start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=
article-no=
start-page=489
end-page=492
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Favorable outcomes of epilepsy with gait-induced seizures after resection of the unilateral supplementary motor area
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Gait-induced seizures are a rare manifestation of reflex epilepsy. Pathophysiology of this phenomenon has not been fully understood.
Case presentation: A 28-year-old woman presented with a long history of “falls” following paroxysmal bilateral leg stiffness triggered by walking. Scalp electroencephalogram (EEG) revealed low-amplitude rhythmic beta activity, maximal at the Cz electrode, during these events. Magnetoencephalography demonstrated repetitive sharp waves source-localized to the right primary motor cortex. Multiple anti-seizure medications failed to improve her symptoms; however, the clinical manifestation was consistent with epilepsy with gait-induced seizures. Intracranial subdural EEG recording was performed and confirmed ictal activity originating from the right supplementary motor area. Resection of this area resulted in complete resolution of her symptoms.
Discussion: This is the first reported case of successful resective surgery for epilepsy with gait-induced seizure. Brain networks involving cortical regions responsible for the initiation or execution of walking presumably played a key role in the generation of gait-induced seizures. Careful assessment using non-invasive neurophysiological studies facilitated accurate diagnosis, successful intracranial recordings, and effective resective surgery.
en-copyright=
kn-copyright=
en-aut-name=KodamaSatoshi
en-aut-sei=Kodama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuniiNaoto
en-aut-sei=Kunii
en-aut-mei=Naoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShirotaYuichiro
en-aut-sei=Shirota
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChouTakusei
en-aut-sei=Chou
en-aut-mei=Takusei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiMizuho
en-aut-sei=Kawai
en-aut-mei=Mizuho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimadaSeijiro
en-aut-sei=Shimada
en-aut-mei=Seijiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MaedaMeiko
en-aut-sei=Maeda
en-aut-mei=Meiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HamadaMasashi
en-aut-sei=Hamada
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IkemuraMasako
en-aut-sei=Ikemura
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SaitoYuko
en-aut-sei=Saito
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=AkamatsuNaoki
en-aut-sei=Akamatsu
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=UeharaTaira
en-aut-sei=Uehara
en-aut-mei=Taira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SaitoNobuhito
en-aut-sei=Saito
en-aut-mei=Nobuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurosurgery, Jichi Medical University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Pathology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Department of Neuropahtology (Brain Bank for Aging Research), Tokyo Metropoliran Institute for Geriatrics and Gerontology
kn-affil=
affil-num=12
en-affil=Department of Neurology, International University of Health and Walfare Narita Hospital
kn-affil=
affil-num=13
en-affil=Department of Neurology, International University of Health and Walfare Narita Hospital
kn-affil=
affil-num=14
en-affil=Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=15
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=Reflex epilepsy
kn-keyword=Reflex epilepsy
en-keyword=Intracranial electroencephalogram (EEG)
kn-keyword=Intracranial electroencephalogram (EEG)
en-keyword=Electrocorticogram
kn-keyword=Electrocorticogram
en-keyword=magnetoencephalogram (MEG)
kn-keyword=magnetoencephalogram (MEG)
en-keyword=SMA
kn-keyword=SMA
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251203
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel in-frame duplication variant of SOD1 in a Japanese family with familial amyotrophic lateral sclerosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To analyze the cases of a family with a novel in-frame duplication variant (NM_000454.5:c.357_357 + 2dup, p.Val120dup) of SOD1 and a structural model of the mutated SOD1 protein. Methods: The clinical profiles of three patients in the family were analyzed, including the neuropathological findings of the proband’s mother. Genetic analyses were conducted for three patients. cDNA and in silico structural analyses were performed to evaluate the effects of duplication variants on the structure of SOD1. Results: The clinical features of the patients included predominant involvement of the lower motor neurons, asymmetric onset of motor symptoms in the lower limbs, and a relatively rapid progression of muscular weakness and respiratory insufficiency. Neuropathological findings revealed severe loss of spinal cord motor neurons, and immunohistochemistry using an anti-misfolded SOD1 antibody revealed aggregates in the spinal cord. Genetic analyses revealed a c.357_357 + 2dup at the exon 4–intron 4 boundary of SOD1 in three patients. cDNA analysis of the proband suggested the presence of a valine (p.Val120dup) duplication in the heterozygous state, and the SOD1 transcript level showed no significant differences from those of healthy controls. In silico structural analyses predicted that p.Val120dup could affect the structure of the β-barrels and copper ion binding site of SOD1, suggesting an abnormal conformation of SOD1 that is predicted to interfere with the binding of copper ions. Conclusion: We identified a novel in-frame duplication variant in the C-terminus of β7 of SOD1. This genotype–structure–phenotype study of SOD1 provides valuable insights into disease-causing mechanisms.
en-copyright=
kn-copyright=
en-aut-name=NakajimaMasanori
en-aut-sei=Nakajima
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaruseHiroya
en-aut-sei=Naruse
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RikuYuichi
en-aut-sei=Riku
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UedaKunihiro
en-aut-sei=Ueda
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraYoshitsugu
en-aut-sei=Nakamura
en-aut-mei=Yoshitsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshidaShimon
en-aut-sei=Ishida
en-aut-mei=Shimon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamadaTakashi
en-aut-sei=Yamada
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MoroNaoki
en-aut-sei=Moro
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KotsukiNaoki
en-aut-sei=Kotsuki
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NagaiKentaro
en-aut-sei=Nagai
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TokushigeShin-ichi
en-aut-sei=Tokushige
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=UchiboriAyumi
en-aut-sei=Uchibori
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OishiChizuko
en-aut-sei=Oishi
en-aut-mei=Chizuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YabataHiroyuki
en-aut-sei=Yabata
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=UrushitaniMakoto
en-aut-sei=Urushitani
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=IwasakiYasushi
en-aut-sei=Iwasaki
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=IchikawaYaeko
en-aut-sei=Ichikawa
en-aut-mei=Yaeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Neurology, Kyorin University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=8
en-affil=Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=9
en-affil=Department of Pathology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=10
en-affil=Department of Neurology, Kyorin University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Neurology, Kyorin University School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Neurology, Kyorin University School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Neurology, Kyorin University School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Neurology, Kyorin University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Neurology, Kyorin University School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Neurology, Shiga University of Medical Science
kn-affil=
affil-num=17
en-affil=Department of Neurology, Shiga University of Medical Science
kn-affil=
affil-num=18
en-affil=Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University
kn-affil=
affil-num=19
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan;Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=21
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=22
en-affil=Department of Neurology, Kyorin University School of Medicine
kn-affil=
en-keyword=Familial amyotrophic lateral sclerosis
kn-keyword=Familial amyotrophic lateral sclerosis
en-keyword=SOD1
kn-keyword=SOD1
en-keyword=in-frame duplication
kn-keyword=in-frame duplication
en-keyword=protein structure
kn-keyword=protein structure
en-keyword=misfolded protein
kn-keyword=misfolded protein
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251114
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dorsolateral Cervical Cord T2 Hyperintensity in KIF1C-Related Disease (Spastic Paraplegia 58): Two Long-Duration Cases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pathogenic variants in KIF1C cause Spastic Paraplegia 58 (SPG58), typically presenting with cerebellar ataxia and spastic paraparesis. We report two unrelated patients with spastic paraparesis, cerebellar ataxia, and tremor. Whole-exome sequence analysis identified novel homozygous variants in the motor domain of KIF1C (NM_006612.6): c.921G>A (p.Trp307Ter) and c.607C>T (p.Arg203Trp). In addition to the canonical brain MRI showing leukoencephalopathy with posterior dominance and hyperintensity along the corticospinal tracts, both patients showed symmetric T2 hyperintensity confined to the lateral and dorsal columns of the cervical cord. Given the long disease durations (22 and 51 years), these findings may represent late-emerging or previously overlooked spinal cord involvement and broaden the neuroradiological spectrum of SPG58.
en-copyright=
kn-copyright=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OsakiMasao
en-aut-sei=Osaki
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OsakoMiho
en-aut-sei=Osako
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakeuchiChisen
en-aut-sei=Takeuchi
en-aut-mei=Chisen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KurokawaRyo
en-aut-sei=Kurokawa
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MoriHarushi
en-aut-sei=Mori
en-aut-mei=Harushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakahashiYuji
en-aut-sei=Takahashi
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=GotoJun
en-aut-sei=Goto
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled
kn-affil=
affil-num=5
en-affil=Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Radiology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Radiology, School of Medicine, Jichi Medical University
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=12
en-affil=Institute of Medical Genomics, International University of Health and Welfare
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
en-keyword=cerebellar ataxia
kn-keyword=cerebellar ataxia
en-keyword=hereditary spastic paraplegia
kn-keyword=hereditary spastic paraplegia
en-keyword=KIF1C
kn-keyword=KIF1C
en-keyword=leukoencephalopathy
kn-keyword=leukoencephalopathy
END
start-ver=1.4
cd-journal=joma
no-vol=445
cd-vols=
no-issue=
article-no=
start-page=134071
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=20260215
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cardiac characteristics of Fabry disease from baseline enrolment data in a nationwide prospective Japanese registry
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Fabry disease (FD) is an important disease in the cardiovascular field because a significant proportion of patients with FD die from cardiac lesions.
Methods: A multicenter prospective registration study of patients with FD throughout Japan was designed. The baseline clinical characteristics of 175 patients are presented here.
Results: The mean ages at enrolment and at diagnosis were 52 ± 16 and 43 ± 18 years, respectively, with men accounting for 38 % of the patients. In the cohort, 24 % of the patients had the classical hemizygote male type, whereas 14 % had the late-onset male type, and 62 % had the heterozygote female type. On electrocardiography data at enrolment in 92 patients with left ventricular hypertrophy (LVH) (maximum LV wall thickness > 12 mm), 12 % showed a short PQ interval (< 120 msec), and 33 % had a short PendQ interval (≤ 40 msec). The Sokolow-Lyon voltage was high (6.1 ± 13.1 mv). Regarding the distribution of LVH patterns, 77 % of the patients showed concentric diffuse LVH, 16 % of the patients had asymmetric septal hypertrophy, and 1 % of the patients had hypertrophy confined to the LV apex. With regard to implantation of cardiac devices, permanent pacemakers had been implanted in 5 % of the patients and defibrillators had been implanted in 12 patients (7 %), for primary prevention in nine patients and for secondary prevention in three patients.
Conclusion: As the first large-scale prospective registry of FD patients in Japan, this study has provided valuable baseline data for the cardiac features and management of FD.
en-copyright=
kn-copyright=
en-aut-name=KuboToru
en-aut-sei=Kubo
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaekawaYuichiro
en-aut-sei=Maekawa
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HongoKenichi
en-aut-sei=Hongo
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoSaori
en-aut-sei=Yamamoto
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IzumiyaYasuhiro
en-aut-sei=Izumiya
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamakawaHiroyuki
en-aut-sei=Yamakawa
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YanoToshiyuki
en-aut-sei=Yano
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HiguchiKoji
en-aut-sei=Higuchi
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KuramotoYuki
en-aut-sei=Kuramoto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakagawaNaoki
en-aut-sei=Nakagawa
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AmanoMasashi
en-aut-sei=Amano
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YamadaYu
en-aut-sei=Yamada
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OikawaMasayoshi
en-aut-sei=Oikawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IidaYuichiro
en-aut-sei=Iida
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TsujitaKenichi
en-aut-sei=Tsujita
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MatsueYuya
en-aut-sei=Matsue
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=IzawaHideo
en-aut-sei=Izawa
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SuzukiAtsushi
en-aut-sei=Suzuki
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NagatomoYuji
en-aut-sei=Nagatomo
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NagaiToshiyuki
en-aut-sei=Nagai
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=KidaKeisuke
en-aut-sei=Kida
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=NakamuraKazuto
en-aut-sei=Nakamura
en-aut-mei=Kazuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=IkenagaHiroki
en-aut-sei=Ikenaga
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KandaTakahiro
en-aut-sei=Kanda
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KinugasaYoshiharu
en-aut-sei=Kinugasa
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=ItoHiromasa
en-aut-sei=Ito
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=OnoueKenji
en-aut-sei=Onoue
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=KanamoriHiromitsu
en-aut-sei=Kanamori
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=KitaokaHiroaki
en-aut-sei=Kitaoka
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
kn-affil=
affil-num=2
en-affil=Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
kn-affil=
affil-num=3
en-affil=Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Osaka Metropolitan University, Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Cardiology, Keio University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, The University of Osaka Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Division of Cardiology and Nephrology, Department of Internal Medicine, Asahikawa Medical University
kn-affil=
affil-num=11
en-affil=Department of Heart Failure and Transplantation, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=12
en-affil=Department of Cardiology, Institute of Medicine, University of Tsukuba
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Medicine, Fukushima Medical University
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Medicine, Kitasato University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
kn-affil=
affil-num=16
en-affil=Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Cardiology, Fujita Health University
kn-affil=
affil-num=18
en-affil=Department of Cardiology, Tokyo Women's Medical University
kn-affil=
affil-num=19
en-affil=Department of Cardiology, National Defense Medical College
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
kn-affil=
affil-num=21
en-affil=Department of Pharmacology, St. Marianna University School of Medicine
kn-affil=
affil-num=22
en-affil=Department of Cardiovascular Medicine, University of Yamanashi, Faculty of Medicine
kn-affil=
affil-num=23
en-affil=Center for Advanced Heart Failure, Okayama University Hospital
kn-affil=
affil-num=24
en-affil=Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
kn-affil=
affil-num=25
en-affil=Department of Internal Medicine, Division of Cardiology, Hamamatsu Red Cross Hospital
kn-affil=
affil-num=26
en-affil=Department of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University
kn-affil=
affil-num=27
en-affil=Department of Cardiology, Mie University Hospital
kn-affil=
affil-num=28
en-affil=Department of Cardiovascular Medicine, Nara Medical University
kn-affil=
affil-num=29
en-affil=Department of Cardiology, Gifu University Graduate School of Medicine
kn-affil=
affil-num=30
en-affil=Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
kn-affil=
en-keyword=Fabry disease
kn-keyword=Fabry disease
en-keyword=Prospective study
kn-keyword=Prospective study
en-keyword=Left ventricular hypertrophy
kn-keyword=Left ventricular hypertrophy
en-keyword=Treatment
kn-keyword=Treatment
END
start-ver=1.4
cd-journal=joma
no-vol=237
cd-vols=
no-issue=
article-no=
start-page=113001
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of different X-ray tube positions on actual dose measurements during CT examinations -An effect of patient physique-
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dose management of patients is very important during X-ray Computed Tomography (CT) examinations, but because the patient's surface dose is inhomogeneous, it is difficult to measure the most probable value using a small passive-type dosimeter, lent to the patient. To solve this problem, our research group developed a precise dose analysis procedure in which a systematic uncertainty related to the X-ray incident direction (θin) is reduced. θin information was analyzed from CT images. However, the applicability of our procedure to actual patients with various physiques has not been examined. This study aims to propose a dose analysis procedure that can be applied to patients with various physiques, and to show its impact on dose measurement. Clinical data of 198 patients with Body Mass Index (BMI) values between 15 and 40 kg/m2 (mean value: 23.1 ± 3.8 kg/m2) who underwent chest CT scans were analyzed after dividing them into three groups based on BMI values. The absorbed dose was measured with a small-type Optically Stimulated Luminescence (OSL) dosimeter. To derive correction factors related to θin, the dependence of the actually-measured dose values of various patients on θin was analyzed. The correction coefficients were determined independently for the three groups classified by BMI values. By correcting the effect of θin, the systematic uncertainty element could be reduced, resulting in 30 % reduction of the uncertainty. Furthermore, it was found that our analysis procedure makes it possible to visualize outliers. In comparison with the expected dose values based on Computed Tomography Dose Index (CTDI) values, most of the data fell within the range of ±1.34 mGy (=1σ). However, 7 % of the data showed large deviations larger than 2σ. In conclusion, our research group has developed a procedure for measuring patient surface doses that can be applied to patients having various physiques, in which the effects of X-ray incident direction were accurately corrected. The procedure could be one solution to the problems with actual dose measurements during CT examinations, and will be useful for dose management based on the small-type dosimeter.
en-copyright=
kn-copyright=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaTatsuya
en-aut-sei=Maeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakegamiKazuki
en-aut-sei=Takegami
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KanazawaYuki
en-aut-sei=Kanazawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamashitaKazuta
en-aut-sei=Yamashita
en-aut-mei=Kazuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KonishiTakeshi
en-aut-sei=Konishi
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MakiMotochika
en-aut-sei=Maki
en-aut-mei=Motochika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
affil-num=2
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Yamaguchi University Hospital
kn-affil=
affil-num=4
en-affil=Faculty of Health Sciences, Kobe Tokiwa University
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=7
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=8
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=9
en-affil=Faculty of Life Science, Kumamoto University
kn-affil=
affil-num=10
en-affil=Department of Orthopedics, School of Medicine, Tokushima University
kn-affil=
affil-num=11
en-affil=MEDITEC JAPAN Co., Ltd.
kn-affil=
affil-num=12
en-affil=MEDITEC JAPAN Co., Ltd.
kn-affil=
en-keyword=Patient dosimetry
kn-keyword=Patient dosimetry
en-keyword=Medical diagnosis
kn-keyword=Medical diagnosis
en-keyword=OSL dosimeter
kn-keyword=OSL dosimeter
en-keyword=X-ray CT
kn-keyword=X-ray CT
en-keyword=Passive type radiation dosimeter
kn-keyword=Passive type radiation dosimeter
en-keyword=BMI
kn-keyword=BMI
END
start-ver=1.4
cd-journal=joma
no-vol=94
cd-vols=
no-issue=3
article-no=
start-page=401
end-page=407
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Storage Temperature and a Sugar-ester Edible Coating on Postharvest Quality and Storage Life of ‘Fuyu’ Persimmon (Diospyros kaki Thunb.)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In ‘Fuyu’ persimmons (Diospyros kaki Thunb.), crunchiness is a preferred postharvest attribute among both distributors and consumers. The present study first examined softening characteristics during storage at 0, 5, 10, 15, 20, and 25°C. Fruit stored at 0°C remained firm for 84 d, while that stored at 5°C had a 100% softening rate within 35 d. At 10 and 15°C, over 70% of fruit softened within 49 d and 63 d, respectively. The softening rate was relatively slower at 20 and 25°C, with only 27% softened fruit after 56 d at 25°C. The potential of a newly developed sugar-ester (SE) edible coating to delay fruit softening and maintain postharvest quality was then assessed during storage at 0 and 25°C. Uncoated fruit stored at 0°C for 56 d developed chilling injury (CI) symptoms (rapid fruit softening and peel browning) within 2 d of rewarming at 20°C. These CI symptoms were notably mitigated in SE-coated fruit. At 25°C, SE coating also delayed fruit softening and peel color change in addition to reducing fruit shrinkage. In conclusion, in ‘Fuyu’ persimmons ambient temperature (20–25°C) storage in combination with an edible SE coating is recommended for the high demand Christmas and new year seasons and 0°C storage with an edible SE coating is suitable for longer storage and distribution.
en-copyright=
kn-copyright=
en-aut-name=MuqadasMaqsood
en-aut-sei=Muqadas
en-aut-mei=Maqsood
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitaloOscar W.
en-aut-sei=Mitalo
en-aut-mei=Oscar W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhashiKyohei
en-aut-sei=Ohashi
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OtsukiTakumi
en-aut-sei=Otsuki
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanoChikara
en-aut-sei=Yano
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HejaziZiaurrahman
en-aut-sei=Hejazi
en-aut-mei=Ziaurrahman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiraNatsuki
en-aut-sei=Hira
en-aut-mei=Natsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UshijimaKoichiro
en-aut-sei=Ushijima
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KuboYasutaka
en-aut-sei=Kubo
en-aut-mei=Yasutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Life and Environmental Sciences, University of Tsukuba
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Agriculture, University of Miyazaki
kn-affil=
affil-num=7
en-affil=Shiga R&D Center, Mitsubishi Chemical Corporation
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University
kn-affil=
en-keyword=chilling injury
kn-keyword=chilling injury
en-keyword=long-term storage
kn-keyword=long-term storage
en-keyword=postharvest life
kn-keyword=postharvest life
en-keyword=shrinkage
kn-keyword=shrinkage
en-keyword=softening
kn-keyword=softening
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=13
article-no=
start-page=1863
end-page=1872
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Activated CD4+ T Cell Proportion in the Peripheral Blood Correlates with the Duration of Cytokine Release Syndrome and Predicts Clinical Outcome after Chimeric Antigen Receptor T Cell Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective Chimeric antigen receptor (CAR) T cell therapy is an emerging and effective therapy for relapsed or refractory diffuse large B cell lymphoma (R/R DLBCL). The characteristic toxicities of CAR T cell therapy include cytokine release syndrome (CRS) and prolonged cytopenia. We investigated the factors associated with these complications after CAR T cell therapy by analyzing lymphocyte subsets following CAR T cell infusion.
Methods We retrospectively analyzed peripheral blood samples on days 7, 14, and 28 after tisagenlecleucel (tisa-cel) infusion by flow cytometry at our institution between June 2020 and September 2022.
Patients Thirty-five patients with R/R DLBCL who received tisa-cel therapy were included.
Results A flow cytometry-based analysis of blood samples from these patients revealed that the proportion of CD4+CD25+CD127+ T cells (hereafter referred to as "activated CD4+ T cells" ) among the total CD4+ T cells on day 7 after tisa-cel infusion correlated with the duration of CRS (r=0.79, p<0.01). In addition, a prognostic analysis of the overall survival (OS) using time-dependent receiver operating characteristic curves indicated a significantly more favorable OS and progression-free survival of patients with a proportion of activated CD4+ T cells among the total CD4+ T cells <0.73 (p=0.01, and p<0.01, respectively).
Conclusion These results suggest that the proportion of activated CD4+ T cells on day 7 after tisa-cel infusion correlates with the CRS duration and predicts clinical outcomes after CAR T cell therapy. Further studies with a larger number of patients are required to validate these observations.
en-copyright=
kn-copyright=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IkegawaShuntaro
en-aut-sei=Ikegawa
en-aut-mei=Shuntaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KamoiChihiro
en-aut-sei=Kamoi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishimoriHisakazu
en-aut-sei=Nishimori
en-aut-mei=Hisakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital, Japan
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Division of Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Division of Blood Transfusion, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=chimeric antigen receptor T cell therapy
kn-keyword=chimeric antigen receptor T cell therapy
en-keyword=diffuse large B cell lymphoma
kn-keyword=diffuse large B cell lymphoma
en-keyword=flow cytometry
kn-keyword=flow cytometry
en-keyword=cytokine release syndrome
kn-keyword=cytokine release syndrome
en-keyword=prolonged cytopenia
kn-keyword=prolonged cytopenia
END
start-ver=1.4
cd-journal=joma
no-vol=194
cd-vols=
no-issue=
article-no=
start-page=50
end-page=62
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Increasing visual uncertainty modulates multisensory decision-making
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The brain integrates and transforms information from multiple senses to make optimal decisions, a process that is critical for navigating complex environments with perceptual uncertainty. Despite a growing consensus that individuals adapt flexibly to uncertain sensory input, whether increasing visual uncertainty influences the decision process itself or other, non-decision sensory processes during multisensory decision-making are unclear. Here, an audiovisual categorization task was used to examine the responses of human participants (N = 30) to visual and audiovisual stimuli under low-, medium-, and high-uncertainty conditions. Modeling the behavioral data using a drift‒diffusion model indicated that increased visual uncertainty in the audiovisual context decreased the evidence accumulation rate but had no effect on non-decision processes. Electrophysiological recordings confirmed and expanded upon these results: increased visual uncertainty in the audiovisual context reduced the amplitude during the late decision-making stage (300–380 msec) but had no effect on the amplitude during the early sensory encoding stage (140–220 msec). More importantly, electroencephalography analyses revealed that audiovisual integration in the early sensory encoding stage occurred robustly across all visual uncertainty conditions, whereas audiovisual integration in the late stage occurred only under medium and high visual uncertainty conditions. This study demonstrated that increased visual uncertainty modulates the decision process itself rather than early sensory encoding during multisensory decision-making. Moreover, multisensory integration strategies dynamically adapt to increasing visual uncertainty by engaging different mechanisms to maintain effective decision-making.
en-copyright=
kn-copyright=
en-aut-name=YangXiangfu
en-aut-sei=Yang
en-aut-mei=Xiangfu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangWeiping
en-aut-sei=Yang
en-aut-mei=Weiping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YuYinghua
en-aut-sei=Yu
en-aut-mei=Yinghua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EjimaYoshimichi
en-aut-sei=Ejima
en-aut-mei=Yoshimichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YangJiajia
en-aut-sei=Yang
en-aut-mei=Jiajia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Psychology, Faculty of Education, Hubei University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Multisensory decision-making
kn-keyword=Multisensory decision-making
en-keyword=Visual uncertainty
kn-keyword=Visual uncertainty
en-keyword=Audiovisual integration
kn-keyword=Audiovisual integration
en-keyword=Event-related potential
kn-keyword=Event-related potential
en-keyword=Drift‒diffusion model
kn-keyword=Drift‒diffusion model
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=4
article-no=
start-page=e70051
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Interaction between nuclear‐translocated cellular communication network factor 2 and purine‐rich box 1 regulates the expression of fibrosis‐related genes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cellular communication network factor 2 (CCN2) with a nuclear localization signal-like peptide is known to promote fibrosis. However, translocation of CCN2 into the nucleus and its role in fibrosis remain unclear. We hypothesized that nuclear-translocated CCN2 is associated with purine-rich box 1 (PU.1), which is a transcription factor regulating the differentiation of myofibroblasts. Western blot analysis of the cytoplasmic and nuclear fractions of cell lysate and immunofluorescence analysis revealed that CCN2 was detectable in both the cytoplasm and nuclei of murine fibroblastic NIH3T3 cells. Additionally, chromatin immunoprecipitation (IP)-PCR and an electrophoretic mobility shift assay revealed that recombinant CCN2 protein bound to the regulatory region of Spi1, which encodes PU.1. Furthermore, IP-Western blot analysis showed that CCN2 interacted with PU.1. Finally, the forced expression of both Ccn2 and Spi1 significantly promoted the production of angiotensin II, and increased fibrosis-related molecules, such as Col1a1 and Acta2, at the gene and protein levels. These findings indicate that CCN2 translocated to the nucleus interacts with PU.1 and that the complex promotes the markers of myofibroblast differentiation, suggesting that CCN2 plays an important role in fibrosis via cooperation with PU.1, as a transcription co-factor.
en-copyright=
kn-copyright=
en-aut-name=NguyenXuan Thi
en-aut-sei=Nguyen
en-aut-mei=Xuan Thi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakigawaMasaharu
en-aut-sei=Takigawa
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishidaTakashi
en-aut-sei=Nishida
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
kn-affil=
affil-num=4
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cellular communication network factor 2 (CCN2)
kn-keyword=cellular communication network factor 2 (CCN2)
en-keyword=fibrosis
kn-keyword=fibrosis
en-keyword=myofibroblast
kn-keyword=myofibroblast
en-keyword=purine‐rich box 1 (PU.1)
kn-keyword=purine‐rich box 1 (PU.1)
en-keyword=transcription co‐factor
kn-keyword=transcription co‐factor
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=6
article-no=
start-page=1392
end-page=1399
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Directed Poisoning Attacks on FRIT in Adaptive Cruise Control
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recent advances in connected-vehicle technologies have enabled the large-scale collection of driving data, facilitating the deployment of data-driven control schemes. Although these methods offer advantages by eliminating the need for explicit modeling, they also introduce vulnerabilities due to their reliance on stored data. This study investigates a class of targeted data poisoning attacks on fictitious reference iterative tuning, a widely used data-driven controller tuning approach. We present a method that allows an adversary to influence closed-loop dynamics by manipulating the training data so that the resulting controller behavior matches a maliciously defined reference response. This strategy differs from conventional poisoning attacks, which aim only to the degrade control performance. Instead, it enables deliberate alteration of control characteristics such as overshoot and convergence time. The proposed attack is formulated as a constrained optimization problem under bounded tampering signals. Through a numerical study involving adaptive cruise control with stop functionality, we show that minor data modifications, indistinguishable from sensor noise, can cause significant degradation in control behavior. These findings highlight the need for robust security mechanisms in data-driven control implementation.
en-copyright=
kn-copyright=
en-aut-name=IkezakiTaichi
en-aut-sei=Ikezaki
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SawadaKenji
en-aut-sei=Sawada
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanekoOsamu
en-aut-sei=Kaneko
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate school of Mechanical Engineering, The University of Osaka
kn-affil=
affil-num=3
en-affil=Graduate School of Informatics and Engineering, The University of Electro-Communications
kn-affil=
en-keyword=cyberattack
kn-keyword=cyberattack
en-keyword=data-driven control
kn-keyword=data-driven control
en-keyword=cruise control
kn-keyword=cruise control
en-keyword=FRIT
kn-keyword=FRIT
en-keyword=poisoning attack
kn-keyword=poisoning attack
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of size factors and velocity of impinging diesel spray flames on wall heat transfer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To examine the effects of size and velocity of impinging diesel spray flames on wall heat transfer, this study conducted visualization of the spray flame and measurements of wall heat flux in a constant volume vessel. The impinging flame velocity was varied by adjusting the injection velocity. To vary the flame size independently of the flame velocity, the nozzle orifice diameter and the nozzle-to-wall distance were varied under similarity conditions, while maintaining a constant ratio of nozzle-to-wall distance to orifice diameter. Care was taken to minimize wall interference from the liquid phase and unburned regions of the spray flame by employing a high cetane number fuel and increasing the nozzle-to-wall distance. The experimental results showed that the wall heat flux increased as the impinging velocity increased, and the flame width decreased. The power-law correlations between the Nusselt and Reynolds numbers were determined based on the experimental results, revealing that the exponent of the Reynolds number reaches a local minimum at the impingement point. As the radial displacement from the impingement point increases, the exponent of the Reynolds number approaches approximately 0.8, which is a typical value for turbulent wall flow.
en-copyright=
kn-copyright=
en-aut-name=KobashiYoshimitsu
en-aut-sei=Kobashi
en-aut-mei=Yoshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiraiRyoga
en-aut-sei=Hirai
en-aut-mei=Ryoga
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShibataGen
en-aut-sei=Shibata
en-aut-mei=Gen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OgawaHideyuki
en-aut-sei=Ogawa
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Engineering, Hokkaido University
kn-affil=
affil-num=3
en-affil=Graduate School of Engineering, Hokkaido University
kn-affil=
affil-num=4
en-affil=Graduate School of Engineering, Hokkaido University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=2
article-no=
start-page=25-00212
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=DNS analysis on the correlation between local burning velocity and flame displacement speed of turbulent premixed flames
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The local burning velocity and flame displacement speed are the major properties of premixed flames. The local burning velocity, which is the instantaneous quantity based on the local consumption rate of the unburnt mixture, is considered to be the most appropriate burning velocity in terms of the definition. The local burning velocity can be evaluated theoretically and numerically; however, it is almost impossible to obtain it experimentally using the current technology of measurement. The flame displacement speed can be evaluated more easily than the local burning velocity and compared with the flame displacement speed obtained from experiments. However, the local burning velocity and flame displacement speed have been discussed separately in turbulent premixed flames. In this study, to clarify the relation between the local burning velocity and the flame displacement speed, numerical analyses were performed using the DNS database of statistically steady and fully developed turbulent premixed flames with different density ratios of the unburnt mixture to the burnt product and with different Lewis numbers. It was found that for different density ratios, the local burning velocity was little sensitive to the flame displacement speed in any case under the unity Lewis number. This means the correlation between the local burning velocity and the flame displacement speed is little affected by the dilation of a flame. For different Lewis numbers, the correlation between the local burning velocity and the flame displacement speed was negative in Le = 0.8, and positive in Le = 1.2. This can be explained by the effect of the Lewis number on the local burning velocity, and the flame displacement speed was little affected by the Lewis number in the correlation between the local burning velocity and the flame displacement speed.
en-copyright=
kn-copyright=
en-aut-name=TSUBOIKazuya
en-aut-sei=TSUBOI
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Direct Numerical Simulation (DNS)
kn-keyword=Direct Numerical Simulation (DNS)
en-keyword=Turbulent premixed flame
kn-keyword=Turbulent premixed flame
en-keyword=Local burning velocity
kn-keyword=Local burning velocity
en-keyword=Flame displacement speed
kn-keyword=Flame displacement speed
en-keyword=Density ratio
kn-keyword=Density ratio
en-keyword=Dilation
kn-keyword=Dilation
en-keyword=Lewis number
kn-keyword=Lewis number
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=
article-no=
start-page=100624
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Assessing water resources availability and crop performance under climate change in Kenya's Bura irrigation scheme using SWAT and AquaCrop
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The current study focused on Tana River Basin in Kenya, home to the Bura irrigation scheme (BIS). The BIS faces water supply shortages during critical months of crop development. This study aimed to evaluate the available water resources and crop performance using the Soil and Water Assessment Tool (SWAT) and AquaCrop, respectively, under historical and future shared socioeconomic pathways (SSPs) at the BIS. SWAT estimated the total available flows (TAF) at the BIS intake, whereas AquaCrop estimated crop water requirements (CWR), yields, and water productivity (Wpet) of rice and maize at various carbon (IV) oxide (CO2) levels. The study suggested that the TAF will remain relatively low during the early critical crop development stages in the main cropping season, August-October. Maize yields remained steady over the two cropping seasons under both constant and elevated CO2 levels in the historical and future periods, as opposed to those of rice. Elevated CO2 levels led to diminishing CWR. Moreover, rice showed a stronger response to elevated CO2 than maize. As a result, maize which is less affected by variations in CO2 and temperatures and has less crop water requirements will be better suited than rice for cultivation in the BIS under climate change. To ensure a sustainable water supply in the scheme, the government should increase rainwater harvesting during periods of high TAF. Moreover, there should be a focus on introducing crops that are tolerant to water and temperature stresses and that can reap the most from the elevated CO2 levels.
en-copyright=
kn-copyright=
en-aut-name=WambuaDaniel Mwendwa
en-aut-sei=Wambua
en-aut-mei=Daniel Mwendwa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoroizumiToshitsugu
en-aut-sei=Moroizumi
en-aut-mei=Toshitsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Climate change
kn-keyword=Climate change
en-keyword=Shared socioeconomic pathways
kn-keyword=Shared socioeconomic pathways
en-keyword=Sustainable water management
kn-keyword=Sustainable water management
en-keyword=Temperature stress days
kn-keyword=Temperature stress days
en-keyword=Water stress days
kn-keyword=Water stress days
en-keyword=Water productivity
kn-keyword=Water productivity
en-keyword=Yields
kn-keyword=Yields
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=6
article-no=
start-page=463
end-page=468
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=MRI Images of a Case of Adenocarcinoma, Human Papillomavirus-Independent, Mesonephric Type, of the Uterine Cervix
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We present a case of a woman in her 70s who was diagnosed with mesonephric adenocarcinoma of the uterine cervix, following biopsy and surgery. Preoperative MRI revealed a 7-cm, well-defined circumferential cervical mass with left lateral wall predominance, bulging into the uterine cavity and vagina. The lesion showed intermediate signal intensity on T2-weighted images, diffusion restriction, and early contrast enhancement weaker than that of the myometrium, followed by washout on contrast-enhanced imaging. The circumferential growth pattern with the lateral wall predominance and its imaging characteristics may suggest this rare entity be routinely included in the differential diagnosis of cervical cancers.
en-copyright=
kn-copyright=
en-aut-name=AsanoYudai
en-aut-sei=Asano
en-aut-mei=Yudai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiharaChika
en-aut-sei=Nishihara
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KitayamaTakahiro
en-aut-sei=Kitayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkawaNanako
en-aut-sei=Okawa
en-aut-mei=Nanako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MakimotoSatoko
en-aut-sei=Makimoto
en-aut-mei=Satoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HigakiFumiyo
en-aut-sei=Higaki
en-aut-mei=Fumiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KojimaKatsuhide
en-aut-sei=Kojima
en-aut-mei=Katsuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugiharaHanako
en-aut-sei=Sugihara
en-aut-mei=Hanako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IdaNaoyuki
en-aut-sei=Ida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=mesonephric adenocarcinoma
kn-keyword=mesonephric adenocarcinoma
en-keyword=cervical cancer
kn-keyword=cervical cancer
en-keyword=MRI imaging characteristics
kn-keyword=MRI imaging characteristics
en-keyword=HPV-independent adenocarcinoma
kn-keyword=HPV-independent adenocarcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=6
article-no=
start-page=451
end-page=455
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Recurrence of FVIII Inhibitor during Surgery in a Patient with Severe Hemophilia A Receiving Emicizumab Prophylaxis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Emicizumab, a bispecific monoclonal antibody, benefits patients with severe hemophilia A. It alters laboratory assessments of coagulation activity, requiring anti-idiotype monoclonal antibodies for accurate monitoring. A 64-year-old man, receiving emicizumab regularly, was admitted for laminoplasty. We planned to use FVIII replacement during the perioperative period after confirming the disappearance of inhibitors, monitoring coagulation activity with anti-idiotype monoclonal antibodies. Activated partial thromboplastin time was prolonged on postoperative day 2, prompting an immediate switch to eptacog alfa. The patient recovered without bleeding. This case underscores the necessity of anti-idiotype monoclonal antibodies for accurate monitoring.
en-copyright=
kn-copyright=
en-aut-name=HagiharaMoe
en-aut-sei=Hagihara
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HayashinoKenta
en-aut-sei=Hayashino
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KinKyohei
en-aut-sei=Kin
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirataYuichi
en-aut-sei=Hirata
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=emicizumab
kn-keyword=emicizumab
en-keyword=eptacog alfa
kn-keyword=eptacog alfa
en-keyword=hemophilia A
kn-keyword=hemophilia A
en-keyword=inhibitor
kn-keyword=inhibitor
en-keyword=anti-idiotype monoclonal antibodies to emicizumab
kn-keyword=anti-idiotype monoclonal antibodies to emicizumab
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=6
article-no=
start-page=437
end-page=444
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Frailty at 1 Month before ICU Admission Poses a Hospital Mortality Risk in Cancer Survivors whose Condition Has Deteriorated due to Medical Factors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The optimal indications for intensive care unit (ICU) treatment for critically ill cancer survivors whose condition has deteriorated due to medical factors are unclear. To test our hypothesis that frailty before deterioration was associated with hospital mortality in this patient population, we retrospective analyzed the cases of the patients admitted to the ICU at the National Cancer Center Hospital, Japan (April 2014-March 2022). We excluded patients who underwent surgery within 28 days or were denied critical care within 24 h or admitted after cardiopulmonary arrest. Their Clinical Frailty Scale (CFS) scores at 1 month before ICU admission (Pre-ICU) were obtained. Frailty was defined as CFS scores ≥4 points. We analyzed 298 admissions and observed that the mortality rate at hospital discharge was significantly higher in the frailty group (n=119). A multivariate analysis demonstrated that the following factors were significantly associated with hospital mortality: Pre-ICU frailty (OR 2.00, 95%CI: 1.19-3.36, p=0.009), cancer type (hematological: OR 2.93, 95%CI: 1.42-6.05, p=0.004), and Sequential Organ Failure Assessment score at ICU admission (OR 0.88, 95%CI: 0.82-0.95, p=0.0008). Frailty retrospectively assessed using the CFS at 1 month pre-ICU admission is a risk factor for hospital mortality in these cancer survivors.
en-copyright=
kn-copyright=
en-aut-name=MatsumiJunya
en-aut-sei=Matsumi
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoTetsufumi
en-aut-sei=Sato
en-aut-mei=Tetsufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Intensive Care Medicine, National Cancer Center Hospital
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Intensive Care Medicine, National Cancer Center Hospital
kn-affil=
en-keyword=frailty
kn-keyword=frailty
en-keyword=cancer survivor
kn-keyword=cancer survivor
en-keyword=clinical frailty scale
kn-keyword=clinical frailty scale
en-keyword=cancer
kn-keyword=cancer
en-keyword=critically ill
kn-keyword=critically ill
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=6
article-no=
start-page=431
end-page=436
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association of Weekend Admission and In-Hospital Mortality in Adult Patients with Acute Myeloid Leukemia in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The effect of weekend admission on patient mortality has been investigated in several therapeutic areas, including acute myeloid leukemia (AML), but the investigations’ results are controversial. We evaluated the relationship between in-hospital mortality and weekend admission in adult patients with AML in Japan by conducting a retrospective observational study using administrative data from 144 acute care hospitals from which patients were discharged between April 2014 and March 2019. The primary endpoint was in-hospital mortality, compared between weekend and weekday admissions. Among the 1,340 eligible patients, 11% (150) were admitted during a weekend. The in-hospital mortality rates of the patients admitted during weekends and those admitted on a weekday were 28% (42/150) and 17% (204/1190), respectively. After an adjustment for covariates, weekend admission was associated with a significantly higher risk of in-hospital mortality than weekday admission (HR 1.70, 95%CI: 1.20-2.40; p=0.003). However, such an association was not observed in patients treated in a bio-clean room (HR 1.26, 95%CI: 0.65-2.42). Our results demonstrate that for patients with AML, weekend admission was independently associated with a higher risk of death during hospitalization. An appropriate system is necessary for these patients.
en-copyright=
kn-copyright=
en-aut-name=InoueTakahiro
en-aut-sei=Inoue
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuwabaraHiroyo
en-aut-sei=Kuwabara
en-aut-mei=Hiroyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamamotoKoh
en-aut-sei=Yamamoto
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Healthcare Management Research Center, Chiba University Hospital
kn-affil=
affil-num=2
en-affil=Healthcare Management Research Center, Chiba University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology, Yokohama City Minato Red Cross Hospital
kn-affil=
en-keyword=acute leukemia
kn-keyword=acute leukemia
en-keyword=weekend admission
kn-keyword=weekend admission
en-keyword=in-hospital mortality
kn-keyword=in-hospital mortality
en-keyword=bio-clean room
kn-keyword=bio-clean room
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=6
article-no=
start-page=421
end-page=429
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Thoron Inhalation and Cyclosporin A Treatment on Dextran Sulfate Sodium-Induced Oxidative Damage in Mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Radon (222Rn; Rn) and thoron (220Rn; Tn) inhalation have been reported to enhance antioxidant activity in various organs. However, the effects of Tn on the colon have not been investigated. This study aimed to clarify the effects of Tn inhalation, alone and in combination with cyclosporin A (CsA), on dextran sulfate sodium (DSS)-induced colitis, and the accompanying oxidative stress, in mice. Male BALB/c mice were subjected to continuous 8-day Tn inhalation (c-Tn, 533±128 Bq/m3) or alternate-day Tn inhalation over the same period (f-Tn, 577±63Bq/m3), followed by treatment with 3% DSS and either CsA or vehicle for 7 days. Although the disease activity index (DAI) decreased significantly by day 2 in the c-Tn group, scores remained significantly higher than those in the f-Tn group. In the c-Tn group, superoxide dismutase and catalase activity in the colon were significantly elevated compared with those in sham controls. Thus, DSS-induced damage was effectively inhibited in the earlier stages by the c-Tn mode of inhalation than by the f-Tn mode. These findings suggest that continuous Tn inhalation more effectively attenuated early colitis symptoms than alternate-day inhalation, potentially through upregulation of antioxidant defenses. Tn and CsA showed no combined effects.
en-copyright=
kn-copyright=
en-aut-name=TanakaAyumi
en-aut-sei=Tanaka
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaoeShota
en-aut-sei=Naoe
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakenakaReiju
en-aut-sei=Takenaka
en-aut-mei=Reiju
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanzakiNorie
en-aut-sei=Kanzaki
en-aut-mei=Norie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakodaAkihiro
en-aut-sei=Sakoda
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency
kn-affil=
affil-num=5
en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency
kn-affil=
affil-num=6
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=thoron
kn-keyword=thoron
en-keyword=DSS
kn-keyword=DSS
en-keyword=antioxidant activity
kn-keyword=antioxidant activity
en-keyword=CsA
kn-keyword=CsA
en-keyword=colon
kn-keyword=colon
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=6
article-no=
start-page=413
end-page=419
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=COVID-19 and the Risks of Migraine and Headache: A Mendelian Randomization Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Several observational studies suggested that migraine headache attacks were associated with coronavirus disease 2019 (COVID-19). We investigated genetic causal links between COVID-19 phenotypes and the development of headache and migraine, including migraine with aura (MA) and migraine without aura (MO). We conducted a two-sample Mendelian randomization (MR) analysis to estimate the genetic association in European populations. The inverse-variance weighted (IVW) method was used as the main approach in the MR analyses, together with weighted median and MR-Egger methods. We also performed a series of sensitivity tests to assess the robustness of the MR results. The MR results demonstrated that COVID-19 severity, hospitalization, and susceptibility had no causal effect on the risks of headache, migraine, MA, or MO. No horizontal pleiotropy was detected, and the results were robust as supported by the sensitivity analysis findings. Our analyses identified no casual effect of COVID-19 severity, hospitalization, or susceptibility on the risks of headache or migraine in European populations.
en-copyright=
kn-copyright=
en-aut-name=JiangZhiyun
en-aut-sei=Jiang
en-aut-mei=Zhiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=XiYing
en-aut-sei=Xi
en-aut-mei=Ying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
kn-affil=
affil-num=2
en-affil=Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
kn-affil=
en-keyword=headache
kn-keyword=headache
en-keyword=migraine
kn-keyword=migraine
en-keyword=Mendelian randomization
kn-keyword=Mendelian randomization
en-keyword=COVID-19
kn-keyword=COVID-19
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=6
article-no=
start-page=405
end-page=412
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real-World Outcomes of Anti-Vascular Endothelial Growth Factor Therapy for Neovascular Age-Related Macular Degeneration in Patients Aged 85 or Older
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated the treatment outcomes of patients aged ≥85 years with neovascular age-related macular degeneration (nAMD) who received anti-vascular endothelial growth factor (anti-VEGF) therapy using either treat-and-extend (TAE) or pro re nata (PRN) regimens for 1 year in real-world clinical practice. Eighty-five eyes from 85 patients were included. Among them, types 1, 2, and 3 macular neovascularization and polypoidal choroidal vasculopathy were present in 27.1%, 17.6%, 18.8%, and 36.5%, respectively. TAE and PRN regimens were used in 43.5% and 56.5% of patients, respectively. At baseline, the PRN group was older and had worse best-corrected visual acuity (BCVA), greater central retinal thickness, and more intraretinal fluid than the TAE group. In the TAE group, the mean number of injections was 7.6, BCVA improved significantly, and all retinal fluid rates decreased. In the PRN group, the mean number of injections was 3.9, BCVA remained unchanged, and the rates of macular fibrosis and atrophy increased. No serious adverse events were observed in either group. Anti-VEGF therapy was safe for patients aged ≥ 85 years with nAMD, and the TAE regimen effectively improved BCVA in this population. BCVA remained unchanged in the PRN-treated patients, with baseline disease severity and/or undertreatment potentially influencing the outcomes.
en-copyright=
kn-copyright=
en-aut-name=OuchiChihiro
en-aut-sei=Ouchi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Morizane HosokawaMio
en-aut-sei=Morizane Hosokawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anti-vascular endothelial growth factor therapy
kn-keyword=anti-vascular endothelial growth factor therapy
en-keyword=neovascular age-related macular degeneration
kn-keyword=neovascular age-related macular degeneration
en-keyword=age
kn-keyword=age
en-keyword=treat-and-extend
kn-keyword=treat-and-extend
en-keyword=pro re nata
kn-keyword=pro re nata
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=11
article-no=
start-page=1178
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251030
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sensory Modality-Dependent Interplay Between Updating and Inhibition Under Increased Working Memory Load: An ERP Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Working memory (WM) performance relies on the coordination of updating and inhibition functions within the central executive system. However, their interaction under varying cognitive loads, particularly across sensory modalities, remains unclear. Methods: This study examined how sensory modality modulates flanker interference under increasing WM loads. Twenty-two participants performed a visual n-back task at three load levels (1-, 2-, and 3-back) while ignoring visual (within-modality) or auditory (cross-modality) flankers. Results: Behaviorally, increased WM load (2- and 3-back) led to reduced accuracy (AC) and prolonged reaction times (RTs) in both conditions. In addition, flanker interference was observed under the 2-back condition in both the visual within-modality (VM) and audiovisual cross-modality (AVM) tasks. However, performance impairment emerged at a lower load (2-back) in the VM condition, whereas in the AVM condition, it only emerged at the highest load (3-back). Significant performance impairment in the AVM condition occurred at higher WM loads, suggesting that greater WM load is required to trigger interference. Event-related potential (ERP) results showed that N200 amplitudes increased significantly for incongruent flankers under the highest WM load (3-back) in the visual within-modality condition, reflecting greater inhibitory demands. In the cross-modality condition, enhanced N200 was not observed across all loads and even reversed at low load (1-back). Moreover, the results also showed that P300 amplitude increased with load in the within-modality condition but decreased in the cross-modality condition. Conclusions: These results demonstrated that the interaction between updating and inhibition is shaped by both WM load and sensory modality, further supporting a sensory modality-specific resource allocation mechanism. The cross-modality configurations may enable more efficient distribution of cognitive resources under high load, reducing interference between concurrent executive demands.
en-copyright=
kn-copyright=
en-aut-name=LuoYuxi
en-aut-sei=Luo
en-aut-mei=Yuxi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GuoAo
en-aut-sei=Guo
en-aut-mei=Ao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WuJinglong
en-aut-sei=Wu
en-aut-mei=Jinglong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YangJiajia
en-aut-sei=Yang
en-aut-mei=Jiajia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Psychology, Institute of Education, China West Normal University
kn-affil=
affil-num=3
en-affil=Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=workingmemory load
kn-keyword=workingmemory load
en-keyword=attentional resource allocation
kn-keyword=attentional resource allocation
en-keyword=modality-specific interference
kn-keyword=modality-specific interference
en-keyword=inhibitory control
kn-keyword=inhibitory control
en-keyword=executive function
kn-keyword=executive function
en-keyword=sensory modality
kn-keyword=sensory modality
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=
article-no=
start-page=1599114
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of visual spatial frequency on audiovisual interaction: an event-related potential study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Spatial frequency is a fundamental characteristic of visual signals that modulates the audiovisual integration behavior, but the neural mechanisms underlying spatial frequency are not well established. In the present study, the high temporal resolution of event-related potentials was used to investigate how visual spatial frequency modulates audiovisual integration. A visual orientation discrimination task was used, and the spatial frequency of visual stimuli was manipulated under three conditions. Results showed that the influence of visual spatial frequency on audiovisual integration is a dynamic process. The earliest audiovisual integration occurred over the left temporal-occipital regions in the early sensory stage (60–90 ms) for high spatial frequency conditions but was absent for low and middle spatial frequency conditions. In addition, audiovisual integration over fronto-central regions was delayed as spatial frequency increased (from 230–260 ms to 260–320 ms). The integration effect was also observed over parietal and occipital regions at 350–380 ms, and its strength gradually decreased at higher spatial frequencies. These discrepancies in the temporal and spatial distributions of audiovisual integration imply that the role of spatial frequency varies between early sensory and late cognitive stages. The findings of this study offer the first neural demonstration that spatial frequency modulates audiovisual integration, thus providing a basis for studying complex multisensory integration, especially in semantic and emotional domains.
en-copyright=
kn-copyright=
en-aut-name=WuFengxia
en-aut-sei=Wu
en-aut-mei=Fengxia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=RenYanna
en-aut-sei=Ren
en-aut-mei=Yanna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaoTengfei
en-aut-sei=Hao
en-aut-mei=Tengfei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YangJingjing
en-aut-sei=Yang
en-aut-mei=Jingjing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WuQiong
en-aut-sei=Wu
en-aut-mei=Qiong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YangJiajia
en-aut-sei=Yang
en-aut-mei=Jiajia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WangMeng
en-aut-sei=Wang
en-aut-mei=Meng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=School of Artificial Intelligence, Changchun University of Science and Technology
kn-affil=
affil-num=2
en-affil=Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine
kn-affil=
affil-num=3
en-affil=School of Artificial Intelligence, Changchun University of Science and Technology
kn-affil=
affil-num=4
en-affil=School of Artificial Intelligence, Changchun University of Science and Technology
kn-affil=
affil-num=5
en-affil=Department of Psychology, Suzhou University of Science and Technology
kn-affil=
affil-num=6
en-affil=Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=School of Artificial Intelligence, Changchun University of Science and Technology
kn-affil=
en-keyword=spatial frequency
kn-keyword=spatial frequency
en-keyword=visual orientation discrimination
kn-keyword=visual orientation discrimination
en-keyword=audiovisual integration
kn-keyword=audiovisual integration
en-keyword=early sensory stage
kn-keyword=early sensory stage
en-keyword=late cognitive stage
kn-keyword=late cognitive stage
en-keyword=event-related potentials
kn-keyword=event-related potentials
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=32
article-no=
start-page=105347
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Guide Tip Damage Due to Rotablation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The rotational atherectomy system can effectively debulk calcified coronary lesions. However, rare complications specific to that system have been reported.
