=elliptic curves
en-keyword=rank
kn-keyword=rank
en-keyword=biquadrates
kn-keyword=biquadrates
en-keyword=sums of two biquadrates
kn-keyword=sums of two biquadrates
en-keyword=parity conjecture
kn-keyword=parity conjecture
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=35
end-page=50
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON POSITIVE INTEGERS OF MINIMAL TYPE CONCERNED WITH THE CONTINUED FRACTION EXPANSION
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KishiYasuhiro
en-aut-sei=Kishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TajiriSayaka
en-aut-sei=Tajiri
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshizukaKen-ichiro
en-aut-sei=Yoshizuka
en-aut-mei=Ken-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Aichi University of Education
affil-num=2
en-affil=
kn-affil=Department of Mathematics Fukuoka University of Education
affil-num=3
en-affil=
kn-affil=Department of Mathematics Fukuoka University of Education
en-keyword=continued fraction
kn-keyword=continued fraction
en-keyword=real quadratic field
kn-keyword=real quadratic field
en-keyword=class number
kn-keyword=class number
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=27
end-page=33
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=INTERSECTIVE POLYNOMIALS WITH GALOIS GROUP D5
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We give an infinite family of intersective polynomials with
Galois group D5, the dihedral group of order 10.
en-copyright=
kn-copyright=
en-aut-name=LavalleeMelisa J.
en-aut-sei=Lavallee
en-aut-mei=Melisa J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SpearmanBlair K.
en-aut-sei=Spearman
en-aut-mei=Blair K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YangQiduan
en-aut-sei=Yang
en-aut-mei=Qiduan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics and Statistics University of British Columbia Okanagan
affil-num=2
en-affil=
kn-affil=Department of Mathematics and Statistics University of British Columbia Okanagan
affil-num=3
en-affil=
kn-affil=Department of Mathematics and Statistics University of British Columbia Okanagan
en-keyword=Intersective polynomial
kn-keyword=Intersective polynomial
en-keyword=Galois group
kn-keyword=Galois group
en-keyword=dihedal group
kn-keyword=dihedal group
en-keyword=monogenic
kn-keyword=monogenic
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=17
end-page=26
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A CHARACTERIZATION OF THE GLAUBERMAN-WATANABE CORRESPONDING BLOCKS AS BIMODULES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We give a characterization of the Glauberman-Watanabe
corresponding blocks viewed as bimodules as a direct summand of a
restricted or an induced module from the block in terms of a vertex and
a multiplicity.
en-copyright=
kn-copyright=
en-aut-name=TasakaFuminori
en-aut-sei=Tasaka
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Tsuruoka national college of technology
en-keyword=finite group
kn-keyword=finite group
en-keyword=Glauberman-Watanabe correspondence
kn-keyword=Glauberman-Watanabe correspondence
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=16
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=MUTATING BRAUER TREES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper we introduce mutation of Brauer trees. We
show that our mutation of Brauer trees explicitly describes the tilting
mutation of Brauer tree algebras introduced by Okuyama and Rickard.
en-copyright=
kn-copyright=
en-aut-name=AiharaTakuma
en-aut-sei=Aihara
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Division of Mathematical Science and Physics, Graduate School of Science and Technology, Chiba University
en-keyword=Brauer tree
kn-keyword=Brauer tree
en-keyword=Brauer tree algebra
kn-keyword=Brauer tree algebra
en-keyword=tilting mutation
kn-keyword=tilting mutation
en-keyword=mutation of Brauer tree
kn-keyword=mutation of Brauer tree
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=1
article-no=
start-page=191
end-page=200
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON HYPERBOLIC AREA OF THE MODULI OF θ−ACUTE TRIANGLES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A θ-acute triangle is a Euclidean triangle on the plane
whose three angles are less than a given constant θ. In this note, we
shall give an explicit formula computing the hyperbolic area A(θ) of
the moduli region of θ-acute triangles on the Poincar´e disk. It turns
out that A(θ) is a period in the sense of Kontsevich-Zagier if cot θ is a
nonnegative algebraic number.
en-copyright=
kn-copyright=
en-aut-name=KanesakaNaomi
en-aut-sei=Kanesaka
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraHiroaki
en-aut-sei=Nakamura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Faculty of Science, Okayama University
affil-num=2
en-affil=
kn-affil=Department of Mathematics, Faculty of Science, Okayama University
en-keyword=moduli space
kn-keyword=moduli space
en-keyword=Euclidean triangle
kn-keyword=Euclidean triangle
en-keyword=hyperbolic measure
kn-keyword=hyperbolic measure
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=1
article-no=
start-page=167
end-page=190
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=AN ALGEBRAIC APPROACH TO THE CAMERON-MARTIN-MARUYAMA-GIRSANOV FORMULA
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we will give a new perspective to the Cameron-
Martin-Maruyama-Girsanov formula by giving a totally algebraic proof
to it. It is based on the exponentiation of the Malliavin-type differenti-
ation and its adjointness.
en-copyright=
kn-copyright=
en-aut-name=AkahoriJir?
en-aut-sei=Akahori
en-aut-mei=Jir?
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AmabaTakafumi
en-aut-sei=Amaba
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UraguchiSachiyo
en-aut-sei=Uraguchi
en-aut-mei=Sachiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Ritsumeikan University
affil-num=2
en-affil=
kn-affil=Ritsumeikan University
affil-num=3
en-affil=
kn-affil=Mitsubishi Tokyo UFJ Bank
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=1
article-no=
start-page=157
end-page=166
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=UNIFORM STABILITY AND BOUNDEDNESS OF SOLUTIONS OF NONLINEAR DELAY DIFFERENTIAL EQUATIONS OF THE THIRD ORDER
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, a complete Lyapunov functional was con-
structed and used to obtain criteria (when p = 0) for uniform asymptotic
stability of the zero solution of the nonlinear delay differential equation
(1.1). When p ≠ 0, sufficient conditions are also established for uni-
form boundedness and uniform ultimate boundedness of solutions of
this equation. Our results improve and extend some well known results
in the literature.
en-copyright=
kn-copyright=
en-aut-name=Adeleke TimothyAdemora
en-aut-sei=Adeleke Timothy
en-aut-mei=Ademora
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Peter OlutolaArawamo
en-aut-sei=Peter Olutola
en-aut-mei=Arawamo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics University of Ibadan
affil-num=2
en-affil=
kn-affil=Department of Mathematics University of Ibadan
en-keyword=Uniform stability
kn-keyword=Uniform stability
en-keyword=Uniform boundedness
kn-keyword=Uniform boundedness
en-keyword=Uniform ultimate boundedness
kn-keyword=Uniform ultimate boundedness
en-keyword=Lyapunov functional
kn-keyword=Lyapunov functional
en-keyword=Delay differential equation
kn-keyword=Delay differential equation
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=1
article-no=
start-page=145
end-page=155
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=MULTIPLICITY-FREE PERMUTATION CHARACTERS OF COVERING GROUPS OF SPORADIC SIMPLE GROUPS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper we classify all multiplicity-free faithful per-
mutation representations of the covering groups of the sporadic simple
groups. These results were obtained computationally, making extensive
use of the GAP library of character tables.
en-copyright=
kn-copyright=
en-aut-name=LintonS. A.
en-aut-sei=Linton
en-aut-mei=S. A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MponoZ. E.
en-aut-sei=Mpono
en-aut-mei=Z. E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=University of St Andrews, School of Computer Science
affil-num=2
en-affil=
kn-affil=University of South Africa, Department of Mathematical Sciences
en-keyword=multiplicity-free faithful permutation representations
kn-keyword=multiplicity-free faithful permutation representations
en-keyword=covering groups of the sporadic simple groups
kn-keyword=covering groups of the sporadic simple groups
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=1
article-no=
start-page=131
end-page=143
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PURITY AND GORENSTEIN FILTERED RINGS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we discuss on the existence of filtrations of
modules having good properties. In particular, we focus on filtered
homomorphisms called strict, and show that there exists a filtration
which makes a filtered homomorphism a strict filtered homomorphism.
Moreover, by using this result, we study purity for filtered modules over
a Gorenstein filtered ring.
en-copyright=
kn-copyright=
en-aut-name=MiyaharaHiroki
en-aut-sei=Miyahara
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Faculty of Engineering University of Yamanashi
en-keyword=filtered ring
kn-keyword=filtered ring
en-keyword=Auslander-Gorenstein ring
kn-keyword=Auslander-Gorenstein ring
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=1
article-no=
start-page=117
end-page=129
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON MONO-INJECTIVE MODULES AND MONO-OJECTIVE MODULES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In [5] and [6], we have introduced a couple of relative generalized
epi-projectivities and given several properties of these projectivities.
In this paper, we consider relative generalized injectivities that are
dual to these relative projectivities and apply them to the study of direct
sums of extending modules. Firstly we prove that for an extending
module N, a module M is N-injective if and only if M is mono-Ninjective
and essentially N-injective. Then we define a mono-ojectivity
that plays an important role in the study of direct sums of extending
modules. The structure of (mono-)ojectivity is complicated and hence it
is difficult to determine whether these injectivities are inherited by finite
direct sums and direct summands even in the case where each module
is quasi-continuous. Finally we give several characterizations of these
injectivities and find necessary and sufficient conditions for the direct
sums of extending modules to be extending.
en-copyright=
kn-copyright=
en-aut-name=Keskin T?t?nc?Derya
en-aut-sei=Keskin T?t?nc?
en-aut-mei=Derya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuratomiYosuke
en-aut-sei=Kuratomi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Hacettepe University
affil-num=2
en-affil=
kn-affil=Kitakyushu National College of Technology
en-keyword=(generalized) mono-injective module
kn-keyword=(generalized) mono-injective module
en-keyword=(weakly) mono-ojective module
kn-keyword=(weakly) mono-ojective module
en-keyword=extending module
kn-keyword=extending module
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=1
article-no=
start-page=95
end-page=116
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A MODEL STRUCTURE ON THE CATEGORY OF SMALL CATEGORIES FOR COVERINGS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We consider a model structure on the category of small
categories, which is intimately related to the notion of coverings and
fundamental groups of small categories. Fibrant objects coincide with
groupoids, and the fibrant replacement is the groupoidification.
en-copyright=
kn-copyright=
en-aut-name=TanakaKohei
en-aut-sei=Tanaka
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Faculty of Science Shinshu University
en-keyword=model categories
kn-keyword=model categories
en-keyword=small categories
kn-keyword=small categories
en-keyword=coverings
kn-keyword=coverings
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=1
article-no=
start-page=87
end-page=93
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=NOTE ON THE COHOMOLOGICAL INVARIANT OF PFISTER FORMS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The cohomological invariant ring of the n-Pfister forms is
isomorphic to the invariant ring under a GLn(Z/2)-action in that of an
elementary abelian 2-group of rank n.