Case Summary: A 77-year-old man with a heavily calcified lesion in the right coronary artery (RCA) ostium underwent percutaneous coronary intervention in an 8-F system. During the procedure, rotablation with a 2.25-mm burr was required. After the percutaneous coronary intervention, partial loss of the tip of the guide was observed. He had no clinical sequelae despite the presumed retained catheter material in his body.
Discussion: Although insufficient guide coaxiality has been suggested as the primary cause of guide tip fracture during RCA ostial ablation, other factors may have contributed: the application of force to the tip and a small difference in size between the guide and the burr.
Take-Home Message: When ablating RCA ostial lesions, positioning the burr platform outside the guide may help prevent similar complications in future cases.
en-copyright=
kn-copyright=
en-aut-name=TayaSatoshi
en-aut-sei=Taya
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaMasatoki
en-aut-sei=Yoshida
en-aut-mei=Masatoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EjiriKentaro
en-aut-sei=Ejiri
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TodaHironobu
en-aut-sei=Toda
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoritaHiroshi
en-aut-sei=Morita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=complication
kn-keyword=complication
en-keyword=coronary angiography
kn-keyword=coronary angiography
en-keyword=imaging
kn-keyword=imaging
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=2
article-no=
start-page=101482
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Amelioration of Cd-induced bone deterioration by orally administered calcium phosphate
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cadmium (Cd) is a heavy metal that accumulates in the body, primarily through daily grain intake, and has a high affinity for bone, leading to skeletal diseases such as osteomalacia and fractures. Hydroxyapatite (HAp), a major bone mineral component, is highly pH-sensitive and is known to incorporate Cd, as observed in studies of Itai-itai disease. Based on these findings, we hypothesized that HAp could serve as an effective oral detoxification material for heavy metals. This study investigated the efficacy of orally administered HAp in inhibiting Cd-induced changes in bone physical and chemical properties, comparing its effects to those of activated charcoal (AC), a common detoxifying agent. Six-week-old male ICR mice were exposed to cadmium via drinking water containing CdCl2 and subsequently given diets containing either HAp or AC for four weeks. Three-point bending tests, micro-CT analysis, and histological observations of the femurs demonstrated that mice receiving HAp exhibited improved mechanical strength and enhanced bone quality protection compared to the control and other Cd-treated groups. Activated charcoal also contributed to bone quality improvement at low concentrations, but its effect diminished at high concentrations. These results suggest that the oral administration of HAp may be a promising therapeutic strategy for suppressing cadmium-induced osteomalacia.
en-copyright=
kn-copyright=
en-aut-name=SungPing-chin
en-aut-sei=Sung
en-aut-mei=Ping-chin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BikharudinAhmad
en-aut-sei=Bikharudin
en-aut-mei=Ahmad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkadaMasahiro
en-aut-sei=Okada
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MusaRanda
en-aut-sei=Musa
en-aut-mei=Randa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UchidaKenta
en-aut-sei=Uchida
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtakaAkihisa
en-aut-sei=Otaka
en-aut-mei=Akihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsusakaTadaaki
en-aut-sei=Matsusaka
en-aut-mei=Tadaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsugakiAira
en-aut-sei=Matsugaki
en-aut-mei=Aira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakanoTakayoshi
en-aut-sei=Nakano
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsumotoTakuya
en-aut-sei=Matsumoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University
kn-affil=
affil-num=8
en-affil=Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University
kn-affil=
affil-num=9
en-affil=Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University
kn-affil=
affil-num=10
en-affil=Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cadmium
kn-keyword=Cadmium
en-keyword=Bone deterioration
kn-keyword=Bone deterioration
en-keyword=Calcium phosphate
kn-keyword=Calcium phosphate
en-keyword=Bone quality
kn-keyword=Bone quality
END
start-ver=1.4
cd-journal=joma
no-vol=260
cd-vols=
no-issue=
article-no=
start-page=115195
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An entangled material made from fiber aerosol deposition method
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study demonstrates the successful application of Aerosol Deposition (AD) technology to short carbon fibers (length < 1 mm), enabling the rapid, three-dimensional (3D) fabrication of objects with vertical growth rates up to 0.3 mm/s, a significant improvement over conventional additive manufacturing. Through a series of experiments using this novel Fiber Aerosol Deposition (FAD) technology, three fiber lengths (47, 85, and 111 μm) and four substrate materials (carbon, polypropylene, polyethylene, and acrylonitrile butadiene styrene (ABS)) were investigated. Our findings indicate that both carbon substrate entanglement and fiber length critically influence deposition efficiency. Scanning electron microscopy (SEM) and X-ray computed tomography (CT) analyses reveal that during formation, longer fibers (>100 μm) initially create a cage-like framework, which is subsequently filled by shorter fibers. Density measurements and fiber distribution analysis confirmed that structures predominantly composed of shorter fibers exhibit higher packing densities, consistent with their role as filler material. These results collectively suggest that the FAD method’s formation mechanism relies on frictional entanglement rather than the room-temperature impact consolidation (RTIC) effect characteristic of traditional AD. This breakthrough presents a promising new technique for forming short fibers into functional 3D architectures, with potential applications extending to proteins, polymer fibers, and biomaterial fibers.
en-copyright=
kn-copyright=
en-aut-name=YuHongwu
en-aut-sei=Yu
en-aut-mei=Hongwu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IkedaNaoshi
en-aut-sei=Ikeda
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriMasakazu
en-aut-sei=Mori
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanoJun
en-aut-sei=Kano
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ParkJae-Hyuk
en-aut-sei=Park
en-aut-mei=Jae-Hyuk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkedoJun
en-aut-sei=Akedo
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, University of Okayama
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, University of Okayama
kn-affil=
affil-num=3
en-affil=Ryukoku University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, University of Okayama
kn-affil=
affil-num=5
en-affil=School of Advanced Materials Science & Engineering, Sungkyunkwan University
kn-affil=
affil-num=6
en-affil=National Institute of Advanced Industrial Science and Technology
kn-affil=
en-keyword=Aerosol deposition
kn-keyword=Aerosol deposition
en-keyword=Thick film
kn-keyword=Thick film
en-keyword=Room temperature
kn-keyword=Room temperature
en-keyword=Ceramic coating
kn-keyword=Ceramic coating
en-keyword=RTIC
kn-keyword=RTIC
en-keyword=Carbon fiber
kn-keyword=Carbon fiber
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=12
article-no=
start-page=3199
end-page=3207
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Virtual endoscopic imaging of the heart using photon-counting detector computed tomography for electrophysiologists
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MoritaHiroshi
en-aut-sei=Morita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsadaSaori
en-aut-sei=Asada
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyamotoMasakazu
en-aut-sei=Miyamoto
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakagawaKoji
en-aut-sei=Nakagawa
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagaseSatoshi
en-aut-sei=Nagase
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimotoYoshimasa
en-aut-sei=Morimoto
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawadaSatoshi
en-aut-sei=Kawada
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WadaTadashi
en-aut-sei=Wada
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MasudaTakuro
en-aut-sei=Masuda
en-aut-mei=Takuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=UeokaAkira
en-aut-sei=Ueoka
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TohNorihisa
en-aut-sei=Toh
en-aut-mei=Norihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NishiiNobuhiro
en-aut-sei=Nishii
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Therapeutics, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=5
en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medical Center
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Fukuyama City Hospital
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Kochi Health Science Center
kn-affil=
affil-num=8
en-affil=Department of Cardiology, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Therapeutics, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine and Dentistry
kn-affil=
en-keyword=Photon-counting detector computed tomography
kn-keyword=Photon-counting detector computed tomography
en-keyword=Endoscopic view
kn-keyword=Endoscopic view
en-keyword=False tendon
kn-keyword=False tendon
en-keyword=Ablation
kn-keyword=Ablation
en-keyword=Anatomy
kn-keyword=Anatomy
END
start-ver=1.4
cd-journal=joma
no-vol=114
cd-vols=
no-issue=3
article-no=
start-page=117209
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Molecular epidemiological investigation of the carbapenemase-producing Enterobacterales isolates in Okayama prefecture, Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated the genetic characteristics of non-IMP type carbapenemase-producing Enterobacterales isolates detected in Japan. The isolates were found to carry diverse plasmids with high sequence similarity to those previously reported in other countries, underscoring the critical imperative for comprehensive nationwide epidemiological surveillance for the silent pandemic of the nightmare pathogen.
en-copyright=
kn-copyright=
en-aut-name=TsujiShuma
en-aut-sei=Tsuji
en-aut-mei=Shuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukushimaShinnosuke
en-aut-sei=Fukushima
en-aut-mei=Shinnosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GotohKazuyoshi
en-aut-sei=Gotoh
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IioKoji
en-aut-sei=Iio
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoMayu
en-aut-sei=Sato
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InoueYasurou
en-aut-sei=Inoue
en-aut-mei=Yasurou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakitaSayaka
en-aut-sei=Sakita
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FudeyasuTomoko
en-aut-sei=Fudeyasu
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Microbiology Division, Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Clinical Laboratory, Okayama City Hospital
kn-affil=
affil-num=6
en-affil=Department of Clinical Laboratory, Okayama City Hospital
kn-affil=
affil-num=7
en-affil=Department of Clinical Laboratory, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Clinical Laboratory, Microbiology Division, Tsuyama Chuo Hospital
kn-affil=
affil-num=9
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
en-keyword=Antimicrobial resistance
kn-keyword=Antimicrobial resistance
en-keyword=Carbapenemase-producing Enterobacterales
kn-keyword=Carbapenemase-producing Enterobacterales
en-keyword=New Delhi metallo-β-lactamase
kn-keyword=New Delhi metallo-β-lactamase
en-keyword=Klebsiella pneumoniae carbapenemase
kn-keyword=Klebsiella pneumoniae carbapenemase
en-keyword=Genomic surveillance
kn-keyword=Genomic surveillance
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=9
article-no=
start-page=1068
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250830
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical Evaluation of Oxidative Stress Markers in Patients with Long COVID During the Omicron Phase in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To characterize changes in markers of oxidative stress for the clinical evaluation of patients with long COVID, we assessed oxidative stress and antioxidant activity based on serum samples from patients who visited our clinic between May and November 2024. Seventy-seven patients with long COVID (41 [53%] females and 36 [47%] males; median age, 44 years) were included. Median [interquartile range] serum levels of diacron-reactive oxygen metabolites (d-ROM; CARR Unit), biological antioxidant potential (BAP; μmol/L), and oxidative stress index (OSI) were 533.8 [454.9–627.6], 2385.8 [2169.2–2558.1] and 2.0 [1.7–2.5], respectively. Levels of d-ROMs (579.8 vs. 462.2) and OSI (2.3 vs. 1.8), but not BAP (2403.4 vs. 2352.6), were significantly higher in females than in males. OSI levels positively correlated with age and body mass index, whereas BAP levels negatively correlated with these parameters. d-ROM and OSI levels were significantly associated with inflammatory markers, including C-reactive protein (CRP) and fibrinogen, whereas BAP levels were inversely correlated with CRP and ferritin levels. Notably, serum free thyroxine levels were negatively correlated with d-ROMs and OSI, whereas cortisol levels were positively correlated with d-ROMs. Among long COVID symptoms, patients reporting brain fog exhibited significantly higher OSI levels (2.2 vs. 1.8), particularly among females (d-ROMs: 625.6 vs. 513.0; OSI: 2.4 vs. 2.0). The optimal OSI cut-off values were determined to be 1.32 for distinguishing long COVID from healthy controls and 1.92 for identifying brain fog among patients with long COVID. These findings suggest that oxidative stress markers may serve as indicators for the presence or prediction of psycho-neurological symptoms associated with long COVID in a gender-dependent manner.
en-copyright=
kn-copyright=
en-aut-name=MeseOsamu
en-aut-sei=Mese
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtsukaYuki
en-aut-sei=Otsuka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakuradaYasue
en-aut-sei=Sakurada
en-aut-mei=Yasue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TokumasuKazuki
en-aut-sei=Tokumasu
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SoejimaYoshiaki
en-aut-sei=Soejima
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoritaSatoru
en-aut-sei=Morita
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakanoYasuhiro
en-aut-sei=Nakano
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HondaHiroyuki
en-aut-sei=Honda
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=EguchiAkiko
en-aut-sei=Eguchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FukudaSanae
en-aut-sei=Fukuda
en-aut-mei=Sanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NojimaJunzo
en-aut-sei=Nojima
en-aut-mei=Junzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Biobank Center, Mie University Hospital
kn-affil=
affil-num=10
en-affil=Department of Health Welfare Sciences, Kansai University of Welfare Sciences
kn-affil=
affil-num=11
en-affil=Department of Laboratory Medicine, Yamaguchi University
kn-affil=
affil-num=12
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=biological antioxidant potential (BAP)
kn-keyword=biological antioxidant potential (BAP)
en-keyword=Coronavirus disease 2019 (COVID-19)
kn-keyword=Coronavirus disease 2019 (COVID-19)
en-keyword=diacron-reactive oxygen metabolites (d-ROM)
kn-keyword=diacron-reactive oxygen metabolites (d-ROM)
en-keyword=Long COVID
kn-keyword=Long COVID
en-keyword=oxidative stress index (OSI)
kn-keyword=oxidative stress index (OSI)
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=4
article-no=
start-page=104195
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Factors affecting the development of hypokalemia during apheresis in healthy donors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Despite being generally safe, apheresis for peripheral blood stem cell collection potentially disrupts electrolyte balance owing to the use of citric acid as an anticoagulant. As prior research has primarily studied hypocalcemia, information on the kinetics of potassium levels during apheresis in healthy donors is scarce. We investigated the fluctuation in potassium levels during apheresis and the risk factors for hypokalemia. This subanalysis used data from an open-label, randomized controlled trial of “oral calcium supplementation versus placebo in mitigating citrate toxicity” conducted between January 2021 and July 2022, at Okayama University Hospital. Potassium levels were significantly reduced after 5-day granulocyte colony-stimulating factor (G-CSF) administration (p < 0.0001), with seven patients (16.7 %) given oral potassium administration before apheresis because the treating physician deemed potassium levels potentially unsafe and three (7.1 %) presenting with hypokalemia at apheresis. Potassium levels after apheresis were significantly lower than those before apheresis (baseline; p < 0.0001), and 28 of 42 donors (66.7 %) experienced biochemical, clinically unapparent hypokalemia immediately after the completion of apheresis. A > 15 % reduction in potassium levels from baseline was associated with age and the acid citrate dextrose solution A (ACD-A) volume in univariate analysis. In the multivariable analysis, both factors were associated (hazard ratio [HR], 11.60; 95 % confidence interval [CI], 1.60–83.70; p = 0.02 and HR, 17.50; 95 % CI, 1.07–136.00; p = 0.04). In conclusion, G-CSF administration and apheresis ultimately induced hypokalemia in two-thirds of the donors. Older age and higher ACD-A volume may affect potassium levels during apheresis in healthy donors.
en-copyright=
kn-copyright=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeMasaya
en-aut-sei=Abe
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukumiTakuya
en-aut-sei=Fukumi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkeuchiKazuhiro
en-aut-sei=Ikeuchi
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Division of Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=Allogeneic
kn-keyword=Allogeneic
en-keyword=Peripheral blood stem cells
kn-keyword=Peripheral blood stem cells
en-keyword=Hypokalemia
kn-keyword=Hypokalemia
en-keyword=Acid citrate dextrose solution A
kn-keyword=Acid citrate dextrose solution A
en-keyword=Healthy donors
kn-keyword=Healthy donors
END
start-ver=1.4
cd-journal=joma
no-vol=140
cd-vols=
no-issue=
article-no=
start-page=105684
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Improvements of lateral penumbra at various depth regions in proton pencil beam scanning with a multileaf collimator: Dose verifications and plan comparisons
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: In scanned proton therapy, the current consensus is that the effective range of the collimator’s contribution to lateral penumbra improvement is up to approximately 150 mm depth. We characterized the penumbra variations for scanned proton beams with or without a new type of multileaf collimator (MLC) under various air gaps, depth, and with or without range shifter (RS).
Methods: Eighty-six uniform dose plans were created (38 RS-negative and 48 RS-positive plans) for nine box targets of 60 × 60 × 54 mm3 at 0–280 mm depths in water. They were created with or without MLC, with 50–300 mm air gaps. The penumbra and average doses of MLC-positive and MLC-negative plans at the organs at risk (OAR) region of each box plan were compared. Besides, several plan doses were validated by measurements with penumbra (with an average of 80–20 % dose point widths for both side profiles) differences and 2D gamma analysis.
Results: The MLC-positive plans reduced the penumbra and mean OAR doses by 1.0–5.1 mm and 3.3–13.5 %, respectively, compared to MLC-negative plans even at >150 mm depths. The penumbra differences in measurements were <±1.5 mm for all plans. The mean gamma scores at 2 %/2 mm were 97.9 ± 2.3 % and 97.4 ± 3.1 % for the MLC-negative and MLC-positive plans, respectively.
Conclusions: The MLC-positive beams improved the penumbra and reduced the OAR dose in every depth region and air gap. We have shown that PBS with MLCs can be useful at more than 150 mm regions, depending on the machine.
en-copyright=
kn-copyright=
en-aut-name=TominagaYuki
en-aut-sei=Tominaga
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WakisakaYushi
en-aut-sei=Wakisaka
en-aut-mei=Yushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatoTakahiro
en-aut-sei=Kato
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YasuiKeisuke
en-aut-sei=Yasui
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoRyohei
en-aut-sei=Kato
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IchiharaMasaya
en-aut-sei=Ichihara
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TomidaMasashi
en-aut-sei=Tomida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SasakiMotoharu
en-aut-sei=Sasaki
en-aut-mei=Motoharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishioTeiji
en-aut-sei=Nishio
en-aut-mei=Teiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic
kn-affil=
affil-num=2
en-affil=Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic
kn-affil=
affil-num=3
en-affil=Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
kn-affil=
affil-num=4
en-affil=School of Medical Sciences, Fujita Health University
kn-affil=
affil-num=5
en-affil=Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center
kn-affil=
affil-num=6
en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka
kn-affil=
affil-num=7
en-affil=Department of Proton Beam Technology Room, Narita Memorial Proton Center
kn-affil=
affil-num=8
en-affil=Graduate School of Biomedical Sciences, Tokushima University
kn-affil=
affil-num=9
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=10
en-affil=Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, The University of Osaka
kn-affil=
en-keyword=Proton therapy
kn-keyword=Proton therapy
en-keyword=Pencil beam scanning
kn-keyword=Pencil beam scanning
en-keyword=Multileaf collimator
kn-keyword=Multileaf collimator
en-keyword=Lateral penumbra
kn-keyword=Lateral penumbra
en-keyword=Treatment planning
kn-keyword=Treatment planning
END
start-ver=1.4
cd-journal=joma
no-vol=2025
cd-vols=
no-issue=12
article-no=
start-page=rjaf972
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251129
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Endoscopic surgery for distal femoral physeal bar resection with computed tomography-assisted navigation: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The formation of physeal bars, or bony bridges, following growth plate injuries can cause complications such as angular deformities or discrepancies in leg length. The management strategies for these depend on factors such as the bar’s location, extent, and residual growth potential. Herein, we describe the case of a 14-year-old male with a valgus knee deformity caused by a distal femoral physeal bar. The patient underwent endoscopic resection of the bar, assisted by computed tomography-based navigation and intraoperative O-arm imaging. This minimally invasive technique facilitated safe and accurate removal of the lesion with less risk of complications such as cortical perforation or injury to adjacent neurovascular structures compared to traditional approaches. The patient experienced favorable postoperative outcomes, including restored knee range of motion and full symptom resolution. This approach demonstrates the clinical value of integrating endoscopy with advanced navigation systems during the surgical treatment of physeal bars.
en-copyright=
kn-copyright=
en-aut-name=MasadaYasutaka
en-aut-sei=Masada
en-aut-mei=Yasutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TetsunagaTomonori
en-aut-sei=Tetsunaga
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaKazuki
en-aut-sei=Yamada
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InoueTomohiro
en-aut-sei=Inoue
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkudaRyuichiro
en-aut-sei=Okuda
en-aut-mei=Ryuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoTetsuya
en-aut-sei=Yamamoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoShin
en-aut-sei=Matsumoto
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TetsunagaTomoko
en-aut-sei=Tetsunaga
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Musculoskeletal Health Promotion, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medical Materials for Musculoskeletal Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Sports Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Advanced Rehabilitation Medicine for the Musculoskeletal System, Okayama University
kn-affil=
affil-num=10
en-affil=Center for Education in Medicine and Health Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=physeal bar
kn-keyword=physeal bar
en-keyword=computed tomography
kn-keyword=computed tomography
en-keyword=navigation
kn-keyword=navigation
END
start-ver=1.4
cd-journal=joma
no-vol=177
cd-vols=
no-issue=4
article-no=
start-page=e70398
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparative Transcriptome Reveals ART1-Dependent Regulatory Pathways for Fe Toxicity Response in Rice Roots
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Iron (Fe) is an essential element for plants, but an excess supply can have detrimental effects. Fe toxicity induces complex physiological and genetic responses, and due to this complexity, the knowledge of transcriptional regulatory mechanisms under Fe toxicity is very limited. Previous studies suggested that plant responses to excess Fe involve oxidative stress caused by reactive oxygen species (ROS), which itself causes transcriptional changes. We hypothesized that dissecting these complex responses could lead to the identification of a novel factor and conducted a comparative transcriptome analysis using roots of rice plants exposed to nutrient solutions containing 1 or 5 mM of hydrogen peroxide (a major form of ROS) or 300 mg L−1 of Fe (as FeSO4). Genes induced by hydrogen peroxide overlapped with 62%, 49%, and 30% of Fe toxicity-upregulated genes at 3 h, 1 day, and 3 days following treatment initiation. Subsequent gene co-expression analyses classified genes into 21 groups with varying responsiveness to ROS and Fe toxicity. Genes in group 15 were specifically upregulated by Fe toxicity and overlapped significantly with aluminum (Al)-inducible genes and target genes of the Zn-finger transcription factor, ART1, which regulates Al response in rice roots. Additional experiments using the art1 knock-out mutant demonstrated that ART1 is crucial for upregulating genes such as STAR2 and FRDL4 in response to Fe toxicity. This study reveals the contribution of ART1-dependent regulatory pathways in rice roots under Fe toxicity.
en-copyright=
kn-copyright=
en-aut-name=UedaYoshiaki
en-aut-sei=Ueda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WissuwaMatthias
en-aut-sei=Wissuwa
en-aut-mei=Matthias
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences
kn-affil=
en-keyword=ART1
kn-keyword=ART1
en-keyword=gene co-expression analysis
kn-keyword=gene co-expression analysis
en-keyword=iron toxicity
kn-keyword=iron toxicity
en-keyword=reactive oxygen species
kn-keyword=reactive oxygen species
en-keyword=rice
kn-keyword=rice
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=8
article-no=
start-page=1537
end-page=1544
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250528
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Phase-Ib dose-finding and pharmacokinetic trial of metformin combined with nivolumab for refractory/recurrent solid tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Our previous findings showed that the addition of metformin to nivolumab resulted in remarkable tumor regression and increased the number of tumor-infiltrating T cells in mouse models. Therefore, we conducted a phase Ib study using combination therapy with nivolumab and metformin in patients with refractory/recurrent solid tumors.
Methods This study consisted of two parts: 1, evaluating the maximum tolerated dose (MTD), safety, pharmacokinetics in solid tumors, and 2, principally investigating the safety at the recommended dose limited to thoracic and pancreatic cancers. Metformin and nivolumab were administered orally at doses of 750–2,250 mg/day and biweekly at a fixed intravenous dose of 3 mg/kg, respectively. Dose-limiting toxicity was evaluated within the first 4 weeks. Both metformin and nivolumab were continued until disease progression or discontinued because of toxicity.
Results In total, 17 and 24 patients were enrolled in parts 1 and 2, respectively. One patient experienced increased pancreatic enzyme levels (grade 4) and lactic acidosis (grade 3). No Grade 5 adverse events were observed. MTD was not reached up to 2,250 mg/day of metformin, 2,250 mg/day was selected for part 2. An objective response was observed in 4 of 41 patients. One-year progression-free and overall survival rates were 9.8% and 56.8%, respectively. Two patients remained alive without disease progression for more than three years.
Conclusions Nivolumab and metformin combination therapy was well-tolerated and showed preliminary signals of efficacy in a subset of patients. Further verification of the underlying mechanism in cases where treatment is effective is required.
Trial registration numbers UMIN registration number 000028405 https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000031915.
en-copyright=
kn-copyright=
en-aut-name=KuboToshio
en-aut-sei=Kubo
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatoHironari
en-aut-sei=Kato
en-aut-mei=Hironari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KozukiToshiyuki
en-aut-sei=Kozuki
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AsagiAkinori
en-aut-sei=Asagi
en-aut-mei=Akinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshidaMichihiro
en-aut-sei=Yoshida
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UdonoHeiichiro
en-aut-sei=Udono
en-aut-mei=Heiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KiuraKatsuyuki
en-aut-sei=Kiura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Thoracic Oncology and Medicine, NHO Shikoku Cancer Center
kn-affil=
affil-num=5
en-affil=Department of Gastrointestinal Medical Oncology, NHO Shikoku Cancer Center
kn-affil=
affil-num=6
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
en-keyword=Pancreatic cancer
kn-keyword=Pancreatic cancer
en-keyword=Thoracic tumors
kn-keyword=Thoracic tumors
en-keyword=Phase Ib
kn-keyword=Phase Ib
en-keyword=Anti-PD-1 antibody
kn-keyword=Anti-PD-1 antibody
en-keyword=Nivolumab
kn-keyword=Nivolumab
en-keyword=Metformin
kn-keyword=Metformin
END
start-ver=1.4
cd-journal=joma
no-vol=89
cd-vols=
no-issue=3
article-no=
start-page=e70091
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Autoclaved lightweight aerated concrete suppressed N2O and CO2 emissions from paddy soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Autoclaved lightweight aerated concrete (AAC), a construction waste that is utilized as a soil amendment, can influence terrestrial carbon dioxide (CO2) emissions. Still, no evidence exists regarding its impact on the emission of nitrous oxide (N2O), which has a higher global warming potential. This study examined effects of AAC on CO2 and N2O emissions from paddy soil under compacted and non-compacted conditions, under 60% and 100% water-holding capacity (WHC). Samples were incubated in glass vials (25°C) for 21 days. Emissions of CO2 and N2O were measured on days 0, 1, 3, 7, 14, and 21 using gas chromatography. The results revealed that AAC significantly (p < 0.05) lowered N2O emission rate during the whole period of incubation, while it suppressed CO2 emission rate only at the early stages (∼7 days) of incubation. In compacted soil, the emissions of CO2 were significantly lower, while N2O was significantly higher than that in non-compacted soil, showing the influence of soil physical conditions. The emissions of CO2 and N2O were significantly lower at 100% WHC than those at 60% WHC. AAC suppressed both CO2 and N2O emissions under both compaction and WHC levels. The results confirm that AAC supports suppressing terrestrial emission of both CO2 and N2O, indicating that AAC has a potential as a sustainable soil amendment that enhances the climate change resilience.
en-copyright=
kn-copyright=
en-aut-name=RathnayakeNagoda R. R. W. S.
en-aut-sei=Rathnayake
en-aut-mei=Nagoda R. R. W. S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LeelamanieDewpura A. L.
en-aut-sei=Leelamanie
en-aut-mei=Dewpura A. L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YatagaiAtsushi
en-aut-sei=Yatagai
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Soil Science, Faculty of Agriculture, University of Ruhuna
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Soil Science, Faculty of Agriculture, University of Ruhuna
kn-affil=
affil-num=4
en-affil=Clion Co. Ltd
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=187
cd-vols=
no-issue=
article-no=
start-page=106403
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nitrogen distribution and nitrogen isotope fractionation in synthetic 2:1 phyllosilicates under hydrothermal conditions at 200 °C and saturated vapor pressure
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigates nitrogen distribution and isotope fractionation within synthetic 2:1 phyllosilicates, simulating submarine hydrothermal environments at 200 °C and saturated vapor pressure. XRD and EDS results revealed the potential coexistence of multiple cations in the interlayer of synthetic 2:1 phyllosilicate, concurrently suggesting cation substitution in the tetrahedral and/or octahedral sheets. Meanwhile, the iron-enriched 25-5 sample exhibited restricted interlayer expansibility. NH4+ absorptions were identified in the NH4-stretching (3200–2800 cm−1) and NH4-bending (1450–1400 cm−1) regions, with wavenumber shifts indicating the influence of interlayer water removal. At pH 10.56, over 95% of nitrogen was released into the gas phase, while at pH 8.88, nitrogen proportions in the liquid and gas phases were comparable (average 48–49%). Experiments with iron at pH ∼8.80 showed that the nitrogen proportion in the gas phase (average 28%) was more than twofold lower than that in the liquid phase (average 68%). Equilibrium isotope fractionation factors indicated discernible preference for heavier nitrogen isotopes in the solid phase (αsolid-liquid = 1.009–1.021 and αsolid-gas = 1.011–1.027). The αliquid-gas range for sample 25–2 was 1.001–1.008, while that for the iron-enriched composite 25–5 was 0.997–1.010. Our experimental studies have confirmed that, in the absence of exchange interactions with external substances possessing different nitrogen isotope ratios, nitrogen isotope fractionation between ammonium and ammonia, controlled by variations in temperature and pH during mineralization, plays a crucial role in the variation of nitrogen isotope ratios. Additionally, we confirmed that metal-amines influence nitrogen isotope fractionation by modulating ammonia gas emission. These findings enhance our understanding of nitrogen cycling across the gas, liquid, and solid phases in submarine hydrothermal systems.
en-copyright=
kn-copyright=
en-aut-name=JoJaeguk
en-aut-sei=Jo
en-aut-mei=Jaeguk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamanakaToshiro
en-aut-sei=Yamanaka
en-aut-mei=Toshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyoshiYouko
en-aut-sei=Miyoshi
en-aut-mei=Youko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiMasaya
en-aut-sei=Suzuki
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KuwaharaYoshihiro
en-aut-sei=Kuwahara
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ChibaHitoshi
en-aut-sei=Chiba
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LeeBum Han
en-aut-sei=Lee
en-aut-mei=Bum Han
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=4
en-affil=Research Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=5
en-affil=Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University
kn-affil=
affil-num=6
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Critical Minerals Research Center, Korea Institute of Geoscience & Mineral Resources (KIGAM)
kn-affil=
en-keyword=Synthetic 2:1 phyllosilicates
kn-keyword=Synthetic 2:1 phyllosilicates
en-keyword=Nitrogen distribution
kn-keyword=Nitrogen distribution
en-keyword=Nitrogen isotope fractionation
kn-keyword=Nitrogen isotope fractionation
en-keyword=Hydrothermal system
kn-keyword=Hydrothermal system
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=1
article-no=
start-page=e70052
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251214
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Japanese Adult Day Service Nurses' Bathing Decisions for Persons Requiring Long‐Term Care: A Focused Ethnography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Adult day services in Japan operate under the Long-Term Care Insurance Law, and care is provided mainly by caregivers. However, because doctors are often not on site, nurses manage the health of the person requiring long-term care. Adult day services provide bathing and functional training; however, although Japanese-style bathing relieves fatigue and brings a sense of well-being, it also entails the risk of bathing accidents for those in need of care. To continue living at home, those in need of care who have difficulty bathing at home must be provided with safe bathing during adult day services and supported in returning home safely. Nurses are responsible for accurately assessing the health status of users and implementing safe bathing. This study aimed to identify how nurses working in adult day services make bathing decisions for home-dwelling persons requiring long-term care.
Method: Qualitative manifest and latent content analyses were performed using a focused ethnography.
Findings: Six themes were identified: ‘gather information to compare with baseline’, ‘make observations based on information from others to understand the big picture’, ‘give persons time to get in shape’, ‘consideration of life at home’, ‘determining the need for medical institutions’ and ‘devise ways to communicate to promote collaboration’.
Conclusions: Adult day service nurses' decisions about whether to bathe persons requiring care are characterised by their emphasis on information from others, consideration of the home living conditions of persons requiring care and their wishes regarding bathing. In addition, based on their observations, they determine the need for cooperation with medical institutions and communicate this information to family members and multiple professions.
en-copyright=
kn-copyright=
en-aut-name=MiyoshiKanako
en-aut-sei=Miyoshi
en-aut-mei=Kanako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriKeiko
en-aut-sei=Mori
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=adult day service
kn-keyword=adult day service
en-keyword=clinical judgement
kn-keyword=clinical judgement
en-keyword=community
kn-keyword=community
en-keyword=home care
kn-keyword=home care
en-keyword=multidisciplinary collaboration
kn-keyword=multidisciplinary collaboration
en-keyword=nurses
kn-keyword=nurses
en-keyword=persons requiring care
kn-keyword=persons requiring care
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=13
article-no=
start-page=e202419624
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250129
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Conduction Band and Defect Engineering for the Prominent Visible‐Light Responsive Photocatalysts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Controlling trap depth is crucial to improve photocatalytic activity, but designing such crystal structures has been challenging. In this study, we discovered that in 2D materials like BiOCl and Bi4NbO8Cl, composed of interleaved [Bi2O2]2+ and Cl- slabs, the trap depth can be controlled by manipulating the slab stacking structure. In BiOCl, oxygen vacancies (VO) create deep electron traps, while chlorine vacancies (VCl) produce shallow traps. The depth is determined by the coordination around anion vacancies: VO forms strong σ bonds with Bi-6p dangling bonds below the conduction band minimum (CBM), while those around Cl are parallel, forming weak π-bonding. The strong re-hybridization makes the trap depth deeper. In Bi4NbO8Cl, VCl also creates shallow traps, but VO does not produce deep traps although Bi-6p orbitals are also forming strong σ bonding. This difference is attributed to the difference of the energy level of CBM. In both cases, the CBM consists of Bi-6p orbitals extending into the Cl layers. However, these orbitals are isolated in BiOCl, but those in Bi4NbO8Cl are bonded with each other between neighboring [Bi2O2]2+ layers. This unique bonding-based CBM prevents the formation of deep electron traps, and significantly enhances H2 evolution activity by prolonging the lifetime of highly reactive free electrons.
en-copyright=
kn-copyright=
en-aut-name=YamakataAkira
en-aut-sei=Yamakata
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatoKosaku
en-aut-sei=Kato
en-aut-mei=Kosaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OgawaTakafumi
en-aut-sei=Ogawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OgawaKanta
en-aut-sei=Ogawa
en-aut-mei=Kanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgawaMakoto
en-aut-sei=Ogawa
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatoDaichi
en-aut-sei=Kato
en-aut-mei=Daichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhongChengchao
en-aut-sei=Zhong
en-aut-mei=Chengchao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KuwabaraAkihide
en-aut-sei=Kuwabara
en-aut-mei=Akihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AbeRyu
en-aut-sei=Abe
en-aut-mei=Ryu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KageyamaHiroshi
en-aut-sei=Kageyama
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Nanostructures Research Laboratory, Japan Fine Ceramics Center
kn-affil=
affil-num=4
en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=5
en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=6
en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=7
en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=8
en-affil=Nanostructures Research Laboratory, Japan Fine Ceramics Center
kn-affil=
affil-num=9
en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University
kn-affil=
affil-num=10
en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University
kn-affil=
en-keyword=photocatalysis
kn-keyword=photocatalysis
en-keyword=defects
kn-keyword=defects
en-keyword=charge trapping
kn-keyword=charge trapping
en-keyword=recombination
kn-keyword=recombination
en-keyword=time-resolved spectroscopy
kn-keyword=time-resolved spectroscopy
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=18
article-no=
start-page=5359
end-page=5365
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Deoxygenative dual CO2 conversions: methylenation and switchable N-formylation/N-methylation of tryptamines
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The unprecedented one-pot synthesis of N-formyl/N-methyltryptolines from tryptamines was achieved via phenylsilane-assisted deoxygenative dual CO2 conversions. Two CO2 molecules acted as different synthons and were converted into methylene and N-formyl/N-methyl groups. The CO2 reduction step was catalyzed by a pentanuclear zinc complex at atmospheric pressure under solvent-free conditions. The N-formyl/N-methyl products could be switched by changing the amount of phenylsilane, and the amounts of in situ generated bis(silyl)acetals and silyl formates were key to the chemoselectivity. Methylenation, N-formylation, and N-methylation proceeded via the Pictet–Spengler reaction, amine–acid condensation, and the Eschweiler–Clarke reaction, respectively. The CO2 reduction with phenylsilane could also be applied to the one-pot three-step synthesis of spiro[oxindole-pyrrolidine]s.
en-copyright=
kn-copyright=
en-aut-name=TakaishiKazuto
en-aut-sei=Takaishi
en-aut-mei=Kazuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MorishitaHajime
en-aut-sei=Morishita
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IwakiKosuke
en-aut-sei=Iwaki
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EmaTadashi
en-aut-sei=Ema
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=4
article-no=
start-page=116
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Drip Fertigation in Greenhouse Eggplant Cultivation: Reducing N2O Emissions and Nitrate Leaching
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Drip fertigation (DF) is a sustainable agricultural management technique that optimizes water and nutrient usage, enhances crop productivity, and reduces environmental impact. Herein, we compared the effects of DF and conventional fertilization (CF) with a basal fertilizer on yield, soil inorganic nitrogen dynamics, N2O emissions, and nitrogen leaching during facility-grown eggplant cultivation. The experiment was conducted in a greenhouse from September 2023 to May 2024, with treatments arranged in three rows and three replicates. Soil, gas, and water samples were collected and analyzed throughout the growing season. The results revealed that the DF treatment produced yields comparable to those obtained with the CF treatment while significantly reducing nitrogen and phosphorus inputs. DF effectively prevented excessive nitrogen accumulation in the soil and reduced nitrogen loss through leaching and gas emissions. N2O emissions were significantly lower by more than 60% under DF than under CF. Precise nutrient management in DF suppressed nitrification and denitrification processes, mitigating N2O emissions. DF also significantly reduced nitrogen leaching by more than 70% compared with that in CF. These findings demonstrate that DF effectively enhances agricultural sustainability by improving nutrient use efficiency, reducing greenhouse gas emissions, and minimizing nitrogen leaching during the cultivation of facility-grown eggplant.
en-copyright=
kn-copyright=
en-aut-name=ShiraishiWataru
en-aut-sei=Shiraishi
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraShion
en-aut-sei=Nishimura
en-aut-mei=Shion
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UenoHideto
en-aut-sei=Ueno
en-aut-mei=Hideto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Kochi Prefectural Agricultural Research Center
kn-affil=
affil-num=2
en-affil=Department of Bioresource Production Science, United Graduate School of Agriculture, Ehime University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Bioresource Production Science, United Graduate School of Agriculture, Ehime University
kn-affil=
en-keyword=drip fertigation
kn-keyword=drip fertigation
en-keyword=eggplant
kn-keyword=eggplant
en-keyword=greenhouse cultivation
kn-keyword=greenhouse cultivation
en-keyword=nitrogen leaching
kn-keyword=nitrogen leaching
en-keyword=nitrogen use efficiency
kn-keyword=nitrogen use efficiency
en-keyword=nitrous oxide emissions
kn-keyword=nitrous oxide emissions
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251113
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photochemical Macrolactonization of Hydroxyaldehydes via C–H Bromination
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KodakiSakura
en-aut-sei=Kodaki
en-aut-mei=Sakura
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AndoHaru
en-aut-sei=Ando
en-aut-mei=Haru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Macrolactonization
kn-keyword=Macrolactonization
en-keyword=Hydroxyaldehydes
kn-keyword=Hydroxyaldehydes
en-keyword=Photochemical reaction
kn-keyword=Photochemical reaction
en-keyword=C−H Bromination
kn-keyword=C−H Bromination
en-keyword=Macrolactone
kn-keyword=Macrolactone
en-keyword=Visible light
kn-keyword=Visible light
en-keyword=Radical
kn-keyword=Radical
END
start-ver=1.4
cd-journal=joma
no-vol=55
cd-vols=
no-issue=5
article-no=
start-page=547
end-page=555
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250223
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Multicenter, open-label, randomized, controlled study to test the utility of electronic patient-reported outcome monitoring in patients with unresectable advanced cancers or metastatic/recurrent solid tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Electronic patient-reported outcome (ePRO) monitoring for patients undergoing cancer chemotherapy may provide qualified and early detection of adverse events or disease-related symptoms, leading to improved patient care. The aim of this study is to examine whether addition of ePRO monitoring to routine medical care contributes to improved overall survival and quality of life of cancer patients undergoing chemotherapy. Patients with unresectable advanced cancers or metastatic/recurrent solid tumors receiving systemic chemotherapy will be randomized to an ePRO monitoring group and a usual care group. The ePRO group will conduct weekly symptom monitoring using an electronic device after study enrollment until the end of the study. Monitoring results will be returned to medical personnel and used as information for patient care. The primary endpoints are overall survival and health related quality of life. The initial target sample size for the study was 1500 patients. However, due to delays in enrollment, the target was readjusted to 500 patients. Enrollment has been completed, and the study is now in the follow-up phase.
en-copyright=
kn-copyright=
en-aut-name=TairaNaruto
en-aut-sei=Taira
en-aut-mei=Naruto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KiyotaNaomi
en-aut-sei=Kiyota
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikawaYuichiro
en-aut-sei=Kikawa
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoKyoko
en-aut-sei=Kato
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KubotaKaoru
en-aut-sei=Kubota
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TateishiRyosuke
en-aut-sei=Tateishi
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakataAkinobu
en-aut-sei=Nakata
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NaritaYukiya
en-aut-sei=Narita
en-aut-mei=Yukiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IwataHiroji
en-aut-sei=Iwata
en-aut-mei=Hiroji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=GemmaAkihiko
en-aut-sei=Gemma
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ShimozumaKojiro
en-aut-sei=Shimozuma
en-aut-mei=Kojiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MuroKei
en-aut-sei=Muro
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IwamotoTetsuya
en-aut-sei=Iwamoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakumotoYuki
en-aut-sei=Takumoto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ShiroiwaTakeru
en-aut-sei=Shiroiwa
en-aut-mei=Takeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FukudaTakashi
en-aut-sei=Fukuda
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YamaguchiTakuhiro
en-aut-sei=Yamaguchi
en-aut-mei=Takuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HagiwaraYasuhiro
en-aut-sei=Hagiwara
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MinamiHironobu
en-aut-sei=Minami
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Breast and Thyroid Surgery, Kawasaki Medical School
kn-affil=
affil-num=2
en-affil=Department of Medical Oncology and Hematology, Cancer Center, Kobe University Hospital
kn-affil=
affil-num=3
en-affil=Department of Breast Surgery, Kansai Medical University
kn-affil=
affil-num=4
en-affil=Center for Clinical Oncology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Medical Oncology, National Hospital Organization Nagoya Medical Center
kn-affil=
affil-num=6
en-affil=Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology, Osaka Metropolitan University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, Osaka Metropolitan University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Advanced Clinical Research and Development, Nagoya City University
kn-affil=
affil-num=13
en-affil=Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
kn-affil=
affil-num=14
en-affil=Department of Biomed Sciences, College of Life Sciences, Ritsumeikan University
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Osaka Metropolitan University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Center for Outcomes Research and Economic Evaluation for Health, National Institute of Public Health
kn-affil=
affil-num=17
en-affil=Center for Outcomes Research and Economic Evaluation for Health, National Institute of Public Health
kn-affil=
affil-num=18
en-affil=Center for Outcomes Research and Economic Evaluation for Health, National Institute of Public Health
kn-affil=
affil-num=19
en-affil=Center for Outcomes Research and Economic Evaluation for Health, National Institute of Public Health
kn-affil=
affil-num=20
en-affil=Division of Biostatistics, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Biostatistics, Division of Health Sciences and Nursing, The University of Tokyo Graduate School of Medicine
kn-affil=
affil-num=22
en-affil=Division of Medical Oncology and Hematology, Department of Medicine, Kobe University Graduate School of Medicine
kn-affil=
en-keyword=electronic patient-reported outcomes monitoring
kn-keyword=electronic patient-reported outcomes monitoring
en-keyword=advanced cancers
kn-keyword=advanced cancers
en-keyword=systemic chemotherapy
kn-keyword=systemic chemotherapy
en-keyword=randomized controlled study
kn-keyword=randomized controlled study
en-keyword=quality of life
kn-keyword=quality of life
en-keyword=overall survival
kn-keyword=overall survival
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=1
article-no=
start-page=1387
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251208
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tumor marker–guided precision BNCT for CA19-9–positive cancers: a new paradigm in molecularly targeted chemoradiation therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Boron neutron capture therapy (BNCT) is a molecularly targeted chemoradiation modality that relies on boron delivery agents such as p-borophenylalanine (BPA), which require LAT1 (L-type amino acid transporter 1) for tumor uptake. However, the limited efficacy of BPA in LAT1-low tumors restricts its therapeutic scope. To address this limitation, we developed a tumor marker–guided BNCT strategy targeting cancers overexpressing the clinically validated glycan biomarker CA19-9.
Methods: We conducted transcriptomic analyses using The Cancer Genome Atlas (TCGA) datasets to identify LAT1-low cancers with high CA19-9 expression. These analyses revealed elevated expression of fucosyltransferase 3 (FUT3), which underlies CA19-9 biosynthesis, in pancreatic, biliary, and ovarian malignancies. Based on this, we synthesized a novel boron compound, fucose-BSH, designed to selectively accumulate in CA19-9–positive tumors. We evaluated its physicochemical properties, pharmacokinetics, biodistribution, and antitumor efficacy in cell lines and xenograft models, comparing its performance to that of BPA.
Results: Fucose-BSH demonstrated significantly greater boron uptake in CA19-9–positive cell lines (AsPC-1, Panc 04.03, HuCCT-1, HSKTC, OVISE) compared to CA19-9–negative PANC-1. In HuCCT-1 xenografts, boron accumulation reached 36.2 ppm with a tumor/normal tissue ratio of 2.1, outperforming BPA. Upon neutron irradiation, fucose-BSH–mediated BNCT achieved > 80% tumor growth inhibition. Notably, fucose-BSH retained therapeutic efficacy in LAT1-deficient models where BPA was ineffective, confirming LAT1-independent targeting.
Conclusions: This study establishes a novel precision BNCT approach by leveraging CA19-9 as a tumor-selective glycan marker for boron delivery. Fucose-BSH offers a promising platform for expanding BNCT to previously inaccessible LAT1-low malignancies, including pancreatic, biliary, and ovarian cancers. These findings provide a clinically actionable strategy for tumor marker–driven chemoradiation and lay the foundation for translational application in BNCT. This strategy has the potential to support companion diagnostic development and precision stratification in ongoing and future BNCT clinical trials.