en-copyright=
kn-copyright=
en-aut-name=TezukaMichishige
en-aut-sei=Tezuka
en-aut-mei=Michishige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YagitaNobuaki
en-aut-sei=Yagita
en-aut-mei=Nobuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Department of mathematics, Faculty of Science, Ryukyu University
affil-num=2
en-affil=
kn-affil=Department of Mathematics, Faculty of Education, Ibaraki University
en-keyword=Pfister forms
kn-keyword=Pfister forms
en-keyword=cohomological invariant
kn-keyword=cohomological invariant
en-keyword=Dickson invariant
kn-keyword=Dickson invariant
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=1
article-no=
start-page=53
end-page=85
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=THE BLOCK APPROXIMATION THEOREM
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The block approximation theorem is an extensive general-
ization of both the well known weak approximation theorem from valu-
ation theory and the density property of global fields in their henseliza-
tions. It guarantees the existence of rational points of smooth affine
varieties that solve approximation problems of local-global type (see
e.g. [HJP07]). The theorem holds for pseudo real closed fields, by
[FHV94]. In this paper we prove the block approximation for pseudo-F-
closed fields K, where F is an ´etale compact family of valuations of K
with bounded residue fields (Theorem 4.1). This includes in particular
the case of pseudo p-adically closed fields and generalizations of these
like the ones considered in [HJP05].
en-copyright=
kn-copyright=
en-aut-name=HaranDan
en-aut-sei=Haran
en-aut-mei=Dan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=JardenMoshe
en-aut-sei=Jarden
en-aut-mei=Moshe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PopFlorian
en-aut-sei=Pop
en-aut-mei=Florian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=School of Mathematics, Tel Aviv University
affil-num=2
en-affil=
kn-affil=School of Mathematics, Tel Aviv University
affil-num=3
en-affil=
kn-affil=Department of Mathematics, University of Pennsylvania
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=52
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=EXPLICIT ASSOCIATOR RELATIONS FOR MULTIPLE ZETA VALUES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Associators were introduced by Drinfel’d in [Dri91] as a
monodromy representation of a Knizhnik-Zamolodchikov equation. Associators
can be briefly described as formal series in two non-commutative
variables satisfying three equations. These three equations yield a
large number of algebraic relations between the coefficients of the series,
a situation which is particularly interesting in the case of the original
Drinfel’d associator, whose coefficients are multiple zetas values. In
the first part of this paper, we work out these algebraic relations among
multiple zeta values by direct use of the defining relations of associators.
While well-known for the first two relations, the algebraic relations we
obtain for the third (pentagonal) relation, which are algorithmically explicit
although we do not have a closed formula, do not seem to have
been previously written down. The second part of the paper shows
that if one has an explicit basis for the bar-construction of the moduli
space M0,5 of genus zero Riemann surfaces with 5 marked points
at one’s disposal, then the task of writing down the algebraic relations
corresponding to the pentagon relation becomes significantly easier and
more economical compared to the direct calculation above. We discuss
the explicit basis described by Brown and Gangl, which is dual to the
basis of the enveloping algebra of the braids Lie algebra UB5.
In order to write down the relation between multiple zeta values, we
then remark that it is enough to write down the relations associated
to elements that generate the bar construction as an algebra. This
corresponds to looking at the bar construction modulo shuffle, which
is dual to the Lie algebra of 5-strand braids. We write down, in the
appendix, the associated algebraic relations between multiple zeta values
in weights 2 and 3.
en-copyright=
kn-copyright=
en-aut-name=Soud?resIsma?l
en-aut-sei=Soud?res
en-aut-mei=Isma?l
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Fachbereich Mathematik ? Universit?t Duisburg-Essen
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=1
article-no=
start-page=45
end-page=62
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1999
dt-pub=199901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Universal Factorization Equalities for Quaternion Matrices and Their Applications
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TianYongge
en-aut-sei=Tian
en-aut-mei=Yongge
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Queen's University
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=1
article-no=
start-page=103
end-page=109
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1999
dt-pub=199901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Semi-Convergence of Filters and Nets
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LatifR. M.
en-aut-sei=Latif
en-aut-mei=R. M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=King Fahd University of Petroleum and Minerals
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=1
article-no=
start-page=27
end-page=36
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1999
dt-pub=199901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Irreducibilities of the Induced Characters of Cyclic p-Groups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SekiguchiKatsusuke
en-aut-sei=Sekiguchi
en-aut-mei=Katsusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Kokushikan University
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=1
article-no=
start-page=75
end-page=79
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1999
dt-pub=199901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Generalization of the Dade's Theorem on Localization of Injective Modules
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HirataKazuhiko
en-aut-sei=Hirata
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SyuU
en-aut-sei=Syu
en-aut-mei=U
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Faculty of Science Chiba University
affil-num=2
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=1
article-no=
start-page=145
end-page=211
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON MEANS OF BANACH-SPACE-VALUED FUNCTIONS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We continue to study relations among exponential and polynomial growth orders of the γ-th order Ces?ro means (γ?0) and of the Abel mean for a Banach-space-valued function u on the interval [0,∞). We have already studied the problem for a continuous function u. Now we assume that u is a locally integrable function in a Banach space or an improperly locally integrable positive function in a Banach lattice.