Translational Relevance: Malignancies with elevated CA19-9 expression, such as pancreatic, biliary, and ovarian cancers, are associated with poor prognosis and limited response to current therapies. This study presents a tumor marker–guided strategy for boron neutron capture therapy (BNCT) by leveraging CA19-9 glycan biology to enable selective tumor targeting via fucose-BSH, a novel boron compound. Through transcriptomic data mining and preclinical validation, fucose-BSH demonstrated LAT1-independent boron delivery, potent BNCT-mediated cytotoxicity, and tumor-specific accumulation in CA19-9–positive models. These findings support a precision chemoradiation approach that addresses a critical gap in BNCT applicability, offering a clinically actionable pathway for patient stratification and therapeutic development in CA19-9–expressing cancers.
en-copyright=
kn-copyright=
en-aut-name=KanehiraNoriyuki
en-aut-sei=Kanehira
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TajimaTomoyuki
en-aut-sei=Tajima
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OsoneTatsunori
en-aut-sei=Osone
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotohKazuyoshi
en-aut-sei=Gotoh
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimotoTakuya
en-aut-sei=Fujimoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakuraiYoshinori
en-aut-sei=Sakurai
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KondoNatsuko
en-aut-sei=Kondo
en-aut-mei=Natsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NagahisaNarikazu
en-aut-sei=Nagahisa
en-aut-mei=Narikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KameiKaoru
en-aut-sei=Kamei
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujitaTaiga
en-aut-sei=Fujita
en-aut-mei=Taiga
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriharaAkira
en-aut-sei=Morihara
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakaguchiYutaka
en-aut-sei=Takaguchi
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KitamatsuMizuki
en-aut-sei=Kitamatsu
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SuzukiMinoru
en-aut-sei=Suzuki
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=8
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental, Life Science, Okayama University
kn-affil=
affil-num=13
en-affil=Faculty of Sustainable Design, Department of Material Design and Engineering, University of Toyama
kn-affil=
affil-num=14
en-affil=Department of Applied Chemistry, Kindai University
kn-affil=
affil-num=15
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
en-keyword=Boron neutron capture therapy (BNCT)
kn-keyword=Boron neutron capture therapy (BNCT)
en-keyword=Precision BNCT
kn-keyword=Precision BNCT
en-keyword=Fucose-conjugated medicine
kn-keyword=Fucose-conjugated medicine
en-keyword=CA19-9
kn-keyword=CA19-9
en-keyword=Drug discovery
kn-keyword=Drug discovery
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=12
article-no=
start-page=577
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251203
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of miR-128-3p on Renal Inflammation in a Rat Periodontitis Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: The study aim was to investigate the effects of extracellular vesicles (EVs) derived miR-128-3p on renal inflammation using a rat periodontitis model. Methods: Ten-week-old male Wistar rats were divided into two groups: a control (n = 8) and a lipopolysaccharides (LPS) group (n = 8). The LPS group received LPS (Porphyromonas gingivalis) injection in the gingiva for 7 days. At the end of the experiment, plasma, gingival tissue, and kidney samples were collected. Hematoxylin and eosin staining was performed to evaluate the glomerular tissue injury score. Bioinformatic analysis was conducted to identify potential target genes of miR-128-3p. The reverse transcription-quantitative polymerase chain reaction was performed to evaluate miR-128-3p, inflammatory, pro-inflammatory cytokine, chemokine and predicting gene’s expression. The control and LPS groups were compared using Welch’s t-test. p-values < 0.05 were considered to indicate statistical significance. Results: The kidney glomerular tissue injury score was significantly higher in the LPS than in the control group. miR-128-3p expression in the LPS group was significantly higher in the gingival tissue and plasma. mRNAs (interleukin [IL]-1β, tumor necrosis factor [TNF]-α, C-X3-C motif chemokine ligand 1 [CX3CL1], and C-X-C motif chemokine ligand 7 [CXCL7]) expression was higher in the kidney of the LPS group. The potential target genes of activin A receptor type I (Acvr1), ribosomal protein S6 kinase B1 (Rps6kb1), and transforming growth factor beta receptor type 1 (Tgfbr1) were significantly lower in the kidneys of the LPS group. Conclusions: EVs-derived miR-128-3p in LPS induced periodontitis may cause kidney inflammation which may be mediated by, Rps6kb1, Tgfbr1, and Acvr1.
en-copyright=
kn-copyright=
en-aut-name=NurhamimMohammad
en-aut-sei=Nurhamim
en-aut-mei=Mohammad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhangYixuan
en-aut-sei=Zhang
en-aut-mei=Yixuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakaharaMomoko
en-aut-sei=Nakahara
en-aut-mei=Momoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukuharaDaiki
en-aut-sei=Fukuhara
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagashimaYosei
en-aut-sei=Nagashima
en-aut-mei=Yosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoritaManabu
en-aut-sei=Morita
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Preventive Dentistry, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Health, Takarazuka University of Medical and Health Care
kn-affil=
affil-num=8
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=extracellular vesicles
kn-keyword=extracellular vesicles
en-keyword=miR-128-3p
kn-keyword=miR-128-3p
en-keyword=mRNA
kn-keyword=mRNA
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=periodontitis
kn-keyword=periodontitis
en-keyword=renal inflammation
kn-keyword=renal inflammation
en-keyword=lipopolysaccharide
kn-keyword=lipopolysaccharide
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=12
article-no=
start-page=1584
end-page=1595
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250906
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Combination chemotherapy for older patients with unresectable biliary tract cancer: a prospective observational study using propensity-score matched analysis (JON2104-B)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Systemic chemotherapy with gemcitabine plus S-1 (GEM + S-1), GEM + CDDP plus S-1 (GEM + CDDP + S-1), or gemcitabine plus cisplatin (GEM + CDDP) is standard treatment for advanced biliary tract cancer (aBTC). We aimed to evaluate the efficacy and safety of combination chemotherapy in older patients with aBTC.
Methods: This multicenter prospective observational study (JON2104-B, UMIN000045156) included patients aged ≥ 70 years with aBTC. Inverse-probability weighting propensity-score analyses (IPW) were used to compare overall survival (OS) as the primary endpoint and progression-free survival (PFS) across treatment groups.
Results: This study included 305 patients between August 2021 and January 2023. Of them, 75, 131, 26, 52, and 10 received GEM + CDDP + S-1, GEM + CDDP, GEM + S-1, gemcitabine, and S-1; their median ages were 74, 75, 77.5, 80, and 80 years, and approximately 24%, 16.8%, 23.1%, 9.6%, and 0% had G-8 scores of > 14, respectively. GEM + CDDP had a safety profile comparable to that of GEM + CDDP + S-1 but was more toxic than gemcitabine. Per IPW, the hazard ratio (HR) for GEM + CDDP + S-1 versus GEM + CDDP was 0.80 for OS (95% confidence interval [CI], 0.55–1.17) and 0.55 for PFS (95% CI 0.38–0.80). The HR for GEM + CDDP versus gemcitabine was 0.74 for OS (95% CI 0.42–1.29) and 0.79 for PFS (95% CI 0.42–1.49).
Conclusions: GEM + CDDP + S-1 was associated with longer PFS without additional toxicity than GEM + CDDP for fit older patients. However, the OS for both were not statistically different. The efficacies of GEM + CDDP and gemcitabine for vulnerable older patients did not also differ significantly. These findings highlight the importance of vulnerability in patients with aBTC.
en-copyright=
kn-copyright=
en-aut-name=KobayashiSatoshi
en-aut-sei=Kobayashi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakachiKohei
en-aut-sei=Nakachi
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamamotoKouji
en-aut-sei=Yamamoto
en-aut-mei=Kouji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UenoMakoto
en-aut-sei=Ueno
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MarukiYuta
en-aut-sei=Maruki
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkezawaKenji
en-aut-sei=Ikezawa
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TerashimaTakeshi
en-aut-sei=Terashima
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShimizuSatoshi
en-aut-sei=Shimizu
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OshimaKotoe
en-aut-sei=Oshima
en-aut-mei=Kotoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsujiKunihiro
en-aut-sei=Tsuji
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MasakiYoshiharu
en-aut-sei=Masaki
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TsumuraHidetaka
en-aut-sei=Tsumura
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ShibukiTaro
en-aut-sei=Shibuki
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OzakaMasato
en-aut-sei=Ozaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OkanoNaohiro
en-aut-sei=Okano
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OkamuraYukiyasu
en-aut-sei=Okamura
en-aut-mei=Yukiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=UmemotoKumiko
en-aut-sei=Umemoto
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SatohTatsunori
en-aut-sei=Satoh
en-aut-mei=Tatsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KojimaYasushi
en-aut-sei=Kojima
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ShiojiKazuhiko
en-aut-sei=Shioji
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=NebikiHiroko
en-aut-sei=Nebiki
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=DoiToshifumi
en-aut-sei=Doi
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=NaganumaAtsushi
en-aut-sei=Naganuma
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KataokaShigeki
en-aut-sei=Kataoka
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KitaEmiri
en-aut-sei=Kita
en-aut-mei=Emiri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=AsamaHiroyuki
en-aut-sei=Asama
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=TsuchiyaKaoru
en-aut-sei=Tsuchiya
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=UnnoMichiaki
en-aut-sei=Unno
en-aut-mei=Michiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=AshidaReiko
en-aut-sei=Ashida
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=OhnoIzumi
en-aut-sei=Ohno
en-aut-mei=Izumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=ItoiTakao
en-aut-sei=Itoi
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=NegoroYuji
en-aut-sei=Negoro
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=SakamotoYasunari
en-aut-sei=Sakamoto
en-aut-mei=Yasunari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=ArimaShiho
en-aut-sei=Arima
en-aut-mei=Shiho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=AsagiAkinori
en-aut-sei=Asagi
en-aut-mei=Akinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=OkuyamaHiroyuki
en-aut-sei=Okuyama
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=KomatsuYoshito
en-aut-sei=Komatsu
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=KobayashiNoritoshi
en-aut-sei=Kobayashi
en-aut-mei=Noritoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=NaganoHiroaki
en-aut-sei=Nagano
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=FuruseJunji
en-aut-sei=Furuse
en-aut-mei=Junji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
affil-num=1
en-affil=Department of Gastroenterology, Kanagawa Cancer Center
kn-affil=
affil-num=2
en-affil=Department of Medical Oncology, Tochigi Cancer Center
kn-affil=
affil-num=3
en-affil=Department of Biostatistics, Yokohama City University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology, Kanagawa Cancer Center
kn-affil=
affil-num=5
en-affil=
kn-affil=
affil-num=6
en-affil=Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Kanazawa University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology, Kanazawa University Hospital
kn-affil=
affil-num=9
en-affil=Division of Gastrointestinal Oncology, Shizuoka Cancer Center
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, Ishikawa Prefectural Central Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Oncology, Hyogo Cancer Center
kn-affil=
affil-num=13
en-affil=Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East
kn-affil=
affil-num=14
en-affil=Hepato-Biliary-Pancreatic Medicine Department, Cancer Institute Hospital of Japanese Foundation for Cancer Research
kn-affil=
affil-num=15
en-affil=Department of Medical Oncology, Kyorin University Faculty of Medicine
kn-affil=
affil-num=16
en-affil=Division of Digestive Surgery, Department of Surgery, Nihon University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Clinical Oncology, St. Marianna University School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Gastroenterology, Shizuoka General Hospital
kn-affil=
affil-num=19
en-affil=Department of Gastroenterology, National Center for Global Health and Medicine
kn-affil=
affil-num=20
en-affil=Department of Gastroenterology, Niigata Cancer Center Hospital
kn-affil=
affil-num=21
en-affil=Department of Gastroenterology, Osaka City General Hospital
kn-affil=
affil-num=22
en-affil=Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=23
en-affil=Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center
kn-affil=
affil-num=24
en-affil=Department of Clinical Oncology, Graduate School of Medicine Faculty of Medicine, Kyoto University
kn-affil=
affil-num=25
en-affil=Department of Gastroenterology, Chiba Cancer Center
kn-affil=
affil-num=26
en-affil=Department of Gastroenterology, Fukushima Medical University
kn-affil=
affil-num=27
en-affil=Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital
kn-affil=
affil-num=28
en-affil=Department of Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=29
en-affil=Second Department of Internal Medicine, Wakayama Medical University
kn-affil=
affil-num=30
en-affil=Department of Gastroenterology, Okayama University Graduate School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Gastroenterology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=32
en-affil=Department of Gastroenterology, Tokyo Medical University
kn-affil=
affil-num=33
en-affil=Department of Oncologial Medicine, Kochi Health Sciences Center
kn-affil=
affil-num=34
en-affil=Department of Gastroenterology and Hepatology, International University of Health and Welfare Atami Hospital
kn-affil=
affil-num=35
en-affil=Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=36
en-affil=Department of Gastroenterology, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=37
en-affil=Department of Medical Oncology, Kagawa University Hospital
kn-affil=
affil-num=38
en-affil=Department of Cancer Chemotherapy, Hokkaido University Hospital Cancer Center
kn-affil=
affil-num=39
en-affil=Department of Oncology, School of Medicine Graduate School of Medicine, Yokohama City University
kn-affil=
affil-num=40
en-affil=Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine
kn-affil=
affil-num=41
en-affil=Department of Gastroenterology, Kanagawa Cancer Center
kn-affil=
en-keyword=Biliary tract cancer
kn-keyword=Biliary tract cancer
en-keyword=Unresectable
kn-keyword=Unresectable
en-keyword=Chemotherapy
kn-keyword=Chemotherapy
en-keyword=Older
kn-keyword=Older
en-keyword=Survival
kn-keyword=Survival
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251118
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mortality and cancer risk in patients with chronic pancreatitis in japan: insights into the importance of surveillance for pancreatic cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objective: Since the 2010s, Japan’s national health insurance system has covered key management for chronic pancreatitis (CP), including pancreatic enzyme replacement therapy. These therapies are expected to improve long-term prognosis; however, recent data are lacking. This study aimed to clarify the updated cancer risk and mortality among patients with CP in Japan.
Methods: We conducted a multicenter, retrospective cohort study on 1,110 patients with CP treated at 28 institutions in 2011. Standardized incidence ratios (SIRs) and standardized mortality ratios (SMRs) were calculated for comorbidities. Factors associated with the development of malignancy and overall survival were analyzed.
Results: Patients with CP had an elevated SIR of 1.62 (95% confidence interval [CI], 1.43–1.83) for malignancy, with the highest risk observed for pancreatic cancer (SIR = 6.44 [95% CI, 4.64–8.90]). During follow-up, 143 patients (12.9%) died, most frequently from malignancy (47.5%). The SMR was elevated in all patients with CP (SMR = 1.20 [95% CI, 1.01–1.42]) and in those with alcohol-related CP (SMR = 1.49 [95% CI, 1.23–1.81]) but not in those with alcohol-unrelated CP. Pancreatic cancer was identified as the strongest factor associated with overall survival (hazard ratio, 48.92 in multivariate analysis). Overall survival of the patients with pancreatic cancer was significantly longer in those who underwent regular examinations for CP at least every three months (P = 0.011).
Conclusions: Patients with alcohol-related CP have higher mortality than the general population in Japan. Pancreatic cancer remains a crucial prognostic factor in patients with CP. Regular surveillance for pancreatic cancer is important to improve their prognosis.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoRyotaro
en-aut-sei=Matsumoto
en-aut-mei=Ryotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KikutaKazuhiro
en-aut-sei=Kikuta
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakikawaTetsuya
en-aut-sei=Takikawa
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaiYousuke
en-aut-sei=Nakai
en-aut-mei=Yousuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakenakaMamoru
en-aut-sei=Takenaka
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkiKentaro
en-aut-sei=Oki
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OhnoEizaburo
en-aut-sei=Ohno
en-aut-mei=Eizaburo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItoKen
en-aut-sei=Ito
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujimoriNao
en-aut-sei=Fujimori
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatanumaAkio
en-aut-sei=Katanuma
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MasudaAtsuhiro
en-aut-sei=Masuda
en-aut-mei=Atsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HoriYasuki
en-aut-sei=Hori
en-aut-mei=Yasuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IkeuraTsukasa
en-aut-sei=Ikeura
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SuzukiRei
en-aut-sei=Suzuki
en-aut-mei=Rei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamamotoSatoshi
en-aut-sei=Yamamoto
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SogameYoshio
en-aut-sei=Sogame
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KawashimaHiroki
en-aut-sei=Kawashima
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ItoTetsuhide
en-aut-sei=Ito
en-aut-mei=Tetsuhide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=OkuwakiKosuke
en-aut-sei=Okuwaki
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ItoiTakao
en-aut-sei=Itoi
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TakayamaYukiko
en-aut-sei=Takayama
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=NakamuraAkira
en-aut-sei=Nakamura
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TeraiShuji
en-aut-sei=Terai
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KuwataniMasaki
en-aut-sei=Kuwatani
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KishiwadaMasashi
en-aut-sei=Kishiwada
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=ShigekawaMinoru
en-aut-sei=Shigekawa
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MatsumoriTomoaki
en-aut-sei=Matsumori
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=InatomiOsamu
en-aut-sei=Inatomi
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=HattaWaku
en-aut-sei=Hatta
en-aut-mei=Waku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=IrisawaAtsushi
en-aut-sei=Irisawa
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=UnnoMichiaki
en-aut-sei=Unno
en-aut-mei=Michiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=TakeyamaYoshifumi
en-aut-sei=Takeyama
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=MasamuneAtsushi
en-aut-sei=Masamune
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=Japan Pancreatitis Study Group for Chronic Pancreatitis
en-aut-sei=Japan Pancreatitis Study Group for Chronic Pancreatitis
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
affil-num=1
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Kurashiki Central Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Fujita Health University School of Medicine
kn-affil=
affil-num=8
en-affil=Division of Gastroenterology and Hepatology, Toho University Omori Medical Center
kn-affil=
affil-num=9
en-affil=Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=10
en-affil=Center for Gastroenterology, Teine-Keijinkai Hospital
kn-affil=
affil-num=11
en-affil=Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Kansai Medical University
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Fukushima Medical University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Fujita Health University Bantane Hospital
kn-affil=
affil-num=16
en-affil=Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Neuroendocrine Tumor Centre, Fukuoka Sanno Hospital, International University of Health and Welfare
kn-affil=
affil-num=19
en-affil=Department of Gastroenterology, Kitasato University School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Gastroenterology and Hepatology, Tokyo Medical University
kn-affil=
affil-num=21
en-affil=Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women’s Medical University
kn-affil=
affil-num=22
en-affil=Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine
kn-affil=
affil-num=23
en-affil=Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=24
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=25
en-affil=Department of Gastroenterology and Hepatology, Hokkaido University Hospital
kn-affil=
affil-num=26
en-affil=Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine
kn-affil=
affil-num=27
en-affil=Department of Gastroenterology and Hepatology, The University of Osaka Graduate School of Medicine
kn-affil=
affil-num=28
en-affil=Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Medicine, Shiga University of Medical Science
kn-affil=
affil-num=30
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=31
en-affil=Department of Gastroenterology, Dokkyo Medical University School of Medicine
kn-affil=
affil-num=32
en-affil=Department of Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=33
en-affil=Department of Surgery, Kindai University Faculty of Medicine
kn-affil=
affil-num=34
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=35
en-affil=
kn-affil=
en-keyword=Alcohol
kn-keyword=Alcohol
en-keyword=Chronic pancreatitis
kn-keyword=Chronic pancreatitis
en-keyword=Pancreatic cancer
kn-keyword=Pancreatic cancer
en-keyword=Pancreatitis
kn-keyword=Pancreatitis
en-keyword=Smoking
kn-keyword=Smoking
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=JCO-24-02835
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Amivantamab Plus Lazertinib in Atypical EGFR-Mutated Advanced Non–Small Cell Lung Cancer: Results From CHRYSALIS-2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose For patients with advanced non–small cell lung cancer (NSCLC) harboring atypical epidermal growth factor receptor (EGFR) mutations (eg, S768I, L861Q, G719X), efficacy of current treatment options is limited.
Patients and Methods CHRYSALIS-2 Cohort C enrolled participants with NSCLC harboring atypical EGFR mutations (G719X, S768I, L861Q, etc) and ≤2 previous lines of therapy. Participants were treatment-naïve or previously received first- or second-generation EGFR tyrosine kinase inhibitors. Coexisting exon 20 insertions, exon 19 deletions, or exon 21 L858R mutations were exclusionary. Participants received 1,050 mg (1,400 mg if ≥80 kg) intravenous amivantamab once weekly for the first 4 weeks and then once every 2 weeks plus 240 mg oral lazertinib once daily. The primary end point was investigator-assessed objective response rate (ORR).
Results As of January 12, 2024, 105 participants received amivantamab-lazertinib. Most common atypical mutations were G719X (56%), L861X (26%), and S768I (23%), including single and compound mutations. In the overall population (median follow-up: 16.1 months), the ORR was 52% (95% CI, 42 to 62). The median duration of response (mDoR) was 14.1 months (95% CI, 9.5 to 26.2). The median progression-free survival (mPFS) was 11.1 months (95% CI, 7.8 to 17.8); median overall survival (mOS) was not estimable (NE; 95% CI, 22.8 to NE). Adverse events were consistent with previous studies and primarily grade 1 and 2. Among treatment-naïve participants, the ORR was 57% (95% CI, 42 to 71). The mPFS was 19.5 months (95% CI, 11.2 to NE), the mDoR was 20.7 months (95% CI, 9.9 to NE), and mOS was NE (95% CI, 26.3 to NE). Solitary or compound EGFR mutations had no major impact on ORR. The ORR in participants with P-loop and αC-helix compressing, classical-like, and T790M-like mutations was 45% (n = 38), 64% (n = 14), and 67% (n = 3), respectively.
Conclusion In participants with atypical EGFR-mutated advanced NSCLC, amivantamab-lazertinib demonstrated clinically meaningful antitumor activity with no new safety signals.
en-copyright=
kn-copyright=
en-aut-name=TomasiniPascale
en-aut-sei=Tomasini
en-aut-mei=Pascale
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangYongsheng
en-aut-sei=Wang
en-aut-mei=Yongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiYongsheng
en-aut-sei=Li
en-aut-mei=Yongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FelipEnriqueta
en-aut-sei=Felip
en-aut-mei=Enriqueta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WuLin
en-aut-sei=Wu
en-aut-mei=Lin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=CuiJiuwei
en-aut-sei=Cui
en-aut-mei=Jiuwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BesseBenjamin
en-aut-sei=Besse
en-aut-mei=Benjamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SpiraAlexander I.
en-aut-sei=Spira
en-aut-mei=Alexander I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NealJoel W.
en-aut-sei=Neal
en-aut-mei=Joel W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GotoKoichi
en-aut-sei=Goto
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=BaikChristina S.
en-aut-sei=Baik
en-aut-mei=Christina S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MarmarelisMelina E.
en-aut-sei=Marmarelis
en-aut-mei=Melina E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ZhangYiping
en-aut-sei=Zhang
en-aut-mei=Yiping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=LeeJong-Seok
en-aut-sei=Lee
en-aut-mei=Jong-Seok
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=LeeSe-Hoon
en-aut-sei=Lee
en-aut-mei=Se-Hoon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YangJames Chih-Hsin
en-aut-sei=Yang
en-aut-mei=James Chih-Hsin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MichelsSebastian
en-aut-sei=Michels
en-aut-mei=Sebastian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=AnastasiouZacharias
en-aut-sei=Anastasiou
en-aut-mei=Zacharias
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=CurtinJoshua C.
en-aut-sei=Curtin
en-aut-mei=Joshua C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=LyuXuesong
en-aut-sei=Lyu
en-aut-mei=Xuesong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MahoneyJanine
en-aut-sei=Mahoney
en-aut-mei=Janine
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=DemirdjianLevon
en-aut-sei=Demirdjian
en-aut-mei=Levon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=MeyerCraig S.
en-aut-sei=Meyer
en-aut-mei=Craig S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=ZhangYouyi
en-aut-sei=Zhang
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=LeconteIsabelle
en-aut-sei=Leconte
en-aut-mei=Isabelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=LorenziniPatricia
en-aut-sei=Lorenzini
en-aut-mei=Patricia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KnoblauchRoland E.
en-aut-sei=Knoblauch
en-aut-mei=Roland E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=TraniLeonardo
en-aut-sei=Trani
en-aut-mei=Leonardo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=BaigMahadi
en-aut-sei=Baig
en-aut-mei=Mahadi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=BaumlJoshua M.
en-aut-sei=Bauml
en-aut-mei=Joshua M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=ChoByoung Chul
en-aut-sei=Cho
en-aut-mei=Byoung Chul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
affil-num=1
en-affil=Aix Marseille University - CNRS, INSERM, CRCM; CEPCM - AP-HM Hôpital de La Timone
kn-affil=
affil-num=2
en-affil=Division of Thoracic Tumor Multimodality Treatment, Cancer Center and Clinical Trial Center, West China Hospital, Sichuan University
kn-affil=
affil-num=3
en-affil=Chongqing University Cancer Hospital
kn-affil=
affil-num=4
en-affil=Medical Oncology Service, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona
kn-affil=
affil-num=5
en-affil=Department of Thoracic Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University
kn-affil=
affil-num=6
en-affil=The First Hospital of Jilin University
kn-affil=
affil-num=7
en-affil=Paris-Saclay University, Institut Gustave Roussy
kn-affil=
affil-num=8
en-affil=Virginia Cancer Specialists
kn-affil=
affil-num=9
en-affil=Stanford Cancer Institute, Stanford University
kn-affil=
affil-num=10
en-affil=National Cancer Center Hospital East
kn-affil=
affil-num=11
en-affil=University of Washington Fred Hutchinson Cancer Research Center
kn-affil=
affil-num=12
en-affil=Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=13
en-affil=Center for Clinical Oncology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Zhejiang Cancer Hospital
kn-affil=
affil-num=15
en-affil=Seoul National University College of Medicine and Seoul National University Hospital
kn-affil=
affil-num=16
en-affil=Samsung Medical Center, Sungkyunkwan University School of Medicine
kn-affil=
affil-num=17
en-affil=National Taiwan University Cancer Center
kn-affil=
affil-num=18
en-affil=Department I for Internal Medicine, Faculty of Medicine and University Hospital Cologne, Lung Cancer Group Cologne, Center for Integrated Oncology Aachen Köln Bonn Düsseldorf, University of Cologne
kn-affil=
affil-num=19
en-affil=Johnson & Johnson
kn-affil=
affil-num=20
en-affil=Johnson & Johnson
kn-affil=
affil-num=21
en-affil=Johnson & Johnson
kn-affil=
affil-num=22
en-affil=Johnson & Johnson
kn-affil=
affil-num=23
en-affil=Johnson & Johnson
kn-affil=
affil-num=24
en-affil=Johnson & Johnson
kn-affil=
affil-num=25
en-affil=Johnson & Johnson
kn-affil=
affil-num=26
en-affil=Johnson & Johnson
kn-affil=
affil-num=27
en-affil=Johnson & Johnson
kn-affil=
affil-num=28
en-affil=Johnson & Johnson
kn-affil=
affil-num=29
en-affil=Johnson & Johnson
kn-affil=
affil-num=30
en-affil=Johnson & Johnson
kn-affil=
affil-num=31
en-affil=Johnson & Johnson
kn-affil=
affil-num=32
en-affil=Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=5
article-no=
start-page=651
end-page=664
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Amivantamab Plus Lazertinib in Patients With EGFR-Mutant NSCLC After Progression on Osimertinib and Platinum-Based Chemotherapy: Results From CHRYSALIS-2 Cohort A
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Treatment options for patients with EGFR-mutated NSCLC with disease progression on or after osimertinib and platinum-based chemotherapy are limited.
Methods: CHRYSALIS-2 cohort A evaluated amivantamab plus lazertinib in patients with EGFR exon 19 deletion- or L858R-mutated NSCLC with disease progression on or after osimertinib and platinum-based chemotherapy. Primary end point was investigator-assessed objective response rate (ORR). The patients received 1050 mg of intravenous amivantamab (1400 mg if ≥ 80 kg) plus 240 mg of oral lazertinib.
Results: In cohort A (N = 162), the investigator-assessed ORR was 28% (95% confidence interval [CI]: 22–36). The blinded independent central review–assessed ORR was 35% (95% CI: 27–42), with a median duration of response of 8.3 months (95% CI: 6.7–10.9) and a clinical benefit rate of 58% (95% CI: 50–66). At a median follow-up of 12 months, 32 of 56 responders (57%) achieved a duration of response of more than or equal to 6 months. Median progression-free survival by blinded independent central review was 4.5 months (95% CI: 4.1–5.8); median overall survival was 14.8 months (95% CI: 12.2–18.0). Preliminary evidence of central nervous system antitumor activity was reported in seven patients with baseline brain lesions and no previous brain radiation or surgery. Exploratory biomarker analyses using next-generation sequencing of circulating tumor DNA revealed responses in patients with and without EGFR- or MET-dependent resistance. The most frequent adverse events were rash (grouped term; 81%), infusion-related reaction (68%), and paronychia (52%). The most common grade greater than or equal to 3 treatment-related adverse events were rash (grouped term; 10%), infusion-related reaction (9%), and hypoalbuminemia (6%).
Conclusions: For patients with limited treatment options, amivantamab plus lazertinib demonstrated an antitumor activity with a safety profile characterized by EGFR- or MET-related adverse events, which were generally manageable.
en-copyright=
kn-copyright=
en-aut-name=BesseBenjamin
en-aut-sei=Besse
en-aut-mei=Benjamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GotoKoichi
en-aut-sei=Goto
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangYongsheng
en-aut-sei=Wang
en-aut-mei=Yongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LeeSe-Hoon
en-aut-sei=Lee
en-aut-mei=Se-Hoon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MarmarelisMelina E.
en-aut-sei=Marmarelis
en-aut-mei=Melina E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OheYuichiro
en-aut-sei=Ohe
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Bernabe CaroReyes
en-aut-sei=Bernabe Caro
en-aut-mei=Reyes
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KimDong-Wan
en-aut-sei=Kim
en-aut-mei=Dong-Wan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LeeJong-Seok
en-aut-sei=Lee
en-aut-mei=Jong-Seok
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=CousinSophie
en-aut-sei=Cousin
en-aut-mei=Sophie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=LiYongsheng
en-aut-sei=Li
en-aut-mei=Yongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=Paz-AresLuis
en-aut-sei=Paz-Ares
en-aut-mei=Luis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OnoAkira
en-aut-sei=Ono
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SanbornRachel E.
en-aut-sei=Sanborn
en-aut-mei=Rachel E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=WatanabeNaohiro
en-aut-sei=Watanabe
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=de MiguelMaria Jose
en-aut-sei=de Miguel
en-aut-mei=Maria Jose
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HelisseyCarole
en-aut-sei=Helissey
en-aut-mei=Carole
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ShuCatherine A.
en-aut-sei=Shu
en-aut-mei=Catherine A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SpiraAlexander I.
en-aut-sei=Spira
en-aut-mei=Alexander I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TomasiniPascale
en-aut-sei=Tomasini
en-aut-mei=Pascale
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YangJames Chih-Hsin
en-aut-sei=Yang
en-aut-mei=James Chih-Hsin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=ZhangYiping
en-aut-sei=Zhang
en-aut-mei=Yiping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FelipEnriqueta
en-aut-sei=Felip
en-aut-mei=Enriqueta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=GriesingerFrank
en-aut-sei=Griesinger
en-aut-mei=Frank
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=WaqarSaiama N.
en-aut-sei=Waqar
en-aut-mei=Saiama N.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=CallesAntonio
en-aut-sei=Calles
en-aut-mei=Antonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=NealJoel W.
en-aut-sei=Neal
en-aut-mei=Joel W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=BaikChristina S.
en-aut-sei=Baik
en-aut-mei=Christina S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=JännePasi A.
en-aut-sei=Jänne
en-aut-mei=Pasi A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=ShreeveS. Martin
en-aut-sei=Shreeve
en-aut-mei=S. Martin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=CurtinJoshua C.
en-aut-sei=Curtin
en-aut-mei=Joshua C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=PatelBharvin
en-aut-sei=Patel
en-aut-mei=Bharvin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=GormleyMichael
en-aut-sei=Gormley
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=LyuXuesong
en-aut-sei=Lyu
en-aut-mei=Xuesong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=ChenJun
en-aut-sei=Chen
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=ChuPei-Ling
en-aut-sei=Chu
en-aut-mei=Pei-Ling
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=MahoneyJanine
en-aut-sei=Mahoney
en-aut-mei=Janine
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=TraniLeonardo
en-aut-sei=Trani
en-aut-mei=Leonardo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=BaumlJoshua M.
en-aut-sei=Bauml
en-aut-mei=Joshua M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=ThayuMeena
en-aut-sei=Thayu
en-aut-mei=Meena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=KnoblauchRoland E.
en-aut-sei=Knoblauch
en-aut-mei=Roland E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=ChoByoung Chul
en-aut-sei=Cho
en-aut-mei=Byoung Chul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
affil-num=1
en-affil=Paris-Saclay University, Institut Gustave Roussy
kn-affil=
affil-num=2
en-affil=National Cancer Center Hospital East
kn-affil=
affil-num=3
en-affil=Institute of Clinical Trial Center and Cancer Center, West China Hospital, Sichuan University
kn-affil=
affil-num=4
en-affil=Samsung Medical Center, Sungkyunkwan University School of Medicine
kn-affil=
affil-num=5
en-affil=University of Pennsylvania, Perelman School of Medicine
kn-affil=
affil-num=6
en-affil=National Cancer Center Hospital
kn-affil=
affil-num=7
en-affil=Hospital Universitario Virgen Del Rocio
kn-affil=
affil-num=8
en-affil=Seoul National University College of Medicine and Seoul National University Hospital
kn-affil=
affil-num=9
en-affil=Seoul National University College of Medicine and Seoul National University Hospital
kn-affil=
affil-num=10
en-affil=Institut Bergonié
kn-affil=
affil-num=11
en-affil=Center for Clinical Oncology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Chongqing University Cancer Hospital
kn-affil=
affil-num=13
en-affil=Hospital Universitario 12 de Octubre
kn-affil=
affil-num=14
en-affil=Shizuoka Cancer Center
kn-affil=
affil-num=15
en-affil=Earle A. Chiles Research Institute, Providence Cancer Institute
kn-affil=
affil-num=16
en-affil=Department of Thoracic Oncology, Aichi Cancer Center Hospital
kn-affil=
affil-num=17
en-affil=START Madrid-CIOCC, Hospital HM Sanchinarro
kn-affil=
affil-num=18
en-affil=Clinical Research unit, Military Hospital Begin
kn-affil=
affil-num=19
en-affil=Columbia University Medical Center
kn-affil=
affil-num=20
en-affil=Virginia Cancer Specialists
kn-affil=
affil-num=21
en-affil=Aix Marseille University - CNRS, INSERM, CRCM; CEPCM - AP-HM Hopital de La Timone
kn-affil=
affil-num=22
en-affil=National Taiwan University Cancer Center
kn-affil=
affil-num=23
en-affil=Zhejiang Cancer Hospital
kn-affil=
affil-num=24
en-affil=Medical Oncology Service, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital Campus, Universitat Autonoma de Barcelona
kn-affil=
affil-num=25
en-affil=Pius-Hospital, University Medicine of Oldenburg
kn-affil=
affil-num=26
en-affil=Division of Oncology, Washington University School of Medicine
kn-affil=
affil-num=27
en-affil=Hospital General Universitario Gregorio Marañón
kn-affil=
affil-num=28
en-affil=Stanford University Medical Center
kn-affil=
affil-num=29
en-affil=University of Washington, Fred Hutchinson Cancer Center
kn-affil=
affil-num=30
en-affil=Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute
kn-affil=
affil-num=31
en-affil=Johnson & Johnson
kn-affil=
affil-num=32
en-affil=Johnson & Johnson
kn-affil=
affil-num=33
en-affil=Johnson & Johnson
kn-affil=
affil-num=34
en-affil=Johnson & Johnson
kn-affil=
affil-num=35
en-affil=Johnson & Johnson
kn-affil=
affil-num=36
en-affil=Johnson & Johnson
kn-affil=
affil-num=37
en-affil=Johnson & Johnson
kn-affil=
affil-num=38
en-affil=Johnson & Johnson
kn-affil=
affil-num=39
en-affil=Johnson & Johnson
kn-affil=
affil-num=40
en-affil=Johnson & Johnson
kn-affil=
affil-num=41
en-affil=Johnson & Johnson
kn-affil=
affil-num=42
en-affil=Johnson & Johnson
kn-affil=
affil-num=43
en-affil=Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine
kn-affil=
en-keyword=Amivantamab
kn-keyword=Amivantamab
en-keyword=Biomarker analyses
kn-keyword=Biomarker analyses
en-keyword=Lazertinib
kn-keyword=Lazertinib
en-keyword=NSCLC
kn-keyword=NSCLC
END
start-ver=1.4
cd-journal=joma
no-vol=51
cd-vols=
no-issue=11
article-no=
start-page=e70112
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Short‐Term Impacts of Japan's 2024 Physician Working‐Hour Limits on Labor Conditions, Self‐Directed Professional Development, and Happiness Among Obstetrician‐Gynecologists
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: To examine the short-term impacts of Japan's newly implemented physician working-hour limits (April 2024) on working conditions, self-directed professional development (SDPD), defined as activities undertaken outside working hours to enhance one's professional skills, and work-related happiness among obstetrician-gynecologists (OB-GYNs).
Methods: An online survey was conducted between July 8 and July 31, 2024, targeting 867 Japan Society of Obstetrics and Gynecology members. Five hundred and fourteen full-time practitioners who had not changed workplaces around April 2024 and had no missing data were analyzed. Participants were stratified by regulation levels (A, B, C, discretionary labor system, those who don't know their own level), and their working hours, anticipated income, SDPD satisfaction, and happiness (0–10 scale) were assessed. We used multivariate linear regression to evaluate the influence of labor condition changes on happiness and explored interactions involving unpaid overtime, income changes, and SDPD satisfaction.
Results: Compared with level A (up to 960 h of overtime per year), participants at levels B and C (up to 1860 h of overtime per year) reported significantly lower happiness (p < 0.001). Most respondents observed no major shifts in working conditions since March 2024, yet about 40% did not record SDPD hours that meet the working hour requirement as official work time. Adjusted analyses revealed that decreased income and unsatisfactory SDPD significantly lowered happiness, whereas higher SDPD satisfaction increased it (β: −0.64 [−1.07, −0.21], −0.98 [−1.46, −0.50], and 0.90 [0.44, 1.35], respectively). Subgroup analysis indicated that rising unpaid overtime further reduced happiness among those dissatisfied with SDPD (−1.43 [−2.41, −0.45]).
Conclusions: The new working-hour limits had minimal impact on labor conditions in the short run. However, satisfaction with SDPD was positively associated with happiness, whereas anticipated decreases in income were correlated with lower happiness.
en-copyright=
kn-copyright=
en-aut-name=MaedaYuto
en-aut-sei=Maeda
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakagawaSatoru
en-aut-sei=Nakagawa
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanishiKentaro
en-aut-sei=Nakanishi
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InoueEri
en-aut-sei=Inoue
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueDaisuke
en-aut-sei=Inoue
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KidoSaki
en-aut-sei=Kido
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KidoMichiko
en-aut-sei=Kido
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KogaKaori
en-aut-sei=Koga
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SuzukiShunji
en-aut-sei=Suzuki
en-aut-mei=Shunji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SuzukiYukio
en-aut-sei=Suzuki
en-aut-mei=Yukio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HaragaJunko
en-aut-sei=Haraga
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamamotoEiko
en-aut-sei=Yamamoto
en-aut-mei=Eiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=UmazumeTakeshi
en-aut-sei=Umazume
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YokoyamaYoshihito
en-aut-sei=Yokoyama
en-aut-mei=Yoshihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IwaseAkira
en-aut-sei=Iwase
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=IkedaTomoaki
en-aut-sei=Ikeda
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YoshidaYoshio
en-aut-sei=Yoshida
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KudoYoshiki
en-aut-sei=Kudo
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SugiyamaTakashi
en-aut-sei=Sugiyama
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MiuraKiyonori
en-aut-sei=Miura
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YahataHideaki
en-aut-sei=Yahata
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UnnoNobuya
en-aut-sei=Unno
en-aut-mei=Nobuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KurasawaKentaro
en-aut-sei=Kurasawa
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=MaenakaTakahide
en-aut-sei=Maenaka
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MiyagiEtsuko
en-aut-sei=Miyagi
en-aut-mei=Etsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=KatoKiyoko
en-aut-sei=Kato
en-aut-mei=Kiyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=KatoYasuhito
en-aut-sei=Kato
en-aut-mei=Yasuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
affil-num=1
en-affil=Department of Public Health, Institute of Science Tokyo
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Osaka University
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Asahikawa Medical University
kn-affil=
affil-num=4
en-affil=Aiiku Maternal and Child Health Center, Aiiku Hospital
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, University of Fukui
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Japanese Red Cross Medical Center
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Reproductive Medicine Chiba University
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Nippon Medical School
kn-affil=
affil-num=10
en-affil=Department of Gynecology, Kanagawa Cancer Center
kn-affil=
affil-num=11
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Healthcare Administration, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Obstetrics and Gynecology, Hokkaido University
kn-affil=
affil-num=15
en-affil=Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine
kn-affil=
affil-num=17
en-affil=Saiseikai Matsusaka General Hospital
kn-affil=
affil-num=18
en-affil=Department of Obstetrics and Gynecology, University of Fukui
kn-affil=
affil-num=19
en-affil=Department of Obstetrics and Gynecology, Hiroshima University
kn-affil=
affil-num=20
en-affil=Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Obstetrics and Gynecology, Nagasaki University
kn-affil=
affil-num=22
en-affil=Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=23
en-affil=Center for Perinatal Medicine, JCHO Sagamino Hospital
kn-affil=
affil-num=24
en-affil=Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Obstetrics and Gynecology, Higashiosaka City Medical Center
kn-affil=
affil-num=26
en-affil=Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=27
en-affil=Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=28
en-affil=Department of Obstetrics and Gynecology, Asahikawa Medical University
kn-affil=
en-keyword=gynecologists
kn-keyword=gynecologists
en-keyword=happiness
kn-keyword=happiness
en-keyword=obstetrician
kn-keyword=obstetrician
en-keyword=work style reform
kn-keyword=work style reform
en-keyword=working-hour limits
kn-keyword=working-hour limits
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=12
article-no=
start-page=1087
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251119
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Factors associated with period of sick leave after gynecologic cancer treatment: a prospective cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Gynecologic cancer is one of the most common malignancies in working-age women. This study aimed to investigate factors associated with period of sick leave after gynecologic cancer treatment in Japan.
Methods A prospective cohort study on period of sick leave was conducted among 207 cancer survivors who returned to work at the same workplace. Questionnaires were randomly distributed to patients aged under 65 years and more than one-year post-treatment. Clinical information was extracted from medical records, and the factors influencing the period of sick leave were analyzed using the Mann–Whitney U test and logistic regression analysis.
Results Surgery plus more than six courses of chemotherapy (number (n) = 41, 166.02 ± 146.84 days) led to a significantly longer period of sick leave than surgery without lymph node dissection (n = 64, 31.15 ± 30.47 days), surgery with lymph node dissection (n = 41, 55.56 ± 85.90 days), surgery plus less than six courses of chemotherapy (n = 21, 72.42 ± 56.07 days), and radiotherapy alone (n = 21, 58.85 ± 84.24 days) (OR: 2.63, 2.95, 2.67, and 2.08; 95% CI: 7.71–54.59, 18.17–92.94, 18.22–126.63, and 2.38–115.33; p = 0.009, p = 0.004, p = 0.009, and p = 0.041). gynecologic cancer survivors who experienced adverse effects after treatment had a significantly longer period of sick leave (OR: 8.50; CI: 52.98–84.98; p < 0.001). In univariate and multivariate analyses, patients who received surgery plus more than six courses of chemotherapy were most involved in long period of sick leave than other factors (OR: 11.20, and 16.997; CI: 4.86–25.08, and 5.51–52.35; p < 0.001, and p < 0.001).