en-copyright=
kn-copyright=
en-aut-name=SatoRyotaro
en-aut-sei=Sato
en-aut-mei=Ryotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Okayama University
en-keyword=Ces?ro mean
kn-keyword=Ces?ro mean
en-keyword=Abel mean
kn-keyword=Abel mean
en-keyword=exponential growth order
kn-keyword=exponential growth order
en-keyword=polynomial growth order
kn-keyword=polynomial growth order
en-keyword=locally integrable function
kn-keyword=locally integrable function
en-keyword=improperly locally integrable function
kn-keyword=improperly locally integrable function
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=1
article-no=
start-page=133
end-page=143
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CONTROLLABILITY OF FRACTIONAL INTEGRODIFFERENTIAL SYSTEMS VIA SEMIGROUP THEORY IN BANACH SPACES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This paper focuses on controllability results of fractional integrodifferential systems in Banach spaces. We obtain sufficient conditions for the controllability results by using fractional calculus, semi-group theory and the fixed point theorem.
en-copyright=
kn-copyright=
en-aut-name=HaziMohammed
en-aut-sei=Hazi
en-aut-mei=Mohammed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BragdiMabrouk
en-aut-sei=Bragdi
en-aut-mei=Mabrouk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics ?cole Normale Sup?rieure
affil-num=2
en-affil=
kn-affil=Department of Mathematics Larbi Ben M'hidi University
en-keyword=Controllability
kn-keyword=Controllability
en-keyword=Integrodifferential system
kn-keyword=Integrodifferential system
en-keyword=Fractional calculus
kn-keyword=Fractional calculus
en-keyword=Semigroup theory
kn-keyword=Semigroup theory
en-keyword=Fixed point theorem
kn-keyword=Fixed point theorem
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=1
article-no=
start-page=97
end-page=131
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=HOMOGENIZATION OF NON-LINEAR VARIATIONAL PROBLEMS WITH THIN INCLUSIONS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We are concerned in this work with the asymptotic behavior of an assemblage whose components are a thin inclusion with higher rigidity modulus included into an elastic body. We aim at finding the approximating energy functional of the above structure in a Γ-convergence framework, and making use also of the subadditive theorem and the blow-up method.
en-copyright=
kn-copyright=
en-aut-name=MoussaAbdelaziz A?t
en-aut-sei=Moussa
en-aut-mei=Abdelaziz A?t
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Zla?jiLoubna
en-aut-sei=Zla?ji
en-aut-mei=Loubna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics and Informatics Faculty of Science, Mohammed Premier University
affil-num=2
en-affil=
kn-affil=Department of Mathematics and Informatics, Faculty of Science, Mohammed Premier University
en-keyword=blow-up
kn-keyword=blow-up
en-keyword=Γ-convergence
kn-keyword=Γ-convergence
en-keyword=subadditive theorem
kn-keyword=subadditive theorem
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=1
article-no=
start-page=87
end-page=96
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=THE TANGENT BUNDLES OVER EQUIVARIANT REAL PROJECTIVE SPACES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=let G be a nontrivial cyclic group of odd order. In the present paper, we will prove that the fourfold Whitney sum of the tangent bundle of real projective plane of any three dimensional nontrivial real G-representation is equivariantly a product bundle.
en-copyright=
kn-copyright=
en-aut-name=QiYan
en-aut-sei=Qi
en-aut-mei=Yan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Guraduate School of Natural Science and Technology Okayama University
en-keyword=equivariant real vector bundle
kn-keyword=equivariant real vector bundle
en-keyword=group action
kn-keyword=group action
en-keyword=real projective space
kn-keyword=real projective space
en-keyword=canonical line bundle
kn-keyword=canonical line bundle
en-keyword=product bundle
kn-keyword=product bundle
en-keyword=tangent bundle
kn-keyword=tangent bundle
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=1
article-no=
start-page=77
end-page=86
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=NOTE ON THE HOMOTOPY OF THE SPACE OF MAPS BETWEEN REAL PROJECTIVE SPACES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study the homotopy types of the space consisting of all base-point preseving continuous maps from the m dimensional real projective space into the n dimensional real projective space. When 2 ? m < n, it has two path connected components and we investigate whether these two path-components have the same homotopy type or not.
en-copyright=
kn-copyright=
en-aut-name=YamaguchiKohhei
en-aut-sei=Yamaguchi
en-aut-mei=Kohhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics University of Electro-Communications
en-keyword=homotopy type
kn-keyword=homotopy type
en-keyword=algebraic map
kn-keyword=algebraic map
en-keyword=Hurewicz-Radon numbers
kn-keyword=Hurewicz-Radon numbers
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=1
article-no=
start-page=65
end-page=76
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON A GENERALIZATION OF CQF-3′ MODULES AND COHEREDITARY TORSION THEORIES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Throughout this paper we assume that R is a right perfect ring with identity and let Mod-R be the category of right R-modules. Let M be a right R-module. We denote by 0 → K(M) → P(M) → M → 0 the projective cover of M. M is called a CQF-3′ module, if P(M) is M-generated, that is, P(M) is isomorphic to a homomorphic image of a direct sum ?M of some copies of M. A subfunctor of the identity functor of Mod-R is called a preradical. For a preradical σ, Tσ := {M ∈ Mod-R : σ(M) = M} is called the class of σ-torsion right R-modules, and Fσ := {M ∈ Mod-R : σ(M) = 0} is called the class of σ-torsionfree right R-modules. A right R-module M is called σ-projective if the functor HomR(M,?) preserves the exactness for any exact sequence 0 → A → B → C → 0 with A ∈ Fσ. We put Pσ(M) = P(M)/σ(K(M)) for a module M. We call a right R-module M a
σ-CQF-3′ module if Pσ(M) is M-generated. In this paper, we characterize σ-CQF-3′ modules and give some related facts.
en-copyright=
kn-copyright=
en-aut-name=TakehanaYasuhiko
en-aut-sei=Takehana
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=General Education Hakodate National College of Technology
en-keyword=QF-3′
kn-keyword=QF-3′
en-keyword=cohereditary
kn-keyword=cohereditary
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=1
article-no=
start-page=53
end-page=63
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON A GENERALIZATION OF QF-3′ MODULES AND HEREDITARY TORSION THEORIES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let R be a ring with identity, and let Mod-R be the category of right R-modules. Let M be a right R-module. We denote by E(M) the injective hull of M. M is called QF-3′ module, if E(M) is M-torsionless, that is, E(M) is isomorphic to a submodule of a direct product ΠM of some copies of M. A subfunctor of the identity functor of Mod-R is called a preradical. For a preradical σ, Tσ := {M ∈ Mod-R : σ(M) = M} is the class of σ-torsion right R-modules, and Fσ := {M ∈ Mod-R : σ(M) = 0} is the class of σ-torsionfree right R-modules. A right R-module M is called σ-injective if the functor HomR(?,M) preserves the exactness for any exact sequence 0 → A → B → C → 0 with C ∈ Tσ. A right R-module M is called σ-QF-3′ module if Eσ(M) is M-torsionless, where Eσ(M) is defined by Eσ(M)/M := σ(E(M)/M). In this paper, we characterize σ-QF-3′ modules and give some related
facts.
en-copyright=
kn-copyright=
en-aut-name=TakehanaYasuhiko
en-aut-sei=Takehana
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=General Education Hakodate National College of Technology
en-keyword=QF-3′
kn-keyword=QF-3′
en-keyword=hereditary
kn-keyword=hereditary
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=1
article-no=
start-page=49
end-page=52
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON THE STRUCTURE OF THE MORDELL-WEIL GROUPS OF THE JACOBIANS OF CURVES DEFINED BY yn = f(x)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let A be an abelian variety defined over a number field K. It is proved that for the composite field Kn of all Galois extensions over K of degree dividing n, the torsion subgroup of the Mordell-Weil group A(Kn) is finite. This is a variant of Ribet’s result ([7]) on the finiteness of torsion subgroup of A(K(ζ∞)). It is also proved that for the Jacobians of superelliptic curves yn = f(x) defined over K the Mordell-Weil group over the field generated by all nth roots of elements of K is the direct sum of a finite torsion group and a free ?-module of infinite rank.
en-copyright=
kn-copyright=
en-aut-name=MoonHyunsuk
en-aut-sei=Moon
en-aut-mei=Hyunsuk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, College of Natural Sciences Kyungpook National University
en-keyword=Mordell-Weil group
kn-keyword=Mordell-Weil group
en-keyword=Jacobian
kn-keyword=Jacobian
en-keyword=superelliptic curve
kn-keyword=superelliptic curve
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=1
article-no=
start-page=33
end-page=48
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=HILBERT-SPEISER NUMBER FIELDS AND STICKELBERGER IDEALS; THE CASE p = 2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We say that a number field F satisfies the condition (H′2m) when any abelian extension of exponent dividing 2m has a normal basis with respect to rings of 2-integers. We say that it satisfies (H′
2∞) when it satisfies (H′
2m) for all m. We give a condition for F to satisfy (H'2m), and show that the imaginary quadratic fields F = Q(√?1) and Q(√?2) satisfy the very strong condition (H′
2∞) if the conjecture that h+2m = 1 for all m is valid. Here, h+2m) is the class number of the maximal real abelian field of conductor 2m.
en-copyright=
kn-copyright=
en-aut-name=IchimuraHumio
en-aut-sei=Ichimura
en-aut-mei=Humio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Faculty of Science, Ibaraki University
en-keyword=Hilbert-Speiser number field
kn-keyword=Hilbert-Speiser number field
en-keyword=Stickelberger ideal
kn-keyword=Stickelberger ideal
en-keyword=normal integral basis
kn-keyword=normal integral basis
END
start-ver=1.4
cd-journal=joma
no-vol=54
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=32
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SOME REMARKS ON LUCAS PSEUDOPRIMES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We present a way of viewing Lucas pseudoprimes, Euler-Lucas pseudoprimes and strong Lucas pseudoprimes in the context of group schemes. This enables us to treat the Lucas pseudoprimalities in parallel to establish pseudoprimes, Euler pseudoprimes and strong pseudoprimes.
en-copyright=
kn-copyright=
en-aut-name=SuwaNoriyuki
en-aut-sei=Suwa
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Faculty of Science and Engineerings Chuo University
en-keyword=primality test
kn-keyword=primality test
en-keyword=group scheme
kn-keyword=group scheme
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=185
end-page=216
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=TRIANGLE CENTERS DEFINED BY QUADRATIC POLYNOMIALS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We consider a family of triangle centers whose barycentric coordinates are given by quadratic polynomials, and determine the lines that contain an infinite number of such triangle centers. We show that for a given quadratic triangle center, there exist in general four principal lines through this center. These four principal lines possess an intimate connection with the Nagel line.