Conclusion Patients with gynecologic cancer requiring long-term treatment required the most time to return to work.
en-copyright=
kn-copyright=
en-aut-name=TaniYoshinori
en-aut-sei=Tani
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugiharaHanako
en-aut-sei=Sugihara
en-aut-mei=Hanako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShirakawaShinsuke
en-aut-sei=Shirakawa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuokaHirofumi
en-aut-sei=Matsuoka
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IdaNaoyuki
en-aut-sei=Ida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HaragaJunko
en-aut-sei=Haraga
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OgawaChikako
en-aut-sei=Ogawa
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=EtoEriko
en-aut-sei=Eto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NagaoShoji
en-aut-sei=Nagao
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Period of sick leave
kn-keyword=Period of sick leave
en-keyword=Surgery plus chemotherapy
kn-keyword=Surgery plus chemotherapy
en-keyword=Six or more cycles of chemotherapy
kn-keyword=Six or more cycles of chemotherapy
en-keyword=Gynecologic cancer survivors
kn-keyword=Gynecologic cancer survivors
END
start-ver=1.4
cd-journal=joma
no-vol=133
cd-vols=
no-issue=7
article-no=
start-page=393
end-page=399
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Underwater superoleophobic NaNbO3-based photocatalyst thin films prepared on bare soda-lime glass by sol–gel process
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A self-cleaning flat transparent thin photocatalyst film was prepared on a bare soda-lime glass by a simple method using niobium alkoxide solution, which is a common coating solution for the sol–gel method. The film consisted of crystalline NaNbO3 and Na2Nb2O6·H2O phases. It was suggested that NaNbO3 and Na2Nb2O6·H2O were directly formed between the soda-lime glass and the niobium alkoxide coating solution during the heat treatment. Under UV irradiation, the film surface exhibited low photocatalytic oxidation activity and excellent photo-induced hydrophilicity. The hydrophilic state of the sample was maintained for 1 month in the dark, while the hydrophilicity of TiO2 sample prepared by a sol–gel method was decreased within 5 days in the dark. Additionally, the surface demonstrated excellent underwater oil repellency toward n-hexadecane and oleic acid and the ability to remove the adsorbed oily contaminant in water. These properties were also superior to those of the TiO2 surface.
en-copyright=
kn-copyright=
en-aut-name=NishimotoShunsuke
en-aut-sei=Nishimoto
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KageyamaKazuya
en-aut-sei=Kageyama
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EgusaShusuke
en-aut-sei=Egusa
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KameshimaYoshikazu
en-aut-sei=Kameshima
en-aut-mei=Yoshikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=NaNbO3 photocatalyst
kn-keyword=NaNbO3 photocatalyst
en-keyword=Wettability
kn-keyword=Wettability
en-keyword=Self-cleaning
kn-keyword=Self-cleaning
en-keyword=Superhydrophilicity
kn-keyword=Superhydrophilicity
en-keyword=Underwater superoleophobicity
kn-keyword=Underwater superoleophobicity
END
start-ver=1.4
cd-journal=joma
no-vol=191
cd-vols=
no-issue=
article-no=
start-page=107586
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Experimental approach of internal dose map visualization during helical CT examinations: importance of X-ray incident direction analysis and central internal dose estimation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=During computed tomography (CT) examination, radiation exposures should be appropriately managed taking into considering the effects of bowtie filter, the heel effect and over-beaming effect. Furthermore, the analysis of an X-ray incident direction is important. The purpose of this study is to develop a procedure to obtain two-dimensional (2D) internal dose distributions based on actual measurements of surface dose distribution and central internal dose data. Experiments were conducted using a clinical CT scanner and four cylindrical polyacetal resin (POM) phantoms having diameters of 15–30 cm. The entrance surface doses and the central internal dose were measured by placing the optically stimulated luminescence (OSL) dosimeters on the surface and inner part of the phantom, respectively, during helical CT scans. The X-ray incident direction at the slice containing the dosimeter was estimated based on the noise distribution analysis of the CT image. Then, circumferential surface dose distributions were determined as a function of the X-ray incident direction. Based on these experimental data, we succeeded in visualizing the 2D dose distributions. The obtained dose distribution was inhomogeneous, clearly reflecting the influence of factors such as the heel effect. The uncertainty due to our methodology was estimated to be from 4.3 % to 7.4 %. Our methodology needs central internal dose data, and the absence of this data introduced additional systematic uncertainties of +6.9 % to −11.4 %. In conclusion, correcting for the effect of the X-ray incident directions for entrance surface dose and adding the central inner dose data can improve the reliability of the internal dose distribution.
en-copyright=
kn-copyright=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakegamiKazuki
en-aut-sei=Takegami
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakemitsuMasaki
en-aut-sei=Takemitsu
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshiiRin
en-aut-sei=Ishii
en-aut-mei=Rin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MorimotoShinichi
en-aut-sei=Morimoto
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MakiMotochika
en-aut-sei=Maki
en-aut-mei=Motochika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Yamaguchi University Hospital
kn-affil=
affil-num=3
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=4
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=5
en-affil=Faculty of Health Sciences, Kobe Tokiwa University
kn-affil=
affil-num=6
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=8
en-affil=Department of Radiological Technology, Yamaguchi University Hospital
kn-affil=
affil-num=9
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
affil-num=10
en-affil=Meditec Japan Co., Ltd.
kn-affil=
affil-num=11
en-affil=Meditec Japan Co., Ltd.
kn-affil=
en-keyword=Computed tomography
kn-keyword=Computed tomography
en-keyword=Medical dosimetry
kn-keyword=Medical dosimetry
en-keyword=Internal dose distribution
kn-keyword=Internal dose distribution
en-keyword=X-ray incident direction
kn-keyword=X-ray incident direction
en-keyword=Optically stimulated luminescence dosimeter
kn-keyword=Optically stimulated luminescence dosimeter
END
start-ver=1.4
cd-journal=joma
no-vol=90
cd-vols=
no-issue=
article-no=
start-page=104413
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251215
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Species-specific sensitivity of marine phytoplankton to selected herbicides and antibiotics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The toxicity of two herbicides (diuron and bromacil) and three antibiotics (clarithromycin, azithromycin, and clindamycin) was evaluated for on four marine phytoplankton species: two diatoms, Skeletonema costatum and Chaetoceros lorenzianus, a dinoflagellate, Prorocentrum shikokuense, and a raphidophyte, Heterosigma akashiwo. The 50 % effective concentrations (EC50-μ) for growth of the herbicides (approximately 2.3–24.3 μg L−1) were lower than those of the antibiotics, indicating their higher toxicity. The EC50-μ of diuron was close to its reported environmental concentrations. The EC50-μ values for the antibiotics substantially differed by species, ranging from 19.5 to > 1000 μg L−1, with diatoms showing higher sensitivity than flagellates. Herbicides inhibited the photosynthetic yield (φII) of all tested species at concentrations similar to or lower than those affecting growth, while antibiotics affected φII at higher concentrations. Under high-light conditions, photosynthesis in S. costatum was substantially inhibited by all chemicals except clindamycin, suggesting enhanced chemical toxicity under intense light. Overall, these findings indicate that these herbicides and antibiotics can alter phytoplankton abundance and composition in coastal areas and that environmental factors, such as increased solar radiation, can potentially enhance their toxicity.
en-copyright=
kn-copyright=
en-aut-name=OharaShizuka
en-aut-sei=Ohara
en-aut-mei=Shizuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OndukaToshimitsu
en-aut-sei=Onduka
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UekiShoko
en-aut-sei=Ueki
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaruseShotaro
en-aut-sei=Naruse
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KoikeKazuhiko
en-aut-sei=Koike
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Integrated Science for Life, Hiroshima University
kn-affil=
affil-num=2
en-affil=Hatsukaichi Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Integrated Science for Life, Hiroshima University
kn-affil=
affil-num=5
en-affil=Graduate School of Integrated Science for Life, Hiroshima University
kn-affil=
en-keyword=Herbicides
kn-keyword=Herbicides
en-keyword=Antibiotics
kn-keyword=Antibiotics
en-keyword=Growth rate
kn-keyword=Growth rate
en-keyword=Effective quantum yield
kn-keyword=Effective quantum yield
en-keyword=Non-photochemical quenching
kn-keyword=Non-photochemical quenching
en-keyword=High light
kn-keyword=High light
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=715
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241012
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photocatalytic Ammonia Decomposition Using Dye-Encapsulated Single-Walled Carbon Nanotubes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The photocatalytic decomposition of ammonia to produce N2 and H2 was achieved using single-walled carbon nanotube (SWCNT) nanohybrids. The physical modification of ferrocene-dye-encapsulated CNTs by amphiphilic C60-dendron yielded nanohybrids with a dye/CNT/C60 coaxial heterojunction. Upon irradiation with visible light, an aqueous solution of NH3 and dye@CNT/C60-dendron nanohybrids produced both N2 and H2 in a stoichiometric ratio of 1/3. The action spectra of this reaction clearly demonstrated that the encapsulated dye acted as the photosensitizer, exhibiting an apparent quantum yield (AQY) of 0.22% at 510 nm (the λmax of the dye). This study reports the first example of dye-sensitized ammonia decomposition and provides a new avenue for developing efficient and sustainable photocatalytic hydrogen production systems.
en-copyright=
kn-copyright=
en-aut-name=TajimaTomoyuki
en-aut-sei=Tajima
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YanoKotone
en-aut-sei=Yano
en-aut-mei=Kotone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MukaiKazushi
en-aut-sei=Mukai
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakaguchiYutaka
en-aut-sei=Takaguchi
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Materials Design and Engineering, University of Toyama
kn-affil=
affil-num=4
en-affil=Department of Materials Design and Engineering, University of Toyama
kn-affil=
en-keyword=photocatalyst
kn-keyword=photocatalyst
en-keyword=ammonia decomposition
kn-keyword=ammonia decomposition
en-keyword=dye sensitization
kn-keyword=dye sensitization
en-keyword=hydrogen evolution
kn-keyword=hydrogen evolution
en-keyword=carbon nanotube
kn-keyword=carbon nanotube
en-keyword=fullerene
kn-keyword=fullerene
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=1
article-no=
start-page=2586329
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251130
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Asiatic acid, a novel ciprofloxacin adjuvant inhibits Shigella flexneri infection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacterial infection caused by intracellular pathogens such as Shigella flexneri is a rapidly increasing global health concern that requires urgent and necessary action. The dearth of licensed vaccines against shigellosis and the decline in susceptibility to conventional antibiotics has encouraged the development of new antibiotic principles and drugs. The treatment options are decreasing faster than the discovery rate of new antibacterial agents. Combinatorial approach of antibiotics with non-antibiotic adjuvants is a promising aspect to treat resistant bacterial infections. Asiatic acid, a membrane-disrupting triterpenoid with wide antimicrobial and immunomodulatory properties, can potentiate antibiotics, but the exact mechanisms remain broadly unexplored. Therefore, in this study, we screened the interaction of asiatic acid with several antibiotics. The results showed synergistic interactions of asiatic acid with antibiotics against susceptible and multidrug-resistant S. flexneri clinical isolates. Particularly important was the interaction of asiatic acid with the quinolone antibiotics ciprofloxacin and nalidixic acid. A detailed study showed that combined treatment of asiatic acid with ciprofloxacin inhibited S. flexneri biofilm formation and resistance development. An increase in membrane disruption and depolarization upon co-treatment was evident by surface electron and confocal microscopy. In addition, asiatic acid and ciprofloxacin synergism was identified to inhibit efflux activity and intracellular bacterial viability. However, asiatic acid showed no synergistic toxicity with ciprofloxacin towards mammalian cells. The antibacterial activity was further verified in a S. flexneri infected mice model. Therapeutic benefits were evident with reduced bacterial burden, recovery from intestinal tissue damage and increase in mice survivability. The results showed that this combination can target the bacterial membrane, efflux pump proteins and biofilm formation, thereby preventing resistance development. The combination treatment offers a proof of concept in targeting essential bacterial activities and might be developed into a novel and efficient treatment alternative against S. flexneri.
en-copyright=
kn-copyright=
en-aut-name=MaitraPriyanka
en-aut-sei=Maitra
en-aut-mei=Priyanka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BhuktaSamhati
en-aut-sei=Bhukta
en-aut-mei=Samhati
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GopeAnimesh
en-aut-sei=Gope
en-aut-mei=Animesh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KayetPratanu
en-aut-sei=Kayet
en-aut-mei=Pratanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BasakSurajit
en-aut-sei=Basak
en-aut-mei=Surajit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyoshiShin-Ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KitaharaKei
en-aut-sei=Kitahara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DuttaShanta
en-aut-sei=Dutta
en-aut-mei=Shanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BhattacharyaSushmita
en-aut-sei=Bhattacharya
en-aut-mei=Sushmita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=2
en-affil=Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=3
en-affil=Division of Clinical Medicine, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=4
en-affil=Division of Bioinformatics, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=5
en-affil=Division of Bioinformatics, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=6
en-affil=Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Collaborative Research Center of Okayama University for Infectious Diseases in India, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=8
en-affil=Department of Bacteriology, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=9
en-affil=Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
en-keyword=Shigella flexneri
kn-keyword=Shigella flexneri
en-keyword=asiatic acid
kn-keyword=asiatic acid
en-keyword=ciprofloxacin
kn-keyword=ciprofloxacin
en-keyword=adjuvant
kn-keyword=adjuvant
en-keyword=membrane damage
kn-keyword=membrane damage
en-keyword=depolarization
kn-keyword=depolarization
en-keyword=nuclear damage
kn-keyword=nuclear damage
en-keyword=efflux inhibitor
kn-keyword=efflux inhibitor
END
start-ver=1.4
cd-journal=joma
no-vol=177
cd-vols=
no-issue=
article-no=
start-page=113652
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-term effects of forest growth dynamics and climate change on groundwater recharge and evapotranspiration in a steep catchment of western Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Growing water demand for human and environmental needs has led to increased reliance on groundwater resources. However, groundwater is a finite resource, and its sustainability is closely linked to recharge processes, which are influenced by forest growth dynamics as well as climate change. Evapotranspiration, largely driven by vegetation cover and climatic conditions, represents a major component of terrestrial water loss that can reduce groundwater recharge. In this study, forest growth trends, reflecting the complete developmental stages from juvenile to post-maturity of a representative species, were reconstructed using remote sensing data, forest inventories, and field studies, and incorporated into the SWAT model to evaluate their impacts on groundwater recharge and evapotranspiration as indicators of forest hydrological function and ecosystem health. The model’s vegetation growth simulation was enhanced and uncertainty reduced by dynamically updating it with MODIS-derived leaf area index (LAI) at 5-year intervals. Groundwater recharge estimates were further improved through multi-variable calibration using Penman–Monteith–Leuning evapotranspiration (V2) and streamflow data to ensure water budget closure. Results showed that evergreen conifer growth from planting to maturity significantly reduced groundwater recharge (–4.7 mm/year) and increased evapotranspiration (+7.6 mm/year). In contrast, natural and mature deciduous broadleaf forests showed more stable recharge and evapotranspiration trends. Rising temperatures were identified as a key climatic driver of reduced recharge and increased evapotranspiration, reflecting broader global warming impacts. This study demonstrates that forest growth dynamics, especially during the critical transition from planting to maturity, alongside climate change, play a crucial role in shaping the catchment’s water balance and offer valuable insights for sustainable groundwater management, particularly in transitional forest ecosystems.
en-copyright=
kn-copyright=
en-aut-name=GuyoRendilicha Halake
en-aut-sei=Guyo
en-aut-mei=Rendilicha Halake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangKunyang
en-aut-sei=Wang
en-aut-mei=Kunyang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OnoderaShin-ichi
en-aut-sei=Onodera
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaitoMitsuyo
en-aut-sei=Saito
en-aut-mei=Mitsuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoroizumiToshitsugu
en-aut-sei=Moroizumi
en-aut-mei=Toshitsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil= Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University
kn-affil=
affil-num=3
en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University
kn-affil=
affil-num=4
en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University
kn-affil=
affil-num=5
en-affil= Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Forest growth
kn-keyword=Forest growth
en-keyword=SWAT
kn-keyword=SWAT
en-keyword=Groundwater recharge
kn-keyword=Groundwater recharge
en-keyword=Evapotranspiration
kn-keyword=Evapotranspiration
en-keyword=MODIS LAI
kn-keyword=MODIS LAI
en-keyword=PML_V2
kn-keyword=PML_V2
en-keyword=Climate change
kn-keyword=Climate change
END
start-ver=1.4
cd-journal=joma
no-vol=191
cd-vols=
no-issue=
article-no=
start-page=107592
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A novel wearable dosimeter system that can analyze the incident direction of X-rays for medical dosimetry – Improvements to the detector arrangements and analysis algorithm –
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=When performing real-time dosimetry using an active-type dosimeter during clinical fluoroscopic procedures, angular dependence of dosimeter response should be taken into account. Our research group addressed this issue and proposed a triple-type dosimeter that can determine the incident angle of scattered X-rays. The triple-type detector consists of three active dosimeters. The two side dosimeters have slope filters to enhance the angular dependence and are intentionally tilted. The central dosimeter faces forward. The incident angle of X-rays (θin) is estimated using the signal differences between the central dosimeter and the left and/or right dosimeters. Then, the absolute dose is determined by correcting the angular dependence of the central dosimeter based on the estimated θin. In order to verify the concept of the triple-type dosimeter, we conducted a proof-of-concept experiment using clinical X-ray fluoroscopic equipment. Scattered X-rays were generated by irradiating an elliptical cylindrical water phantom. The response of the triple-type dosimeter was evaluated by rotating it to vary the incident angle of scattered X-rays generated by the water phantom. The proposed dosimetry system could estimate the θin over an angular range of ±80° (with uncertainty of 1.35°), which is 30° wider than the previous version, and successfully determined the absolute doses after correction for the angular dependence of the dosimeter. Although the active-type dosimeter had a systematic uncertainty related to the angular dependence of ±15.2 %, our system succeeded in reducing the systematic uncertainty to ±3.2 %.
en-copyright=
kn-copyright=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakegamiKazuki
en-aut-sei=Takegami
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshiiRin
en-aut-sei=Ishii
en-aut-mei=Rin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MitaniMana
en-aut-sei=Mitani
en-aut-mei=Mana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HondaMitsugi
en-aut-sei=Honda
en-aut-mei=Mitsugi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=3
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=4
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=5
en-affil=Faculty of Health Science, Kobe Tokiwa University
kn-affil=
affil-num=6
en-affil=Department of Radiological Technology, Yamaguchi University Hospital
kn-affil=
affil-num=7
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
affil-num=8
en-affil=Division of Radiological Technology, Medical Support Department, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Division of Radiological Technology, Medical Support Department, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=Wearable active-type dosimeter
kn-keyword=Wearable active-type dosimeter
en-keyword=X-ray incident direction
kn-keyword=X-ray incident direction
en-keyword=Occupational dose
kn-keyword=Occupational dose
en-keyword=Interventional radiology
kn-keyword=Interventional radiology
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=2
article-no=
start-page=103274
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optimization of the reconstruction kernel for temporal bone imaging using photon-counting detector CT: A combined physical and visual evaluation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Photon-counting detector CT (PCD-CT) offers superior spatial resolution and noise characteristics compared to conventional CT. However, optimal reconstruction parameters for temporal bone imaging, especially kernel selection, remain unclear. This study aimed to identify the optimal reconstruction kernel using both objective physical image quality metrics and subjective expert assessments.
Methods: In phantom experiments, the system performance function (SPF) based on the task-based transfer function (TTF) and noise power spectrum (NPS) was calculated across 11 reconstruction kernels (Hr60–Hr98). Based on the results of the physical evaluation and clinical considerations from clinical practice, a subset of kernels was selected for visual assessment. For clinical images, two diagnostic radiologists evaluated three fine anatomical structures (i.e., stapes footplate, incudomalleolar joint, and cochlea) and overall image quality using both a ranking method and a 5-point Likert scale.
Results: TTF analysis indicated that Hr96 had the highest spatial resolution, while Hr60 showed the lowest noise in the NPS. SPF analysis identified Hr72 as providing the optimal balance between resolution and noise. Visual assessment using four reconstruction kernels (Hr60, Hr72, Hr76, and Hr84) showed that Hr76 consistently received the highest preference for overall image quality and visualization of fine structures. Statistically significant differences were observed among the kernels, with Hr60 consistently rated the lowest (p < 0.05).
Conclusion: The kernel Hr76 was found suitable for middle and inner ear diagnoses using PCD-CT, providing a good balance between spatial resolution and image noise. This finding provides a foundation for standardized reconstruction protocols in high-resolution temporal bone imaging.
Implications for practice: These findings support the use of Hr76 as a standard kernel for high-resolution temporal bone imaging and may contribute to protocol optimization in clinical PCD-CT practice.
en-copyright=
kn-copyright=
en-aut-name=NishiiS.
en-aut-sei=Nishii
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsaharaT.
en-aut-sei=Asahara
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimitsuY.
en-aut-sei=Morimitsu
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KajisakiS.
en-aut-sei=Kajisaki
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkagiN.
en-aut-sei=Akagi
en-aut-mei=N.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HondaM.
en-aut-sei=Honda
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HayashiH.
en-aut-sei=Hayashi
en-aut-mei=H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugayaA.
en-aut-sei=Sugaya
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MunetomoK.
en-aut-sei=Munetomo
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HigakiF.
en-aut-sei=Higaki
en-aut-mei=F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HirakiT.
en-aut-sei=Hiraki
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IguchiT.
en-aut-sei=Iguchi
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Radiological Technology, Medical Support Department, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Radiological Technology, Medical Support Department, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Radiological Technology, Medical Support Department, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Radiological Technology, Medical Support Department, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
affil-num=8
en-affil=Department of Otolaryngology, Head & Neck Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=Photon-counting CT
kn-keyword=Photon-counting CT
en-keyword=Temporal bone imaging
kn-keyword=Temporal bone imaging
en-keyword=Reconstruction kernel
kn-keyword=Reconstruction kernel
en-keyword=Image quality
kn-keyword=Image quality
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e13537
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251203
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Atomic-Level Insights into Thermal Carbonization of Ethynyl-Containing Boron Compounds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study reports the design, synthesis, and characterization of boron-doped carbon (BDC) derived from a triethynylborane-pyridine complex. Triethynylborane is stabilized by coordination with pyridine, facilitating its synthesis and handling in ambient conditions. The complex is subjected to thermal treatment at various temperatures to form BDC. Powder XRD and single-crystal XRD analyses reveal that BDC prepared at 200 °C retains an ordered structure, while higher temperatures induce alkyne structural changes without significant weight or surface area alterations. Coin cells are assembled using BDC as the anode, demonstrating unique Li-ion and Na-ion storage properties distinct from graphite. These results suggest that the BDC reflects the precursor's crystal structure, enabling novel electrochemical behavior. These findings offer insight into the development of advanced BDC materials for energy storage applications.
en-copyright=
kn-copyright=
en-aut-name=OhkuraKentaro
en-aut-sei=Ohkura
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HayakawaSatoshi
en-aut-sei=Hayakawa
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiNaoki
en-aut-sei=Takahashi
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamazakiKen
en-aut-sei=Yamazaki
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KanoJun
en-aut-sei=Kano
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environment Life Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environment Life Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environment Life Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=boron-doped carbon
kn-keyword=boron-doped carbon
en-keyword=carbonization
kn-keyword=carbonization
en-keyword=ethynyl group
kn-keyword=ethynyl group
en-keyword=Li-ion
kn-keyword=Li-ion
en-keyword=Na-ion
kn-keyword=Na-ion
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250111
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Linear Search Algorithm for Resource Allocation in Frequency Domain Non-Orthogonal Multiple Access
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This paper proposes a linear search algorithm for resource allocation in frequency domain non-orthogonal multiple access based on the low-density signature (LDS). Although the proposed linear search enables the non-orthogonal multiple access to achieve superior transmission performance, the proposed linear search makes the resource allocation implemented with lower and fixed computational complexity. The performance of the non-orthogonal access based on the proposed linear search is evaluated by computer simulation. The proposed linear search algorithm makes the non-orthogonal multiple access achieve a gain of about 6 dB at the BER of 10–5 when the overloading ratio is set to 2. The complexity of the non-orthogonal access based on the proposed linear search algorithm is approximately half as much as that of the conventional low complexity resource allocation when the overloading ratio is 2, if the complexity is evaluated in terms of the number of additions.
en-copyright=
kn-copyright=
en-aut-name=DennoSatoshi
en-aut-sei=Denno
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OhbaYuto
en-aut-sei=Ohba
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HouYafei
en-aut-sei=Hou
en-aut-mei=Yafei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=non-orthogonal multiple access
kn-keyword=non-orthogonal multiple access
en-keyword=frequency domain
kn-keyword=frequency domain
en-keyword=linear search
kn-keyword=linear search
en-keyword=low complexity
kn-keyword=low complexity
END
start-ver=1.4
cd-journal=joma
no-vol=3
cd-vols=
no-issue=
article-no=
start-page=28
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Airway management during sedation for dental treatment in people with intellectual disabilities: a review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The oral health of people with intellectual disabilities remains poor due to a complex combination of physical and social problems, and often requires invasive dental treatment. However, it can be difficult to obtain their cooperation for dental treatment because they may not fully understand the need for treatment or may experience high levels of anxiety due to lack of understanding and/or sensory aversions to stimuli present in the dental environment, and behavioral management is often necessary during such treatment. Sedation is a very useful patient management method for dental treatment for people with intellectual disabilities; however, the dental treatment-related sedation of people with intellectual disabilities has different characteristics to the dental treatment-related sedation of others or other procedure-related sedation. For example, deep sedation is required for behavioral management; drug interactions between the patient’s regular medications, such as antiepileptic and antipsychotic drugs, and anesthetics may make the depth of sedation deeper; and the prevalence rate of obesity is higher among people with intellectual disabilities. The fact that the patient is in the supine position with their mouth open also makes airway management during sedation for dental treatment more difficult. It is therefore imperative that airway management during dental treatment for people with intellectual disabilities be conducted with the utmost precision and vigilance. Various attempts have been made to improve airway management during such sedation, and new technologies, such as capnography, nasal high-flow systems, and acoustic respiration monitors, may help. The objective of this review is to enhance comprehension of the attributes of airway management in dental sedation for people with intellectual disabilities and to properly understand the usefulness of the techniques that have been attempted thus far to ensure safer and more secure airway management for this population. The ultimate goal is to provide them with safe and secure medical care and improve their health outcomes.
en-copyright=
kn-copyright=
en-aut-name=HiguchiHitoshi
en-aut-sei=Higuchi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiokaYukiko
en-aut-sei=Nishioka
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyakeSaki
en-aut-sei=Miyake
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyawakiTakuya
en-aut-sei=Miyawaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Dentistry
kn-keyword=Dentistry
en-keyword=sedation
kn-keyword=sedation
en-keyword=airway management
kn-keyword=airway management
en-keyword=people with intellectual disabilities
kn-keyword=people with intellectual disabilities
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=1
article-no=
start-page=ycaf192
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Proliferation of a bloom-forming phytoplankton via uptake of polyphosphate-accumulating bacteria under phosphate-limiting conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Harmful algal blooms negatively impact the ecosystem and fisheries in affected areas. Eutrophication is a major factor contributing to bloom occurrence, and phosphorus is particularly important in limiting the growth of bloom-forming algae. Although algae efficiently utilize orthophosphate (Pi) as a phosphorous source over other molecular forms, Pi is often limited in the marine environment. While uptake and utilization of soluble inorganic and organic phosphorous by bloom-forming algae has been extensively studied, the details of geochemical and biological phosphorous cycling remain to be elucidated. Here, we report for the first time that the bloom-forming alga Heterosigma akashiwo can phagocytose bacteria and grow under phosphate-depleted conditions. The addition of Vibrio comitans to Pi-depleted H. akashiwo enabled the alga propagate to high cell densities, whereas other bacterial strains had only a minor effect. Importantly, V. comitans accumulates polyphosphate—a linear polymer of Pi—at high levels. The extent of algal proliferation induced by the addition of Vibrio species and polyphosphate-accumulating Escherichia coli correlated strongly with their polyphosphate content, indicating that bacterial polyphosphate served as an alternative PO43− source for H. akashiwo. The direct uptake of polyphosphate-accumulating bacteria through algal phagocytosis may represent a novel biological phosphorous-cycling pathway in marine ecosystems. The role of polyphosphate-accumulating marine bacteria as a hidden phosphorous source required for bloom formation warrants further investigation.
en-copyright=
kn-copyright=
en-aut-name=FukuyamaSeiya
en-aut-sei=Fukuyama
en-aut-mei=Seiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UsamiFumiko
en-aut-sei=Usami
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirotaRyuichi
en-aut-sei=Hirota
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OharaShizuka
en-aut-sei=Ohara
en-aut-mei=Shizuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoKen
en-aut-sei=Kondo
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GomibuchiYuki
en-aut-sei=Gomibuchi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YasunagaTakuo
en-aut-sei=Yasunaga
en-aut-mei=Takuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OndukaToshimitsu
en-aut-sei=Onduka
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KurodaAkio
en-aut-sei=Kuroda
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KoikeKazuhiko
en-aut-sei=Koike
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UekiShoko
en-aut-sei=Ueki
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=6
en-affil=Research Institute of Environment, Agriculture and Fisheries , Osaka Prefecture
kn-affil=
affil-num=7
en-affil=Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology
kn-affil=
affil-num=8
en-affil=Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology
kn-affil=
affil-num=9
en-affil=Hatsukaichi Branch, Fisheries Technology Institute , Fisheries Research and Education Agency
kn-affil=
affil-num=10
en-affil=Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=11
en-affil=Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=12
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=
article-no=
start-page=101145
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characteristics of out-of-hospital cardiac arrest due to cerebrovascular disorders: a nationwide, retrospective, observational study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Data on out-of-hospital cardiac arrest (OHCA) due to cerebrovascular disorders is limited. This study aimed to describe the characteristics, outcomes, and annual trends of outcomes for OHCA originating from cerebrovascular disorders.
Methods: This study was a retrospective analysis using an Utstein-style Japanese National Registry. Adult patients with OHCA due to cerebrovascular disorders and transported to the hospital between 2005 and 2021 were included. The primary outcome was a favorable neurological outcome at 30-day. We analyzed factors associated with outcomes using a multivariable logistic regression model, then evaluated annual trends of outcomes for cerebrovascular-induced OHCA.
Results: Among 2,081,023 OHCA patients, 52,969 had cerebrovascular-induced cardiac arrest. Of these, 1903 (3.5 %) achieved a favorable neurological outcome. In the multivariable logistic regression model, male sex (adjusted odds ratio [aOR] 1.41, 95 % confidence interval [CI] 1.20–1.61), initial shockable rhythm (aOR 3.10, 95 % CI 2.18–4.40), witnessed cardiac arrest (aOR 1.92, 95 % CI: 1.57–2.34), and prehospital return of spontaneous circulation (ROSC) (aOR 11.1, 95 % CI: 9.09–13.5) were associated with favorable neurological outcomes. Prehospital adrenaline administration was negatively associated with favorable neurological outcomes (aOR 0.22, 95 % CI: 0.16–0.30). The proportion of patients with favorable neurological outcomes increased over time, rising from 3.14 % in 2005 to 4.12 % in 2021.
Conclusions: Although OHCA due to cerebrovascular disorders is generally associated with poor neurological outcomes, 3.5 % of the patients with cerebrovascular-induced OHCA in this study had favorable neurological outcomes, with a yearly trend improving over decades. Patient characteristics associated with a higher likelihood of a favorable neurological outcome included prehospital ROSC, initial shockable rhythm, and witnessed cardiac arrest.
en-copyright=
kn-copyright=
en-aut-name=UedaYoshiyuki
en-aut-sei=Ueda
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=2
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=3
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=4
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=5
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=6
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=7
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Epidemiology
kn-affil=
affil-num=8
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=9
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
en-keyword=Cardiac arrest
kn-keyword=Cardiac arrest
en-keyword=Cardiopulmonary resuscitation
kn-keyword=Cardiopulmonary resuscitation
en-keyword=Cerebral hemorrhage
kn-keyword=Cerebral hemorrhage
en-keyword=Stroke
kn-keyword=Stroke
en-keyword=Subarachnoid hemorrhage
kn-keyword=Subarachnoid hemorrhage
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e21664
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251014
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Biologically-Architected Wear and Damage-Resistant Nanoparticle Coating From the Radular Teeth of Cryptochiton stelleri
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nature utilizes simple building blocks to construct mechanically robust materials that demonstrate superior performance under extreme conditions. These exquisite structures result from the controlled synthesis and hierarchical assembly of nanoscale organic and mineral components that have provided critical evolutionary advantages to ensure survival. One such example is the ultrahard radular teeth found in mollusks, which are used to scrape against rock to feed on algae. Here, it is reported that the leading edges of these teeth consist of a wear-resistant coating that is comprised of densely packed ≈65 nm magnetic nanoparticles integrated within an organic matrix of chitin and protein. These mesocrystalline magnetite-based structures are assembled from smaller, highly aligned nanocrystals with inter/intracrystalline organics introduced during the crystallization process. Nanomechanical testing reveals that this multi-scale, nano-architected coating has a combination of increased hardness and a slight decrease in modulus versus geologic magnetite provides the surface of the chiton tooth with superior abrasion resistance. The mesocrystalline structures fracture at primary domain interfaces, corroborated by computational models, providing significant toughening to the tooth under extreme contact stresses. The design features revealed provide insight for the design and fabrication of next-generation advanced wear- and impact-resistant coatings for tooling, machinery, wind turbines, armor, etc.
en-copyright=
kn-copyright=
en-aut-name=WangTaifeng
en-aut-sei=Wang
en-aut-mei=Taifeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChenYu
en-aut-sei=Chen
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SarmientoEzra
en-aut-sei=Sarmiento
en-aut-mei=Ezra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HaoTaige
en-aut-sei=Hao
en-aut-mei=Taige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ArakakiAtsushi
en-aut-sei=Arakaki
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NemotoMichiko
en-aut-sei=Nemoto
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZavattieriPablo
en-aut-sei=Zavattieri
en-aut-mei=Pablo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KisailusDavid
en-aut-sei=Kisailus
en-aut-mei=David
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Materials Science and Engineering, University of California
kn-affil=
affil-num=2
en-affil=Lyles School of Civil and Construction Engineering, Purdue University
kn-affil=
affil-num=3
en-affil=Department of Materials Science and Engineering, University of California
kn-affil=
affil-num=4
en-affil=Materials and Manufacturing Technologies Program, University of California
kn-affil=
affil-num=5
en-affil=Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Lyles School of Civil and Construction Engineering, Purdue University
kn-affil=
affil-num=8
en-affil=Department of Materials Science and Engineering, University of California
kn-affil=
en-keyword=biomineralization
kn-keyword=biomineralization
en-keyword=coatings
kn-keyword=coatings
en-keyword=damage tolerance
kn-keyword=damage tolerance
en-keyword=magnetite
kn-keyword=magnetite
en-keyword=mesocrystals
kn-keyword=mesocrystals
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=8
article-no=
start-page=e0328792
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250814
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Risk stratification for the prediction of skeletal-related events in patients with castration-resistant prostate cancer with bone metastases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Skeletal-related events (SREs) are common in patients with bone metastases from castration-resistant prostate cancer (CRPC). Despite advances in prostate cancer treatment, clinically validated predictive models for SREs in CRPC patients with bone metastases remain elusive. This gap in prognostic tools hinders optimal patient management and treatment planning for this high-risk population. This study aimed to develop a prediction model for SRE by investigating potential risk factors and classifying them into different groups. This model can be used to identify patients at high risk of SREs who need close follow-up. Between 2004 and 2013, 68 male patients with bone metastases from CRPC who were treated at our institute were evaluated for survival without SREs and survival without SREs of the spinal cord. The study analyzed clinical data at enrollment to identify risk factors for initial and spinal SREs. Multivariate analysis revealed that a high count of metastatic vertebrae, along with visceral or lymph node metastases, were significant risk factors. Patients were categorized into four subgroups based on the number of vertebral metastases and presence of visceral or lymph node metastases: 1) extensive vertebral and both types of metastases, 2) extensive vertebral without additional metastases, 3) some vertebral with other metastases, 4) some vertebral without additional metastases. The first SRE and spinal SRE occurred significantly sooner in the first subgroup compared to others. Incidence rates at 12 months for the first SRE were 56%, 40%, 27%, and 5%, and for the first spinal SRE were 47%, 40%, 27%, and 0% respectively. Patients with extensive vertebral and additional metastases require vigilant monitoring to mitigate SREs.
en-copyright=
kn-copyright=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=InoueTomohiro
en-aut-sei=Inoue
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakihiraShota
en-aut-sei=Takihira
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AkezakiYoshiteru
en-aut-sei=Akezaki
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=
kn-affil=
affil-num=3
en-affil=
kn-affil=
affil-num=4
en-affil=
kn-affil=
affil-num=5
en-affil=
kn-affil=
affil-num=6
en-affil=
kn-affil=
affil-num=7
en-affil=
kn-affil=
affil-num=8
en-affil=
kn-affil=
affil-num=9
en-affil=
kn-affil=
affil-num=10
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=40608
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251118
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between gestational age and child health and neurodevelopment in twins from a nationwide longitudinal survey in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Despite previous research, evidence on the relationship between gestational age and long-term health and neurodevelopmental outcomes among twins remains limited. Using data from the Longitudinal Survey of Babies in the 21st Century, we analyzed 549 twins born in Japan in 2010. The twins were grouped by gestational age: <32 weeks (very preterm), 32–36 weeks (moderately and late preterm), and 37–38 weeks (early term). The health status was evaluated by hospitalization between 0.5 and 5.5 years, and behavioral development was assessed using questionnaires at 2.5 and 5.5 years. Binomial log-linear regression with generalized estimating equations accounted for within-pair correlations and adjusted for child and parental variables. Moderately and late preterm children showed a higher risk of all-cause hospitalization during infancy than early-term children (adjusted risk ratio, 1.7; 95% CI, 1.0–2.6). Very preterm children showed a higher point estimate of the risk ratio, but a wide CI (risk ratio, 2.3; 95% CI, 0.8–6.8). Behavioral delays were more common in preterm groups at 2.5 years but not at 5.5 years. Preterm twins have a higher risk of hospitalization during infancy and developmental delay at 2.5 years than early-term twins. These risks show an increasing trend as gestational age decreases.
en-copyright=
kn-copyright=
en-aut-name=TamaiKei
en-aut-sei=Tamai
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoNaomi
en-aut-sei=Matsumoto
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakeuchiAkihito
en-aut-sei=Takeuchi
en-aut-mei=Akihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakamuraMakoto
en-aut-sei=Nakamura
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KageyamaMisao
en-aut-sei=Kageyama
en-aut-mei=Misao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Neonatology, NHO Okayama Medical Center
kn-affil=
affil-num=4
en-affil=Division of Neonatology, NHO Okayama Medical Center
kn-affil=
affil-num=5
en-affil=Division of Neonatology, NHO Okayama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Behavioral development
kn-keyword=Behavioral development
en-keyword=Child health
kn-keyword=Child health
en-keyword=Early term
kn-keyword=Early term
en-keyword=Gestational age
kn-keyword=Gestational age
en-keyword=Hospitalization
kn-keyword=Hospitalization
en-keyword=Multiple births
kn-keyword=Multiple births
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=10
article-no=
start-page=e95695
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251029
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association of Use of GRADE, Protocol Registration, and Journal Impact Factor With Reporting and Methodological Quality of Systematic Reviews Published in Rehabilitation Journals: A Meta-Epidemiological Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study aimed to identify factors associated with the reporting and methodological quality of systematic reviews (SRs) published in rehabilitation journals. We conducted a meta-epidemiological study as a secondary analysis of a previous study. The study protocol was registered in the Open Science Framework. We analyzed 219 SRs from rehabilitation journals published since 2020. We assessed reporting quality using the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) 2020 and methodological quality using A MeaSurement Tool to Assess systematic Reviews (AMSTAR) 2. Multiple linear regression and Spearman's correlation were used to identify factors associated with quality, including Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach and the Journal Impact Factor (JIF). Multivariate analysis revealed PRISMA 2020 adherence was significantly associated with use of GRADE (β = 4.33; 95% confidence interval (CI): 3.24-5.42), protocol registration (β = 3.40; 95% CI: 2.32-4.47), and the JIF (2023) (β = 0.69; 95% CI: 0.42-0.95). AMSTAR 2 adherence was also significantly associated with use of GRADE (β = 2.52; 95% CI: 1.88-3.17), protocol registration (β = 2.07; 95% CI: 1.44-2.70), and the JIF (2023) (β = 0.29; 95% CI: 0.14-0.45). Weak positive correlations were observed between the JIF (2023) and both PRISMA 2020 and AMSTAR 2 adherence (ρ = 0.27 and ρ = 0.22, respectively; both P < 0.01). It should be noted that these findings reflect associations and do not imply causality. To enhance the quality of SRs in rehabilitation, researchers should prioritize adherence to PRISMA 2020, particularly the use of GRADE and protocol registration, which this study identified as key associated factors.
en-copyright=
kn-copyright=
en-aut-name=TsugeTakahiro
en-aut-sei=Tsuge
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoNorio
en-aut-sei=Yamamoto
en-aut-mei=Norio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomitaYosuke
en-aut-sei=Tomita
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HagiyamaAkikazu
en-aut-sei=Hagiyama
en-aut-mei=Akikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShiratsuchiDaijo
en-aut-sei=Shiratsuchi
en-aut-mei=Daijo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkamuraMasatsugu
en-aut-sei=Okamura
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanekoTakao
en-aut-sei=Kaneko
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SuzukiKosuke
en-aut-sei=Suzuki
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakashimaYuki
en-aut-sei=Nakashima
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TaitoShunsuke
en-aut-sei=Taito
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Systematic Reviewers, Scientific Research WorkS Peer Support Group (SRWS-PSG)
kn-affil=
affil-num=3
en-affil=Physical Therapy, Faculty of Health Care, Takasaki University of Health and Welfare
kn-affil=
affil-num=4
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University
kn-affil=
affil-num=6
en-affil=Systematic Reviewers, Scientific Research WorkS Peer Support Group (SRWS-PSG)
kn-affil=
affil-num=7
en-affil=Rehabilitation, Yamagata Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Rehabilitation, Yamagata Saisei Hospital
kn-affil=
affil-num=9
en-affil=Systematic Reviewers, Scientific Research WorkS Peer Support Group (SRWS-PSG)
kn-affil=
affil-num=10
en-affil=Systematic Reviewers, Scientific Research WorkS Peer Support Group (SRWS-PSG)
kn-affil=
affil-num=11
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=citation
kn-keyword=citation
en-keyword=grade
kn-keyword=grade
en-keyword=journal impact factor
kn-keyword=journal impact factor
en-keyword=methodological and reporting quality
kn-keyword=methodological and reporting quality
en-keyword=prisma
kn-keyword=prisma
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e00463-25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Analysis of the drug target of the anti-tuberculosis compound OCT313: phosphotransacetylase is a potential drug target for anti-mycobacterial agents
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tuberculosis (TB) is one of the most common infectious diseases caused by bacteria worldwide. The increasing prevalence of multidrug-resistant TB (MDR-TB) and latent TB infection (LTBI) has intensified the global TB burden. Therefore, the development of new drugs for MDR-TB and LTBI is urgently required. We have reported that the derivative of dithiocarbamate sugar derivative, 2-acetamido-2-deoxy-β-D-glucopyranosyl N,N-dimethyldithiocarbamate (OCT313), exhibits anti-mycobacterial activity against MDR-MTB. Here, we identified the target of OCT313. In experimentally generated OCT313-resistant bacteria, adenine at position 1,092 in the metabolic enzyme phosphotransacetylase (PTA) gene was replaced with cytosine. This mutation is a nonsynonymous mutation that converts methionine to leucine at position 365 in the PTA protein. OCT313 inhibited the enzymatic activity of recombinant wild-type PTA, but not of the mutant PTA (M365L). PTA is an enzyme that produces acetyl-coenzyme A (acetyl-CoA) from acetyl phosphate and CoA and is involved in metabolic pathways; therefore, it was expected to also be active against dormant Mycobacterium tuberculosis bacilli. OCT313 exhibits antibacterial activity in the Wayne model of dormancy using Mycobacterium bovis BCG, and overexpression of PTA in OCT313-resistant bacilli restored sensitivity to OCT313. Collectively, the target of OCT313 is PTA, and OCT313 is a promising antimicrobial candidate for MDR-TB and LTBI.
en-copyright=
kn-copyright=
en-aut-name=TakiiTakemasa
en-aut-sei=Takii
en-aut-mei=Takemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HasegawaTomohiro
en-aut-sei=Hasegawa
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItohSaotomo
en-aut-sei=Itoh
en-aut-mei=Saotomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaShinji
en-aut-sei=Maeda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WadaTakayuki
en-aut-sei=Wada
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HoritaYasuhiro
en-aut-sei=Horita
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiyamaAkihito
en-aut-sei=Nishiyama
en-aut-mei=Akihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsumotoSohkichi
en-aut-sei=Matsumoto
en-aut-mei=Sohkichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OharaNaoya
en-aut-sei=Ohara
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KimishimaAoi
en-aut-sei=Kimishima
en-aut-mei=Aoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsamiYukihiro
en-aut-sei=Asami
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HidaShigeaki
en-aut-sei=Hida
en-aut-mei=Shigeaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OnozakiKikuo
en-aut-sei=Onozaki
en-aut-mei=Kikuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
kn-affil=
affil-num=2
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=3
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=4
en-affil=Graduate School of Pharmaceutical Sciences, Hokkaido University of Sciences
kn-affil=
affil-num=5
en-affil=Department of Microbiology, Graduate School of Human Life and Ecology, Osaka Metropolitan University
kn-affil=
affil-num=6
en-affil=Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University
kn-affil=
affil-num=7
en-affil=Department of Bacteriology, Niigata University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Bacteriology, Niigata University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Laboratory of Applied Microbial Chemistry, Ōmura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=11
en-affil=Laboratory of Applied Microbial Chemistry, Ōmura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=12
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=13
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
en-keyword=phosphotransacetylase
kn-keyword=phosphotransacetylase
en-keyword=acetyl coenzyme A
kn-keyword=acetyl coenzyme A
en-keyword=dithiocarbamate
kn-keyword=dithiocarbamate
en-keyword=N-acetyl glucosamine
kn-keyword=N-acetyl glucosamine
en-keyword=anti-mycobacterial agents
kn-keyword=anti-mycobacterial agents
en-keyword=latent tuberculosis infection
kn-keyword=latent tuberculosis infection
END
start-ver=1.4
cd-journal=joma
no-vol=68
cd-vols=
no-issue=1
article-no=
start-page=100720
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dynamin 2 is involved in osteoblast migration by regulating the organization of F-actin
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: Dynamin, a GTPase that regulates membrane dynamics, has recently been implicated in actin cytoskeletal remodeling. This study aimed to elucidate the role of dynamin in osteoblast migration by examining the effects of dynamin inhibition on the localization and organization of F-actin and dynamin 2 in MC3T3-E1 cells.
Methods: MC3T3-E1 cells were treated with dynamin inhibitors (Dyngo 4a and Dynole 34-2), and cell migration was assessed using a wound-healing assay. Fluorescent staining was performed to analyze the intracellular localization of F-actin and dynamin 2.
Results: Dynamin inhibition significantly reduced the migration of MC3T3-E1 cells. Fluorescence analysis revealed a marked decrease in the accumulation and colocalization of F-actin and dynamin 2 at the protrusion edge. Additionally, dynamin inhibition suppressed the formation of lamellipodia and stress fibers while promoting the appearance of abnormal F-actin clusters in the cytoplasm.
Conclusions: These findings suggest that dynamin plays an essential role in osteoblast migration by regulating actin cytoskeletal remodeling, particularly through the formation of lamellipodia and stress fibers.
en-copyright=
kn-copyright=
en-aut-name=MoriyaTakumi
en-aut-sei=Moriya
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SurongA.
en-aut-sei=Surong
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TatsumiNanami
en-aut-sei=Tatsumi
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakemotoFumiko
en-aut-sei=Takemoto
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkamuraHirohiko
en-aut-sei=Okamura
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IkegameMika
en-aut-sei=Ikegame
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Orthodontics, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Dynamin
kn-keyword=Dynamin
en-keyword=Cell migration
kn-keyword=Cell migration
en-keyword=Osteoblasts
kn-keyword=Osteoblasts
en-keyword=F-actin
kn-keyword=F-actin
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=1
article-no=
start-page=219
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Does perioperative discontinuation of anti-rheumatic drugs increase postoperative complications in orthopedic surgery for rheumatoid arthritis?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective This study aimed to investigate whether discontinuation of biological or targeted synthetic antirheumatic disease-modifying drugs (bDMARDs or tsDMARDs) influences the incidence of postoperative complications in patients with rheumatoid arthritis (RA) undergoing orthopedic surgery.
Methods A retrospective multicenter cohort study including patients receiving bDMARDs or tsDMARDs who underwent orthopedic surgery was conducted. Data collected encompassed the duration of drug discontinuation and postoperative adverse events, such as delayed wound healing, surgical site infection (SSI), disease flare-ups, and mortality. The association between drug discontinuation and these outcomes was analyzed. Multivariate analyses were conducted to identify potential risk factors for these events.
Results A total of 2,060 cases were initially enrolled. After applying inclusion and exclusion criteria, data from 1,953 patients were analyzed. No significant differences were observed between the groups regarding delayed wound healing, SSI, or mortality. However, the incidence of disease flare-ups was substantially higher in the drug discontinuation group and in the interleukin (IL)-6 inhibitor group. Multivariate analysis identified that tumor necrosis factor α and IL-6 inhibitor use was associated with a higher risk of delayed wound healing relative to T-cell function modifiers.
Conclusion In orthopedic surgery for patients with RA, maintaining the standard or the half of administration interval of bDMARD appears safe in the preoperative period. However, the drug discontinuation may increase the risk of postoperative flare-ups, particularly with IL-6 inhibitors. In addition, T-cell function modifiers may be associated with a lower risk of delayed wound healing, suggesting their safety profile in this context.
en-copyright=
kn-copyright=
en-aut-name=ItoHiromu
en-aut-sei=Ito
en-aut-mei=Hiromu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaHajime
en-aut-sei=Ishikawa
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsujiShigeyoshi
en-aut-sei=Tsuji
en-aut-mei=Shigeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakayamaMasanori
en-aut-sei=Nakayama
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishidaKeiichiro
en-aut-sei=Nishida
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MochizukiTakeshi
en-aut-sei=Mochizuki
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EbinaKosuke
en-aut-sei=Ebina
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KojimaToshihisa
en-aut-sei=Kojima
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumotoTakumi
en-aut-sei=Matsumoto
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KubotaAyako
en-aut-sei=Kubota
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakajimaArata
en-aut-sei=Nakajima
en-aut-mei=Arata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KanekoAtsushi
en-aut-sei=Kaneko
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsushitaIsao
en-aut-sei=Matsushita
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HaraRyota
en-aut-sei=Hara
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SakurabaKoji
en-aut-sei=Sakuraba
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=AkasakiYukio
en-aut-sei=Akasaki
en-aut-mei=Yukio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MatsubaraTsukasa
en-aut-sei=Matsubara
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MochidaYuichi
en-aut-sei=Mochida
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KanbeKatsuaki
en-aut-sei=Kanbe
en-aut-mei=Katsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NakagawaNatsuko
en-aut-sei=Nakagawa
en-aut-mei=Natsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MurataKoichi
en-aut-sei=Murata
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=MomoharaShigeki
en-aut-sei=Momohara
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=2
en-affil=Department of Rheumatology, Niigata Rheumatic Center
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Osaka Minami Medical Center
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, International University of Health and Welfare
kn-affil=
affil-num=5
en-affil=Locomotive Pain Center, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Kamagaya General Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Osaka University Faculty of Medicine Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Nagoya University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Toho University Omori Medical Center
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery and Rehabilitation, Toho University Sakura Medical Center
kn-affil=
affil-num=12
en-affil=Department of Orthopaedic Surgery, Nagoya Medical Center
kn-affil=
affil-num=13
en-affil=Department of Rehabilitation Medicine, Kanazawa Medical University
kn-affil=
affil-num=14
en-affil=The Center for Rheumatic Diseases, Nara Medical University
kn-affil=
affil-num=15
en-affil=Department of Orthopaedic Surgery, Kyushu Medical Center
kn-affil=
affil-num=16
en-affil=Department of Orthopaedic Surgery, Kyushu University
kn-affil=
affil-num=17
en-affil=Department of Orthopaedic Surgery, Matsubara Mayflower Hospital
kn-affil=
affil-num=18
en-affil=Department of Orthopaedic Surgery, Yokohama City University Medical Center
kn-affil=
affil-num=19
en-affil=Department of Orthopaedic Surgery, Nippori Orthopaedics and Rheumatic Clinic
kn-affil=
affil-num=20
en-affil=Department of Orthopaedic Surgery, Kakogawa Medical Center
kn-affil=
affil-num=21
en-affil=Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=22
en-affil=Endowed Course for Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine
kn-affil=
en-keyword=Rheumatoid arthritis
kn-keyword=Rheumatoid arthritis
en-keyword=Orthopaedic surgery
kn-keyword=Orthopaedic surgery
en-keyword=DMARD
kn-keyword=DMARD
en-keyword=Perioperative complications
kn-keyword=Perioperative complications
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=19
article-no=
start-page=9630
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251002
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Critical Requirement of Senescence-Associated CCN3 Expression in CD44-Positive Stem Cells for Osteoarthritis Progression
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage breakdown, synovial inflammation, and subchondral bone remodeling. Previous studies have shown that cellular communication network factor 3 (CCN3) expression increases with age in cartilage, and its overexpression promotes OA-like changes by inducing senescence-associated secretory phenotypes. This study aimed to investigate the effect of Ccn3 knockout (KO) on OA development using a murine OA model. Destabilization of the medial meniscus (DMM) surgery was performed in wild-type (WT) and Ccn3-KO mice. Histological scoring and staining were used to assess cartilage degeneration and proteoglycan loss. Gene and protein expressions of catabolic enzyme (Mmp9), hypertrophic chondrocyte marker (Col10a1), senescence marker, and cyclin-dependent kinase inhibitor 1A (Cdkn1a) were evaluated. Single-cell RNA sequencing (scRNA-seq) data from WT and Sox9-deficient cartilage were reanalyzed to identify Ccn3+ progenitor populations. Immunofluorescence staining assessed CD44 and Ki67 expression in articular cartilage. The effects of Ccn3 knockdown on IL-1β-induced Mmp13 and Adamts5 expression in chondrocytes were examined in vitro. Ccn3 KO mice exhibited reduced cartilage degradation and catabolic gene expression compared with WT mice post-DMM. scRNA-seq revealed enriched Ccn3-Cd44 double-positive cells in osteoblast progenitor, synovial mesenchymal stem cell, and mesenchymal stem cell clusters. Immunofluorescence showed increased CCN3+/CD44+ cells in femoral and tibial cartilage and meniscus. Ki67+ cells were significantly increased in DMM-treated Ccn3 KO cartilage, mostly CD44+. In vitro Ccn3 knockdown attenuated IL-1β-induced Mmp13 and Adamts5 expressions in chondrocytes. Ccn3 contributes to OA pathogenesis by promoting matrix degradation, inducing hypertrophic changes, and restricting progenitor cell proliferation, highlighting Ccn3 as a potential therapeutic target for OA.
en-copyright=
kn-copyright=
en-aut-name=HabumugishaJanvier
en-aut-sei=Habumugisha
en-aut-mei=Janvier
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkudaRyuichiro
en-aut-sei=Okuda
en-aut-mei=Ryuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiroseKazuki
en-aut-sei=Hirose
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuwaharaMiho
en-aut-sei=Kuwahara
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OnoMitsuaki
en-aut-sei=Ono
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HattoriTakako
en-aut-sei=Hattori
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=articular
kn-keyword=articular
en-keyword=cartilage
kn-keyword=cartilage
en-keyword=mesenchymal stem cells
kn-keyword=mesenchymal stem cells
en-keyword=nephroblastoma overexpressed protein
kn-keyword=nephroblastoma overexpressed protein
en-keyword=osteoarthritis
kn-keyword=osteoarthritis
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251107
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Is Pain Intensity Related to Psychosocial Factors in Chronic Non‐Nociceptive Orofacial Pain Patients?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: In order to understand the psychological aspects of chronic pain, it is important to consider the relationships between pain and psychosocial factors in patients with chronic pain. While psychosocial factors are known to affect pain intensity in temporomandibular disorders, few studies have evaluated them in patients with other types of chronic orofacial pain.