en-copyright=
kn-copyright=
en-aut-name=AgaokaYoshio
en-aut-sei=Agaoka
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Graduate School of Science, Hiroshima University
en-keyword=triangle center
kn-keyword=triangle center
en-keyword=generalized Euler line
kn-keyword=generalized Euler line
en-keyword=Nagel line
kn-keyword=Nagel line
en-keyword=principal line
kn-keyword=principal line
en-keyword=Ceva conjugate
kn-keyword=Ceva conjugate
en-keyword=isotomic conjugate
kn-keyword=isotomic conjugate
en-keyword=symmetric polynomial
kn-keyword=symmetric polynomial
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=173
end-page=183
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=THE UNIFORM EXPONENTIAL STABILITY OF LINEAR SKEW-PRODUCT SEMIFLOWS ON REAL HILBERT SPACE
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The goal of the paper is to present some characterizations for the uniform exponential stability of linear skew-product semiflows on real Hilbert space.
en-copyright=
kn-copyright=
en-aut-name=HaiPham Viet
en-aut-sei=Hai
en-aut-mei=Pham Viet
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ThanhLe Ngoc
en-aut-sei=Thanh
en-aut-mei=Le Ngoc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Faculty of Mathematics, Mechanics and Informatics, College Of Science, Viet Nam National University
affil-num=2
en-affil=
kn-affil=Basic Science, Hoa Binh University
en-keyword=stability
kn-keyword=stability
en-keyword=linear skew-product semiflow
kn-keyword=linear skew-product semiflow
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=167
end-page=172
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A CAUCHY-KOWALEVSKI THEOREM FOR INFRAMONOGENIC FUNCTIONS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper we prove a Cauchy-Kowalevski theorem for the functions satisfying the system ∂xf∂x = 0 (called inframonogenic functions).
en-copyright=
kn-copyright=
en-aut-name=MalonekHelmuth R.
en-aut-sei=Malonek
en-aut-mei=Helmuth R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Pe?aDixan Pe?a
en-aut-sei=Pe?a
en-aut-mei=Dixan Pe?a
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SommenFrank
en-aut-sei=Sommen
en-aut-mei=Frank
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Aveiro University
affil-num=2
en-affil=
kn-affil=Department of Mathematics Aveiro University
affil-num=3
en-affil=
kn-affil=Department of Mathematical Analysis Ghent University
en-keyword=Inframonogenic functions
kn-keyword=Inframonogenic functions
en-keyword=Cauchy-Kowalevski theorem
kn-keyword=Cauchy-Kowalevski theorem
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=155
end-page=165
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=AN EXPLICIT PSp4(3)-POLYNOMIAL WITH 3 PARAMETERS OF DEGREE 40
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We will give an explicit polynomial over ? with 3 parameters of degree 40 as a result of the inverse Galois problem. Its Galois group over ? (resp. ?(√-3)) is isomorphic to PGSp4(3) (resp. PSp4(3)) and it is a regular PSp4(3)-polynomial over ?(p√?3). To construct the polynomial and prove its properties above we use some results of Siegel modular forms and permutation group theory.
en-copyright=
kn-copyright=
en-aut-name=KitayamaHidetaka
en-aut-sei=Kitayama
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Graduate School of Science, Osaka University
en-keyword=inverse Galois problem
kn-keyword=inverse Galois problem
en-keyword=explicit polynomials
kn-keyword=explicit polynomials
en-keyword=Siegel modular forms
kn-keyword=Siegel modular forms
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=129
end-page=154
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ABSTRACT LOCAL COHOMOLOGY FUNCTORS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We propose to define the notion of abstract local cohomology functors. The ordinary local cohomology functor RΓI with support in the closed subset defined by an ideal I and the generalized local cohomology functor RΓI,J defined in [16] are characterized as elements of the set of all the abstract local cohomology functors.
en-copyright=
kn-copyright=
en-aut-name=YoshinoYuji
en-aut-sei=Yoshino
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshizawaTakeshi
en-aut-sei=Yoshizawa
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Graduate School of Natural Science and Technology Okayama University
affil-num=2
en-affil=
kn-affil=Graduate School of Natural Science and Technology Okayama University
en-keyword=local cohomology
kn-keyword=local cohomology
en-keyword=stable t-structure
kn-keyword=stable t-structure
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=111
end-page=127
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=NOTE ON SYMMETRIC HILBERT SERIES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KamoiYuji
en-aut-sei=Kamoi
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=School of Commerce Meiji University
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=101
end-page=109
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON ALMOST N-SIMPLE-PROJECTIVES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The concept of almost N-projectivity is defined in [5] by M. Harada and A. Tozaki to translate the concept "lifting module" in terms of homomorphisms. In [6, Theorem 1] M. Harada defined a little weaker condition "almost N-simple-projecive" and gave the following
relationship between them: For a semiperfect ring R and R-modules M and N of finite length,
M is almost N-projective if and only if M is almost N-simple-projective. We remove the assumption "of finite length" and give the result in Theorem 5 as follows: For a semiperfect ring R, a finitely generated right R-module M
and an indecomposable right R-module N of finite Loewy length, M is almost N-projective if and only if M is almost N-simple-projective. We also see that, for a semiperfect ring R, a finitely generated R-module M and an R-module N of finite Loewy length, M is N-simple-projective if and only if M is N-projective.