Objective: The purpose of the present study was to evaluate the relationships between pain intensity and patient characteristics, diagnostic categories and psychosocial factors in chronic non-nociceptive orofacial pain patients.
Methods: In a retrospective, cross-sectional study, we collected information from the medical records of 123 patients with chronic non-nociceptive orofacial pain. Pain intensity was measured using the Brief Pain Inventory (BPI) total score. Analysis of the correlations among the variables revealed several strong correlations. Principal component analysis identified two components: the psychological distress and self-efficacy/quality of life (QOL) components. Multiple linear regression analyses of the overall study population and each ICOP pain category were also performed.
Results: In the overall sample, higher BPI scores were significantly associated with a greater psychological distress component and lower self-efficacy/QOL component. The pain category was not a significant predictor of the BPI score. In the subgroup analyses, both components were significant predictors of the BPI score in myofascial orofacial pain; whereas, only the self-efficacy/QOL component was in idiopathic orofacial pain.
Conclusion: The results indicated that pain intensity in chronic non-nociceptive orofacial pain is related to the self-efficacy/QOL psychosocial factor component. These findings suggest that assessing psychosocial factors may be clinically important for the diagnosis and treatment of chronic orofacial pain.
en-copyright=
kn-copyright=
en-aut-name=KawaseAkiko
en-aut-sei=Kawase
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiguchiHitoshi
en-aut-sei=Higuchi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HashimotoFumika
en-aut-sei=Hashimoto
en-aut-mei=Fumika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakeSaki
en-aut-sei=Miyake
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiokaYukiko
en-aut-sei=Nishioka
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InoueMidori
en-aut-sei=Inoue
en-aut-mei=Midori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UjitaHitomi
en-aut-sei=Ujita
en-aut-mei=Hitomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawauchiAki
en-aut-sei=Kawauchi
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaShigeru
en-aut-sei=Maeda
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyawakiTakuya
en-aut-sei=Miyawaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo
kn-affil=
affil-num=9
en-affil=Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo
kn-affil=
affil-num=10
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=chronic pain
kn-keyword=chronic pain
en-keyword=International Classification of Orofacial Pain
kn-keyword=International Classification of Orofacial Pain
en-keyword=orofacial pain
kn-keyword=orofacial pain
en-keyword=psychological distress component
kn-keyword=psychological distress component
en-keyword=psychosocial factors
kn-keyword=psychosocial factors
en-keyword=self-efficacy/ QOL component
kn-keyword=self-efficacy/ QOL component
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=1
article-no=
start-page=166
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251015
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PEGylation of liposome-encapsulated midazolam does not improve the bioavailability of midazolam when administered orally
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Liposomes are closed vesicles made of the same phospholipid bilayer as biological membranes and are capable of containing drugs, and so they have been investigated as useful drug carriers for drug delivery. We previously developed liposome-encapsulated midazolam (LE-midazolam) for oral administration, but midazolam is metabolized in the liver, and for clinical use the encapsulation of the liposomes needed to be improved to increase the bioavailability of midazolam. The surfaces of pharmaceutical liposomes are generally coated with polyethylene glycol (PEGylation) because it prevents their capture by phagocytes and helps them to avoid the reticuloendothelial system. Therefore, we considered that PEGylation could reduce the metabolism of orally administered encapsulated midazolam in the liver.
Methods Midazolam solution, LE-midazolam solution, and PEGylated liposome-encapsulated midazolam (PEG-LE-midazolam) solution were prepared, and the characteristics of the liposomes in these solutions were evaluated. Furthermore, these solutions were orally administered to rabbits, and the resultant plasma midazolam concentrations were measured. The effects of the PEGylation of LE-midazolam on the plasma concentration and bioavailability of orally administered midazolam were also evaluated.
Results The PEG-LE-midazolam solution contained a higher percentage of larger liposomes than the LE-midazolam solution. The area under the concentration-time curve (AUC) of the LE-midazolam solution was significantly higher than that of the midazolam solution, but there was no difference between the AUC values of the PEG-LE-midazolam and midazolam solutions.
Conclusions These findings suggest that liposome encapsulation may reduce the first-pass effect following oral administration, but PEGylation is not expected to improve the bioavailability of orally administered midazolam.
en-copyright=
kn-copyright=
en-aut-name=NishiokaYukiko
en-aut-sei=Nishioka
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LuYanyin
en-aut-sei=Lu
en-aut-mei=Yanyin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiguchiHitoshi
en-aut-sei=Higuchi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakeSaki
en-aut-sei=Miyake
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujimotoMaki
en-aut-sei=Fujimoto
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Hamaoka-InoueMidori
en-aut-sei=Hamaoka-Inoue
en-aut-mei=Midori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanimuraHiroshi
en-aut-sei=Tanimura
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UjitaHitomi
en-aut-sei=Ujita
en-aut-mei=Hitomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaShigeru
en-aut-sei=Maeda
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyawakiTakuya
en-aut-sei=Miyawaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=PEGylation
kn-keyword=PEGylation
en-keyword=Liposome
kn-keyword=Liposome
en-keyword=Midazolam
kn-keyword=Midazolam
en-keyword=Oral administration
kn-keyword=Oral administration
en-keyword=Bioavailability
kn-keyword=Bioavailability
END
start-ver=1.4
cd-journal=joma
no-vol=68
cd-vols=
no-issue=1
article-no=
start-page=100718
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of Mycobacterium-derived plasmids for application in oral Actinomyces species
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: Genetic manipulation tools are essential for elucidating the pathogenic mechanisms of microorganisms. Several species of Actinomyces, including A. israelii, are present in the oral cavity and they are the causative agents of actinomycosis. However, efficient gene-editing tools for these species have not yet been developed. In this study, the aim was to evaluate the introduction of foreign genes into Actinomyces using plasmids derived from Mycobacterium, which belong to the same class as Actinomycetes.
Methods: A truncated derivative of pYT923, pYT923S, which contains the replication origin of the M. scrofulaceum plasmid pMSC262 was constructed and introduced into A. israelii by electrotransformation.
Results: pYT923S was successfully introduced into A. israelii. The transformation efficiency of A. israelii was approximately 7–66 CFU/μg of DNA, and all transformed colonies harbored pYT923S. The plasmid recovered from A. israelii replicated in Escherichia coli.
Conclusions: pYT923S was introduced into and maintained within A. israelii. Therefore, the pYT923S vector represents a useful genetic tool for Actinomyces and it is expected to facilitate future studies on the biology and pathogenicity of Actinomyces.
en-copyright=
kn-copyright=
en-aut-name=OharaSakiko
en-aut-sei=Ohara
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShengYijuan
en-aut-sei=Sheng
en-aut-mei=Yijuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiyaYuki
en-aut-sei=Nishiya
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TosaIkue
en-aut-sei=Tosa
en-aut-mei=Ikue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakebeKatsuki
en-aut-sei=Takebe
en-aut-mei=Katsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ArimuraYuki
en-aut-sei=Arimura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MeseHiroshi
en-aut-sei=Mese
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OharaNaoko
en-aut-sei=Ohara
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OharaNaoya
en-aut-sei=Ohara
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Dentistry and Oral Surgery, Fukuyama City Hospital
kn-affil=
affil-num=8
en-affil=Department of Operative Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Actinomyces
kn-keyword=Actinomyces
en-keyword=Plasmid
kn-keyword=Plasmid
en-keyword=Shuttle vector
kn-keyword=Shuttle vector
en-keyword=Transformation
kn-keyword=Transformation
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=5
article-no=
start-page=573
end-page=582
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250214
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Diagnostic accuracy and cut-off values of serum leucine-rich alpha-2 glycoprotein for Crohn’s disease activity in the small bowel
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Small bowel (SB) lesions in Crohn’s disease (CD) are often asymptomatic despite being highly active. Fecal calprotectin (FC) is the most widely used biomarker of CD activity, but its drawbacks include a large intra-individual sample variability and the burden of collecting stool samples. Meanwhile, serum leucine-rich alpha-2 glycoprotein (LRG) has recently attracted attention as a biomarker that can address the limitations of FC. This study determined the diagnostic accuracy of LRG and its cut-off values for diagnosing CD activity in SB.
Methods This was a retrospective, multi-center study of CD patients undergoing retrograde balloon-assisted endoscopy. For ileal- and ileocolonic-type patients with a colon SES-CD score of 0, we estimated the receiver operating characteristic curve of LRG and determined the cut-off value to achieve a target sensitivity level of 80%.
Results Among 285 patients with SB lesions, LRG had an area under the curve (AUC) of 0.72 (95% CI 0.67–0.78) with a sensitivity of 80.2% and specificity of 47.2% for a cut-off value of 10.5 when diagnosing endoscopic remission (modified SES-CD ≤ 3), while it had an AUC of 0.72 (95% CI 0.65–0.78) with a sensitivity of 81.2% and specificity of 46.2% for a cut-off value of 10.1 when diagnosing complete ulcer healing (modified SES-CD ≤ 1).
Conclusion LRG was effective for diagnosing CD activity in SB, specifically with cut-off values of 10.5 and 10.1 for endoscopic remission and complete ulcer healing, respectively. A future prospective validation study will assess its clinical utility.
en-copyright=
kn-copyright=
en-aut-name=OkitaMuneyori
en-aut-sei=Okita
en-aut-mei=Muneyori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakenakaKento
en-aut-sei=Takenaka
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiraiFumihito
en-aut-sei=Hirai
en-aut-mei=Fumihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AshizukaShinya
en-aut-sei=Ashizuka
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IijimaHideki
en-aut-sei=Iijima
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BambaShigeki
en-aut-sei=Bamba
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiiToshimitsu
en-aut-sei=Fujii
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeKenji
en-aut-sei=Watanabe
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimodairaYosuke
en-aut-sei=Shimodaira
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShigaHisashi
en-aut-sei=Shiga
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=InokuchiToshihiro
en-aut-sei=Inokuchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamamuraTakeshi
en-aut-sei=Yamamura
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=EmotoRyo
en-aut-sei=Emoto
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MatsuiShigeyuki
en-aut-sei=Matsui
en-aut-mei=Shigeyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Biostatistics, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine
kn-affil=
affil-num=5
en-affil=Osaka International Medical & Science Center, Osaka Keisatsu Hospital
kn-affil=
affil-num=6
en-affil=Department of Fundamental Nursing, Shiga University of Medical Science
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Institute of Science Tokyo
kn-affil=
affil-num=8
en-affil=Department of Internal Medicine for Inflammatory Bowel Disease, Toyama University
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Research Center for Intestinal Health Science, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Biostatistics, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Biostatistics, Nagoya University Graduate School of Medicine
kn-affil=
en-keyword=LRG
kn-keyword=LRG
en-keyword=Biomarker
kn-keyword=Biomarker
en-keyword=Crohn’s disease
kn-keyword=Crohn’s disease
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=12
article-no=
start-page=1455
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251203
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Roles of ROS and NO in Plant Responses to Individual and Combined Salt Stress and Waterlogging
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=During the climate change era, plants are increasingly exposed to multiple environmental challenges occurring simultaneously or sequentially. Among these, salt stress and waterlogging are two major factors that severely constrain crop productivity worldwide and often occur together. To survive under such conditions, plants have evolved sophisticated systems to scavenge harmful levels of reactive oxygen species (ROS). Despite their cytotoxic potential, ROS also act as key signaling molecules that interact with nitric oxide (NO), Ca2+, protein kinases, ion homeostasis pathways, and plant hormones. These signaling and acclimatory mechanisms are closely associated with the functions of energy-regulating organelles—chloroplasts and mitochondria—which are major sources of ROS under both individual and combined stresses. While many of these responses are shared between salt stress, waterlogging and their combination, it is likely that specific signaling mechanisms are uniquely activated when both stresses occur together—mechanisms that cannot be inferred from responses to each stress alone. Such specificity may depend on precise coordination among organelle-derived signals and the tight regulation of their cross-communication. Within this network, ROS and NO likely serve as central hubs, fine-tuning the integration of multiple signaling pathways that enable plants to adapt to complex and fluctuating stress environments.
en-copyright=
kn-copyright=
en-aut-name=AneeTaufika Islam
en-aut-sei=Anee
en-aut-mei=Taufika Islam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SewelamNasser A.
en-aut-sei=Sewelam
en-aut-mei=Nasser A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BautistaNonnatus S.
en-aut-sei=Bautista
en-aut-mei=Nonnatus S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirayamaTakashi
en-aut-sei=Hirayama
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
kn-affil=
affil-num=2
en-affil=Botany Department, Faculty of Science, Tanta University
kn-affil=
affil-num=3
en-affil=Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
kn-affil=
en-keyword=chloroplasts
kn-keyword=chloroplasts
en-keyword=mitochondria
kn-keyword=mitochondria
en-keyword=nitric oxide (NO)
kn-keyword=nitric oxide (NO)
en-keyword=reactive oxygen species (ROS)
kn-keyword=reactive oxygen species (ROS)
en-keyword=salt stress
kn-keyword=salt stress
en-keyword=stress combination waterlogging
kn-keyword=stress combination waterlogging
END
start-ver=1.4
cd-journal=joma
no-vol=82
cd-vols=
no-issue=2
article-no=
start-page=26-1566
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=2026
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=放射線治療装置の回転座標系誤差が軸外targetの照射精度に及ぼす影響とTG142のトレランスの評価
en-subtitle=
kn-subtitle=
en-abstract=Purpose: The aim of this study was to quantitatively evaluate the impact of gantry, collimator, and couch rotational errors in a linear accelerator on the irradiation accuracy of off-isocenter targets, and to assess the validity of the rotational error tolerance (±1.0°) specified in American Association of Physicists in Medicine TG142. Methods: Using an Elekta linear accelerator (Elekta, Stockholm, Sweden) and the MultiMet-WL QA phantom (Sun Nuclear, Melbourne, FL, USA), an off-isocenter Winston–Lutz test was performed on six targets. In addition to baseline measurements, six conditions were evaluated by intentionally introducing rotational errors of +0.5° and +1.0° in the collimator, gantry, and couch. The vector distance (S value) between the field center and the target center, as well as positional deviations in each direction (gantry-target: GT, left-right: LR, anterior-posterior: AP), were analyzed. Results: Targets located farther from the isocenter exhibited more significant positional deviations. The collimator rotation had the greatest impact; at 7 cm from the isocenter, even a 0.5° error resulted in a maximum S value of 1.24 mm. Couch rotation had the next largest effect, while gantry rotation had relatively smaller effects, likely because most targets were located near the gantry’s rotational axis. The rotational errors mainly caused geometric deviations with direction-dependent positional shifts. Conclusion: The effects of the collimator and couch were substantial, with positional deviations exceeding 1 mm even for a 0.5° rotation error. The influence of the gantry was relatively small and dependent on the target configuration. For irradiation of off-axis targets, the TG142 tolerance of ±1.0° should be regarded as a minimum standard that must be strictly observed regardless of the type of linear accelerator. However, depending on the target arrangement, clinically adequate margins may not be ensured. These findings suggest the necessity of applying stricter criteria according to target configuration and emphasize the importance of regular quality assurance.
kn-abstract=【目的】放射線治療装置の回転座標系の誤差が軸外targetの照射精度に及ぼす影響を定量的に評価し,TG142における回転座標系誤差(±1.0°)のトレランスの妥当性を検討する.【方法】Elekta社製放射線治療装置(Elekta, Stockholm, Sweden)とMultiMet-WL QAファントム(Sun Nuclear, Melbourne, FL, USA)を用いて,6個のtargetに対してoff isocenterのWinston–Lutz test(WL test)を実施した.Baselineの測定に加え,意図的にcollimator,gantry,couchに+0.5°, +1.0°回転誤差を加えた6条件で測定を行い,照射野中心とtarget中心のベクトル距離(S値)および各方向(gantry-target: GT, left-right: LR, anterior-posterior: AP)の位置ずれを解析した.【結果】Isocenterからの距離が大きいtargetほど位置ずれが顕著であった.特にcollimator回転誤差の影響が最も大きく,isocenterから7 cm離れたtargetでは0.5°の回転誤差でもS値が最大1.24 mmに達した.次に影響が大きかったのはcouch回転であり,gantry回転はtargetの配置が回転軸に近いものが多く相対的に影響が少なかった.回転座標系の誤差は幾何学的誤差の影響が強く,位置ずれに方向依存性があった.【結語】Collimatorやcouchの影響が大きく,0.5°の誤差でも1 mm以上の位置ずれが生じることがあった.Gantryの影響はtargetの配置依存があり,相対的に小さかった.軸外targetの照射において,TG142の±1.0°のトレランスは放射線治療装置の種類にかかわらず最低限遵守するべき基準であり,targetの配置次第では臨床的に十分なマージンを保証できない可能性が示された.Target配置に応じたより厳格な基準と定期的quality assurance(QA)の重要性が示唆された.
en-copyright=
kn-copyright=
en-aut-name=NakayamaTakahiro
en-aut-sei=Nakayama
en-aut-mei=Takahiro
kn-aut-name=中山貴裕
kn-aut-sei=中山
kn-aut-mei=貴裕
aut-affil-num=1
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=田辺悦章
kn-aut-sei=田辺
kn-aut-mei=悦章
aut-affil-num=2
ORCID=
en-aut-name=FujiiYasushi
en-aut-sei=Fujii
en-aut-mei=Yasushi
kn-aut-name=藤井康志
kn-aut-sei=藤井
kn-aut-mei=康志
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Radiology, Public Mutual Aid Association Chugoku Central Hospital
kn-affil=公立学校共済組合中国中央病院放射線科
affil-num=2
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学学術研究院保健学域放射線技術科学専攻
affil-num=3
en-affil=Department of Radiology, Public Mutual Aid Association Chugoku Central Hospital
kn-affil=公立学校共済組合中国中央病院放射線科
en-keyword=off-isocenter Winston–Lutz test
kn-keyword=off-isocenter Winston–Lutz test
en-keyword=rotation error
kn-keyword=rotation error
en-keyword=off-axis targets
kn-keyword=off-axis targets
en-keyword=Elekta
kn-keyword=Elekta
en-keyword=TG142
kn-keyword=TG142
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=10
article-no=
start-page=e95808
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Risk Stratification for the Prediction of Skeletal-Related Events in Patients With Bone Metastases From Non-small Cell Lung Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Skeletal-related events (SREs) frequently occur in patients with bone metastases from non-small cell lung cancer (NSCLC). This study aimed to identify risk factors for SREs in patients with NSCLC. Based on these factors, we also aimed to stratify patients into subgroups to facilitate the assessment of SRE risk. This retrospective analysis used medical records of 139 patients with NSCLC bone metastases who received treatment at our institution between 2011 and 2014. The incidence of SREs was assessed, and SRE-free survival was analyzed using the Kaplan-Meier method. Clinical information collected at registration was assessed to identify factors associated with the onset of SREs within six months. Univariate analysis was performed using Fisher’s exact test, and multivariate analysis was performed using Cox regression. Of the 139 patients, 36 (26%) developed SREs after registration. The SRE-free survival rates were 80% and 64% at 6 and 12 months, respectively. The univariate and multivariate analyses revealed that the absence of epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma kinase (ALK) rearrangement (hazard ratio (HR): 4.51, 95% confidence interval (CI): 1.32-15.7, p = 0.017) and a lactate dehydrogenase (LDH) level ≥400 U/L (HR: 8.08, 95% CI: 1.78-36.6, p = 0.0067) were risk factors for SRE presentation within six months. Patients were classified into the following three subgroups: with EGFR mutation or ALK rearrangement and LDH level <400 U/L; without EGFR mutation or ALK rearrangement and LDH level <400 U/L; with/without EGFR mutation or ALK rearrangement and LDH level ≥400 U/L. The corresponding six-month SRE-free survival rates were 92%, 69%, and 34%, respectively, showing significant differences (p < 0.001). Close monitoring is recommended for patients with LDH levels ≥400 U/L in daily clinical practice, particularly with the help of the proficiency of orthopedic and radiological experts, to prevent complications such as pathological fractures and paraplegia.
en-copyright=
kn-copyright=
en-aut-name=SakamotoYoshihiro
en-aut-sei=Sakamoto
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatayamaYoshimi
en-aut-sei=Katayama
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Shikoku Cancer Center
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anaplastic lymphoma kinase
kn-keyword=anaplastic lymphoma kinase
en-keyword=bone metastases
kn-keyword=bone metastases
en-keyword=epidermal growth factor receptor-tyrosine kinase
kn-keyword=epidermal growth factor receptor-tyrosine kinase
en-keyword=lactate dehydrogenase
kn-keyword=lactate dehydrogenase
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=skeletal related events
kn-keyword=skeletal related events
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=1
article-no=
start-page=e77632
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250118
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mid-term Clinical and Radiographic Outcomes of the Actis Total Hip System: A Retrospective Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction
Implant technology for total hip arthroplasty (THA) was developed to improve hip function and patient satisfaction. Actis (DePuy Synthes, Warsaw, IN, USA) is a short fit-and-fill titanium stem, with a medial-collared and triple-taper (MCTT) geometry, that is fully coated with hydroxyapatite (HA). We evaluated the radiographic and clinical outcomes of the Actis Total Hip System during a mean follow-up of five years.
Patients and methods
We retrospectively analyzed data from 80 patients (14 male and 66 female, mean age: 65 ± 8.4 years) who underwent primary THA using Actis stems (anterolateral approach, 60 hips; posterior approach, 20 hips). Radiographs were obtained postoperatively and at the time of the final examination. Radiographic assessments included the alignment of the femoral stem, spot welds, stress shielding, cortical hypertrophy, subsidence (>2 mm), radiolucent line, pedestal formation, Dorr type, canal fill ratio (CFR), and stem fixation. Clinical evaluation included the Japanese Orthopaedic Association Hip-Disease Evaluation Questionnaire (JHEQ) and Harris Hip Score (HHS).
Results
The mean follow-up period was 64.0 ± 6.0 months. No significant differences were observed in the alignment of the femoral components between approaches. Of the 80 hips, 53 (66.3%) showed radiographic signs of stem osseointegration, predominantly in the mid-distal region of the stem at the final follow-up. Multiple logistic regression analysis revealed that younger age and a higher CFR (20 mm proximal to the lesser trochanter) were associated with the presence of spot welds. Mild stress shielding occurred in 25 hips (31.3%), and no patient experienced severe stress shielding. All stems were fixed by bone on growth. The JHEQ and HHS significantly improved at the final assessment.
Conclusion
At the five-year follow-up, patients who received the Actis Total Hip System during THA had good radiographic and clinical outcomes.
en-copyright=
kn-copyright=
en-aut-name=MasadaYasutaka
en-aut-sei=Masada
en-aut-mei=Yasutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TetsunagaTomonori
en-aut-sei=Tetsunaga
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaKazuki
en-aut-sei=Yamada
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KouraTakashi
en-aut-sei=Koura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueTomohiro
en-aut-sei=Inoue
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkudaRyuichiro
en-aut-sei=Okuda
en-aut-mei=Ryuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TetsunagaTomoko
en-aut-sei=Tetsunaga
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YokoyamaYusuke
en-aut-sei=Yokoyama
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Medical Materials for Musculoskeletal Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Musculoskeletal Health Promotion, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medical Materials for Musculoskeletal Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Medical Materials for Musculoskeletal Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Medical Materials for Musculoskeletal Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=actis
kn-keyword=actis
en-keyword=hydroxyapatite
kn-keyword=hydroxyapatite
en-keyword=mid-term outcome
kn-keyword=mid-term outcome
en-keyword=spot welds
kn-keyword=spot welds
en-keyword=stem
kn-keyword=stem
en-keyword=total hip arthroplasty
kn-keyword=total hip arthroplasty
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=8
article-no=
start-page=112454
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Risk factors for extensor pollicis longus tendon rupture following non-displaced distal radius fractures
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Distal radius fractures (DRFs) are common, with an increasing incidence, particularly among the elderly. Rupture of the extensor pollicis longus (EPL) tendon, essential for thumb extension, is a notable complication, especially in non-displaced DRFs. Several mechanisms, such as local adhesion, ischemic atrophy, and tendon laceration, are associated with EPL tendon rupture. This multicenter retrospective study aims to identify risk factors for EPL tendon rupture in non-displaced DRFs.
Materials and methods: The study reviewed 20 cases of EPL tendon rupture and 52 control cases from 2005 to 2022, excluding those who underwent surgery or had incomplete computed tomography (CT) data. We investigated age, sex, location of fracture line, and the morphology of Lister’s tubercle as variables. Logistic regression and decision tree analyses were employed to determine the risk factors for EPL tendon rupture based on these variables.
Results: Fracture lines distal to Lister’s tubercle and specific shapes of Lister’s tubercle, characterized by shallow peak height and a higher radial peak than the ulnar peak, increased the risk of EPL tendon rupture. Decision tree analysis confirmed them as major risk factors. There was a significant difference in the predicted probability rate of tendon rupture between the case with these factors and those without them (P < 0.001). Conversely, the location and size of Lister’s tubercle did not affect the incidence of EPL tendon rupture.
Conclusion: The location of fracture line and the shape of Lister’s tubercle are key factors influencing EPL tendon rupture in non-displaced DRFs. Understanding these factors can help orthopedic surgeons predict and prevent EPL tendon ruptures, improving patient outcomes following these fractures.
en-copyright=
kn-copyright=
en-aut-name=SaitoTaichi
en-aut-sei=Saito
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FurutaniTomoki
en-aut-sei=Furutani
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamichiRyo
en-aut-sei=Nakamichi
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KondoHidenori
en-aut-sei=Kondo
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimamuraYasunori
en-aut-sei=Shimamura
en-aut-mei=Yasunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ImataniJunya
en-aut-sei=Imatani
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Kagawa Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Kousei Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Saiseikai General Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Distal radius fracture
kn-keyword=Distal radius fracture
en-keyword=Extensor pollicis longus tendon
kn-keyword=Extensor pollicis longus tendon
en-keyword=Risk factor
kn-keyword=Risk factor
END
start-ver=1.4
cd-journal=joma
no-vol=145
cd-vols=
no-issue=1
article-no=
start-page=373
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250715
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Changes in the anatomical positions of the femoral nerve and artery in the lateral and supine positions: a multicenter retrospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction Femoral nerve palsy and femoral artery injury are serious complications of total hip arthroplasty. However, few studies have compared the anatomical positions of these structures in different patient positions. This study aimed to compare the anatomical positions of the femoral nerve and artery in the lateral and supine positions.
Materials and methods This multicenter retrospective study included 111 patients who underwent lateral and supine computed tomography (CT) from 2016 to 2023. CT images were reconstructed in the anterior pelvic plane. The horizontal distance from the anterior margin of the acetabulum to the femoral nerve (Distance N) and femoral artery (Distance A) was measured. The difference in Distance N between the two positions (ΔLateral–supine Distance N) was calculated by subtracting the supine value from the lateral value.
Results The average Distance N was 26.5 ± 5.1 mm in the lateral position and 21.1 ± 4.4 mm in the supine position, with the nerve located significantly closer to the acetabulum in the supine position (P < 0.001). Similarly, the average Distance A was 26.8 ± 5.4 mm in the lateral position and 20.4 ± 4.9 mm in the supine position (P < 0.001). Multiple regression analysis showed that Distance N in the lateral position was significantly shorter in female patients and those with low body weight. In addition, low body weight correlated with a smaller ΔLateral–supine Distance N.
Conclusions The femoral nerve and artery are located closer to the anterior margin of the acetabulum in the supine position than in the lateral position. Low body weight was an independent predictor of shorter Distance N in both positions and a smaller ΔLateral–supine Distance N. These findings underscore the importance of considering patient positioning during total hip arthroplasty, particularly in patients with low body weight, to reduce neurovascular risks.
en-copyright=
kn-copyright=
en-aut-name=OkudaRyuichiro
en-aut-sei=Okuda
en-aut-mei=Ryuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TetsunagaTomonori
en-aut-sei=Tetsunaga
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaKazuki
en-aut-sei=Yamada
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TetsunagaTomoko
en-aut-sei=Tetsunaga
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KouraTakashi
en-aut-sei=Koura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InoueTomohiro
en-aut-sei=Inoue
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MasadaYasutaka
en-aut-sei=Masada
en-aut-mei=Yasutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoTetsuya
en-aut-sei=Yamamoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumotoShin
en-aut-sei=Matsumoto
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IkumaHisanori
en-aut-sei=Ikuma
en-aut-mei=Hisanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KomatsubaraTadashi
en-aut-sei=Komatsubara
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Musculoskeletal Health Promotion, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medical Materials for Musculoskeletal Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Sports Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=12
en-affil=Department of Orthopaedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Total hip arthroplasty
kn-keyword=Total hip arthroplasty
en-keyword=Femoral artery
kn-keyword=Femoral artery
en-keyword=Femoral nerve
kn-keyword=Femoral nerve
en-keyword=Computed tomography
kn-keyword=Computed tomography
en-keyword=Lateral position
kn-keyword=Lateral position
en-keyword=Supine position
kn-keyword=Supine position
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=深層学習による99mTc-肝受容体SPECT/CT画像における減弱補正効果の精度評価
kn-title=Accuracy of deep learning-based attenuation correction in 99mTc-GSA SPECT/CT hepatic imaging
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MIYAIMasahiro
en-aut-sei=MIYAI
en-aut-mei=Masahiro
kn-aut-name=宮井將宏
kn-aut-sei=宮井
kn-aut-mei=將宏
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=西日本の大学病院に勤務する看護師の疼痛マネジメント実践に影響を与える要因:階層的重回帰分析を用いた横断的研究
kn-title=Factors influencing pain management practices among nurses in university hospitals in Western Japan: A cross-sectional study using hierarchical multiple regression analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=XIMengyao
en-aut-sei=XI
en-aut-mei=Mengyao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=初回がん薬物療法を受ける進行期非小細胞肺がん患者のQOLの推移
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HIRAMATSUTakako
en-aut-sei=HIRAMATSU
en-aut-mei=Takako
kn-aut-name=平松貴子
kn-aut-sei=平松
kn-aut-mei=貴子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=脳卒中右片麻痺者の非利き手による書字練習初期の習熟に対する主観的評価の様相
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=DAITOMaki
en-aut-sei=DAITO
en-aut-mei=Maki
kn-aut-name=大東真紀
kn-aut-sei=大東
kn-aut-mei=真紀
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=多感覚時空間情報の統合を支える神経メカニズムの解明
kn-title=Study on neural mechanisms underlying multisensory spatiotemporal integration across visual, auditory, and tactile modalities
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LIZIMO
en-aut-sei=LI
en-aut-mei=ZIMO
kn-aut-name=李子默
kn-aut-sei=李
kn-aut-mei=子默
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=テラヘルツ波ケミカル顕微鏡による低分子生体関連物質の検出と高感度プロトコルの開発
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LIUCHANGJIANG
en-aut-sei=LIU
en-aut-mei=CHANGJIANG
kn-aut-name=劉長江
kn-aut-sei=劉
kn-aut-mei=長江
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=大規模ネットワークにおける多重故障の高速迂回に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HERINIAINA Joseph Hermann Doris
en-aut-sei=HERINIAINA Joseph Hermann Doris
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Lactiplantibacillus plantarum 3121M0sの抗酵母効果に関する研究
kn-title=Research on antiyeast effect of Lactiplantibacillus plantarum 3121M0s
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Md. Bakhtiar Lijon
en-aut-sei=Md. Bakhtiar Lijon
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=急性鶏コクシジウム症感染早期におけるγδ T細胞の機能的役割に関する研究
kn-title=Studies on the functional roles of γδ T cells in the early phase of acute avian coccidiosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LE VIET QUAN
en-aut-sei=LE VIET QUAN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=BCB染色によって分別された様々な直径の胞状卵胞由来ブタ卵母細胞の形態・発生に関する特徴と酸化ストレスに対する抵抗性
kn-title=Morphological/developmental characteristics and oxidative stress resilience of porcine oocytes derived from antral follicles with various diameters and classified by brilliant cresyl blue staining
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=VAN NGOC PHONG
en-aut-sei=VAN NGOC PHONG
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=山口県育成小輪系ユリ切花の安定的周年供給体系の確立に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FUKUMITSUYuko
en-aut-sei=FUKUMITSU
en-aut-mei=Yuko
kn-aut-name=福光優子
kn-aut-sei=福光
kn-aut-mei=優子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=dsRNAヴィクトリウイルスを宿主とするキャプシドレス(+)RNAヤドカリウイルスは、粒子、cDNA、dsRNAで感染性を有する
kn-title=A capsidless (+)RNA yadokarivirus hosted by a dsRNA victorivirus is infectious as particles, cDNA, and dsRNA
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MUHAMMAD FADLI
en-aut-sei=MUHAMMAD FADLI
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=イネおよびオオムギのイオン透過性アクアポリンにおける構造と透過機能の連関の分子生理学的研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ONOShuntaro
en-aut-sei=ONO
en-aut-mei=Shuntaro
kn-aut-name=小野峻太郎
kn-aut-sei=小野
kn-aut-mei=峻太郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=植物のPIP2型アクアポリンの二酸化炭素輸送機構に関する研究
kn-title=Study on Carbon Dioxide Transport Mechanisms of Plant Plasma Membrane-Intrinsic Protein 2 Aquaporins
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SHAILA SHERMIN TANIA
en-aut-sei=SHAILA SHERMIN TANIA
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=葉緑体膜リモデリングの構造的洞察:維管束植物におけるVIPP1オリゴマーの役割
kn-title=Structural insights into chloroplast membrane remodeling: The role of VIPP1 oligomers in vascular plants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SARAH WANJIRU GACHIE
en-aut-sei=SARAH WANJIRU GACHIE
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=気孔開閉運動を制御するシロイヌナズナの孔辺細胞Ca2+チャネルCNGC2の機能解析
kn-title=Functional characterization of a guard cell Ca2+ channel CNGC2 involved in regulation of stomatal movement in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ROJINA AKTER
en-aut-sei=ROJINA AKTER
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=シロイヌナズナの気孔閉口へのミロシナーゼの関与
kn-title=Involvement of myrosinases in stomatal closure in Arabidopsis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KADRI OUMAIMA
en-aut-sei=KADRI OUMAIMA
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=塩ストレス下のイネにおける活性カルボニル種の役割
kn-title=Roles of reactive carbonyl species in salt-stressed rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FARUK HOSSAIN KHAN
en-aut-sei=FARUK HOSSAIN KHAN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベンジルイソチオシアネート誘導アポトーシスの代謝調節による増強
kn-title=Potentiation of the benzyl isothiocyanate-induced apoptosis by regulation of its metabolism
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SUNRUITONG
en-aut-sei=SUN
en-aut-mei=RUITONG
kn-aut-name=孙睿彤
kn-aut-sei=孙
kn-aut-mei=睿彤
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Pochonia suchlasporia TAMA 87株の固体培養により生産される水酸化されたα-ピロン部位をもつ新規アステルトキシン類のcis-trans異性体ペア
kn-title=Pair of cis-trans isomers as novel asteltoxin analogs with a hydroxylated α-pyrone moiety produced by solid-state fermentation of Pochonia suchlasporia TAMA 87
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NGUYEN THI KHANH NGOC
en-aut-sei=NGUYEN THI KHANH NGOC
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=中央ベトナムにおける循環型社会に向けた都市固形廃棄物管理システムの開発戦略
kn-title=Strategic Orientation for Developing Municipal Solid Waste Management System towards Sound Material-Cycle Society - A Case Study of Central Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LE DINH CUONG
en-aut-sei=LE DINH CUONG
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベトナムの野菜生産農家におけるVietGAPの採用と流通チャネルの選択に関する研究
kn-title=Adoption of VietGAP and Distribution Channel Selection: A Study of Vegetable Production Farmers in Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LE VIET LINH
en-aut-sei=LE VIET LINH
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=フィリピン・カタンドゥアネス州のリスク環境におけるアバカ農家のハビトゥスの批判的評価
kn-title=A CRITICAL EVALUATION OF ABACA FARMERS’ HABITUS IN THE RISK ENVIRONMENT OF CATANDUANES, PHILIPPINES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NICCA AIRA AREVALO MARQUEZ
en-aut-sei=NICCA AIRA AREVALO MARQUEZ
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベトナムにおける保護区政策と地域コミュニティへの影響
kn-title=Protected Areas and Their Effects on Local Communities: Insights from Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MAI THI KHANH VAN
en-aut-sei=MAI THI KHANH VAN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=データ駆動型確率論的フレームワークに基づく地盤工学設計への機械学習手法の応用
kn-title=Application of machine learning methods to geotechnical designs based on data-driven probabilistic framework
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HUANGMenglu
en-aut-sei=HUANG
en-aut-mei=Menglu
kn-aut-name=黄梦露
kn-aut-sei=黄
kn-aut-mei=梦露
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベトナム・スレポック川流域における土地利用の変化と水管理戦略がコーヒー栽培の水資源利用可能性に与える影響
kn-title=Influences of land-use changes and water management strategies for water availability of coffee cultivation in the Srepok River Watershed, Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TRUONG THAO SAM
en-aut-sei=TRUONG THAO SAM
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベトナム メコンデルタ地域における内陸部・沿岸部・遠隔島嶼地域を対象とした干ばつ傾向の比較評価-SPIに基づく分析-
kn-title=A Comparative SPI-Based Assessment of Drought Tendencies across Inland, Coastal, and Remote Island Zones of the Mekong Delta Region, Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TSUHAYu
en-aut-sei=TSUHA
en-aut-mei=Yu
kn-aut-name=津波優
kn-aut-sei=津波
kn-aut-mei=優
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=リモートセンシングとハイブリッドモデルを用いた森林炭素蓄積量の空間分布分析―ベトナム中部沿岸地域を対象として―
kn-title=Spatiotemporal Evolution of Forest Carbon Storage under the Impact of Land Use/Land Cover Dynamics Using Multi-Source Remotely Sensed Data and Hybrid Models in the Central Coastal Region of Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HO VIET HOANG
en-aut-sei=HO VIET HOANG
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベトナム中部エビ養殖池排水路における水質保全のための底質微生物燃料電池の改良
kn-title=Improving sediment microbial fuel cells for water quality control in shrimp pond drainages in Central Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NGUYEN TU UYEN
en-aut-sei=NGUYEN TU UYEN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=3次元モデルの利用による港湾施工管理の効率化のための測深技術の開発
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAKAHARAHiromi
en-aut-sei=NAKAHARA
en-aut-mei=Hiromi
kn-aut-name=中原浩実
kn-aut-sei=中原
kn-aut-mei=浩実
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=道路法面の3次元点群データに基づく変状抽出手法の確立と実用化に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HOSHINOYuji
en-aut-sei=HOSHINO
en-aut-mei=Yuji
kn-aut-name=星野裕二
kn-aut-sei=星野
kn-aut-mei=裕二
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=リン酸カルシウム共沈殿を活用した消化管内カドミウム除去
kn-title=Co-precipitating calcium phosphate as oral detoxification of cadmium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=BIKHARUDINAHMAD
en-aut-sei=BIKHARUDIN
en-aut-mei=AHMAD
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=歯小囊と歯根膜の細胞が高分化型口腔扁平上皮癌の骨浸潤におよぼす影響
kn-title=Impacts of Dental Follicle Cells and Periodontal Ligament Cells on the Bone Invasion of Well-Differentiated Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=CHANGANQI
en-aut-sei=CHANG
en-aut-mei=ANQI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=腫瘍周囲組織が口腔扁平上皮癌の生物学的性格に与える影響
kn-title=The Origin of Stroma Influences the Biological Characteristics of Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OMORIHaruka
en-aut-sei=OMORI
en-aut-mei=Haruka
kn-aut-name=大森悠加
kn-aut-sei=大森
kn-aut-mei=悠加
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=原発性鼻腔副鼻腔びまん性大細胞型B細胞リンパ腫におけるMYD88およびCD79B遺伝子変異の解析:MCD様サブタイプの同定
kn-title=High Prevalence of MYD88 and CD79B Mutations in Primary Sinonasal Diffuse Large B-Cell Lymphoma: Identification of an MCD-like Subtype
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=PENGFANGLI
en-aut-sei=PENG
en-aut-mei=FANGLI
kn-aut-name=彭芳丽
kn-aut-sei=彭
kn-aut-mei=芳丽
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Japanese title:食道扁平上皮癌の予後因子としての特異的形態を有する腫瘍微小血管
kn-title=Tumor microvessels with specific morphology as a prognostic factor in esophageal squamous cell carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HNIN THIDA TUN
en-aut-sei=HNIN THIDA TUN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=EGFR遺伝子変異陽性肺癌におけるコロニー刺激因子-1受容体阻害剤によるマクロファージ抑制を介したオシメルチニブ誘導性抗腫瘍免疫の増強
kn-title=Colony-stimulating factor-1 receptor inhibitor augments osimertinib-induced anti-tumor immunity via suppression of macrophages in lung cancer harboring EGFR mutation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OKAWASachi
en-aut-sei=OKAWA
en-aut-mei=Sachi
kn-aut-name=大川祥
kn-aut-sei=大川
kn-aut-mei=祥
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=経口タクロリムスによる導入療法は、血清アルブミン値が低いにもかかわらず、チオプリン未投与の難治性潰瘍性大腸炎患者に長期的な利益をもたらす
kn-title=Induction Therapy With Oral Tacrolimus Provides Long-Term Benefit in Thiopurine-Naïve Refractory Ulcerative Colitis Patients Despite Low Serum Albumin Levels
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=IGAWAShoko
en-aut-sei=IGAWA
en-aut-mei=Shoko
kn-aut-name=井川翔子
kn-aut-sei=井川
kn-aut-mei=翔子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=日本の高齢者における聴力検査と補聴器装用に影響を与える要因の探索: 難聴と認知症の関連を認識することの意義
kn-title=Exploring factors influencing the hearing test and hearing aid adoption among Japanese older adults: Implications of recognizing the hearing loss–dementia relationship
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FUKUMASUIchiro
en-aut-sei=FUKUMASU
en-aut-mei=Ichiro
kn-aut-name=福増一郎
kn-aut-sei=福増
kn-aut-mei=一郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=19
article-no=
start-page=3144
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250927
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Utility of Same-Modality, Cross-Domain Transfer Learning for Malignant Bone Tumor Detection on Radiographs: A Multi-Faceted Performance Comparison with a Scratch-Trained Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Developing high-performance artificial intelligence (AI) models for rare diseases like malignant bone tumors is limited by scarce annotated data. This study evaluates same-modality cross-domain transfer learning by comparing an AI model pretrained on chest radiographs with a model trained from scratch for detecting malignant bone tumors on knee radiographs. Methods: Two YOLOv5-based detectors differed only in initialization (transfer vs. scratch). Both were trained/validated on institutional data and tested on an independent external set of 743 radiographs (268 malignant, 475 normal). The primary outcome was AUC; prespecified operating points were high-sensitivity (≥0.90), high-specificity (≥0.90), and Youden-optimal. Secondary analyses included PR/F1, calibration (Brier, slope), and decision curve analysis (DCA). Results: AUC was similar (YOLO-TL 0.954 [95% CI 0.937–0.970] vs. YOLO-SC 0.961 [0.948–0.973]; DeLong p = 0.53). At the high-sensitivity point (both sensitivity = 0.903), YOLO-TL achieved higher specificity (0.903 vs. 0.867; McNemar p = 0.037) and PPV (0.840 vs. 0.793; bootstrap p = 0.030), reducing ~17 false positives among 475 negatives. At the high-specificity point (~0.902–0.903 for both), YOLO-TL showed higher sensitivity (0.798 vs. 0.764; p = 0.0077). At the Youden-optimal point, sensitivity favored YOLO-TL (0.914 vs. 0.892; p = 0.041) with a non-significant specificity difference. Conclusions: Transfer learning may not improve overall AUC but can enhance practical performance at clinically crucial thresholds. By maintaining high detection rates while reducing false positives, the transfer learning model offers superior clinical utility. Same-modality cross-domain transfer learning is an efficient strategy for developing robust AI systems for rare diseases, supporting tools more readily acceptable in real-world screening workflows.
en-copyright=
kn-copyright=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsukaYujiro
en-aut-sei=Otsuka
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakeuchiKoichi
en-aut-sei=Takeuchi
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamuraYusuke
en-aut-sei=Nakamura
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkutaKunihiro
en-aut-sei=Ikuta
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OsakiShuhei
en-aut-sei=Osaki
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TamiyaHironari
en-aut-sei=Tamiya
en-aut-mei=Hironari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MiwaShinji
en-aut-sei=Miwa
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OhshikaShusa
en-aut-sei=Ohshika
en-aut-mei=Shusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NishimuraShunji
en-aut-sei=Nishimura
en-aut-mei=Shunji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KaharaNaoaki
en-aut-sei=Kahara
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KondoHiroya
en-aut-sei=Kondo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Medical Informatics and Clinical Support Technology Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiology, Juntendo University School of Medicine
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Plusman LCC
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University
kn-affil=
affil-num=7
en-affil=Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital
kn-affil=
affil-num=8
en-affil=Department of Musculoskeletal Oncology Service, Osaka International Cancer Institute,
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Kindai University Hospital
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Mizushima Central Hospital
kn-affil=
affil-num=13
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=malignant bone tumors
kn-keyword=malignant bone tumors
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=transfer learning
kn-keyword=transfer learning
en-keyword=YOLO
kn-keyword=YOLO
en-keyword=radiographs
kn-keyword=radiographs
en-keyword=cross-domain learning
kn-keyword=cross-domain learning
en-keyword=diagnostic imaging
kn-keyword=diagnostic imaging
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=6
article-no=
start-page=973
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250524
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Accuracy Verification of a Computed Tomography-Based Navigation System for Total Hip Arthroplasty in Severe Hip Dysplasia: A Simulation Study Using 3D-Printed Bone Models of Crowe Types II, III, and IV
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Objective: The use of computed tomography (CT)-based navigation systems has been shown to improve surgical accuracy in total hip arthroplasty. However, there is limited literature available about the application of CT-based navigation systems in severe hip dysplasia. This study aimed to evaluate the accuracy of a CT-based navigation system in patients with severe hip dysplasia using three-dimensional (3D)-printed bone models. Methods: 3D-printed bone models were generated from CT data of patients with severe hip dysplasia (Crowe type II, 10 hips; type III, 10 hips; and type IV, 10 hips). The accuracy of automatic segmentation, success rate, point-matching accuracy across different registration methods, and deviation values at reference points after registration were assessed. Results: For the combined cohort of Crowe II, III, and IV cases (n = 30), the Dice Similarity Coefficient and Jaccard Index were 0.99 ± 0.01 and 0.98 ± 0.02, respectively. These values indicate a high level of segmentation accuracy. The “Matching with true and false acetabulum + iliac crest” method achieved a 100% success rate across all groups, with mean deviations of 0.08 ± 0.28 mm in the Crowe II group, 0.12 ± 0.33 mm in the Crowe III group, and 0.14 ± 0.50 mm in the Crowe IV group (p = 0.572). In the Crowe IV group, the anterior superior iliac spine deviation was significantly lower using the “Matching with true and false acetabulum + iliac crest” method compared to the “Matching with true and false acetabulum” method (0.28 ± 0.49 mm vs. 3.29 ± 2.56 mm, p < 0.05). Conclusions: This study demonstrated the high accuracy of automatic AI-based segmentation, with a Dice Similarity Coefficient of 0.99 ± 0.01 and a Jaccard Index of 0.98 ± 0.02 in the combined cohort of Crowe type II, III, and IV cases (n = 30). The matching success rate was 100%, with additional points on the iliac crest, which improved matching accuracy and reduced deviations, depending on the case.
en-copyright=
kn-copyright=
en-aut-name=OkudaRyuichiro
en-aut-sei=Okuda
en-aut-mei=Ryuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TetsunagaTomonori
en-aut-sei=Tetsunaga
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaKazuki
en-aut-sei=Yamada
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TetsunagaTomoko
en-aut-sei=Tetsunaga
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KouraTakashi
en-aut-sei=Koura
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InoueTomohiro
en-aut-sei=Inoue
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MasadaYasutaka
en-aut-sei=Masada
en-aut-mei=Yasutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkazakiYuki
en-aut-sei=Okazaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Musculoskeletal Health Promotion, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Sports Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=total hip arthroplasty
kn-keyword=total hip arthroplasty
en-keyword=CT-based navigation
kn-keyword=CT-based navigation
en-keyword=bone model
kn-keyword=bone model
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=Ortoma Treatment Solution
kn-keyword=Ortoma Treatment Solution
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=4
article-no=
start-page=e83089
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250427
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Subcutaneous and Periorbital Emphysema Following a Dental Procedure
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Subcutaneous emphysema following dental procedures is rare. We present the case of a young, healthy woman who was transferred from a dental clinic to our emergency department due to sudden swelling of the left orbit immediately after a dental procedure involving the use of the dental air and water syringe. The diagnosis of subcutaneous facial emphysema was made based on the patient's history, physical examination, and computed tomography imaging. The patient received prophylactic amoxicillin, and the lesion resolved completely in one week. Prompt clinical suspicion and a thorough evaluation of the signs and symptoms, including a detailed clinical history, are crucial for diagnosing subcutaneous emphysema following a dental procedure.
en-copyright=
kn-copyright=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakatsujiKazuki
en-aut-sei=Nakatsuji
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences Okayama University
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences Okayama University
kn-affil=
en-keyword=air pressure
kn-keyword=air pressure
en-keyword=antibiotic prophylaxis
kn-keyword=antibiotic prophylaxis
en-keyword=dental procedures
kn-keyword=dental procedures
en-keyword=operative
kn-keyword=operative
en-keyword=subcutaneous emphysema
kn-keyword=subcutaneous emphysema
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=12
article-no=
start-page=2351
end-page=2363
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Multicenter, Prospective, Observational, and Single-Arm Interventional Study of Mirogabalin in Diabetic Peripheral Neuropathic Pain: Rationale and Design of Dia-NeP
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: The exact prevalence of and recent changes in diabetic polyneuropathy (DPN) and diabetic peripheral neuropathic pain (DPNP) in Japan are unclear. The oral gabapentinoid, mirogabalin besylate (mirogabalin), is effective with a good safety profile for DPNP with moderate-to-severe pain (numerical rating scale [NRS] scores ≥ 4). However, clinical evidence for mild pain (NRS scores ≤ 3) is unclear. The Dia-NeP study aims to examine: (1) the prevalences of DPN and DPNP and background factors in patients with type 2 diabetes mellitus (T2DM); and (2) the efficacy and safety of mirogabalin in patients with DPNP, including those with mild pain.