en-copyright=
kn-copyright=
en-aut-name=BabaYoshitomo
en-aut-sei=Baba
en-aut-mei=Yoshitomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamazakiTakeshi
en-aut-sei=Yamazaki
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Osaka-Kyoiku University
affil-num=2
en-affil=
kn-affil=Osaka Prefectual Senriseiun Senior High School
en-keyword=ring
kn-keyword=ring
en-keyword=module
kn-keyword=module
en-keyword=almot projective
kn-keyword=almot projective
en-keyword=almost simple-projective
kn-keyword=almost simple-projective
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=83
end-page=100
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=FP-GR-INJECTIVE MODULES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we give some characterizations of FP-grinjective R-modules and graded right R-modules of FP-gr-injective dimension at most n. We study the existence of FP-gr-injective envelopes and FP-gr-injective covers. We also prove that (1) (⊥gr-FI, gr-FI) is a hereditary cotorsion theory if and only if R is a left gr-coherent ring, (2) If R is right gr-coherent with FP-gr-id(RR) ? n, then (gr-FIn, gr-F n⊥) is a perfect cotorsion theory, (3) (⊥gr-FIn, gr-FIn) is a cotorsion theory, where gr-FI denotes the class of all FP-gr-injective left R-modules, gr-FIn is the class of all graded right R-modules of FP-gr-injective dimension at most n. Some applications are given.
en-copyright=
kn-copyright=
en-aut-name=YangXiaoyan
en-aut-sei=Yang
en-aut-mei=Xiaoyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuZhongkui
en-aut-sei=Liu
en-aut-mei=Zhongkui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Northwest Normal University
affil-num=2
en-affil=
kn-affil=Department of Mathematics Northwest Normal University
en-keyword=FP-gr-injective module
kn-keyword=FP-gr-injective module
en-keyword=graded flat module
kn-keyword=graded flat module
en-keyword=envelope and cover
kn-keyword=envelope and cover
en-keyword=cotorsion theory
kn-keyword=cotorsion theory
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=75
end-page=82
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=TORSION OF ELLIPTIC CURVES OVER QUADRATIC CYCLOTOMIC FIELDS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper we study the possible torsions of elliptic curves over ?(i) and ?(√?3).
en-copyright=
kn-copyright=
en-aut-name=NajmanFilip
en-aut-sei=Najman
en-aut-mei=Filip
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics University of Zagreb
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=55
end-page=74
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PROJECTIVE STRUCTURES AND AUTOMORPHIC PSEUDODIFFERENTIAL OPERATORS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Automorphic pseudodifferential operators are pseudodifferential operators that are invariant under an action of a discrete subgroup Γ of SL(2,?), and they are closely linked to modular forms. In particular, there is a lifting map from modular forms to automorphic pseudodifferential
operators, which can be interpreted as a lifting morphism of sheaves over the Riemann surface X associated to the given discrete subgroup Γ. One of the questions raised in a paper by Cohen, Manin, and Zagier is whether the difference in the images of a local section of a sheaf under such lifting morphisms corresponding to two projective structures on X can be expressed in terms of certain Schwarzian derivatives. The purpose of this paper is to provide a positive answer to this question for some special cases.
en-copyright=
kn-copyright=
en-aut-name=LeeMin Ho
en-aut-sei=Lee
en-aut-mei=Min Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics University of Northern Iowa
en-keyword=Automorphic pseudodifferential operators
kn-keyword=Automorphic pseudodifferential operators
en-keyword=modular forms
kn-keyword=modular forms
en-keyword=Schwarzian derivatives
kn-keyword=Schwarzian derivatives
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=39
end-page=53
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=LIFTED CODES OVER FINITE CHAIN RINGS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we study lifted codes over finite chain rings. We use γ-adic codes over a formal power series ring to study codes over finite chain rings.
en-copyright=
kn-copyright=
en-aut-name=DoughertySteven T.
en-aut-sei=Dougherty
en-aut-mei=Steven T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuHongwei
en-aut-sei=Liu
en-aut-mei=Hongwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ParkYoung Ho
en-aut-sei=Park
en-aut-mei=Young Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics University of Scranton
affil-num=2
en-affil=
kn-affil=Department of Mathematics Huazhong Normal University
affil-num=3
en-affil=
kn-affil=Department of Mathematics Kangwon National University
en-keyword=Finite chain rings
kn-keyword=Finite chain rings
en-keyword=lifted codes
kn-keyword=lifted codes
en-keyword=γ-adic codes
kn-keyword=γ-adic codes
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=37
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ASYMPTOTIC ANALYSIS FOR GREEN FUNCTIONS OF AHARONOV-BOHM HAMILTONIAN WITH APPLICATION TO RESONANCE WIDTHS IN MAGNETIC SCATTERING
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Aharonov?Bohm Hamiltonian is the energy operator which governs quantum particles moving in a solenoidal field in two dimensions. We analyze asymptotic properties of its Green function with spectral parameters in the unphysical sheet. As an application, we discuss
the lower bound on resonance widths for scattering by two magnetic fields with compact supports at large separation. The bound is evaluated in terms of backward scattering amplitudes by a single magnetic field. A special emphasis is placed on analyzing how a trajectory oscillating between two magnetic fields gives rise to resonances near the real axis, as the distance between two supports goes to infinity. We also refer to the relation to the semiclassical resonance theory for scattering
by two solenoidal fields.