Methods: The Dia-NeP study is a multicenter, prospective study consisting of two parts, a baseline survey and an interventional study, to be conducted from March 2025 to August 2026 in patients with T2DM in Japan. The baseline survey is the observational study investigating the epidemiology of DPN and DPNP, and the interventional study is an exploratory, single-arm, open-label study of 12-week mirogabalin treatment. Of patients with T2DM enrolled in the baseline survey, those diagnosed with DPNP who have an NRS score for pain ≥ 1 will be included in the interventional study. The target sample size is 1000 to 3000 patients for the baseline survey and 100 for the interventional study.
Planned Outcomes: The primary endpoint is the change from baseline in the NRS score at week 12 in the interventional study. The safety endpoint is adverse events. This study will not only show the latest prevalence of DPN and DPNP in Japan, but is also the first study to investigate the efficacy and safety of mirogabalin in patients with DPNP having mild pain, as well as moderate-to-severe pain, and is expected to provide useful evidence for future DPN and DPNP treatment.
Trial Registration: Japan Registry of Clinical Trials (jRCTs031240623, registered 20/January/2025, https://jrct.mhlw.go.jp/en-latest-detail/jRCTs031240623).
en-copyright=
kn-copyright=
en-aut-name=KamiyaHideki
en-aut-sei=Kamiya
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiRyo
en-aut-sei=Suzuki
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DeguchiTakahisa
en-aut-sei=Deguchi
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HimenoTatsuhito
en-aut-sei=Himeno
en-aut-mei=Tatsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoShuhei
en-aut-sei=Yamamoto
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyamaTaiki
en-aut-sei=Toyama
en-aut-mei=Taiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraJiro
en-aut-sei=Nakamura
en-aut-mei=Jiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Diabetes, Metabolism and Endocrinology, Tokyo Medical University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Diabetes, Metabolism and Endocrinology, Kagoshima University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=5
en-affil=Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine
kn-affil=
affil-num=6
en-affil=Data Intelligence Department, Daiichi Sankyo Co., Ltd.
kn-affil=
affil-num=7
en-affil=Primary Medical Science Department, Daiichi Sankyo Co., Ltd.
kn-affil=
affil-num=8
en-affil=Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine
kn-affil=
en-keyword=Diabetic peripheral neuropathic pain
kn-keyword=Diabetic peripheral neuropathic pain
en-keyword=Diabetic polyneuropathy
kn-keyword=Diabetic polyneuropathy
en-keyword=Epidemiological survey
kn-keyword=Epidemiological survey
en-keyword=Exploratory study
kn-keyword=Exploratory study
en-keyword=Mirogabalin
kn-keyword=Mirogabalin
en-keyword=Quality of life
kn-keyword=Quality of life
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=11
article-no=
start-page=e13960
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Missing the Target: A Scoping Review of the Use of Percent Weight Loss for Obesity Management
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: To co-create comprehensive targets for obesity management, we need to understand the genesis and current use of percent weight loss targets in research. The goals of our scoping review are to (1) synthesize the literature on percent weight loss targets for adults with obesity and (2) discuss the percent weight loss targets in context with their health benefits.
Methods: We searched Cochrane, MEDLINE, and EMBASE for English language, pharmaceutical, and/or behavioral intervention studies in adults with obesity where the explicit aim of the study was weight reduction defined as a percent of body weight. Reviewers screened citations and extracted data including study characteristics.
Results: From 16,164 abstracts, we included 30 citations which were mostly randomized controlled trials (RCTs) (n = 17) or quasi-experimental studies (n = 12) published between 1992 and 2024. Most of the studies had target weight loss goals between 3% and 10% of body weight (n = 28), while n = 2 had body weight loss goals of 15% or 30%. The proportion of participants who met the percent weight loss target ranged from 5.9% (nutrition only study) to 85% (pharmaceutical study). The studies reported different reasons for targeting a percentage of weight loss such as disease-specific outcomes, reduced risk of disease, or patient-reported outcomes.
Conclusion: Percent weight loss targets were based on similar research and were often not feasible nor sustainable for most participants. The design of these interventions and evaluation of obesity management would benefit from more patient-focused parameters which could help to co-design comprehensive targets for research and practice.
en-copyright=
kn-copyright=
en-aut-name=SherifaliDiana
en-aut-sei=Sherifali
en-aut-mei=Diana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=RaceyMegan
en-aut-sei=Racey
en-aut-mei=Megan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Fitzpatrick‐LewisDonna
en-aut-sei=Fitzpatrick‐Lewis
en-aut-mei=Donna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GreenwayMichelle
en-aut-sei=Greenway
en-aut-mei=Michelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SockalingamSanjeev
en-aut-sei=Sockalingam
en-aut-mei=Sanjeev
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TeohSoo Huat
en-aut-sei=Teoh
en-aut-mei=Soo Huat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=PattonIan
en-aut-sei=Patton
en-aut-mei=Ian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MacklinDavid
en-aut-sei=Macklin
en-aut-mei=David
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=van RossumElizabeth F. C.
en-aut-sei=van Rossum
en-aut-mei=Elizabeth F. C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=BusettoLuca
en-aut-sei=Busetto
en-aut-mei=Luca
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HornDeborah Bade
en-aut-sei=Horn
en-aut-mei=Deborah Bade
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=Patricia NeceJ. D.
en-aut-sei=Patricia Nece
en-aut-mei=J. D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=LeguedeMorgan Emile Gabriel Salmon
en-aut-sei=Leguede
en-aut-mei=Morgan Emile Gabriel Salmon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=PearceNicole
en-aut-sei=Pearce
en-aut-mei=Nicole
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=Le RouxCarel
en-aut-sei=Le Roux
en-aut-mei=Carel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ArdJamy
en-aut-sei=Ard
en-aut-mei=Jamy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=AlbergaAngela S.
en-aut-sei=Alberga
en-aut-mei=Angela S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KaplanLee
en-aut-sei=Kaplan
en-aut-mei=Lee
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SharmaArya M.
en-aut-sei=Sharma
en-aut-mei=Arya M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=WhartonSean
en-aut-sei=Wharton
en-aut-mei=Sean
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=McMaster Evidence Review and Synthesis Team; School of Nursing, McMaster University
kn-affil=
affil-num=2
en-affil=McMaster Evidence Review and Synthesis Team; School of Nursing, McMaster University
kn-affil=
affil-num=3
en-affil=McMaster Evidence Review and Synthesis Team; School of Nursing, McMaster University
kn-affil=
affil-num=4
en-affil=McMaster Evidence Review and Synthesis Team; School of Nursing, McMaster University
kn-affil=
affil-num=5
en-affil=Obesity Canada
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Clinical Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia
kn-affil=
affil-num=8
en-affil=Obesity Canada
kn-affil=
affil-num=9
en-affil=Temerty Faculty of Medicine, University of Toronto
kn-affil=
affil-num=10
en-affil=Department of Internal Medicine, Division of Endocrinology, and Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam
kn-affil=
affil-num=11
en-affil=Department of Medicine, University of Padova
kn-affil=
affil-num=12
en-affil=Center of Obesity Medicine and Metabolic Performance, Department of Surgery, University of Texas McGovern Medical School
kn-affil=
affil-num=13
en-affil=Obesity Action Coalition
kn-affil=
affil-num=14
en-affil=ABHispalis Spain, Alianza Hispana de Personas con Obesidad Latin America
kn-affil=
affil-num=15
en-affil=Obesity Canada
kn-affil=
affil-num=16
en-affil=School of Medicine, University College Dublin
kn-affil=
affil-num=17
en-affil=School of Medicine, Wake Forest University
kn-affil=
affil-num=18
en-affil=Department of Health, Kinesiology, and Applied Physiology, Concordia University
kn-affil=
affil-num=19
en-affil=Obesity, Metabolism and Nutrition Institute Massachusetts General Hospital and Harvard Medical School
kn-affil=
affil-num=20
en-affil=Department of Medicine, University of Alberta
kn-affil=
affil-num=21
en-affil=Temerty Faculty of Medicine, University of Toronto
kn-affil=
en-keyword=obesity management
kn-keyword=obesity management
en-keyword=percent body weight
kn-keyword=percent body weight
en-keyword=scoping review
kn-keyword=scoping review
en-keyword=target
kn-keyword=target
en-keyword=weight loss
kn-keyword=weight loss
END
start-ver=1.4
cd-journal=joma
no-vol=48
cd-vols=
no-issue=11
article-no=
start-page=2924
end-page=2937
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficacy and safety of esaxerenone with and without sodium–glucose cotransporter-2 inhibitor use in hypertensive patients with type 2 diabetes mellitus: a pooled analysis of five clinical studies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This pooled subanalysis of five multicenter, prospective, open-label, single-arm studies on esaxerenone aimed to evaluate the efficacy, organ-protective effects, and safety of esaxerenone in hypertensive patients with type 2 diabetes mellitus (T2DM), with and without concomitant sodium–glucose cotransporter-2 inhibitor (SGLT2i) therapy. In total, 283 and 279 patients were included in the safety (with SGLT2i, 148; without, 135) and full analysis sets (with SGLT2i; 145; without, 134), respectively. Significant changes in morning home systolic/diastolic blood pressure (SBP/DBP) from baseline to Week 12 were shown in the overall population (mean change: −11.9/−5.2 mmHg, both P < 0.001) and both SGLT2i and non-SGLT2i subgroups (−11.3/−4.8 and −12.5/−5.7 mmHg, respectively, all P < 0.001). Similar findings were observed in bedtime home and office SBP/DBP. The proportions of patients who achieved target home SBP/DBP < 135/85 mmHg were 71.2% (overall population) and 70.5% and 71.9% in the SGLT2i and non-SGLT2i subgroups, respectively. The urine albumin-to-creatinine ratio significantly improved from baseline to Week 12 in the overall population and SGLT2i subgroups (percentage change in geometric mean from baseline: −42.8%, −43.0%, and −42.6%, respectively, all P < 0.001). N-terminal pro-B-type natriuretic peptide levels improved in all groups. The incidence of serum potassium ≥5.5 mEq/L was 2.0% vs 5.2% in the SGLT2i vs non-SGLT2i subgroups. Esaxerenone demonstrated significant BP-lowering effects, and improved renal and cardiovascular parameters, regardless of SGLT2i use. Safety was consistent across groups, with the numerically lower incidence of serum potassium ≥5.5 mEq/L in the SGLT2i subgroup suggesting a potential mitigating effect of SGLT2is on the risk of hyperkalemia.
en-copyright=
kn-copyright=
en-aut-name=MotokiHirohiko
en-aut-sei=Motoki
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuwaharaKoichiro
en-aut-sei=Kuwahara
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UchidaHaruhito A.
en-aut-sei=Uchida
en-aut-mei=Haruhito A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KarioKazuomi
en-aut-sei=Kario
en-aut-mei=Kazuomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsuyaTomohiro
en-aut-sei=Katsuya
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShimosawaTatsuo
en-aut-sei=Shimosawa
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsujitaKenichi
en-aut-sei=Tsujita
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SuzukiShoko
en-aut-sei=Suzuki
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SuedomiTomohiro
en-aut-sei=Suedomi
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TaguchiTakashi
en-aut-sei=Taguchi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Shinshu University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Shinshu University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine
kn-affil=
affil-num=6
en-affil=Katsuya Clinic
kn-affil=
affil-num=7
en-affil=Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
kn-affil=
affil-num=9
en-affil=Data Intelligence Department, Daiichi Sankyo Co. Ltd.
kn-affil=
affil-num=10
en-affil=Primary Medical Science Department, Daiichi Sankyo Co. Ltd.
kn-affil=
affil-num=11
en-affil=Primary Medical Science Department, Daiichi Sankyo Co. Ltd.
kn-affil=
en-keyword=Esaxerenone
kn-keyword=Esaxerenone
en-keyword=Hypertension
kn-keyword=Hypertension
en-keyword=Morning home blood pressure
kn-keyword=Morning home blood pressure
en-keyword=Sodium–glucose cotransporter-2 inhibitor
kn-keyword=Sodium–glucose cotransporter-2 inhibitor
en-keyword=Type 2 diabetes mellitus
kn-keyword=Type 2 diabetes mellitus
END
start-ver=1.4
cd-journal=joma
no-vol=190
cd-vols=
no-issue=
article-no=
start-page=47
end-page=61
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Exploration of Factors Associated with Teamwork Breakdown That Threaten Industrial Safety: Focusing on High Reliability Team Functions
kn-title=安全を脅かすチームワークの崩壊とその関連要因の探索 ― 高信頼性チームの機能に着目して ―
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= 本研究は,産業現場の安全を脅かす潜在的なリスクとしてチームワークの崩壊兆候に着目し,その特徴と高信頼性チーム(HRT)の機能,および組織環境要因との関連を実証的に検討した。安全活動への参加経験を持つ就業者357 名から得られたWeb 調査の回答を分析した。チームワークの崩壊兆候は「協調の失敗」と「修正の失敗」の2 因子に整理され,いずれもHRT 機能の発揮と負の関連を示した。また組織環境要因の安全風土やSafety Organizing は崩壊兆候の抑制に,学習のボトルネック認知はその増加に寄与していた。さらに,HRT 機能は個別よりも複合的に発揮されることで,チームの協働作業の円滑化・安定化に資する可能性が示唆された。
en-copyright=
kn-copyright=
en-aut-name=MISAWARyo
en-aut-sei=MISAWA
en-aut-mei=Ryo
kn-aut-name=三沢良
kn-aut-sei=三沢
kn-aut-mei=良
aut-affil-num=1
ORCID=
en-aut-name=HASEGAWANaoko
en-aut-sei=HASEGAWA
en-aut-mei=Naoko
kn-aut-name=長谷川尚子
kn-aut-sei=長谷川
kn-aut-mei=尚子
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Education, Okayama University
kn-affil=岡山大学学術研究院教育学域
affil-num=2
en-affil=Faculty of Human Sciences, Department of Psychology, Bunkyo University
kn-affil=文教大学人間科学部心理学科
en-keyword=チームワーク
kn-keyword=チームワーク
en-keyword=産業安全
kn-keyword=産業安全
en-keyword=高信頼性チーム
kn-keyword=高信頼性チーム
en-keyword=安全風土
kn-keyword=安全風土
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=10
article-no=
start-page=1342
end-page=1353
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=First-time diagnosis and referral practices for individuals with CKD by primary care physicians: a study of electronic medical records across multiple clinics in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Chronic kidney disease (CKD) is a major public health burden in Japan. Japanese primary care physicians (PCPs) are expected to play an important role in the early diagnosis and management of CKD, but comprehensive data on their role are limited.
Methods This observational study examined data from individuals who underwent tests for CKD diagnosis between January 2017 and September 2023 in the Japan Medical Data Survey (JAMDAS) database of primary care clinics in Japan. The primary outcome was the proportion of individuals with CKD without the registration of a CKD-related disease code. Time to CKD diagnosis and referral were also assessed.
Results Among 1,188,543 eligible individuals who underwent kidney-related laboratory tests, 183,473 (15.4%) met CKD diagnosis criteria according to the Japanese Clinical Practice Guideline for CKD. The mean (± SD) age was 77.4 ± 11.0 years, 57.1% were female, and 71.8% had CKD stage 3a. Over 98% of individuals who met CKD diagnosis criteria did not receive an insurance diagnosis code within 90 days after meeting the criteria. Among referrable individuals, 89.7% did not receive a referral within 90 days of meeting the referral criteria.
Conclusion These results suggest CKD may be underdiagnosed and under-referred in Japanese clinics. Measures should be taken to increase detection and diagnosis according to the Japanese Clinical Practice Guideline for CKD.
en-copyright=
kn-copyright=
en-aut-name=UchidaHaruhito A.
en-aut-sei=Uchida
en-aut-mei=Haruhito A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaoYuji
en-aut-sei=Nagao
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IharaKatsuhito
en-aut-sei=Ihara
en-aut-mei=Katsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Medicine Division, Nippon Boehringer Ingelheim Co., Ltd.
kn-affil=
affil-num=4
en-affil=Medicine Division, Nippon Boehringer Ingelheim Co., Ltd.
kn-affil=
en-keyword=Chronic kidney disease
kn-keyword=Chronic kidney disease
en-keyword=Electronic medical records
kn-keyword=Electronic medical records
en-keyword=Japan
kn-keyword=Japan
en-keyword=Primary care physician
kn-keyword=Primary care physician
en-keyword=Disease code
kn-keyword=Disease code
END
start-ver=1.4
cd-journal=joma
no-vol=48
cd-vols=
no-issue=9
article-no=
start-page=2413
end-page=2426
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250630
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficacy and safety of esaxerenone in hypertensive patients with chronic kidney disease, with or without type 2 diabetes mellitus: a pooled analysis of five clinical studies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Effective management of blood pressure (BP) and albuminuria are crucial for suppressing chronic kidney disease (CKD) progression and cardiovascular risks in hypertension. This pooled analysis evaluated the antihypertensive effects, organ-protective effects, and safety of esaxerenone in hypertensive patients with CKD by integrating five clinical studies of esaxerenone. Patients were divided based on type 2 diabetes mellitus (T2DM) status (with or without T2DM) and creatinine-based estimated glomerular filtration rate (eGFRcreat) (30 to <60 and ≥60 mL/min/1.73 m2). Significant changes in morning home BP from baseline at Week 12 were observed in the overall population (mean change −12.8/ − 5.4 mmHg), T2DM subgroups ( − 12.2/ − 4.5 and −14.5/ − 7.8 mmHg), and eGFRcreat subgroups ( − 12.5/ − 4.7 and −14.0/ − 6.9 mmHg) (all P < 0.001). Bedtime home and office BP showed similar tendencies. Urine albumin-to-creatinine ratio significantly improved from baseline at Week 12 in the overall population (mean change: −55.2%), T2DM subgroups ( − 56.5% and −52.0%), and eGFRcreat subgroups ( − 54.6% and −55.4%) (all P < 0.001). N-terminal pro-B-type natriuretic peptide levels significantly decreased in the overall population (percent change: −14.1%) and subgroup without T2DM ( − 25.3%). The incidence of serum potassium ≥5.5 mEq/L was lower in the subgroup with T2DM vs without T2DM (3.1% and 11.3%), potentially related to the use of sodium–glucose cotransporter 2 inhibitors. These findings highlight the sustained BP-lowering effect of esaxerenone throughout the day in hypertensive patients with CKD, irrespective of T2DM status, and its significant reduction in albuminuria. The data support the safety and efficacy of esaxerenone in this patient population, underscoring its potential as a valuable therapeutic option.
en-copyright=
kn-copyright=
en-aut-name=UchidaHaruhito A.
en-aut-sei=Uchida
en-aut-mei=Haruhito A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotokiHirohiko
en-aut-sei=Motoki
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuwaharaKoichiro
en-aut-sei=Kuwahara
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KarioKazuomi
en-aut-sei=Kario
en-aut-mei=Kazuomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsuyaTomohiro
en-aut-sei=Katsuya
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShimosawaTatsuo
en-aut-sei=Shimosawa
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsujitaKenichi
en-aut-sei=Tsujita
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SuzukiShoko
en-aut-sei=Suzuki
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SuedomiTomohiro
en-aut-sei=Suedomi
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TaguchiTakashi
en-aut-sei=Taguchi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Shinshu University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Shinshu University School of Medicine
kn-affil=
affil-num=5
en-affil=Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine
kn-affil=
affil-num=6
en-affil=Katsuya Clinic
kn-affil=
affil-num=7
en-affil=Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
kn-affil=
affil-num=9
en-affil=Data Intelligence Department, Daiichi Sankyo Co., Ltd.
kn-affil=
affil-num=10
en-affil=Primary Medical Science Department, Daiichi Sankyo Co., Ltd.
kn-affil=
affil-num=11
en-affil=Primary Medical Science Department, Daiichi Sankyo Co., Ltd.
kn-affil=
en-keyword=albuminuria
kn-keyword=albuminuria
en-keyword=chronic kidney disease
kn-keyword=chronic kidney disease
en-keyword=esaxerenone
kn-keyword=esaxerenone
en-keyword=morning hypertension
kn-keyword=morning hypertension
en-keyword=type 2 diabetes mellitus
kn-keyword=type 2 diabetes mellitus
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=6
article-no=
start-page=1100
end-page=1111
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250327
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relation between obesity and health disorders as revealed by the J-ORBIT clinical information collection system directly linked to electronic medical records (J-ORBIT 1)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims/Introduction: Obesity triggers various health disorders, but information on these disorders in real-world settings remains limited. To address this knowledge gap, we developed a database directly linked to electronic medical records (EMRs). We here present the baseline data for this database, designated Japan Obesity Research Based on electronIc healTh Records (J-ORBIT).
Materials and Methods: Individuals with obesity disease diagnosed according to the criteria of the Japan Society for the Study of Obesity were registered in J-ORBIT from seven medical centers in Japan. We analyzed the relationship between body mass index (BMI), clinical characteristics, and the prevalence of obesity-related health disorders in this cohort.
Results: Data were obtained from 1,169 individuals, with a mean (±SD) age of 56.9 ± 15.3 years and a BMI of 31.4 ± 6.1 kg/m2. The prevalence of health disorders varied substantially across BMI categories, with a higher BMI being associated with an increased prevalence of hyperuricemia or gout, obstructive sleep apnea syndrome or obesity hypoventilation syndrome, musculoskeletal disorders, and obesity-related kidney disease, as well as with a higher frequency of both a family history of obesity and of a history of childhood obesity. Among individuals with a BMI of ≥25 kg/m2, the prevalence of hypertension and dyslipidemia did not increase with BMI, whereas that of glucose intolerance decreased with increasing BMI.
Conclusions: The J-ORBIT system, which collects clinical data in real time directly from EMRs, has the potential to provide insight into obesity and its associated health conditions, thereby contributing to improved care of affected individuals.
en-copyright=
kn-copyright=
en-aut-name=NishikageSeiji
en-aut-sei=Nishikage
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HirotaYushi
en-aut-sei=Hirota
en-aut-mei=Yushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakagawaYasushi
en-aut-sei=Nakagawa
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshiiMasamichi
en-aut-sei=Ishii
en-aut-mei=Masamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhsugiMitsuru
en-aut-sei=Ohsugi
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaedaEiichi
en-aut-sei=Maeda
en-aut-mei=Eiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshimuraKai
en-aut-sei=Yoshimura
en-aut-mei=Kai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoAkane
en-aut-sei=Yamamoto
en-aut-mei=Akane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakayoshiTomofumi
en-aut-sei=Takayoshi
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatoTakehiro
en-aut-sei=Kato
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YabeDaisuke
en-aut-sei=Yabe
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsuhisaMunehide
en-aut-sei=Matsuhisa
en-aut-mei=Munehide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=EguchiJun
en-aut-sei=Eguchi
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujitaYukihiro
en-aut-sei=Fujita
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KumeShinji
en-aut-sei=Kume
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MaegawaHiroshi
en-aut-sei=Maegawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MiyakeKana
en-aut-sei=Miyake
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ShojimaNobuhiro
en-aut-sei=Shojima
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=YamauchiToshimasa
en-aut-sei=Yamauchi
en-aut-mei=Toshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YokoteKoutaro
en-aut-sei=Yokote
en-aut-mei=Koutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=UekiKohjiro
en-aut-sei=Ueki
en-aut-mei=Kohjiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=MiyoKengo
en-aut-sei=Miyo
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=OgawaWataru
en-aut-sei=Ogawa
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
affil-num=1
en-affil=Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Center for Medical Informatics Intelligence, National Center for Global Health and Medicine
kn-affil=
affil-num=5
en-affil=Diabetes and Metabolism Information Center, Research Institute, National Center for Global Health and Medicine
kn-affil=
affil-num=6
en-affil=Division of Medical Informatics, Department of Internal Medicine, Kobe University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Diabetes, Endocrinology, and Metabolism and Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Diabetes, Endocrinology, and Metabolism and Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=13
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Medicine, Shiga University of Medical Science
kn-affil=
affil-num=16
en-affil=Department of Medicine, Shiga University of Medical Science
kn-affil=
affil-num=17
en-affil=Department of Medicine, Shiga University of Medical Science
kn-affil=
affil-num=18
en-affil=Department of Diabetes and Metabolic Disease, The University of Tokyo Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Diabetes and Metabolic Disease, The University of Tokyo Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Diabetes and Metabolic Disease, The University of Tokyo Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Chiba University
kn-affil=
affil-num=22
en-affil=Diabetes Research Center, Research Institute, National Center for Global Health and Medicine
kn-affil=
affil-num=23
en-affil=Center for Medical Informatics Intelligence, National Center for Global Health and Medicine
kn-affil=
affil-num=24
en-affil=Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine
kn-affil=
en-keyword=Body mass index
kn-keyword=Body mass index
en-keyword=Electronic medical records
kn-keyword=Electronic medical records
en-keyword=Obesity
kn-keyword=Obesity
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=1568338
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250807
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A pilot transcriptomic study of a novel multitargeted BRT regimen for anti–MDA5 antibody-positive dermatomyositis: improving survival over conventional therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis (MDA5-DM) is associated with severe outcomes, primarily due to rapidly progressive interstitial lung disease (RP-ILD), which is often refractory to standard therapies such as calcineurin inhibitors (e.g., tacrolimus) combined with cyclophosphamide (TC-Tx). This study evaluated the efficacy of a novel multitargeted regimen combining baricitinib, rituximab, and tacrolimus (BRT-Tx) in improving survival outcomes for MDA5-DM patients with poor prognostic factors.
Methods: Fourteen MDA5-DM patients with multiple adverse prognostic factors were studied. Seven received the BRT-Tx regimen, and the remaining seven, previously treated with TC-Tx, served as historical controls. Twelve-month survival was assessed. Transcriptome analysis was performed for six patients (BRT=3, TC=3), beginning with cluster analysis to evaluate whether changes in peripheral blood gene expression varied according to treatment or prognosis. Gene ontology analysis characterized expression profiles in survivors and distinguished treatment effects. Alterations in the type I, II, and III interferon signatures were also assessed.
Results: In the TC-Tx group, four of seven patients succumbed to RP-ILD, whereas all seven BRT-Tx patients survived the 12-month observation period. Only one BRT-Tx patient required combined rescue therapies, including plasma exchange, and one case of unexplained limbic encephalitis (LE) occurred. Cytomegalovirus reactivation was observed in both groups (BRT: 5/7; TC: 6/7). Transcriptomic analysis revealed no treatment-specific clustering of differentially expressed genes (DEGs) before and after therapy. However, survivors and nonsurvivors formed distinct clusters, with survivors showing significant posttreatment suppression of B-cell-related gene expression. Moreover, interferon signature scores were significantly lower after treatment in survivors than in nonsurvivors. BRT-Tx effectively suppressed B-cell-mediated immune responses and maintained a low interferon signature, while TC-Tx resulted in nonspecific gene suppression, and in nonsurvivors, an elevated interferon signature was observed.
Conclusion: BRT-Tx has the potential to improve survival in MDA5-DM patients by effectively targeting hyperactive immune pathways. The combination of rituximab and tacrolimus is expected to disrupt B-cell–T-cell interactions and reduce autoantibody production, whereas baricitinib may suppress both IFN and GM-CSF signaling, regulating excessive autoimmunity mediated by cells such as macrophages. Unlike TC-Tx, BRT-Tx avoids cyclophosphamide-associated risks such as infertility and secondary malignancies. Future randomized controlled trials are warranted to validate its efficacy and safety.
en-copyright=
kn-copyright=
en-aut-name=TokunagaMoe
en-aut-sei=Tokunaga
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakaiYu
en-aut-sei=Nakai
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYoshiharu
en-aut-sei=Sato
en-aut-mei=Yoshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiratsukaMitori
en-aut-sei=Hiratsuka
en-aut-mei=Mitori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakatsueTakeshi
en-aut-sei=Nakatsue
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaekiTakako
en-aut-sei=Saeki
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UmayaharaTakatsune
en-aut-sei=Umayahara
en-aut-mei=Takatsune
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KoyamaYoshinobu
en-aut-sei=Koyama
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Division of Rheumatology, Center for Autoimmune Diseases, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=3
en-affil=DNA Chip Research Inc., Medical Laboratory
kn-affil=
affil-num=4
en-affil=DNA Chip Research Inc., Medical Laboratory
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Division of Rheumatology and Nephrology, Department of Internal Medicine, Nagaoka Red Cross Hospital
kn-affil=
affil-num=7
en-affil=Division of Rheumatology and Nephrology, Department of Internal Medicine, Nagaoka Red Cross Hospital
kn-affil=
affil-num=8
en-affil=Division of Dermatology, Center for Autoimmune Diseases, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Division of Rheumatology, Center for Autoimmune Diseases, Japanese Red Cross Okayama Hospital
kn-affil=
en-keyword=anti-MDA5 antibody-positive dermatomyositis (MDA5-DM)
kn-keyword=anti-MDA5 antibody-positive dermatomyositis (MDA5-DM)
en-keyword=JAK inhibitor
kn-keyword=JAK inhibitor
en-keyword=baricitinib
kn-keyword=baricitinib
en-keyword=rituximab
kn-keyword=rituximab
en-keyword=multitargeted treatment
kn-keyword=multitargeted treatment
en-keyword=IFN signature
kn-keyword=IFN signature
en-keyword=transcriptome analysis
kn-keyword=transcriptome analysis
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=27481
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241111
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between proteinuria and mineral metabolism disorders in chronic kidney disease: the Japan chronic kidney disease database extension (J-CKD-DB-Ex)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Chronic kidney disease-mineral and bone disorder (CKD-MBD) are recognized as a systemic disease affecting the prognosis of patients with CKD. Proper management of CKD-MBD is important to improve the prognosis of patients with CKD. Although proteinuria is recognized as a poor prognostic factor in these patients, few reports have examined its association with CKD-MBD. We examined the association between proteinuria and CKD-MBD using data from the Japan Chronic Kidney Disease Database Extension (J-CKD-DB-Ex). Among the patients registered in the J-CKD-DB-Ex, 30,977 with CKD stages G2–G5 who had serum creatinine, albumin, calcium, and phosphate concentrations measured at least once and urinalysis performed were included. The patients were divided into four groups (negative, 1+, 2+, and 3+) according to the degree of proteinuria. The association between proteinuria and CKD-MBD was examined by a logistic regression analysis. In a model adjusted for age, sex, diabetes, and the estimated glomerular filtration rate (eGFR), the odds ratio of the 3 + group compared with the negative group significantly increased to 2.67 (95% confidence interval, 2.29–3.13) for hyperphosphatemia, 2.68 (1.94–3.71) for hypocalcemia, and 1.56 (1.24–1.98) for hypomagnesemia. Proteinuria is associated with hyperphosphatemia, hypocalcemia, and hypomagnesemia in patients with CKD independently of eGFR.
en-copyright=
kn-copyright=
en-aut-name=ShimamotoSho
en-aut-sei=Shimamoto
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakaharaTakako
en-aut-sei=Nakahara
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaShunsuke
en-aut-sei=Yamada
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagasuHajime
en-aut-sei=Nagasu
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KishiSeiji
en-aut-sei=Kishi
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakashimaNaoki
en-aut-sei=Nakashima
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsuruyaKazuhiko
en-aut-sei=Tsuruya
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkadaHirokazu
en-aut-sei=Okada
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamuraKouichi
en-aut-sei=Tamura
en-aut-mei=Kouichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NaritaIchiei
en-aut-sei=Narita
en-aut-mei=Ichiei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaruyamaShoichi
en-aut-sei=Maruyama
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YanoYuichiro
en-aut-sei=Yano
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YokooTakashi
en-aut-sei=Yokoo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=WadaTakashi
en-aut-sei=Wada
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KandaEiichiro
en-aut-sei=Kanda
en-aut-mei=Eiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KataokaHiromi
en-aut-sei=Kataoka
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NangakuMasaomi
en-aut-sei=Nangaku
en-aut-mei=Masaomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KashiharaNaoki
en-aut-sei=Kashihara
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NakanoToshiaki
en-aut-sei=Nakano
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=2
en-affil=Department of Medical Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=3
en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=4
en-affil=Department of Nephrology and Hypertension, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Department of Nephrology and Hypertension, Kawasaki Medical School
kn-affil=
affil-num=6
en-affil=Department of Medical Informatics, Graduate School of Medical Science, Kyushu University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Nara Medical University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Faculty of Medicine, Saitama Medical University
kn-affil=
affil-num=9
en-affil=Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University
kn-affil=
affil-num=10
en-affil=Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of General Medicine, Juntendo University Faculty of Medicine
kn-affil=
affil-num=13
en-affil=Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Nephrology and Rheumatology, Kanazawa University
kn-affil=
affil-num=15
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Health Data Science, Kawasaki Medical School
kn-affil=
affil-num=17
en-affil=Department of Medical Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=18
en-affil=Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Nephrology and Hypertension, Kawasaki Medical School
kn-affil=
affil-num=20
en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
kn-affil=
en-keyword=CKD-MBD
kn-keyword=CKD-MBD
en-keyword=Proteinuria
kn-keyword=Proteinuria
en-keyword=Hyperphosphatemia
kn-keyword=Hyperphosphatemia
en-keyword=Hypocalcemia
kn-keyword=Hypocalcemia
en-keyword=Hypomagnesemia
kn-keyword=Hypomagnesemia
en-keyword=J-CKD-DB-Ex
kn-keyword=J-CKD-DB-Ex
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251128
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=p53-armed oncolytic adenovirus induces apoptosis in pancreatic cancer-associated stellate cells via macropinocytosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pancreatic ductal adenocarcinoma (PDAC)-associated pancreatic stellate cells (PSCs) promote PDAC tumor progression. Notably, PDAC tumors display enhanced macropinocytosis, resulting in enhanced uptake of extracellular particles, including nutrients and viruses. We previously demonstrated the therapeutic potential of telomerase-specific oncolytic adenoviruses OBP-301 and p53-armed OBP-702 against human PDAC cells. However, it remains unclear whether macropinocytosis promotes the virus sensitivity of PDAC-associated PSCs. Here, we show that PSCs activated by human PDAC cells (Panc-1 and BxPC-3) exhibit enhanced sensitivity to wild-type and oncolytic adenoviruses via enhanced macropinocytosis. The virus sensitivity of PSCs was analyzed for the infectivity, replication, and cytopathic activity of wild-type and oncolytic adenoviruses. PDAC-associated PSCs were more sensitive to wild-type and oncolytic adenoviruses than were control PSCs; this sensitivity was mediated by activation of macropinocytosis. In three-dimensional (3D) culture models, p53-armed OBP-702 decreased the viability of PDAC-associated PSCs more strongly than did non-armed OBP-301, reflecting induction of p53-mediated apoptosis. Co-inoculation of PSCs enhanced the growth of PDAC tumors, an effect that was attenuated by OBP-702-mediated p53 activation in the tumor stroma. Our results suggest that p53-armed oncolytic adenovirus OBP-702 eliminates PDAC-associated PSCs via enhancement of macropinocytosis-mediated virus entry and induction of p53-mediated apoptosis.
en-copyright=
kn-copyright=
en-aut-name=NishiyamaTakeyoshi
en-aut-sei=Nishiyama
en-aut-mei=Takeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShojiRyohei
en-aut-sei=Shoji
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KajiwaraYoshinori
en-aut-sei=Kajiwara
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HashimotoNaoyuki
en-aut-sei=Hashimoto
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiYosuke
en-aut-sei=Takahashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshidaRyuichi
en-aut-sei=Yoshida
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=UmedaYuzo
en-aut-sei=Umeda
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TanakaHiroyoshi Y.
en-aut-sei=Tanaka
en-aut-mei=Hiroyoshi Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KanoMitsunobu R.
en-aut-sei=Kano
en-aut-mei=Mitsunobu R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MasamuneAtsushi
en-aut-sei=Masamune
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems
kn-affil=
affil-num=15
en-affil=Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems
kn-affil=
affil-num=16
en-affil=Division of Gastroenterology, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=17
en-affil=Oncolys BioPharma, Inc.
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=10
article-no=
start-page=e94951
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251019
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bladder Trigone as a Sensory Hub: A Narrative Review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The bladder trigone is an anatomically and functionally distinct region within the lower urinary tract (LUT), characterized by a dense network of afferent sensory fibers, specialized urothelial interactions, and prominent mechanotransduction mechanisms. Its intricate neuroarchitecture enables precise detection of bladder filling and coordination of micturition, whereas dysregulation of these pathways contributes to lower urinary tract symptoms (LUTS), including urgency, frequency, and bladder pain. Despite its recognized clinical relevance, the structural and functional basis of trigonal sensory signaling - and its role - remain incompletely understood.
This review synthesizes current evidence on trigonal afferent organization, integrating data from anatomical mapping, receptor profiling, electrophysiological characterization, and translational research. Seminal anatomical observations are combined with recent advances in mechanotransduction and purinergic, peptidergic, and transient receptor potential (TRP) signaling to provide a comprehensive perspective. The trigone exhibits three principal afferent classes: (1) intraepithelial fibers penetrating umbrella cells, marked by P2X purinoceptor 3 (P2X3), transient receptor potential vanilloid 1 (TRPV1), calcitonin gene-related peptide (CGRP), and substance P (SP); (2) subepithelial plexuses surrounding microvasculature, enriched in vasoactive neuropeptides and exhibiting plastic hypertrophy in overactive bladder (OAB) and interstitial cystitis/bladder pain syndrome (IC/BPS); and (3) encapsulated corpuscular endings at the lamina propria-detrusor junction, expressing PIEZO1/2 and acid-sensing ion channels (ASICs) for rapid adaptation. In trigeminal dorsal root ganglion (DRG) neurons, high expression of PIEZO2, P2RX3, and voltage-gated sodium channel, type 1.8 (Nav1.8) was observed, revealing their role as the foundation for multisensory information processing. Functional assays highlight distinct mechanotransductive and chemosensory pathways, with aging, inflammation, and neurotrophic factors driving afferent plasticity underlying abnormal bladder sensation, such as urgency, frequency, and pain. Early clinical trials of P2X3 antagonists and intravesical TRPV1 inhibitors demonstrate promising symptomatic benefits. Collectively, evidence positions the bladder trigone as a critical sensory hub where neuronal, urothelial, and immune signals converge to regulate bladder sensation. Understanding its molecular and structural specialization may inform the development of region-specific neuromodulatory therapies targeting sensory urgency and afferent-driven bladder dysfunction.
en-copyright=
kn-copyright=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=bladder trigone
kn-keyword=bladder trigone
en-keyword=botulinum toxin
kn-keyword=botulinum toxin
en-keyword=lower urinary tract symptoms
kn-keyword=lower urinary tract symptoms
en-keyword=sensory afferents
kn-keyword=sensory afferents
en-keyword=varicosities
kn-keyword=varicosities
END
start-ver=1.4
cd-journal=joma
no-vol=786
cd-vols=
no-issue=
article-no=
start-page=152753
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hydrogen-rich gas enhances mitochondrial membrane potential and respiratory function recovery in Caco-2 cells post-ischemia-reperfusion injury
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Ischemia-reperfusion (I/R) injury induces oxidative stress, leading to damage in highly susceptible intestinal tissues. Molecular hydrogen (H2) has shown therapeutic potential in I/R injuries, with our prior research showing its efficacy in improving outcomes in rat intestinal transplantation models. However, its impact on mitochondrial function remain insufficiently understood. This study aims to elucidate how H2 modulates mitochondrial function impaired by I/R injury.
Methods: To assess the effects of H2 on I/R injury, cells were divided into three groups: a control group, a hypoxic group (99 % N2, 1 % O2, without H2 for 3, 6, or 24 h), and a hypoxic-H2 group (99 % H2, 1 % O2, for the same durations). After treatment, cells were reoxygenated under normoxic conditions (21 % O2) for 1, 2, 4, or 6 h. Mitochondrial membrane potential, oxygen consumption, and ATP production were measured. Reactive oxygen species production and apoptotic and metabolic regulators were also assessed.
Results: H2 markedly promoting mitochondrial recovery following I/R injury, by enhancing ATP production, restoring mitochondrial membrane potential, and improving oxygen consumption. It also reduced ROS levels and suppressed pro-apoptotic signaling. Notably, H2 suppressed the expression of HIF1α and PDK1, suggesting that H2 may act upstream of hypoxia-driven signaling pathways. These changes promoted oxidative phosphorylation and overall cellular function during reperfusion.
Conclusions: Our findings reveal that H2 therapy supports mitochondrial function, suppresses ROS, and modulates hypoxia-driven pathways in I/R injury. These insights advance the understanding of H2's potential in addressing I/R injury and provide a foundation for its application in other hypoxia-related conditions.
en-copyright=
kn-copyright=
en-aut-name=SeyaMizuki
en-aut-sei=Seya
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AokageToshiyuki
en-aut-sei=Aokage
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MengYing
en-aut-sei=Meng
en-aut-mei=Ying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirayamaTakahiro
en-aut-sei=Hirayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshinoriKosaki
en-aut-sei=Yoshinori
en-aut-mei=Kosaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WatanabeAkihiro
en-aut-sei=Watanabe
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamadaTaihei
en-aut-sei=Yamada
en-aut-mei=Taihei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Emergency, Disaster and Critical Care Medicine, Hyogo Medical University
kn-affil=
affil-num=10
en-affil=Department of Emergency, Disaster and Critical Care Medicine, Hyogo Medical University
kn-affil=
affil-num=11
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Intestinal ischemia-reperfusion injury
kn-keyword=Intestinal ischemia-reperfusion injury
en-keyword=Molecular hydrogen
kn-keyword=Molecular hydrogen
en-keyword=Hydrogen gas therapy
kn-keyword=Hydrogen gas therapy
en-keyword=Caco-2 cells
kn-keyword=Caco-2 cells
en-keyword=Mitochondrial function
kn-keyword=Mitochondrial function
en-keyword=Hypoxia-inducible factor-1α (HIF1α)
kn-keyword=Hypoxia-inducible factor-1α (HIF1α)
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=e70221
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pediatric stroke risk and neurotrauma from roller coasters in amusement parks
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although rare, neurotrauma has been documented as a potential risk of high-speed, high-acceleration amusement park rides such as roller coasters. These attractions generate rapid acceleration, deceleration, sharp turns, and significant gravitational forces, which may stress the central nervous system and cerebrovascular structures. This review analyzed pediatric stroke cases (children 15 years old or younger) linked to roller-coaster rides reported in PubMed and summarized the key mechanisms and clinical features associated with such neurotrauma. Documented complications include internal and vertebral carotid artery dissections, with or without stroke, subdural hemorrhage, intraparenchymal hemorrhage, and post-traumatic migraines. The aim of this review is to alert healthcare providers to the possibility of stroke induced by roller-coaster rides, emphasizing the importance of timely diagnosis and management to prevent adverse outcomes. Key considerations include the recognition of risk factors, public education on potential risks, and strategies for preventing complications in at-risk populations. Although intracranial hemorrhage from roller-coaster rides is rare, individuals with predisposing conditions, such as prior head trauma or vascular abnormalities, should be evaluated carefully when presenting with neurological symptoms after such activities.
en-copyright=
kn-copyright=
en-aut-name=MorikawaTomoki
en-aut-sei=Morikawa
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TokiokaKohei
en-aut-sei=Tokioka
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=amusement parks
kn-keyword=amusement parks
en-keyword=brain injuries
kn-keyword=brain injuries
en-keyword=carotid artery dissection
kn-keyword=carotid artery dissection
en-keyword=stroke
kn-keyword=stroke
en-keyword=vertebral artery dissection
kn-keyword=vertebral artery dissection
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251016
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhancing Soil Aggregation and Water Retention by Applying Kaolinite Clay to Post‐Tin‐Mined Land on Belitung Island, Indonesia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Post-mining sandy soils have low water retention, which causes soil particle separation and persistent soil erosion. Although organic matter is commonly used for soil restoration, it is lightweight, washes away during heavy rain, and decomposes under strong sunlight. The high potential for extreme rainfall events in tropical regions poses significant challenges to restoration projects. Therefore, we investigated the impact of kaolinite clay particles on enhancing soil stability in post-mining sandy soils. Soil samples were collected from three sites representing different succession stages of post-mined land (0, 1, and 6 years since mining cessation) and an adjacent natural forest as the reference site on Belitung Island, Indonesia. Soil samples were treated with 1% or 5% kaolinite or left untreated (control) and incubated at 34°C to mimic the local conditions of the study area. The samples were then analyzed to determine the soil aggregate distribution, water holding capacity, and soil erodibility, and SEM imaging was performed to examine the soil particle morphology. The results revealed an increasing trend in the silt-sized aggregate content and a 2%–5% increase in water retention in the 6-year soils relative to the untreated soils. The highest water retention was observed in the 6-year post-mining soil sample. Kaolinite amendment significantly reduced soil erodibility by 40%–50% compared to the untreated soils, even in the early restoration period (0–1 year post-mining). Kaolinite improved soil aggregation and water retention in post-mining sandy soils while reducing soil erodibility—highlighting its potential for accelerating land restoration in mining-affected areas.
en-copyright=
kn-copyright=
en-aut-name=PutraHirmas F.
en-aut-sei=Putra
en-aut-mei=Hirmas F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriYasushi
en-aut-sei=Mori
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=clay
kn-keyword=clay
en-keyword=kaolinite
kn-keyword=kaolinite
en-keyword=post-tin- mined soils
kn-keyword=post-tin- mined soils
en-keyword=soil aggregates
kn-keyword=soil aggregates
en-keyword=soil restoration
kn-keyword=soil restoration
en-keyword=water-holding capacity
kn-keyword=water-holding capacity
END
start-ver=1.4
cd-journal=joma
no-vol=254
cd-vols=
no-issue=
article-no=
start-page=108998
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cellulose nanofibers boost soil water availability, plant growth, and irrigation water use efficiency under deficit irrigation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Under climate change, even previously rainfall-prone areas may experience droughts, and effective strategies are vital for soil conservation. Owing to their cutting-edge water absorption and storage properties, cellulose nanofibers (CNF) are expected to increase soil water availability and help plants resist water stress. However, the role of CNF in improving plant growth and soil water retention under various irrigation regimes is not yet known. We evaluated the effects of CNFs on plant available water (PAW), germination, plant growth, and irrigation water use efficiency (IWUE) under both adequate and deficit irrigation conditions. Plant cultivation experiments were conducted using different CNF dosages (0%, 0.1%, 0.5%, and 1.0%), irrigation levels (I100, I50, and I25), and soil types (sandy and silty loam). The results indicated that CNF significantly increased field capacity (FC) and PAW in both soil types, with PAW in CNF-amended soils increasing by up to 110% and 88% in sandy and silty loam soil, respectively, at 1% CNF dosage. In germination tests, CNF showed no phytotoxicity and supported the germination process during water stress, with enhancements of up to 64% and 163% at I50 and up to 125% and 214% at I25 in germination percentage and germination index, respectively. Plant growth experiments revealed that CNF addition helped plants resist water stress, maintaining plant height and weight close to those under full irrigation, while using 50% less water. IWUE analyses demonstrated that CNF enhanced IWUE, with increases of up to 56% under sufficient watering (I100), 169% under moderate water stress (I50), and 120% under severe water stress (I25), at 1% CNF dosage. These findings highlight the potential of CNF as a multifaceted amendment, offering practical solutions for addressing water scarcity challenges and contributing to more resilient and sustainable agricultural practices.
en-copyright=
kn-copyright=
en-aut-name=NgoAn Thuy
en-aut-sei=Ngo
en-aut-mei=An Thuy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NguyenManh Cong
en-aut-sei=Nguyen
en-aut-mei=Manh Cong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriYasushi
en-aut-sei=Mori
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Nong Lam University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Cellulose nanofibers
kn-keyword=Cellulose nanofibers
en-keyword=Available water
kn-keyword=Available water
en-keyword=Plant growth
kn-keyword=Plant growth
en-keyword=Irrigation water use efficiency
kn-keyword=Irrigation water use efficiency
en-keyword=Deficit irrigation
kn-keyword=Deficit irrigation
en-keyword=Water stress
kn-keyword=Water stress
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=18
article-no=
start-page=1481
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250922
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Oral Peritumoral Tissue on Infiltration and Differentiation of Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The recruitment of tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) of oral squamous carcinoma (OSCC) affects significant cancer invasion; however, in the normal host tissue that is located in the cancer’s surrounding area, this is poorly investigated. In this study, we examined the impact of gingival connective tissue cells (GCTCs) and periodontal ligament cells (PDLCs), which are involved in the invasive pathway of OSCC, on oral cancer invasion via TAMs recruitment. Transwell (migration) assays were used to examine the effects of GCTCs and PDLCs on the migration of macrophages, which indicated that the interaction between GCTCs and HSC-2/HSC-3 (human oral squamous cell carcinoma cell line) promoted the recruitment of macrophages, whereas the interaction between PDLCs was inhibited. An indirect co-culture was then used to examine the effects of GCTCs and PDLCs on the differentiation of macrophages, which indicated that the interaction between GCTCs enhanced their ability to transform into M2-type macrophages. Furthermore, the effects of GCTCs and PDLCs on the recruitment of CD45(+) monocytes, F4/80(+) M0 macrophages, iNOS(+) M1 macrophages, and CD163(+) M2 TAMs were assayed by immunohistochemistry. The results revealed that the interaction between GCTCs and HSC-2/HSC-3 promoted the infiltration of CD45(+) monocytes, F4/80(+) M0 macrophages, and CD163(+) M2 TAMs, whereas the PDLCs inhibited it, while their effect on iNOS(+) M1 macrophages was limited. Collectively, the GCTCs contributed to the infiltration of TAMs into the TME of OSCC cells, whereas the PDLCs exerted an inhibitory effect. These findings suggest a potential regulatory mechanism underlying the progression of OSCC.