en-copyright=
kn-copyright=
en-aut-name=TamuraHideo
en-aut-sei=Tamura
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Okayama University
en-keyword=Aharonov-Bohm Hamiltonian
kn-keyword=Aharonov-Bohm Hamiltonian
en-keyword=Green function
kn-keyword=Green function
en-keyword=magnetic Schr?dinger operator
kn-keyword=magnetic Schr?dinger operator
en-keyword=scattering amplitude
kn-keyword=scattering amplitude
en-keyword=resonance width
kn-keyword=resonance width
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=25
end-page=35
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An application of certain multiplicities of C∞ map germs
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AndoYoshifumi
en-aut-sei=Ando
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Yamaguchi University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=53
end-page=71
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Subgroup SU(8)/Z2 of compact simple Lie group E7 and non-compact simple Lie group E{7(7)} of type E7
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YokotaIchiro
en-aut-sei=Yokota
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Shinshu University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=6
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Note on groups with isomorphic group algebras
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FurukawaT?ru
en-aut-sei=Furukawa
en-aut-mei=T?ru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=21
end-page=23
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On a theorem of M. S. Putcha and A. Yaqub
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KomatsuHiroaki
en-aut-sei=Komatsu
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Osaka City University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=15
end-page=19
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Some remarks on bisimple rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HiranoYasuyuki
en-aut-sei=Hirano
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TominagaHisao
en-aut-sei=Tominaga
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
affil-num=2
en-affil=
kn-affil=Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=73
end-page=97
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Surgery obstruction of twisted products
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YoshidaTomoyoshi
en-aut-sei=Yoshida
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=7
end-page=13
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Some polynomial identities and commutativity of s-unital rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HiranoYasuyuki
en-aut-sei=Hirano
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiYuji
en-aut-sei=Kobayashi
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TominagaHisao
en-aut-sei=Tominaga
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
affil-num=2
en-affil=
kn-affil=Tokushima University
affil-num=3
en-affil=
kn-affil=Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=45
end-page=51
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On J-groups of S^l(RP(t-l)/RP(n-l))
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=K?noSusumu
en-aut-sei=K?no
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TamamuraAkie
en-aut-sei=Tamamura
en-aut-mei=Akie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
affil-num=2
en-affil=
kn-affil=Okayama University of Science
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=37
end-page=44
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198206
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the iterated Samelson product
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KachiHideyuki
en-aut-sei=Kachi
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Shinshu University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=2
article-no=
start-page=137
end-page=152
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A certain type of commutative Hopf Galois extensions and their groups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NakajimaAtsushi
en-aut-sei=Nakajima
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=2
article-no=
start-page=167
end-page=178
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Notes on stable equivariant maps
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=IzumiyaSyuichi
en-aut-sei=Izumiya
en-aut-mei=Syuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Nara Women's University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=2
article-no=
start-page=99
end-page=109
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On right p.p. rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HiranoYasuyuki
en-aut-sei=Hirano
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HonganMotoshi
en-aut-sei=Hongan
en-aut-mei=Motoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=?horiMasayuki
en-aut-sei=?hori
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
affil-num=2
en-affil=
kn-affil=Tsuyama College of Technology
affil-num=3
en-affil=
kn-affil=Shinshu University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=2
article-no=
start-page=133
end-page=136
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the equational definability of addition in rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KomatsuHiroaki
en-aut-sei=Komatsu
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Osaka City University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=2
article-no=
start-page=117
end-page=132
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On strongly prime modules and related topics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HonganMotoshi
en-aut-sei=Hongan
en-aut-mei=Motoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Tsuyama College of Technology
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=2
article-no=
start-page=179
end-page=200
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The S^1-transfer map and homotopy groups of suspended complex projective spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MukaiJuno
en-aut-sei=Mukai
en-aut-mei=Juno
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Shinshu University
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=2
article-no=
start-page=111
end-page=115
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Some polynomial identities and commutativity of s-unital rings. II
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HiranoYasuyuki
en-aut-sei=Hirano
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TominagaHisao
en-aut-sei=Tominaga
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaqubAdil
en-aut-sei=Yaqub
en-aut-mei=Adil
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
affil-num=2
en-affil=
kn-affil=Okayama University
affil-num=3
en-affil=
kn-affil=University of California
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=2
article-no=
start-page=157
end-page=165
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A construction of spaces with general connections which have points swallowing geodesics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OtsukiTominosuke
en-aut-sei=Otsuki
en-aut-mei=Tominosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Science University of Tokyo
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=2
article-no=
start-page=153
end-page=156
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1982
dt-pub=198212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On an individual ergodic theorem
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SatoRyotaro
en-aut-sei=Sato
en-aut-mei=Ryotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=1
article-no=
start-page=41
end-page=49
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1978
dt-pub=197803
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Notes on a conjecture of P. Erd?s. II
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YorinagaMasataka
en-aut-sei=Yorinaga
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UchiyamaSabur?
en-aut-sei=Uchiyama
en-aut-mei=Sabur?
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
affil-num=2
en-affil=
kn-affil=Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=1
article-no=
start-page=67
end-page=72
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1978
dt-pub=197803
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Two commutativity theorems for rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HiranoYasuyuki
en-aut-sei=Hirano
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TominagaHisao
en-aut-sei=Tominaga
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
affil-num=2
en-affil=
kn-affil=Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=1
article-no=
start-page=77
end-page=82
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1978
dt-pub=197803
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Restricted semiprimary group rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SrivastavaJ. B.
en-aut-sei=Srivastava
en-aut-mei=J. B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GuptaVishnu
en-aut-sei=Gupta
en-aut-mei=Vishnu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Indian Institute of Technology
affil-num=2
en-affil=
kn-affil=Alfateh University
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=16
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1978
dt-pub=197803
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the fixed point set of S^1-actions on the complex flag manifolds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HokamaKenji
en-aut-sei=Hokama
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=K?noSusumu
en-aut-sei=K?no
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
affil-num=2
en-affil=
kn-affil=Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=1
article-no=
start-page=25
end-page=40
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=1978
dt-pub=197803
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Simply connected smooth 4-manifolds which admit nontrivial smooth S^1 actions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YoshidaTomoyoshi
en-aut-sei=Yoshida
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama University
END