en-copyright=
kn-copyright=
en-aut-name=PiaoTianyan
en-aut-sei=Piao
en-aut-mei=Tianyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ArashimaTakuma
en-aut-sei=Arashima
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhaoYulu
en-aut-sei=Zhao
en-aut-mei=Yulu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EainHtoo Shwe
en-aut-sei=Eain
en-aut-mei=Htoo Shwe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SoeYamin
en-aut-sei=Soe
en-aut-mei=Yamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MinZin Zin
en-aut-sei=Min
en-aut-mei=Zin Zin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=oral squamous cell carcinoma (OSCC)
kn-keyword=oral squamous cell carcinoma (OSCC)
en-keyword=gingival connective tissue cells (GCTCs)
kn-keyword=gingival connective tissue cells (GCTCs)
en-keyword=periodontal ligament cells (PDLCs)
kn-keyword=periodontal ligament cells (PDLCs)
en-keyword=tumor-associated macrophages (TAMs)
kn-keyword=tumor-associated macrophages (TAMs)
en-keyword=macrophage polarity
kn-keyword=macrophage polarity
en-keyword=tumor microenvironment (TME)
kn-keyword=tumor microenvironment (TME)
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=17
article-no=
start-page=2770
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250825
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Refining the Role of Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the tumor microenvironment, various immune and stromal cells, such as fibroblasts and vascular endothelial cells, contribute to tumor growth and progression by interacting with cancer cells. Tumor-associated macrophages (TAMs) have attracted attention as major players in the tumor microenvironment. The origin of TAMs is believed to be the infiltration of monocytes derived from bone marrow progenitor cells into tumor tissues and their differentiation into macrophages, whereas tissue-resident macrophages derived from yolk sacs have recently been reported. TAMs infiltrating tumor tissues act in a tumor-promoting manner through immunosuppression, angiogenesis, and the promotion of cancer cell invasion. Reflecting the nature of TAMs, increased TAM invasion and TAM-specific gene expression in tumor tissues may be the new biomarkers for cancer. Moreover, new therapeutic strategies targeting TAMs, such as transformation into immunostimulatory macrophages, suppression of TAM infiltration, and promotion of phagocytosis, are being investigated, and many clinical trials are underway. As the origin and function of TAMs are further elucidated, TAM-targeted therapy is expected to become a new option for the immunotherapy of various cancers, including oral cancers.
en-copyright=
kn-copyright=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TianyanPiao
en-aut-sei=Tianyan
en-aut-mei=Piao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ArashimaTakuma
en-aut-sei=Arashima
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChangAnqi
en-aut-sei=Chang
en-aut-mei=Anqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EainHtoo Shwe
en-aut-sei=Eain
en-aut-mei=Htoo Shwe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SoeYamin
en-aut-sei=Soe
en-aut-mei=Yamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MinZin Zin
en-aut-sei=Min
en-aut-mei=Zin Zin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiiMasae
en-aut-sei=Fujii
en-aut-mei=Masae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=tumor-associated macrophage (TAM)
kn-keyword=tumor-associated macrophage (TAM)
en-keyword=oral squamous cell carcinoma (OSCC)
kn-keyword=oral squamous cell carcinoma (OSCC)
en-keyword=macrophage polarity
kn-keyword=macrophage polarity
en-keyword=invasion
kn-keyword=invasion
en-keyword=carcinogenesis
kn-keyword=carcinogenesis
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=14
article-no=
start-page=4055
end-page=4070
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250922
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CXCR4 Inhibition Induces Tumor Necrosis by Selectively Targeting the Proliferating Blood Vessels in Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The C-X-C chemokine receptor type 4 (CXCR4) is a G protein-coupled transmembrane receptor that contributes to tumor growth and angiogenesis. While prior studies have primarily focused on CXCR4 expression in cancer cells and its role in metastasis, a few have examined its involvement in tumor-associated vasculature. In this study, we reported for the first time that CXCR4 expression within the tumor vasculature is significantly associated with higher pathological grades of human oral squamous cell carcinoma (OSCC) (p<0.03). A previous study reported that inhibiting CXCR4 with AMD3100 induces tumor cell death and enhances the efficacy of the chemotherapeutic agent cisplatin. These findings suggest that CXCR4 is an important target for cancer treatment. However, the tumor vascular system is known to be heterogeneous within the tumor microenvironment (TME), which may influence the treatment outcomes. Therefore, this study aimed to explore the effect of CXCR4 antagonism on various blood vessels present within the oral squamous cell carcinoma (OSCC) tumor stroma. Although the efficiency of AMD3100 was not significant in MOC cancer cells, necrosis was induced in the TME when applied to a poorly differentiated OSCC model, highlighting the role of the TME. Notably, CXCR4 is found to be highly overlapped with CD105+ angiogenic tumor vessels among various vascular markers. Treatment with AMD3100 leads to a marked reduction in the CD105+ vessels and impairs the maturation of tumor micro-vessels, explaining the cause of observed necrosis. Thus, CXCR4 serves as a promising biomarker in OSCC, and its inhibition with AMD3100 offers the therapeutic potential, particularly in cases with advanced pathological grades.
en-copyright=
kn-copyright=
en-aut-name=SoeYamin
en-aut-sei=Soe
en-aut-mei=Yamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EainHtoo Shwe
en-aut-sei=Eain
en-aut-mei=Htoo Shwe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaSaori
en-aut-sei=Yoshida
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OoMay Wathone
en-aut-sei=Oo
en-aut-mei=May Wathone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MinZin Zin
en-aut-sei=Min
en-aut-mei=Zin Zin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=4
en-affil=Preliminary Examination Room, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
en-keyword=CXCR4
kn-keyword=CXCR4
en-keyword=tumor angiogenesis
kn-keyword=tumor angiogenesis
en-keyword=chemokine receptors
kn-keyword=chemokine receptors
en-keyword=tumor microenvironment
kn-keyword=tumor microenvironment
en-keyword=oral squamous cell carcinoma (OSCC)
kn-keyword=oral squamous cell carcinoma (OSCC)
en-keyword=AMD3100
kn-keyword=AMD3100
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=
article-no=
start-page=106656
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Voxel-based method for predicting workpiece chipping in end milling of unsintered pure iron-powder compact
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The miniaturization and high-torque requirements of electric motors in automotive and industrial applications have increased the adoption of axial-gap motors that employ unsintered pure iron-powder compacts. However, machining these brittle materials, particularly through end milling, typically results in significant workpiece chipping, which impedes cost-effective prototyping and small-lot production. Conventional chipping-prediction approaches, such as finite-element analysis and critical uncut chip-thickness methods, are limited by their computational costs and prediction accuracy, respectively. This study proposes a novel method for predicting chipping regions in the end milling of pure iron-powder compacts via voxel-based cutting-force simulation. The chipping risk at each voxel was evaluated based on the magnitude and direction of the simulated cutting force and local workpiece rigidity. Chipping was predicted when the risk index exceeded the threshold value. Cutting experiments were conducted to validate the proposed method, which shows good agreement between the predicted and observed chipping regions under various milling conditions. The results indicate that the proposed method can efficiently and accurately predict the chipping regions, thus outperforming conventional approaches in terms of computational cost. Although parameter tuning and threshold calibration were performed experimentally, the voxel-based framework enables practical prediction and analysis of transient machining phenomena. Future investigations shall focus on expanding the method to a wider range of machining conditions and integrating material-property considerations for further generalization. This approach offers a practical tool for optimizing machining parameters to minimize chipping and enhance the manufacturability of brittle powder compacts.
en-copyright=
kn-copyright=
en-aut-name=TakayasuHiroto
en-aut-sei=Takayasu
en-aut-mei=Hiroto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanekoKazuki
en-aut-sei=Kaneko
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShimizuJun
en-aut-sei=Shimizu
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Science and Engineering, Ibaraki University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Science and Engineering, Ibaraki University
kn-affil=
en-keyword=End milling
kn-keyword=End milling
en-keyword=Simulation
kn-keyword=Simulation
en-keyword=Voxel model
kn-keyword=Voxel model
en-keyword=Workpiece chipping
kn-keyword=Workpiece chipping
en-keyword=Brittle material
kn-keyword=Brittle material
en-keyword=Pure iron-powder compact
kn-keyword=Pure iron-powder compact
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e64296
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Giant Choledochal Cyst in a Child With Spinocerebellar Ataxia: A Potential Molecular Link Through Aberrant Cytosolic Calcium Signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SumitomoHiromi
en-aut-sei=Sumitomo
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkiyamaTomoyuki
en-aut-sei=Akiyama
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanameTadashi
en-aut-sei=Kaname
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakenouchiToshiki
en-aut-sei=Takenouchi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Genome Medicine, National Center for Child Health and Development
kn-affil=
affil-num=4
en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=calcium signaling
kn-keyword=calcium signaling
en-keyword=cerebellar ataxia 29
kn-keyword=cerebellar ataxia 29
en-keyword=cerebellar atrophy
kn-keyword=cerebellar atrophy
en-keyword=choledochal cyst
kn-keyword=choledochal cyst
en-keyword=congenital biliary dilatation
kn-keyword=congenital biliary dilatation
en-keyword=inositol 1,4,5-trisphosphate receptors
kn-keyword=inositol 1,4,5-trisphosphate receptors
en-keyword=ITPR1
kn-keyword=ITPR1
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=3
article-no=
start-page=965
end-page=970
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250404
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Decreased homovanillic acid and 5‐hydroxyindoleacetic acid levels in the cerebrospinal fluid of patients with Dravet syndrome with parkinsonism
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dravet syndrome (DS) is an early onset, developmental, and epileptic encephalopathy characterized by drug-resistant seizures and multiple comorbidities. It has been reported that in adulthood, it may be accompanied by parkinsonism, but the pathogenesis of this condition remains unclear. We performed dopamine transporter single-photon emission computed tomography (DAT SPECT) and measured monoamine metabolite levels in the cerebrospinal fluid (CSF) in two adult patients with DS who developed parkinsonism around the age of 30 years. DAT SPECT showed no abnormalities in either patient, whereas CSF tests revealed significant decreases in the levels of homovanillic and 5-hydroxyindoleacetic acids. One patient with severe symptoms was treated with levodopa–carbidopa, which improved parkinsonism manifestations. The other patient initiated treatment with a low dose and has been continuing the treatment without any reported side effects. In conclusion, CSF testing can detect a decrease in dopamine synthesis and may be useful in monitoring the efficacy of levodopa treatment in patients with DS and parkinsonism.
Plain Language Summary: Dravet syndrome (DS) is an early onset, developmental, and epileptic encephalopathy. DS can lead to the development of parkinsonism in adulthood, a clinical syndrome characterized by tremor, slowed movements, and rigidity. Although parkinsonism is a significant issue for patients, its underlying pathology has not yet been elucidated. In this study, we confirmed that the levels of monoamine metabolites in the CSF were low in two patients, potentially shedding light on the pathology involved.
en-copyright=
kn-copyright=
en-aut-name=SugiyamaRyo
en-aut-sei=Sugiyama
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaitoTakashi
en-aut-sei=Saito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsumotoAtsuko
en-aut-sei=Katsumoto
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YonenoShota
en-aut-sei=Yoneno
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkiyamaTomoyuki
en-aut-sei=Akiyama
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KomakiHirofumi
en-aut-sei=Komaki
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
affil-num=2
en-affil=Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
affil-num=3
en-affil=Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
affil-num=4
en-affil=Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
affil-num=5
en-affil=Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry
kn-affil=
en-keyword=dopamine transporter
kn-keyword=dopamine transporter
en-keyword=levodopa
kn-keyword=levodopa
en-keyword=monoamine metabolites
kn-keyword=monoamine metabolites
en-keyword=single-photon emission computed tomography
kn-keyword=single-photon emission computed tomography
END
start-ver=1.4
cd-journal=joma
no-vol=122
cd-vols=
no-issue=5
article-no=
start-page=689
end-page=699
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250617
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cytomegalovirus reactivation in patients with large B-cell lymphoma treated with chimeric antigen receptor T-cell therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Chimeric antigen receptor (CAR) T-cell therapy has improved outcomes of relapsed and/or refractory large B-cell lymphoma (r/r LBCL). However, its off-tumor effects result in severe prolonged humoral immune deficiency. Cytomegalovirus (CMV) is a latent virus that can be life-threatening in immunosuppressed patients. In the setting of CAR T-cell therapy, Asian race is a risk factor for clinically significant CMV infection. However, the effect of CAR T-cell therapy on CMV reactivation in Japanese patients remains unclear. Previous reports used polymerase chain reaction (PCR), but we used the pp65 antigenemia assay to retrospectively investigate long-term effects in patients with r/r LBCL. The study included 46 patients. Nine (19.6%) developed CMV reactivation, with a median onset of 13 days. Six of these patients received preemptive therapy, and none developed CMV end-organ disease. Primary refractory disease, grade 2–4 cytokine release syndrome, and high-dose corticosteroids were risk factors for CMV reactivation. Long-term follow-up showed that CMV reactivation rarely occurred later than 28 days post-infusion. Our study using the pp65 antigenemia assay showed a similar incidence of CMV reactivation, onset, and risk factors to those in the previous reports using PCR.
en-copyright=
kn-copyright=
en-aut-name=HayashinoKenta
en-aut-sei=Hayashino
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MasunariTaro
en-aut-sei=Masunari
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HashidaRisa
en-aut-sei=Hashida
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkaSatoshi
en-aut-sei=Oka
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraYuki
en-aut-sei=Fujiwara
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TeraoToshiki
en-aut-sei=Terao
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KamoiChihiro
en-aut-sei=Kamoi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KondoTakumi
en-aut-sei=Kondo
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Hematology, Chugoku Central Hospital
kn-affil=
affil-num=4
en-affil=Division of Hematology, Ehime Prefectural Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology and Blood Transfusion, Kochi Health Science Center
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Hematology and Oncology, Okayama University
kn-affil=
en-keyword=Cytomegalovirus reactivation
kn-keyword=Cytomegalovirus reactivation
en-keyword=Large B-cell lymphoma
kn-keyword=Large B-cell lymphoma
en-keyword=CAR T-cell therapy
kn-keyword=CAR T-cell therapy
en-keyword=Hypogammaglobulinemia
kn-keyword=Hypogammaglobulinemia
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=18
article-no=
start-page=4640
end-page=4653
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250912
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Refinement of day 28 treatment response criteria for acute GVHD: a collaboration study of the JSTCT and MAGIC
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Overall response (OR) that combines complete (CR) and partial responses (PR) is the conventional end point for acute graft-versus-host disease (GVHD) trials. Because PR includes heterogeneous clinical presentations, reclassifying PR could produce a better end point. Patients in the primary treatment cohort from the Japanese Society for Transplantation and Cellular Therapy (JSTCT) were randomly divided into training and validation sets. In the training set, a classification and regression tree algorithm generated day 28 refined response (RR) criteria based on symptoms at treatment and day 28. We then evaluated RR for primary and second-line treatments, using the area under the receiver operating characteristic curve (AUC) and negative predictive value (NPV) for 6-month nonrelapse mortality as performance measures. RR considered patients with grade 0/1 at day 28 without additional treatment as responders. RR for primary treatment produced higher AUCs than OR with small improvement of NPVs in both validation sets: JSTCT (AUC, 0.73 vs 0.69 [P < .001]; NPV, 92.0% vs 89.6% [P < .001]) and the Mount Sinai Acute GVHD International Consortium (MAGIC; AUC, 0.71 vs 0.68 [P = .032]; NPV, 90.9% vs 89.8% [P = .009]). RR for second-line treatment produced similar AUCs but much higher NPVs than OR in both validation sets of JSTCT (AUC, 0.64 vs 0.63 [P = .775]; NPV, 74.5% vs 66.0% [P < .001]) and MAGIC (AUC, 0.67 vs 0.64 [P = .105]; NPV, 86.8% vs 76.1% [P = .004]). Classifying persistent but mild skin symptoms as responses and residual lower gastrointestinal GVHD as nonresponses were major drivers in improving the prognostic performance of RR. Our externally validated day 28 RR would serve as a better end point than conventional criteria in future first- and second-line treatment trials.
en-copyright=
kn-copyright=
en-aut-name=AkahoshiYu
en-aut-sei=Akahoshi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InamotoYoshihiro
en-aut-sei=Inamoto
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SpyrouNikolaos
en-aut-sei=Spyrou
en-aut-mei=Nikolaos
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakasoneHideki
en-aut-sei=Nakasone
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DinizMarcio A.
en-aut-sei=Diniz
en-aut-mei=Marcio A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AyukFrancis
en-aut-sei=Ayuk
en-aut-mei=Francis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ChoeHannah K.
en-aut-sei=Choe
en-aut-mei=Hannah K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DokiNoriko
en-aut-sei=Doki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EtoTetsuya
en-aut-sei=Eto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=EtraAaron M.
en-aut-sei=Etra
en-aut-mei=Aaron M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HexnerElizabeth O.
en-aut-sei=Hexner
en-aut-mei=Elizabeth O.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HiramotoNobuhiro
en-aut-sei=Hiramoto
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HoganWilliam J.
en-aut-sei=Hogan
en-aut-mei=William J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HollerErnst
en-aut-sei=Holler
en-aut-mei=Ernst
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KataokaKeisuke
en-aut-sei=Kataoka
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KawakitaToshiro
en-aut-sei=Kawakita
en-aut-mei=Toshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TanakaMasatsugu
en-aut-sei=Tanaka
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=TanakaTakashi
en-aut-sei=Tanaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=UchidaNaoyuki
en-aut-sei=Uchida
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=VasovaIngrid
en-aut-sei=Vasova
en-aut-mei=Ingrid
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YoshiharaSatoshi
en-aut-sei=Yoshihara
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=IshimaruFumihiko
en-aut-sei=Ishimaru
en-aut-mei=Fumihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FukudaTakahiro
en-aut-sei=Fukuda
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=ChenYi-Bin
en-aut-sei=Chen
en-aut-mei=Yi-Bin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KandaJunya
en-aut-sei=Kanda
en-aut-mei=Junya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=NakamuraRyotaro
en-aut-sei=Nakamura
en-aut-mei=Ryotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=AtsutaYoshiko
en-aut-sei=Atsuta
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=FerraraJames L. M.
en-aut-sei=Ferrara
en-aut-mei=James L. M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=KandaYoshinobu
en-aut-sei=Kanda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=LevineJohn E.
en-aut-sei=Levine
en-aut-mei=John E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=TeshimaTakanori
en-aut-sei=Teshima
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
affil-num=1
en-affil=Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=2
en-affil=Department of Blood and Marrow Transplantation and Cellular Therapy, Fujita Health University School of Medicine
kn-affil=
affil-num=3
en-affil=Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=4
en-affil=Division of Hematology, Jichi Medical University Saitama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf
kn-affil=
affil-num=8
en-affil=Division of Hematology, Blood and Marrow Transplantation Program, The Ohio State University Comprehensive Cancer Center
kn-affil=
affil-num=9
en-affil=Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology, Hamanomachi Hospital
kn-affil=
affil-num=11
en-affil=Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=12
en-affil=Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=13
en-affil=Department of Hematology, Kobe City Medical Center General Hospital
kn-affil=
affil-num=14
en-affil=Division of Hematology, Mayo Clinic
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Internal Medicine III, University of Regensburg
kn-affil=
affil-num=16
en-affil=Division of Molecular Oncology, National Cancer Center Research Institute
kn-affil=
affil-num=17
en-affil=Department of Hematology, National Hospital Organization Kumamoto Medical Center
kn-affil=
affil-num=18
en-affil=Department of Hematology, Kanagawa Cancer Center
kn-affil=
affil-num=19
en-affil=Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital
kn-affil=
affil-num=20
en-affil=Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital
kn-affil=
affil-num=21
en-affil=Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen
kn-affil=
affil-num=22
en-affil=Department of Hematology, Hyogo Medical University Hospital
kn-affil=
affil-num=23
en-affil=Technical Department, Japanese Red Cross Blood Service Headquarters
kn-affil=
affil-num=24
en-affil=Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital
kn-affil=
affil-num=25
en-affil=Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital
kn-affil=
affil-num=26
en-affil=Department of Hematology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=27
en-affil=Department of Hematology and Hematopoietic Cell Transplantation, City of Hope
kn-affil=
affil-num=28
en-affil=Japanese Data Center for Hematopoietic Cell Transplantation
kn-affil=
affil-num=29
en-affil=Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=30
en-affil=Division of Hematology, Jichi Medical University Saitama Medical Center
kn-affil=
affil-num=31
en-affil=Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
kn-affil=
affil-num=32
en-affil=Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250908
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficacy of ciclosporin monotherapy in non-severe aplastic anaemia not requiring transfusions: Results from a multicentre phase II study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The efficacy of ciclosporin (CsA) to treat transfusion-independent non-severe aplastic anaemia (TI-NSAA) has not yet been systematically evaluated. We conducted a prospective trial in patients with TI-NSAA treated with CsA monotherapy. CsA (3.5 mg/kg/day) was administered to patients with TI-NSAA aged ≥16. The CsA dose was adjusted to maintain a blood CsA level of ≥600 ng/mL at 2 h post-administration. Blood cell counts were assessed after 8, 16 and 52 weeks of therapy. Thirty-two evaluable patients from 21 institutions were enrolled. The median age was 63.5 (range: 16–83) years. At 8 weeks, haematological improvement, with increases in haemoglobin (Hb) ≥1.5 g/dL (haematological improvement in erythrocytes [HI-E]) and platelet count ≥30 × 109/L (haematological improvement in platelets [HI-P]), was observed in 0/25 (0%) and 6/32 (19%) evaluable cases respectively. HI-E and HI-P occurred in 1/25 (4%) and 10/32 (31%) patients at 16 weeks, respectively, and at 52 weeks in 5/25 (20%) and 16/32 (50%) patients respectively. Nine grade 3 adverse events (AEs) occurred in six patients, but there were no grade ≥4 AEs. Ten of the 32 patients experienced grade 2 renal toxicity. Low-dose CsA is effective in TI-NSAA patients and demonstrates minimal renal toxicity. However, at least 16 weeks are necessary to adequately evaluate its efficacy.
en-copyright=
kn-copyright=
en-aut-name=IshiyamaKen
en-aut-sei=Ishiyama
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamazakiMasahide
en-aut-sei=Yamazaki
en-aut-mei=Masahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaruyamaHiroyuki
en-aut-sei=Maruyama
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosonoNaoko
en-aut-sei=Hosono
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamaguchiHiroki
en-aut-sei=Yamaguchi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanimotoKazuki
en-aut-sei=Tanimoto
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugiuraHiroyuki
en-aut-sei=Sugiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UsukiKensuke
en-aut-sei=Usuki
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshimuraKenichi
en-aut-sei=Yoshimura
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OgawaSeishi
en-aut-sei=Ogawa
en-aut-mei=Seishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KanakuraYuzuru
en-aut-sei=Kanakura
en-aut-mei=Yuzuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsumuraItaru
en-aut-sei=Matsumura
en-aut-mei=Itaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AkashiKoichi
en-aut-sei=Akashi
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakaoShinji
en-aut-sei=Nakao
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Hematology, Kanazawa University Hospital
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Keiju Medical Center
kn-affil=
affil-num=3
en-affil=Department of Hematology, Kanazawa University Hospital
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, University of Fukui Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology, Nippon Medical School
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Japanese Red Cross Fukuoka Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology, Chugoku Central Hospital of Japan Mutual Aid Association of Public School Teachers
kn-affil=
affil-num=9
en-affil=Department of Hematology, NTT Medical Center Tokyo
kn-affil=
affil-num=10
en-affil=Department of Biostatistics and Health Data Science, Graduate School of Medical Science, Nagoya City University
kn-affil=
affil-num=11
en-affil=Department of Pathology and Tumor Biology, Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University
kn-affil=
affil-num=12
en-affil=Sumitomo Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology and Rheumatology, Kindai University Faculty of Medicine
kn-affil=
affil-num=14
en-affil=Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences
kn-affil=
affil-num=15
en-affil=Department of Hematology, Kanazawa University Hospital
kn-affil=
en-keyword=ciclosporin
kn-keyword=ciclosporin
en-keyword=prospective study
kn-keyword=prospective study
en-keyword=renal toxicity
kn-keyword=renal toxicity
en-keyword=transfusion-independent non-severe aplastic anaemia
kn-keyword=transfusion-independent non-severe aplastic anaemia
END
start-ver=1.4
cd-journal=joma
no-vol=98
cd-vols=
no-issue=
article-no=
start-page=103224
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The vicious cycle between nutrient deficiencies and antibiotic-induced nutrient depletion at the host cell-pathogen interface: Coenzyme Q10 and omega-6 as key molecular players
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The increasing prevalence of antibiotic resistance and pathological inflammation underscores the importance of understanding the underlying biochemical and immune processes that govern the host-pathogen interface. Nutrient deficiency, compounded by antibiotic-induced nutrient depletion, forms a vicious cycle of overt inflammation, contributing to bacterial toxin translocation in human inter-organ and intra-organs milieus. Coenzyme Q10 (CoQ10) and omega-6 linoleic acid (LA 18:2ω6) are integral to cellular membrane integrity and immune defense. However, the complex enzymatic steps at the host cell-pathogen interface remain poorly understood. This study is particularly timely, as it explores these knowledge gaps, which can inform the development of nutritional and therapeutic strategies that modulate or target these mechanisms. Using an infectious-inflamed cell co-culture model of the gut-liver axis, we exposed triple cell co-cultures of human intestinal epithelial cells (T84), macrophage-like THP-1 cells, and hepatic cells (Huh7) to linoleic acid-producing Lactobacillus casei (L. casei) and Pseudomonas aeruginosa strain PAO1 (PAO1). The cultures were incubated for 6 h in medium with or without ceftazidime antibiotic. PAO1 and L. casei exerted opposing effects on the secretion of Th1 cytokines IL-1β, IL-6, and the Th 2-type cytokine IL-10. Inoculation with PAO1 decreased CoQ10 and linoleic acid levels compared to uninfected controls. L. casei restored cellular health and biofunctionality impaired by PAO1, indicating its benefit to the host's well-being. The antibiotic ceftazidime exerted dual effects, alleviating PAO1 toxicity while marginally disrupting the beneficial effects of L. casei. Our results show how the vicious cycle of nutrient deficiency and antibiotic-induced nutrient loss reinforces pathological inflammation at the host cell-pathogen interface and highlights the need for more appropriate targeted antibiotic use that preserves essential nutrients like CoQ10 and omega-6 fatty acids. Inflammatory responses driven by opportunistic pathogens and LA-producing bacteria represent opposing immunometabolic pathways that may provide insights into novel approaches for treating infection and reducing antibiotic resistance.
en-copyright=
kn-copyright=
en-aut-name=GhadimiDarab
en-aut-sei=Ghadimi
en-aut-mei=Darab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BlömerSophia
en-aut-sei=Blömer
en-aut-mei=Sophia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Şahi̇n KayaAysel
en-aut-sei=Şahi̇n Kaya
en-aut-mei=Aysel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KrügerSandra
en-aut-sei=Krüger
en-aut-mei=Sandra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RöckenChristoph
en-aut-sei=Röcken
en-aut-mei=Christoph
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SchäferHeiner
en-aut-sei=Schäfer
en-aut-mei=Heiner
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BockelmannWilhelm
en-aut-sei=Bockelmann
en-aut-mei=Wilhelm
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
affil-num=2
en-affil=Faculty of Medicine, Christian-Albrechts-University of Kiel
kn-affil=
affil-num=3
en-affil=Department of Nutrition and Dietetics, Faculty of Health Sciences, Antalya Bilim University
kn-affil=
affil-num=4
en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein
kn-affil=
affil-num=5
en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein
kn-affil=
affil-num=6
en-affil=Laboratory of Molecular Gastroenterology & Hepatology, Christian-Albrechts-University & UKSH Campus Kiel
kn-affil=
affil-num=7
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
affil-num=9
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
en-keyword=Antibiotics
kn-keyword=Antibiotics
en-keyword=Coenzyme Q10
kn-keyword=Coenzyme Q10
en-keyword=Infection
kn-keyword=Infection
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Micronutrients
kn-keyword=Micronutrients
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251110
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Japanese society for cancer of the colon and rectum (JSCCR) guidelines 2024 for the clinical practice of hereditary colorectal cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Approximately 5% of all colorectal cancers have a strong genetic component and are classified as hereditary colorectal cancer (HCRC). Some of the unique features commonly seen in HCRC cases include early age of onset, synchronous/metachronous cancer occurrence, and multiple cancers in other organs. These characteristics require different management approaches, including diagnosis, treatment or surveillance, from those used in the management of sporadic colorectal cancer. Accurate diagnosis of HCRC is essential because it enables targeted surveillance and risk reduction strategies that improve patient outcomes. Recent genetic advances revealed several causative genes for polyposis and non-polyposis syndromes. The Japanese Society for Cancer of the Colon and Rectum (JSCCR) first published guidelines for the management of HCRC in 2012, with subsequent revisions every 4 years. The 2024 update to the JSCCR guidelines for HCRC was developed by meticulously reviewing evidence from systematic reviews and the consensus of the JSCCR HCRC Guidelines Committee, which includes representatives from patient advocacy groups for FAP and Lynch syndrome. These guidelines provide an up-to-date summary of HCRC, along with clinical recommendations for managing FAP and Lynch syndrome.
en-copyright=
kn-copyright=
en-aut-name=TanakayaKohji
en-aut-sei=Tanakaya
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaguchiTatsuro
en-aut-sei=Yamaguchi
en-aut-mei=Tatsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirataKeiji
en-aut-sei=Hirata
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamadaMasayoshi
en-aut-sei=Yamada
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KumamotoKensuke
en-aut-sei=Kumamoto
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkiyamaYasuki
en-aut-sei=Akiyama
en-aut-mei=Yasuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshimaruKei
en-aut-sei=Ishimaru
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkamotoKoichi
en-aut-sei=Okamoto
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KawasakiYuko
en-aut-sei=Kawasaki
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KomineKeigo
en-aut-sei=Komine
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SakamotoAkira
en-aut-sei=Sakamoto
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ShibataYoshiko
en-aut-sei=Shibata
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ShimamotoYusaku
en-aut-sei=Shimamoto
en-aut-mei=Yusaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ShimodairaHideki
en-aut-sei=Shimodaira
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SekineShigeki
en-aut-sei=Sekine
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakaoAkinari
en-aut-sei=Takao
en-aut-mei=Akinari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TakaoMisato
en-aut-sei=Takao
en-aut-mei=Misato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=TakamizawaYasuyuki
en-aut-sei=Takamizawa
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TakeuchiYoji
en-aut-sei=Takeuchi
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TanabeNoriko
en-aut-sei=Tanabe
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=TaniguchiFumitaka
en-aut-sei=Taniguchi
en-aut-mei=Fumitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=ChinoAkiko
en-aut-sei=Chino
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=ChoHourin
en-aut-sei=Cho
en-aut-mei=Hourin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=DoiSatoru
en-aut-sei=Doi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=NakajimaTakeshi
en-aut-sei=Nakajima
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=NakamoriSakiko
en-aut-sei=Nakamori
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=NakayamaYoshiko
en-aut-sei=Nakayama
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=NagasakiToshiya
en-aut-sei=Nagasaki
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=HasumiHisashi
en-aut-sei=Hasumi
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=BannoKouji
en-aut-sei=Banno
en-aut-mei=Kouji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=HinoiTakao
en-aut-sei=Hinoi
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=FujiyoshiKenji
en-aut-sei=Fujiyoshi
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=HorimatsuTakahiro
en-aut-sei=Horimatsu
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=MasudaKenta
en-aut-sei=Masuda
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=MiguchiMasashi
en-aut-sei=Miguchi
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=MizuuchiYusuke
en-aut-sei=Mizuuchi
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=MiyakuraYasuyuki
en-aut-sei=Miyakura
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=MutohMichihiro
en-aut-sei=Mutoh
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=YoshiokaTakahiro
en-aut-sei=Yoshioka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=TanakaShinji
en-aut-sei=Tanaka
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=SakamotoKazuhiro
en-aut-sei=Sakamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=SakamakiKentaro
en-aut-sei=Sakamaki
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=ItabashiMichio
en-aut-sei=Itabashi
en-aut-mei=Michio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=IshidaHideyuki
en-aut-sei=Ishida
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=TomitaNaohiro
en-aut-sei=Tomita
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=SugiharaKenichi
en-aut-sei=Sugihara
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=AjiokaYoichi
en-aut-sei=Ajioka
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
affil-num=1
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=2
en-affil=Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital
kn-affil=
affil-num=3
en-affil=Department of Surgery 1, University of Occupational and Environmental Health
kn-affil=
affil-num=4
en-affil=Endoscopy Division, National Cancer Center Hospital
kn-affil=
affil-num=5
en-affil=Department of Genome Medical Science and Medical Genetics, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=6
en-affil=Department of Surgery 1, University of Occupational and Environmental Health
kn-affil=
affil-num=7
en-affil=Division of Gastrointestinal Surgery and Surgical Oncology, Graduate School of Medicine, Ehime University
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Oncology, Tokushima University Graduate School of Medical Science
kn-affil=
affil-num=9
en-affil=College of Nursing, University of Hyogo
kn-affil=
affil-num=10
en-affil=Department of Medical Oncology, Tohoku University Hospital
kn-affil=
affil-num=11
en-affil=Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Himawari-No-Kai (Sunflower Association), a Patient Advocacy Group for Individuals and Families Affected By Lynch Syndrome
kn-affil=
affil-num=14
en-affil=Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
kn-affil=
affil-num=15
en-affil=Division of Medical Oncology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
kn-affil=
affil-num=16
en-affil=Department of Pathology, Keio University School of Medicine
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital
kn-affil=
affil-num=18
en-affil=Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital
kn-affil=
affil-num=19
en-affil=Department of Colorectal Surgery, National Cancer Center Hospital
kn-affil=
affil-num=20
en-affil=Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=22
en-affil=Department of Surgery, Hiroshima City Hospital Organization Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=23
en-affil=Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research
kn-affil=
affil-num=24
en-affil=Endoscopy Center, Tokyo Medical University Hospital
kn-affil=
affil-num=25
en-affil=Harmony Line (Association for Patients and Families With Familial Adenomatous Polyposis)
kn-affil=
affil-num=26
en-affil=Division of Hereditary Tumors, Department of Genetic Oncology, Osaka International Cancer Institute
kn-affil=
affil-num=27
en-affil=Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital
kn-affil=
affil-num=28
en-affil=Department of Pediatrics, Shinshu University School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Gastroenterological Surgery, Saitama Cancer Center
kn-affil=
affil-num=30
en-affil=Department of Urology, Yokohama City University
kn-affil=
affil-num=31
en-affil=Center of Maternal -Fetal/Neonatal Medicine, Hiroshima University Hospital
kn-affil=
affil-num=32
en-affil=Department of Clinical and Molecular Genetics, Hiroshima University Hospital
kn-affil=
affil-num=33
en-affil=Department of Surgery, Kurume University School of Medicine
kn-affil=
affil-num=34
en-affil=Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital
kn-affil=
affil-num=35
en-affil=Department of Obstetrics and Gynecology, Keio University School of Medicine
kn-affil=
affil-num=36
en-affil=Department of Gastroenterological Surgery, Hiroshima Prefectural Hospital
kn-affil=
affil-num=37
en-affil=Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=38
en-affil=Department of Colon and Pelvic Surgery, Cancer Prevention and Genetic Counseling, Tochigi Cancer Center
kn-affil=
affil-num=39
en-affil=Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
kn-affil=
affil-num=40
en-affil=Department of Gastroenterological Surgery, Kochi Health Sciences Center
kn-affil=
affil-num=41
en-affil=JA Onomichi General Hospital
kn-affil=
affil-num=42
en-affil=Koshigaya Municipal Hospital
kn-affil=
affil-num=43
en-affil=Faculty of Health Data Science, Juntendo University
kn-affil=
affil-num=44
en-affil=Saiseikai Kazo Hospital
kn-affil=
affil-num=45
en-affil=Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=46
en-affil=Division of Cancer Treatment , Toyonaka Municipal Hospital
kn-affil=
affil-num=47
en-affil=Institute of Science Tokyo
kn-affil=
affil-num=48
en-affil=Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
en-keyword=Hereditary colorectal cancer
kn-keyword=Hereditary colorectal cancer
en-keyword=Guidelines
kn-keyword=Guidelines
en-keyword=Familial adenomatous polyposis
kn-keyword=Familial adenomatous polyposis
en-keyword=Lynch syndrome
kn-keyword=Lynch syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=11
article-no=
start-page=e97797
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251125
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-Term Outcome of Xenon-Arc Photocoagulation for Retinopathy of Prematurity in the 1970s in Japan: Eleven Patients With 32- to 49-Year Follow-Up
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: Photocoagulation or cryocautery, or their combinations, are the standard of care for retinopathy of prematurity at the recommended timing, which is based on the International Classification of Retinopathy of Prematurity. In Japan, the effectiveness of xenon-arc photocoagulation and cryocautery in retinopathy of prematurity was reported on an empirical basis first in 1968, and became the standard of care in retinopathy of prematurity in the 1970s, 10 years earlier compared with the other countries. In this study, we reported the up to 49 years visual outcome of 11 patients with retinopathy of prematurity who underwent xenon-arc photocoagulation and cryocautery in the 1970s.
Methods: A retrospective review was made on the medical records of 11 consecutive patients who underwent xenon-arc photocoagulation for retinopathy of prematurity in the years 1974 to 1980, and were followed up until the period from 2009 to 2025. The birthweight ranged from 865 g to 2300 g at a median of 1350 g, and the gestational age at birth ranged from 27 weeks to 36 weeks at a median of 30 weeks. The corrected gestational age at the time of photocoagulation ranged from 32 weeks to 53 weeks, with a median of 37 weeks. Oxygen was given to all 11 patients, except for one who was born in the earliest year 1974. The retinopathy of prematurity was at stage 3 in both eyes of seven patients, with plus disease signs in four patients, at stage 2 with and without plus disease in two patients, at stage 2 and stage 3 in each eye of one patient, and at stage 1 with plus disease in both eyes of one patient. The entire 360-degree photocoagulation was given in seven patients, while partial photocoagulation was applied in four patients. Additional cryocautery was applied in six patients.
Results: The age at the last visit ranged from 32 to 49 years with a median of 46 years. At the last visit, seven patients showed the best-corrected visual acuity in decimals of 0.8 or better in both eyes. One dizygotic twin showed no light perception in the phthisic right eye and 0.1 in the left eye with macular degeneration and nystagmus after he underwent cataract surgery at the age of 34 years. The other twin had the best-corrected visual acuity of 0.5 in the right eye and 0.02 in the left eye due to macular degeneration after he underwent cataract surgeries in both eyes at the age of 36 years. Two patients developed rhegmatogenous retinal detachment in one eye at the age of 44 and 41 years, respectively, and underwent vitrectomy with silicone oil tamponade, resulting in visual acuity of 0.1 and 0.3, respectively. Two patients experienced vitreous hemorrhage in one eye, which was absorbed spontaneously at the ages of 37 years and 42 years, respectively. One patient underwent partial scleral buckling for localized rhegmatogenous retinal detachment. No patient used intraocular pressure-lowering eyedrops.
Conclusion: Most patients with xenon-arc photocoagulation for retinopathy of prematurity in the 1970s maintained standard levels of visual acuity up to 49 years in the follow-up. Cataract, retinal detachment, and vitreous hemorrhage were noted as late complications and were coped with on an individual basis. The conclusion would have a meaning, even though not novel, that the patients with retinopathy of prematurity would have benefited from the xenon-arc photocoagulation and cryocautery.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuoNobuhiko
en-aut-sei=Matsuo
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Healthcare Science, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Ophthalmology, Okayama University Medical School
kn-affil=
en-keyword=1970s
kn-keyword=1970s
en-keyword=cataract
kn-keyword=cataract
en-keyword=cryocautery
kn-keyword=cryocautery
en-keyword=japan
kn-keyword=japan
en-keyword=late complications
kn-keyword=late complications
en-keyword=neonatology
kn-keyword=neonatology
en-keyword=retinal detachment
kn-keyword=retinal detachment
en-keyword=retinopathy of prematurity
kn-keyword=retinopathy of prematurity
en-keyword=vitreous hemorrhage
kn-keyword=vitreous hemorrhage
en-keyword=xenon-arc photocoagulation
kn-keyword=xenon-arc photocoagulation
END
start-ver=1.4
cd-journal=joma
no-vol=81
cd-vols=
no-issue=
article-no=
start-page=152587
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202604
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The diagnostic utility and frequency of CD56 expression in plasma cell myeloma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plasma cell myeloma (PCM) is a hematological malignancy characterized by systemic proliferation of neoplastic plasma cells within the bone marrow. Diagnosis requires clinical findings and immunohistochemical staining, including CD138, CD79a, cyclin D1, immunoglobulin κ (Igκ), and λ (Igλ). However, CD79a and cyclin D1 have limited sensitivity and specificity, and Igκ/Igλ assessment is often difficult due to overstaining. Therefore, more reliable antibodies are needed to accurately diagnose PCM. In this study, we examined the diagnostic utility of CD56 expression in PCM. We retrospectively performed immunostaining for CD138, CD56, CD79a, cyclin D1, Igκ, and Igλ in bone marrow samples from 116 patients with PCM.
CD56 expression was observed in 85/116 cases (73.3 %), CD79a was downregulated in 46/116 cases (39.7 %), and cyclin D1 expression was observed in 42/116 cases (36.2 %). The expression of CD56 was significantly higher than that of CD79a and cyclin D1 (both p < 0.001). The combination of two antibodies resulted in the highest detection rate when combining CD56 and CD79a (105/116, 90.5 %), which was significantly higher than the detection rates of CD56 and cyclin D1 (93/116, 80.2 %) and CD79a and cyclin D1 (75/116, 64.7 %) (both p < 0.001). In contrast, lymphoplasmacytic lymphoma and marginal zone lymphoma lacked CD56 and cyclin D1 expression. Furthermore, in cases where light chain restriction was undetectable (11/116, 9.5 %), all could be diagnosed as PCM based on CD56, CD79a, and cyclin D1. Among these, CD56 showed the highest detection rate (8/11, 72.7 %).
These findings highlight CD56 as a helpful marker for PCM diagnosis and support further clinical research.
en-copyright=
kn-copyright=
en-aut-name=ImaiMidori
en-aut-sei=Imai
en-aut-mei=Midori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaratakeTomoka
en-aut-sei=Haratake
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadaRio
en-aut-sei=Yamada
en-aut-mei=Rio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatoSyoma
en-aut-sei=Kato
en-aut-mei=Syoma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TabeMizuha
en-aut-sei=Tabe
en-aut-mei=Mizuha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=6
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=7
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Diagnostic Pathology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=Plasma cell myeloma
kn-keyword=Plasma cell myeloma
en-keyword=Immunohistochemical staining
kn-keyword=Immunohistochemical staining
en-keyword=CD56
kn-keyword=CD56
END
start-ver=1.4
cd-journal=joma
no-vol=214
cd-vols=
no-issue=
article-no=
start-page=111341
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The influence of lubricant additives and surface roughness and hardness of material on the damage behavior of gears
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigates the influence of lubricant additives, surface roughness, and material hardness on gear damage behavior under boundary lubrication conditions. We conducted both the Short-term Test and the Standard Test using an FZG gear test machine to evaluate how lubricant additives and gear surface roughness influence damage progression when the surface roughness exceeds the oil-film thickness. Acid phosphate ester effectively suppressed micropitting through surface smoothing but led to severe damage such as pitting and scuffing during prolonged use. In contrast, sulfurized fatty oil promoted mild wear, delaying catastrophic failures and extending gear life. Higher surface roughness accelerated wear, while increased hardness reduced deformation but it expanded damage areas. The study found that initial surface roughness and its progress during load stages strongly correlate with gear durability. Measurement of arithmetic mean roughness after sufficient running-in under actual load conditions proved useful for predicting long-term performance. These findings highlight the importance of selecting lubricant formulations tailored to specific gear operating environments and damage modes. Understanding the interplay between lubrication chemistry and material properties enables the design of more durable gear systems.
en-copyright=
kn-copyright=
en-aut-name=OhnoTakuya
en-aut-sei=Ohno
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiotaTadashi
en-aut-sei=Shiota
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiMasahiro
en-aut-sei=Fujii
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Tribology
kn-keyword=Tribology
en-keyword=Gears
kn-keyword=Gears
en-keyword=Fatigue
kn-keyword=Fatigue
en-keyword=Micropitting
kn-keyword=Micropitting
en-keyword=Scuffing
kn-keyword=Scuffing
en-keyword=Pitting
kn-keyword=Pitting
en-keyword=Lubricant additives
kn-keyword=Lubricant additives
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=3
article-no=
start-page=124
end-page=129
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250715
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Water Lubrication of Polysiloxane-Containing Polyimide Coatings on Stainless Steel Substrates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the water-lubricated tribological properties of coatings made of a novel polysiloxane-containing polyimide (si-PI) material that was recently developed for the aerospace industry and can be diluted with the harmless and environmentally friendly ethanol or water. The si-PI coatings were deposited on stainless steel (JIS SUS304) substrates at curing temperatures ranging from 160°C to 275°C. Their water lubrication properties were measured by rubbing the coatings against each other in water at room temperature. The coatings exhibited lower friction than conventional polyimide materials, with a minimum friction coefficient of 0.04, which was lower than that of polytetrafluoroethylene (PTFE) measured under the same sliding conditions. Unlike the conventional polyimide, the coatings did not exhibit any obvious wear or damage. The results demonstrate that the si-PI coating is a promising low-friction and highly durable coating for water lubrication.
en-copyright=
kn-copyright=
en-aut-name=FanYuelin
en-aut-sei=Fan
en-aut-mei=Yuelin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiotaTadashi
en-aut-sei=Shiota
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OmiyaYuya
en-aut-sei=Omiya
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiMasahiro
en-aut-sei=Fujii
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=polyimide
kn-keyword=polyimide
en-keyword=polysiloxane
kn-keyword=polysiloxane
en-keyword=resin coating
kn-keyword=resin coating
en-keyword=water lubrication
kn-keyword=water lubrication
en-keyword=wear resistance
kn-keyword=wear resistance
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=1
article-no=
start-page=366
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synthesis of thienoacenes by electrochemical double C–S cyclization using a halogen mediator
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thienoacenes are significant compounds as organic materials. One of the most efficient ways to synthesize thienoacenes is to form multiple C–S bonds in a single step. Because unprotected S–H bonds are easily oxidized to S–S bonds, S-Me protected substrates are commonly used for the purpose. However, their reactivity is insufficient, and one-step construction of multiple C–S bonds is still challenging. We herein report the electrochemical synthesis of thienoacenes from S-methoxymethyl (MOM)-protected diarylacetylenes. In the presence of Bu4NBr as a halogen mediator, electrochemical double C–S cyclization of diarylacetylenes bearing two MOM groups proceeded to afford [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives. While S-Me or S-p-methoxybenzyl (PMB)-protected diarylacetylenes did not afford BTBT, BTBT was selectively obtained when a substrate protected with S-MOM groups was used. The S-MOM protection strategy is also effective for the electrochemical synthesis of a more π-expanded thienoacene such as dibenzo[d,d′]thieno[3,2-b,4,5-b′]dithiophene (DBTDT).
en-copyright=
kn-copyright=
en-aut-name=MitsudoKoichi
en-aut-sei=Mitsudo
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagaharaTakuya
en-aut-sei=Nagahara
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatauraNozomi
en-aut-sei=Kataura
en-aut-mei=Nozomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkamuraYuka
en-aut-sei=Okamura
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YonezawaToki
en-aut-sei=Yonezawa
en-aut-mei=Toki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TachibanaYuri
en-aut-sei=Tachibana
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SouliéNolan
en-aut-sei=Soulié
en-aut-mei=Nolan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShigemoriKeisuke
en-aut-sei=Shigemori
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatoEisuke
en-aut-sei=Sato
en-aut-mei=Eisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MandaiHiroki
en-aut-sei=Mandai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SugaSeiji
en-aut-sei=Suga
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Science and Engineering, Sorbonne Université
kn-affil=
affil-num=8
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
kn-affil=
affil-num=11
en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251124
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of the small-field output factor in eclipse modeling methods using representative beam and measured data with averaged ionization chamber and diode detector measurements
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Beam modeling for radiotherapy treatment planning systems (RTPS) can be performed using representative beam data (RBD) or direct measurements. However, RBD typically excludes output factor (OPF) measurements for fields smaller than 3 × 3 cm2. The Eclipse treatment planning system addresses this limitation by incorporating measured OPF data for fields as small as 1 × 1 cm2. Although existing studies have primarily examined the accuracy of small-field OPFs for plastic scintillator detectors, studies directly comparing the OPF values obtained through RBD modeling with and without OPF measurements for small field sizes are limited. Therefore, this study proposes a novel measurement approach using data averaged from an ion chamber and diode detector for small-field dosimetry to provide critical insights into the integration of OPFs for these small field sizes in RBD-based beam modeling. We systematically evaluated the impact of small-field OPF measurements on beam modeling accuracy by comparing three distinct approaches: (1) RBD-based modeling without small-field OPF data, (2) RBD-based modeling incorporating measured small-field OPF data, and (3) modeling based solely on measured data, with and without the inclusion of 1 × 1 cm2 field sizes. In addition, we compared OPF values obtained from a W2 plastic scintillator detector with the averaged OPF values from a PinPoint 3D ion chamber and EDGE diode detector across multiple beam energies and flattening filter-free (FFF) configurations. Our analysis included field sizes ranging from 1 × 1 cm2 to 40 × 40 cm2. The results demonstrated that for square fields, OPF calculation differences between RBD modeling with and without measured data were < 1.5%, < 4.5%, and < 4.5% at 1 × 1 cm2, and < 0.5%, < 1.5%, and < 1.5% at 2 × 2 cm2, respectively. The RBD group exhibited a trend in which the OPF difference increased with the expansion of the irradiation field size. Notably, the most significant variations between modeling approaches occurred along the upper jaw expansion direction in rectangular fields. This suggests that a thorough evaluation is necessary for modeling results with an OPF ≤ 1 × 1 cm2. This study highlights the advantages and disadvantages of beam modeling using measured OPF and RBD, providing valuable insights for future facilities that rely solely on RBD for beam modeling.
en-copyright=
kn-copyright=
en-aut-name=NishiokaKunio
en-aut-sei=Nishioka
en-aut-mei=Kunio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuniiYuki
en-aut-sei=Kunii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakamotoYuichi
en-aut-sei=Sakamoto
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamotoAkira
en-aut-sei=Nakamoto
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiShotaro
en-aut-sei=Takahashi
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Radiology, Tokuyama Central Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiology, Tokuyama Central Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Radiology, Tokuyama Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiology, Tokuyama Central Hospital
kn-affil=
affil-num=6
en-affil=Department of Radiology, Tokuyama Central Hospital
kn-affil=
en-keyword=Beam modeling
kn-keyword=Beam modeling
en-keyword=Plastic scintillator detector
kn-keyword=Plastic scintillator detector
en-keyword=Small irradiation field
kn-keyword=Small irradiation field
en-keyword=Output factor
kn-keyword=Output factor
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=11
article-no=
start-page=e70168
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparative Genomic Analysis Identifies FleQ and GcbB as Virulence-Associated Factors in Pseudomonas syringae pv. tabaci Strains
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pseudomonas syringae pv. tabaci (Pta) is an important plant pathogen, which causes wildfire disease in Nicotiana species. However, the genetic basis underlying strain-level differences in virulence remains largely unresolved. To address this, we performed a comparative genomic analysis between a highly virulent strain Pta6605 and a less virulent strain Pta7375. Despite high overall genome similarity, we identified key single-nucleotide polymorphisms, including premature stop-codon mutations in seven open reading frames in Pta7375. Notably, point mutations in two regulatory genes, such as fleQ, which encodes a transcription factor essential for flagellar biogenesis and biofilm formation, and gcbB, which encodes a GGDEF domain-containing diguanylate cyclase responsible for cyclic dimeric guanosine monophosphate (c-di-GMP) synthesis, were implicated in virulence disparity. Functional analyses using deletion and locus replacement mutants in the Pta6605 background revealed that the disruption of fleQ markedly reduced motility, flagellin production, c-di-GMP accumulation, biofilm formation and virulence level mirroring the Pta7375 phenotype. The gcbB replacement mutant showed reduced disease symptom development, although c-di-GMP levels remained comparable to the Pta6605 wild type. Locus replacement between strains confirmed that a point mutation in fleQ was the primary driver of reduced motility and flagellin expression in Pta7375. These findings indicate that the reduced virulence of Pta7375 is associated with impaired regulation of flagella-related genes and disruption of the FleQ-mediated c-di-GMP signalling, underscoring the value of comparative genomics in disentangling the complex regulatory networks that govern virulence in plant pathogens.
en-copyright=
kn-copyright=
en-aut-name=HidayatMuhammad Taufiq
en-aut-sei=Hidayat
en-aut-mei=Muhammad Taufiq
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshiokaKei
en-aut-sei=Yoshioka
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimuraTakafumi
en-aut-sei=Nishimura
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AsaiShuta
en-aut-sei=Asai
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasudaSachiko
en-aut-sei=Masuda
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShirasuKen
en-aut-sei=Shirasu
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoMikihiro
en-aut-sei=Yamamoto
en-aut-mei=Mikihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Agriculture, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Center for Sustainable Resource Science, RIKEN-TRIP
kn-affil=
affil-num=6
en-affil=Center for Sustainable Resource Science, RIKEN-TRIP
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=12
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=comparative genomics
kn-keyword=comparative genomics
en-keyword=cyclic-di- GMP
kn-keyword=cyclic-di- GMP
en-keyword=fleQ
kn-keyword=fleQ
en-keyword=gcbB
kn-keyword=gcbB
en-keyword=Pseudomonas syringae
kn-keyword=Pseudomonas syringae
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251119
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Role of the Mylohyoid Line in the Spread of Mandibular Odontogenic Deep Neck Infection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Although mandibular odontogenic deep neck infections are occasionally fatal, the transmission pathway has not been elucidated.
Materials and Methods: This multicenter retrospective study was comprised of the patients of both sexes who were over 18 years of age and who had mandibular odontogenic deep neck abscesses. The patients' characteristics, laboratory tests, and radiographic findings were analyzed.
Results: One hundred eighteen patients with mandibular odontogenic deep neck abscesses were included. Bone resorption superior to the mylohyoid line and the related abscess formation in submandibular space or submental space were both significantly associated with the presence of sublingual space abscess. In addition, the type of causative tooth was not a risk factor for abscess formation in both the sublingual space and “submandibular or submental” space.
Conclusions: When an odontogenic lesion is located superior to the mylohyoid line, the abscess tends to initially form in the sublingual space and subsequently spread to the submandibular or submental space. Since any mandibular tooth can lead to abscess formation in these regions, oral and maxillofacial surgeons should carefully assess the anatomical position of the lesion and accurately identify the causative tooth.
en-copyright=
kn-copyright=
en-aut-name=IwataEiji
en-aut-sei=Iwata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ObataKyoichi
en-aut-sei=Obata
en-aut-mei=Kyoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikutaShogo
en-aut-sei=Kikuta
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanekoNaoki
en-aut-sei=Kaneko
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoKotaro
en-aut-sei=Sato
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KitagawaNorio
en-aut-sei=Kitagawa
en-aut-mei=Norio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsuoKatsuhisa
en-aut-sei=Matsuo
en-aut-mei=Katsuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SameshimaJunsei
en-aut-sei=Sameshima
en-aut-mei=Junsei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TachibanaAkira
en-aut-sei=Tachibana
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KawanoShintaro
en-aut-sei=Kawano
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KusukawaJingo
en-aut-sei=Kusukawa
en-aut-mei=Jingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AkashiMasaya
en-aut-sei=Akashi
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=4
en-affil=Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Nagoya University, Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=9
en-affil=Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
kn-affil=
affil-num=10
en-affil=Department of Oral and Maxillofacial Surgery, Kakogawa Central City Hospital
kn-affil=
affil-num=11
en-affil=Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
kn-affil=
affil-num=12
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Oral and Maxillofacial Surgery, Kobe University
kn-affil=
affil-num=14
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
en-keyword=causative tooth
kn-keyword=causative tooth
en-keyword=mylohyoid line
kn-keyword=mylohyoid line
en-keyword=odontogenic deep neck abscesses
kn-keyword=odontogenic deep neck abscesses
en-keyword=odontogenic deep neck infections
kn-keyword=odontogenic deep neck infections
en-keyword=transmission pathway
kn-keyword=transmission pathway
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=
article-no=
start-page=e2025-0034
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optimal Virtual-target Definition for Detecting Feeding Arteries of Renal Cell Carcinoma Using Automated Feeder-detection Software
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To determine the optimal virtual-target definition for detecting renal cell carcinoma feeders using transarterial computed tomography angiography with automated feeder-detection software.
Material and Methods: This retrospective study included 17 patients with 17 renal cell carcinomas who underwent transarterial ethiodized-oil marking before cryoablation. Tumor feeders were automatically detected on transarterial renal computed tomography angiography images using the automated feeder-detection software with three virtual-target definitions: small (ellipsoidal area maximized within the tumor contour), medium (ellipsoidal area covering the entire tumor with a minimal peripheral margin), and large (ellipsoidal area including the tumor and a 5-mm peripheral margin). The detected feeders were classified as true or false positives according to the findings of selective renal arteriography, by consensus of two interventional radiologists. Feeder-detection sensitivity and the mean number of false-positive feeders per tumor were calculated for each virtual-target definition.
Results: For 17 tumors, 25 feeding arteries were identified on the arteriography. The feeder-detection sensitivity of the software was 80.0% (20/25), 88.0% (22/25), and 48.0% (12/25) for small, medium, and large virtual targets, respectively. The mean ± standard deviation number of false-positive feeders per tumor was 0.82 ± 1.3, 1.41 ± 1.1, and 2.82 ± 1.6 when using small, medium, and large virtual-target definitions, respectively.
Conclusions: The detection rate of renal cell carcinoma feeders with the automated feeder-detection software varies according to the virtual-target definition. Using a medium virtual target, covering the entire tumor with a minimal peripheral margin, may provide the highest sensitivity and an acceptable number of false-positive feeders.
en-copyright=
kn-copyright=
en-aut-name=OkamotoSoichiro
en-aut-sei=Okamoto
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuiYusuke
en-aut-sei=Matsui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawabataTakahiro
en-aut-sei=Kawabata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TomitaKoji
en-aut-sei=Tomita
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MunetomoKazuaki
en-aut-sei=Munetomo
en-aut-mei=Kazuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UmakoshiNoriyuki
en-aut-sei=Umakoshi
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HigakiFumiyo
en-aut-sei=Higaki
en-aut-mei=Fumiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiology, Tsuyama Chuo Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Radiology, Medical Development Field, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=computed tomography angiography
kn-keyword=computed tomography angiography
en-keyword=kidney
kn-keyword=kidney
en-keyword=software
kn-keyword=software
en-keyword=therapeutic embolization
kn-keyword=therapeutic embolization
END
start-ver=1.4
cd-journal=joma
no-vol=71
cd-vols=
no-issue=11
article-no=
start-page=938
end-page=943
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mechanical Subpulmonary Support in Fontan Circulation: A Juvenile Porcine Experimental Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mechanical cavopulmonary assist (CPA) remains challenging for failing Fontan circulation. This study aimed to evaluate the hemodynamic impact of partial CPA using a juvenile porcine model. Six pigs (30 kg) underwent the Fontan procedure using a handmade Y-shaped graft. Total CPA was established by assisting both superior vena cava (SVC) and inferior vena cava (IVC) flow to the pulmonary artery, whereas partial CPA assisted only IVC flow using a centrifugal pump. Cavopulmonary assist flow was set to 100%, 50%, or 25% of pre-Fontan cardiac output (CO). Hemodynamics at baseline, after total CPA, and after partial CPA were compared using paired t-tests. Total CPA with 100% CO support increased CO and reduced SVC and IVC pressures compared to baseline (CO, 1.03 vs. 2.36 L/min; SVC pressure, 16.3 vs. 9.5 mm Hg; IVC pressure, 17.3 vs. 9.3 mm Hg, p < 0.05 for all). Partial CPA with 25% CO support increased CO and decreased IVC pressure, though SVC pressure increased (CO, 1.03 vs. 1.52 L/min; SVC pressure, 16.3 vs. 20.5 mm Hg; IVC pressure, 17.3 vs. 11.5 mm Hg, p < 0.05 for all). Although total CPA achieved optimal hemodynamics, partial CPA with 25% CO flow was effective, suggesting a feasible, noninvasive solution for patients with failing Fontan physiology.
en-copyright=
kn-copyright=
en-aut-name=SakodaNaoya
en-aut-sei=Sakoda
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EdakiDaichi
en-aut-sei=Edaki
en-aut-mei=Daichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KotaniYasuhiro
en-aut-sei=Kotani
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=From the Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=2
en-affil=From the Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=3
en-affil=From the Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=4
en-affil=From the Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=5
en-affil=From the Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=1
article-no=
start-page=95
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A case of a large venous ring around the mandibular condyle
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Anatomical details regarding venous drainage of the head and neck are an important matter for surgeons to avoid unnecessary complications such as hemorrhage. This report describes a case of the large venous ring around the mandibular condyle found in the cadaver. The left maxillofacial region of a latex-injected embalmed male cadaver (82 years of age at death) was dissected. The large two maxillary veins ran lateral to the capsule and superior to the mandibular notch and coursed posteroinferiorly to merge, and one trunk was formed at the posterior border of the ramus. It then received the superficial temporal vein superiorly to form the retromandibular vein (RMV). In addition, three maxillary veins were drained from the pterygoid venous plexus (PVP), medial to the ramus, one maxillary vein drained from the PVP into the RMV trunk, while two maxillary veins drained from the PVP into the anterior division of the RMV. All five large veins lateral and medial to the condyle drained from the PVP into the RMV. The knowledge of such an anatomical variation might prevent intraoperative bleeding in the temporomandibular joint region.
en-copyright=
kn-copyright=
en-aut-name=NishiKeitaro
en-aut-sei=Nishi
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkuiTatsuo
en-aut-sei=Okui
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KusukawaJingo
en-aut-sei=Kusukawa
en-aut-mei=Jingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=2
en-affil=Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine
kn-affil=
affil-num=6
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
en-keyword=Maxillary vein
kn-keyword=Maxillary vein
en-keyword=Temporomandibular joint
kn-keyword=Temporomandibular joint
en-keyword=Cadaver
kn-keyword=Cadaver
en-keyword=Anatomy
kn-keyword=Anatomy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250917
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of CT-assessed sarcopenia on the severity of odontogenic deep neck infections: a retrospective cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sarcopenia is increasingly recognized as a key predictor of adverse health outcomes. This study aimed to evaluate the impact of computed tomography-assessed sarcopenia (CT–SP) on the clinical severity and hospitalization duration of odontogenic deep neck infections (DNIs). Total of 119 patients admitted for odontogenic DNI treatment were included. Patients were divided into two groups by DNI clinical severity (severe or mild) and the patients' characteristics, including CT–SP based on skeletal muscle index (SMI), were compared between two groups. Multivariable logistic regression analysis was performed to identify independent risk factors for severe DNI. The correlation between SMI and hospitalization duration was assessed using Spearman’s rank correlation coefficient. Of the 119 patients, 60 (50.4%) presented with severe DNIs, including deep neck abscesses and necrotizing soft tissue infections. After adjusting for potential confounders, multivariable analysis identified CT–SP as the sole independent risk factor associated with severe DNI (Odds Ratio = 3.04; 95% Confidence Interval, 1.20–7.71; p = 0.019). Furthermore, SMI demonstrated a significant, weak negative correlation with the hospitalization duration (r = − 0.331, p < 0.001). CT–SP is a powerful, independent risk factor associated with severity in patients with odontogenic DNIs. This finding underscores the critical role of systemic host factors in the clinical course of maxillofacial infections and highlights the potential of opportunistic CT screening as a factor to consider in risk stratification in this vulnerable population.
en-copyright=
kn-copyright=
en-aut-name=KikutaShogo
en-aut-sei=Kikuta
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IwataEiji
en-aut-sei=Iwata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiChizuru
en-aut-sei=Kobayashi
en-aut-mei=Chizuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimuraHiroki
en-aut-sei=Kimura
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KinisadaYuki
en-aut-sei=Kinisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TachibanaAkira
en-aut-sei=Tachibana
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KusukawaJingo
en-aut-sei=Kusukawa
en-aut-mei=Jingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AkashiMasaya
en-aut-sei=Akashi
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Radiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Kakogawa Central City Hospital
kn-affil=
affil-num=8
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Oral and Maxillofacial Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=CT-assessed sarcopenia
kn-keyword=CT-assessed sarcopenia
en-keyword=Odontogenic deep neck infections
kn-keyword=Odontogenic deep neck infections
en-keyword=Severity
kn-keyword=Severity
en-keyword=Hospitalization duration
kn-keyword=Hospitalization duration
en-keyword=Skeletal muscle index
kn-keyword=Skeletal muscle index
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=11
article-no=
start-page=1446
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251109
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of Propofol-Encapsulated Liposomes and the Effect of Intranasal Administration on Bioavailability in Rabbits
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Propofol is frequently used as an intravenous anesthetic and is rapidly metabolized. Therefore, if it could be administered non-invasively (e.g., orally) as premedication, it might hasten emergence from anesthesia, thereby improving patient safety. However, it undergoes extensive first-pass metabolism in the liver and intestines, limiting the route for premedication. We evaluated whether intranasal delivery of a propofol-encapsulated liposome solution improves systemic exposure and bioavailability in rabbits. Methods: A propofol-encapsulated liposome solution was administered to rabbits via the intravenous, oral, and intranasal routes. Blood propofol concentrations were measured for up to 60 min after administration and the area under the concentration–time curve (AUC0–60) and bioavailability of the propofol-encapsulated liposome solution were compared with those of the non-encapsulated propofol formulation. The differences were tested by two-way analysis of variance (ANOVA) with Šidák’s post hoc multiple-comparisons test and the Mann–Whitney test (α = 0.05). Results: The AUC0–60 for blood propofol concentrations after intravenous administration was significantly higher with the propofol-encapsulated liposome solution than with the non-encapsulated propofol formulation (3038.8 ± 661.5 vs. 1929.8 ± 58.2 ng·min/mL; p = 0.0286). By contrast, no increase in blood propofol concentrations was observed after oral administration, whereas intranasal administration increased blood propofol concentrations and yielded significantly higher bioavailability compared with the non-encapsulated propofol formulation (16.4 ± 7.3% vs. 2.0 ± 1.2%; p = 0.0286). Conclusions: The findings of the present study suggest that intranasal liposomal propofol increased systemic availability compared with a non-encapsulated formulation, supporting further evaluation as a candidate premedication approach for propofol.
en-copyright=
kn-copyright=
en-aut-name=UjitaHitomi
en-aut-sei=Ujita
en-aut-mei=Hitomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiguchiHitoshi
en-aut-sei=Higuchi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiokaYukiko
en-aut-sei=Nishioka
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakeSaki
en-aut-sei=Miyake
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoRiko
en-aut-sei=Sato
en-aut-mei=Riko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyawakiTakuya
en-aut-sei=Miyawaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=liposome
kn-keyword=liposome
en-keyword=propofol
kn-keyword=propofol
en-keyword=bioavailability
kn-keyword=bioavailability
en-keyword=intranasal administration
kn-keyword=intranasal administration
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250807
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Performance Assessment of ChatGPT for the Board Qualification Examination of the Japanese Society for Oral and Maxillofacial Radiology
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this study is to assess the performance and utility of ChatGPT for the board qualification examination of the Japanese Society for Oral and Maxillofacial Radiology (JSOMR). We assessed ChatGPT responses to 149 multiple-choice questions written in Japanese for the board qualification examination of the JSOMR for the 3 years from 2020 to 2022. The questions were directly entered into ChatGPT-3.5 and ChatGPT-4 models manually one by one as a prompt. The accuracy rate was calculated and classified by year, type of multiple-choice question, and level of intellectual ability, and significant differences were noted. The accuracy rate of GPT-3.5 for the 3 years was 45.0% (51.0% for 2020, 34.0% for 2021, and 50.0% for 2022), while the accuracy rate of GPT-4 was 68.5% (73.5% for 2020, 62.0% for 2021, and 70.0% for 2022) for the board qualification examination of the JSOMR. GPT-4 had a significantly higher accuracy rate than GPT-3.5 in each year. On performance classified by the type of multiple-choice questions, GPT-4 performed significantly better than GPT-3.5. However, neither model performed well with questions that required interpretation or knowledge of Japanese law. The performance of GPT-4 was significantly superior to GPT-3.5 in the board qualification examination of the JSOMR, suggesting that the use of Chat GPT, especially ChatGPT-4, would be effective as a tool for learning and preparing for the examination.
en-copyright=
kn-copyright=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawazuToshiyuki
en-aut-sei=Kawazu
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HisatomiMiki
en-aut-sei=Hisatomi
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkadaShunsuke
en-aut-sei=Okada
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujikuraMamiko
en-aut-sei=Fujikura
en-aut-mei=Mamiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NambaYuri
en-aut-sei=Namba
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaSuzuka
en-aut-sei=Yoshida
en-aut-mei=Suzuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YoshidaSaori
en-aut-sei=Yoshida
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YanagiYoshinobu
en-aut-sei=Yanagi
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AsaumiJunichi
en-aut-sei=Asaumi
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Radiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Preliminary Examination Room, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Preliminary Examination Room, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=ChatGPT
kn-keyword=ChatGPT
en-keyword=GPT-3.5
kn-keyword=GPT-3.5
en-keyword=GPT-4
kn-keyword=GPT-4
en-keyword=Generative AI
kn-keyword=Generative AI
en-keyword=Large language model
kn-keyword=Large language model
en-keyword=Japanese Society for Oral and Maxillofacial Radiology
kn-keyword=Japanese Society for Oral and Maxillofacial Radiology
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=127
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250315
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical predictors of extubation failure in postoperative critically ill patients: a post-hoc analysis of a multicenter prospective observational study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Postoperative patients constitute majority of critically ill patients, although factors predicting extubation failure in this group of patients remain unidentified. Aiming to propose clinical predictors of reintubation in postoperative patients, we conducted a post-hoc analysis of a multicenter prospective observational study.
Methods This study included postoperative critically ill patients who underwent mechanical ventilation for > 24 h and were extubated after a successful 30-min spontaneous breathing trial. The primary outcome was reintubation within 48 h after extubation, and clinical predictors for reintubation were investigated using logistic regression analyses.
Results Among the 355 included patients, 10.7% required reintubation. Multivariable logistic regression identified that the number of endotracheal suctioning episodes during the 24 h before extubation and underlying respiratory disease or pneumonia occurrence were significantly associated with reintubation (adjusted odds ratio [OR] 1.11, 95% confidence interval [CI] 1.05–1.18, p < 0.001; adjusted OR 2.58, 95%CI 1.30–5.13, p = 0.007). The probability of reintubation was increased significantly with the higher frequency of endotracheal suctioning, as indicated by restricted cubic splines. Subgroup analysis showed that these predictors were consistently associated with reintubation regardless of the use of noninvasive respiratory support after extubation.
Conclusions Endotracheal suctioning frequency and respiratory complications were identified as independent predictors of reintubation. These readily obtainable predictors may aid in decision-making regarding the extubation of postoperative patients.
en-copyright=
kn-copyright=
en-aut-name=HattoriJun
en-aut-sei=Hattori
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaAiko
en-aut-sei=Tanaka
en-aut-mei=Aiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KosakaJunko
en-aut-sei=Kosaka
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiraoOsamu
en-aut-sei=Hirao
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FurushimaNana
en-aut-sei=Furushima
en-aut-mei=Nana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MakiYuichi
en-aut-sei=Maki
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KabataDaijiro
en-aut-sei=Kabata
en-aut-mei=Daijiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UchiyamaAkinori
en-aut-sei=Uchiyama
en-aut-mei=Akinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=EgiMoritoki
en-aut-sei=Egi
en-aut-mei=Moritoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MizobuchiSatoshi
en-aut-sei=Mizobuchi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KotakeYoshifumi
en-aut-sei=Kotake
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ShintaniAyumi
en-aut-sei=Shintani
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KoyamaYukiko
en-aut-sei=Koyama
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YoshidaTakeshi
en-aut-sei=Yoshida
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujinoYuji
en-aut-sei=Fujino
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Faculty of Medicine, Osaka University
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology, Osaka General Medical Center
kn-affil=
affil-num=5
en-affil=Department of Anesthesiology and Intensive Care Medicine, Kobe University Hospital
kn-affil=
affil-num=6
en-affil=Department of Anesthesiology, Toho University Ohashi Medical Center
kn-affil=
affil-num=7
en-affil=Center for Mathematical and Data Science, Kobe University
kn-affil=
affil-num=8
en-affil=Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Anesthesia, Kyoto University Hospital
kn-affil=
affil-num=10
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Anesthesiology and Intensive Care Medicine, Kobe University Hospital
kn-affil=
affil-num=12
en-affil=Department of Anesthesiology, Toho University Ohashi Medical Center
kn-affil=
affil-num=13
en-affil=Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University
kn-affil=
affil-num=14
en-affil=Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine
kn-affil=
en-keyword=Reintubation
kn-keyword=Reintubation
en-keyword=Extubation failure
kn-keyword=Extubation failure
en-keyword=Endotracheal suctioning
kn-keyword=Endotracheal suctioning
en-keyword=Postoperative patient
kn-keyword=Postoperative patient
en-keyword=Clinical predictor
kn-keyword=Clinical predictor
en-keyword=Critical care
kn-keyword=Critical care
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=DSOK-0011 Potentially Regulates Circadian Misalignment and Affects Gut Microbiota Composition in Activity-Based Anorexia Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Anorexia nervosa (AN) is a metabolic-psychiatric disorder characterized by severe weight loss, hypercortisolemia, and hypothalamic–pituitary–adrenal (HPA) axis activation. In this study, we investigated the effect of inhibiting cortisol regeneration via the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) on the pathophysiology of AN.
Method: Female C57BL/6J mice underwent a 7-day activity-based anorexia (ABA) paradigm, involving 3 h daily feeding and free access to wheels, until 25% body weight loss or experiment completion. Mice were orally treated once daily with a potent 11β-HSD1 inhibitor, DSOK-0011, or vehicle. Body weight, food intake, and activity transitions were recorded; plasma corticosterone and cholesterol levels were measured using a fluorometric assay; gut microbiota were analyzed using 16S rRNA sequencing; and hippocampal glial cells were analyzed using immunohistochemistry.
Results: DSOK-0011-treated mice exhibited a modest but significant increase in postprandial wheel-running activity compared to baseline (4–5 p.m., p = 0.018; 5–6 p.m., p = 0.043), whereas vehicle-treated mice showed higher preprandial activity (9–10 a.m., p = 0.0229). Gut microbiota analysis revealed increased alpha diversity in ABA mice, with a specific enrichment of the Lachnospiraceae family in the DSOK-0011 group. However, DSOK-0011 did not significantly affect body weight, food intake, corticosterone, and lipid levels, or hippocampal glial cell populations.
Conclusion: Inhibition of 11β-HSD1 by DSOK-0011 was associated with microbiota alterations and subtle shifts in activity timing under energy-deficient conditions. These findings suggest that peripheral glucocorticoid metabolism may influence microbial and behavioral responses in the ABA model, although its metabolic impact appears limited in the acute phase.
en-copyright=
kn-copyright=
en-aut-name=KawaiHiroki
en-aut-sei=Kawai
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WadaNanami
en-aut-sei=Wada
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyazakiKenji
en-aut-sei=Miyazaki
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatoTaro
en-aut-sei=Kato
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HoriuchiYoshihiro
en-aut-sei=Horiuchi
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KiriiHiroshi
en-aut-sei=Kirii
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NguyenHoang Duy
en-aut-sei=Nguyen
en-aut-mei=Hoang Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HinotsuKenji
en-aut-sei=Hinotsu
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OhyaYoshio
en-aut-sei=Ohya
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsadaTakahiro
en-aut-sei=Asada
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YokodeAkiyoshi
en-aut-sei=Yokode
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OkahisaYuko
en-aut-sei=Okahisa
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MiyazakiHaruko
en-aut-sei=Miyazaki
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Sumitomo Pharma Co. Ltd
kn-affil=
affil-num=5
en-affil=Sumitomo Pharma Co. Ltd
kn-affil=
affil-num=6
en-affil=Sumitomo Pharma Co. Ltd
kn-affil=
affil-num=7
en-affil=Department of Animal Applied Microbiology, Okayama University Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=8
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=11β-HSD1
kn-keyword=11β-HSD1
en-keyword=activity-based anorexia
kn-keyword=activity-based anorexia
en-keyword=anorexia nervosa
kn-keyword=anorexia nervosa
en-keyword=corticosterone
kn-keyword=corticosterone
en-keyword=eating disorders
kn-keyword=eating disorders
en-keyword=microbiota
kn-keyword=microbiota
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=1
article-no=
start-page=22
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Protective impact of landiolol against acute lung injury following hemorrhagic shock and resuscitation in rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hemorrhagic shock and resuscitation (HSR) induces pulmonary inflammation, leading to acute lung injury (ALI). Notably, blocking β1 receptors can lead to organ protection through anti‑inflammatory and anti‑apoptotic effects. Additionally, although the β1 receptor pathway is blocked by the β1 blocker, the β2 receptor pathway may be preserved and activate the 5' adenosine monophosphate‑activated protein kinase (AMPK) pathway. The present study aimed to examine whether administration of the β1 blocker landiolol could achieve lung protection in a model of HSR‑ALI, alongside improvements in inflammation and apoptosis. Male Sprague‑Dawley rats underwent hemorrhage keeping their mean arterial pressure at 30 mmHg for 1 h. Resuscitation by reinfusion was initiated to restore blood pressure to pre‑hemorrhage levels for >15 min, followed by a 45‑min stabilization period to create the HSR‑ALI model. Landiolol (100 mg/kg/min) or saline was continuously administered after resuscitation. The lung tissues, which were collected for assessing inflammation and apoptosis‑related damage, underwent analyses, including histological examination, neutrophil count, assessment of lung wet/dry weight ratio, detection of the mRNA levels of tumor necrosis factor‑α (TNF‑α) and inducible nitric oxide synthase (iNOS), identification of terminal deoxynucleotidyl transferase dUTP nick‑end labeling (TUNEL)‑positive cells, and evaluation of caspase‑3 expression. In addition, phosphorylated AMPKα (pAMPKα) expression was tested via western blotting. Compared with the HSR/saline group, the HSR/landiolol group demonstrated a reduction in lung tissue damage score, and significant reductions in neutrophil count, lung wet/dry weight ratio, lung TNF‑α and iNOS mRNA levels, TUNEL‑positive cells and cleaved caspase‑3 expression. Furthermore, landiolol administration following HSR treatment increased pAMPKα expression. No significant hypotension occurred between the HSR/landiolol and HSR/saline groups; and blood loss did not differ significantly between the groups. In conclusion, landiolol administration after HSR reduced lung inflammation and apoptosis, suggesting a potential improvement in tissue damage. Furthermore, pAMPKα activation in the HSR/landiolol group may be the mechanism underlying the pulmonary protective effects of landiolol.
en-copyright=
kn-copyright=
en-aut-name=SakamotoRisa
en-aut-sei=Sakamoto
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimizuHiroko
en-aut-sei=Shimizu
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraRyu
en-aut-sei=Nakamura
en-aut-mei=Ryu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LuYifu
en-aut-sei=Lu
en-aut-mei=Yifu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiYaqiang
en-aut-sei=Li
en-aut-mei=Yaqiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriEmiko
en-aut-sei=Omori
en-aut-mei=Emiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiToru
en-aut-sei=Takahashi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Medical School
kn-affil=
affil-num=4
en-affil=Department of Human Anatomy, Shantou University Medical College
kn-affil=
affil-num=5
en-affil=Department of Anesthesiology and Resuscitology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Anesthesiology and Resuscitology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Anesthesiology, Okayama Saidaiji Hospital
kn-affil=
affil-num=8
en-affil=Department of Anesthesiology and Resuscitology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=HSR
kn-keyword=HSR
en-keyword=lung injury
kn-keyword=lung injury
en-keyword=landiolol
kn-keyword=landiolol
en-keyword=β1 blocker
kn-keyword=β1 blocker
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=apoptosis
kn-keyword=apoptosis
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250909
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Current Status of Continuous Renal Replacement Therapy in Japanese Intensive Care Units: A Multicenter Retrospective Observational Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Continuous renal replacement therapy (CRRT) is often performed for critically ill patients in intensive care units (ICUs), but its optimal indication and settings have yet to be determined. Thus, we aimed to describe the current status of CRRT in Japan through a multicenter retrospective observational study. Methods: Adult ICU patients receiving CRRT at 18 tertiary hospitals in Japan (up to 100 patients from each hospital over the past year) were retrospectively enrolled. Patients receiving CRRT for <24 h or intermittent renal replacement therapy together with CRRT were excluded. The primary outcomes were the temporal changes in the electrolyte levels, acid-base balance, and uremia-related small solute concentrations. The secondary outcomes included potassium (K) and phosphate (P) supplementations during CRRT. Results: Altogether, 1,045 patients were enrolled. The median CRRT duration and dose were 4.4 days and 17.3 mL/kg/h, respectively. The electrolyte levels, acid-base balance, and uremia-related small solute concentrations returned to normal by day 4 of treatment. A total of 732 (70.0%) patients received K supplementation, and only a few patients had hypokalemia until day 5. Moreover, 414 (39.6%) patients received P supplementation, and approximately 30%–50% of the patients had hypophosphatemia until day 5. Conclusion: The CRRT dose in Japan was lower than that was recommended by the Kidney Disease: Improving Global Outcomes guideline. The electrolyte level abnormalities and acid-base imbalances of the studied patients were improved within 72–96 h of CRRT. Contrarily, K and P supplementations were common, indicating that the current CRRT solutions need to be modified.
en-copyright=
kn-copyright=
en-aut-name=NakanoHidehiko
en-aut-sei=Nakano
en-aut-mei=Hidehiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InokuchiRyota
en-aut-sei=Inokuchi
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InoueYutaro
en-aut-sei=Inoue
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekinoMotohiro
en-aut-sei=Sekino
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KakihanaYasuyuki
en-aut-sei=Kakihana
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HattoriNoriyuki
en-aut-sei=Hattori
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyazakiMariko
en-aut-sei=Miyazaki
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TokuhiraNatsuko
en-aut-sei=Tokuhira
en-aut-mei=Natsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujitaniShigeki
en-aut-sei=Fujitani
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TodaYuichiro
en-aut-sei=Toda
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhchiYoshifumi
en-aut-sei=Ohchi
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IchibaShingo
en-aut-sei=Ichiba
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MasudaYoshiki
en-aut-sei=Masuda
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NishidaOsamu
en-aut-sei=Nishida
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=AbeTakaya
en-aut-sei=Abe
en-aut-mei=Takaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MoriguchiTakeshi
en-aut-sei=Moriguchi
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SatohKasumi
en-aut-sei=Satoh
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=IdeiMasafumi
en-aut-sei=Idei
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NagataHiromasa
en-aut-sei=Nagata
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=DoiKent
en-aut-sei=Doi
en-aut-mei=Kent
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Department of Emergency and Critical Care Medicine, The University of Tokyo Hospital
kn-affil=
affil-num=2
en-affil=Department of Emergency and Critical Care Medicine, The University of Tokyo Hospital
kn-affil=
affil-num=3
en-affil=Department of Emergency and Critical Care Medicine, The University of Tokyo Hospital
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Tohoku University Hospital
kn-affil=
affil-num=8
en-affil=Department of Intensive Care, Osaka University Hospital
kn-affil=
affil-num=9
en-affil=Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Anesthesiology and Intensive Care Medicine, Kawasaki Medical School
kn-affil=
affil-num=11
en-affil=Department of Anesthesiology and Intensive Care, Oita University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Intensive Care Medicine, Tokyo Women’s Medical University
kn-affil=
affil-num=14
en-affil=Department of Intensive Care Medicine, Sapporo Medical University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Anesthesiology and Critical Care Medicine, School of Medicine, Fujita Health University
kn-affil=
affil-num=16
en-affil=Department of Urology, Iwate Medical University
kn-affil=
affil-num=17
en-affil=Department of Emergency and Critical Care Medicine, University of Yamanashi Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Emergency and Critical Care Medicine, Akita University Graduate School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Intensive Care Medicine, Yokohama City University
kn-affil=
affil-num=20
en-affil=Department of Anesthesiology, Keio University School of Medicine
kn-affil=
affil-num=21
en-affil=Department of Emergency and Critical Care Medicine, The University of Tokyo Hospital
kn-affil=
en-keyword=Acute kidney injury
kn-keyword=Acute kidney injury
en-keyword=Renal failure
kn-keyword=Renal failure
en-keyword=Continuous renal replacement therapy
kn-keyword=Continuous renal replacement therapy
en-keyword=Electrolytes
kn-keyword=Electrolytes
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=2
article-no=
start-page=273
end-page=281
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=T2 high-signal-intensity zone of the spinal cord dorsal horn in patients treated with spinal cord stimulation for herpes zoster-associated pain: a retrospective case–control study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose In patients with herpes zoster-associated pain (ZAP), magnetic resonance imaging (MRI) has revealed T2 high-signal intensity zones (MRI T2 HIZ) in the dorsal horn of the spinal cord, associated with postherpetic neuralgia (PHN). We retrospectively analyzed the relationship between PHN and MRI T2 HIZ in patients with refractory ZAP in the subacute phase who underwent temporary spinal cord stimulation therapy (tSCS).
Methods This single-center, case–control study included patients who underwent tSCS for refractory ZAP between 2010 and 2018. MRIs were re-assessed for the presence of T2 HIZ in the dorsal horn of the spinal cord. Patients were divided into T2 HIZ( +) and T2 HIZ(−) groups. Patients with a numerical rating score (NRS) ≥ 3 at the last visit were defined as PHN. The NRS values and the incidence rate of PHN were compared between the two groups.
Results Of the 67 cases extracted, 38 were included in the analysis: 22 in T2 HIZ( +) group and 16 in T2 HIZ(−) group. No significant differences were observed in background factors between the two groups. However, the T2 HIZ( +) group had a significantly higher NRS at the final visit (T2 HIZ( +):3.8 ± 2.1, T2 HIZ(−):1.4 ± 1.5; P < 0.05) and had significantly more patients with PHN than the T2 HIZ(−) group (T2 HIZ( +) vs. T2 HIZ(−), 15/22 (68%) vs. 3/16 (19%); odds ratio = 8.67; 95% confidence interval, 1.7–63.3).
Conclusion T2HIZ is detected in more than half of refractory ZAP, and pain is more likely to remain after tSCS treatment in the T2HIZ( +) group.
en-copyright=
kn-copyright=
en-aut-name=ArakawaKyosuke
en-aut-sei=Arakawa
en-aut-mei=Kyosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakagawaMasayuki
en-aut-sei=Nakagawa
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AbeYoichiro
en-aut-sei=Abe
en-aut-mei=Yoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pain Management Clinic, NTT Medical Center Tokyo
kn-affil=
affil-num=3
en-affil=Department of Pain Management Clinic, NTT Medical Center Tokyo
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Herpes zoster
kn-keyword=Herpes zoster
en-keyword=Magnetic resonance imaging
kn-keyword=Magnetic resonance imaging
en-keyword=Postherpetic neuralgia
kn-keyword=Postherpetic neuralgia
en-keyword=Refractory zoster-associated pain
kn-keyword=Refractory zoster-associated pain
en-keyword=Temporary spinal cord stimulation
kn-keyword=Temporary spinal cord stimulation
END
start-ver=1.4
cd-journal=joma
no-vol=215
cd-vols=
no-issue=
article-no=
start-page=110706
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Compression only CPR and mortality in pediatric out-of-hospital cardiac arrest during COVID-19 pandemic
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The COVID-19 pandemic influenced resuscitation practices worldwide, leading to a notable decline in rescue breathing cardiopulmonary resuscitation (RB-CPR), even in pediatric out-of-hospital cardiac arrest (OHCA). Understanding the impact of this decline is important to assess the role of rescue breathing in pediatric resuscitation. This study aimed to evaluate the impact of the reduced RB-CPR during the COVID-19 pandemic on mortality and neurological outcomes among pediatric OHCA patients in Japan.
Methods: This retrospective cohort study utilized data from the nationwide All-Japan Utstein Registry for pediatric OHCA patients (≤17 years) who received bystander CPR between January 2017 and December 2021. Data were compared in pre-COVID-19 (2017–2019) versus pandemic (2020–2021) periods. Bystander CPR were classified as RB-CPR or chest compression-only CPR (CO-CPR). The primary outcome was 30-day mortality, with secondary outcomes including the absence of return of spontaneous circulation and unfavorable neurological outcomes (Cerebral Performance Category scores of 3–5). Adjusted risk ratios (aRR) with 95 % confidence intervals (CI) were estimated using Poisson regression.
Results: Of 7,162 pediatric OHCA cases, 3,352 (46.8 %) received bystander CPR. RB-CPR decreased from 33.0 % pre-pandemic to 21.1 % during the pandemic. CO-CPR was associated with higher 30-day mortality (aRR: 1.16; 95 % CI: 1.08–1.24) and unfavorable neurological outcomes (aRR: 1.10; 95 % CI: 1.05–1.16). These trends were consistent across age groups and arrest etiologies, particularly for non-cardiac causes. More significantly, the decrease in RB-CPR was estimated to contribute to 10.7 excess deaths annually during the pandemic.
Conclusions: The findings highlight the importance of rescue breathing in pediatric OHCA. CO-CPR, while suitable for adults, may compromise outcomes in children. Emphasizing rescue breathing in pediatric resuscitation training and integrating infection control measures is essential for future public health emergencies.
en-copyright=
kn-copyright=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsumotoNaomi
en-aut-sei=Matsumoto
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cardiopulmonary resuscitation
kn-keyword=Cardiopulmonary resuscitation
en-keyword=Out-of-hospital
kn-keyword=Out-of-hospital
en-keyword=Pediatrics
kn-keyword=Pediatrics
en-keyword=Artificial respiration
kn-keyword=Artificial respiration
en-keyword=COVID-19 pandemic
kn-keyword=COVID-19 pandemic
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002115
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Fungal and Protist Viruses Subcommittee, 2025
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Fungal and Protist Viruses Subcommittee (SC) of the International Committee on Taxonomy of Viruses (ICTV) has received a total of eight taxonomic proposals for the 2024 annual cycle. The extent of proposed changes varied, including nomenclatural updates, creation of new taxa and reorganization of established taxa. Following the ICTV procedures, all proposals were reviewed and voted upon by the members of the Executive Committee with ratification in March 2025. As a result, a total of 52 species in the families Botourmiaviridae and Marnaviridae were renamed to comply with the mandated binomial format. A new genus has been added to the dsRNA virus family Amalgaviridae, while two new families, Splipalmiviridae (Wolframvirales) and Mycoalphaviridae (Hepelivirales), were created to classify new groups of positive-sense (+) RNA mycoviruses. The class Arfiviricetes (Cressdnaviricota) was expanded by a new order Lineavirales and a new family Oomyviridae of ssDNA viruses. Additionally, a new class Orpoviricetes was created in the kingdom Orthornavirae to classify a group of bisegmented (+)RNA viruses reported from fungi and oomycetes. Finally, the order Pimascovirales was reorganized to better depict evolutionary relationships of pithoviruses and related viruses with large dsDNA genomes. The summary of updates in the taxonomy of fungal and protist viruses presented here is limited to taxa within the remit of this Subcommittee. For information on taxonomy changes on other fungal viruses closely related to animal and/or plant viruses, please see reports from sister ICTV Subcommittees (i.e. Plant Virus SC and Animal dsRNA and ssRNA(−) Viruses SC).
en-copyright=
kn-copyright=
en-aut-name=SabanadzovicSead
en-aut-sei=Sabanadzovic
en-aut-mei=Sead
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AbergelChantal
en-aut-sei=Abergel
en-aut-mei=Chantal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AyllónMarı́a A.
en-aut-sei=Ayllón
en-aut-mei=Marı́a A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BotellaLeticia
en-aut-sei=Botella
en-aut-mei=Leticia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=CanutiMarta
en-aut-sei=Canuti
en-aut-mei=Marta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChibaYuto
en-aut-sei=Chiba
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ClaverieJean-Michel
en-aut-sei=Claverie
en-aut-mei=Jean-Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CouttsRobert H.A.
en-aut-sei=Coutts
en-aut-mei=Robert H.A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DaghinoStefania
en-aut-sei=Daghino
en-aut-mei=Stefania
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=DonaireLivia
en-aut-sei=Donaire
en-aut-mei=Livia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ForgiaMarco
en-aut-sei=Forgia
en-aut-mei=Marco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HejnaOndřej
en-aut-sei=Hejna
en-aut-mei=Ondřej
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=JiaJichun
en-aut-sei=Jia
en-aut-mei=Jichun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=JiangDaohong
en-aut-sei=Jiang
en-aut-mei=Daohong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=Kotta-LoizouIoly
en-aut-sei=Kotta-Loizou
en-aut-mei=Ioly
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=LangAndrew S.
en-aut-sei=Lang
en-aut-mei=Andrew S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=LegendreMatthieu
en-aut-sei=Legendre
en-aut-mei=Matthieu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=Lee MarzanoShin-Yi
en-aut-sei=Lee Marzano
en-aut-mei=Shin-Yi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NervaLuca
en-aut-sei=Nerva
en-aut-mei=Luca
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=PénzesJudit
en-aut-sei=Pénzes
en-aut-mei=Judit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=PoimalaAnna
en-aut-sei=Poimala
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=RigouSofia
en-aut-sei=Rigou
en-aut-mei=Sofia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=SatoYukiyo
en-aut-sei=Sato
en-aut-mei=Yukiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=ShamsiWajeeha
en-aut-sei=Shamsi
en-aut-mei=Wajeeha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=TurinaMassimo
en-aut-sei=Turina
en-aut-mei=Massimo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=UrayamaSyun-ichi
en-aut-sei=Urayama
en-aut-mei=Syun-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=VainioEeva J.
en-aut-sei=Vainio
en-aut-mei=Eeva J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=XieJiatao
en-aut-sei=Xie
en-aut-mei=Jiatao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
kn-affil=
affil-num=2
en-affil=Information Génomique & Structurale, UMR7256, CNRS & Aix-Marseille Université, Marseille, IMM, IM2B, IOM
kn-affil=
affil-num=3
en-affil=Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM)
kn-affil=
affil-num=4
en-affil=Forest Protection and Wildlife Management Mendel University in Brno
kn-affil=
affil-num=5
en-affil=Department of Veterinary and Animal Sciences, University of Copenhagen
kn-affil=
affil-num=6
en-affil=School of Agriculture, Meiji University
kn-affil=
affil-num=7
en-affil=Information Génomique & Structurale, UMR7256, CNRS & Aix-Marseille Université, Marseille, IMM, IM2B, IOM
kn-affil=
affil-num=8
en-affil=School of Health, Medicine and Life Sciences, University of Hertfordshire
kn-affil=
affil-num=9
en-affil=Institute for Sustainable Plant Protection, National Research Council of Italy
kn-affil=
affil-num=10
en-affil=Centro de Edafología y Biología Aplicada del Segura-CSIC
kn-affil=
affil-num=11
en-affil=Institute for Sustainable Plant Protection, CNR
kn-affil=
affil-num=12
en-affil=Department of Genetics and Biotechnologies, University of South Bohemia
kn-affil=
affil-num=13
en-affil=College of Plant Protection, Shanxi Agricultural University
kn-affil=
affil-num=14
en-affil=College of Plant Science and Technology, Huazhong Agricultural University
kn-affil=
affil-num=15
en-affil=School of Health, Medicine and Life Sciences, University of Hertfordshire
kn-affil=
affil-num=16
en-affil=Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=17
en-affil=Department of Biology, Memorial University of Newfoundland
kn-affil=
affil-num=18
en-affil=Information Génomique & Structurale, UMR7256, CNRS & Aix-Marseille Université, Marseille, IMM, IM2B, IOM
kn-affil=
affil-num=19
en-affil=United States Department of Agriculture, Agricultural Research Service, Application Technology Research Unit
kn-affil=
affil-num=20
en-affil=Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology
kn-affil=
affil-num=21
en-affil=Department of Entomology, Texas A&M University
kn-affil=
affil-num=22
en-affil=Natural Resources Institute Finland (Luke)
kn-affil=
affil-num=23
en-affil=Information Génomique & Structurale, UMR7256, CNRS & Aix-Marseille Université, Marseille, IMM, IM2B, IOM
kn-affil=
affil-num=24
en-affil=Department of Biology, Institute for Plant Sciences, University of Cologne
kn-affil=
affil-num=25
en-affil=Department of Molecular Biology and Genetics, Aarhus University
kn-affil=
affil-num=26
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=27
en-affil=Department of Plant Protection, School of Agriculture, The University of Jordan
kn-affil=
affil-num=28
en-affil=Department of Life and Environmental Sciences, University of Tsukuba
kn-affil=
affil-num=29
en-affil=Natural Resources Institute Finland (Luke)
kn-affil=
affil-num=30
en-affil=College of Plant Science and Technology, Huazhong Agricultural University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=7
article-no=
start-page=002079
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250725
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Virus taxonomy proposal summaries: a searchable and citable resource to disseminate virus taxonomy advances
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Taxonomic classification of cellular organisms requires the publication of descriptions and proposed names of species and the deposition of specimens. Virus taxonomy is developed through a different system of annual submission of formal taxonomy proposals (TPs) that can be submitted by anyone but are typically prepared by a study group appointed by the International Committee on Taxonomy of Viruses (ICTV) and consisting of experts on a particular group of viruses. These are initially evaluated by an expert subcommittee and by the executive committee (EC) of the ICTV. EC-approved TPs are then submitted for evaluation and a ratification vote by the wider ICTV membership. Following ratification, the new taxonomy is annually updated in the Master Species List, associated databases and bioinformatic resources. The process is consistent, creates traceability in assignments and supports a fully evaluated, hierarchical classification and nomenclature of all taxonomic ranks from species to realms. The structure also facilitates large-scale and coordinated changes to virus taxonomy, such as the recent introduction of a binomial species nomenclature.
TPs are available on the ICTV website after ratification, but they are not indexed in bibliographic databases and are not easily cited. Authors of TPs do not receive citation credit for adopted proposals, and their voluntary contributions are largely invisible in the published literature. For greater visibility of TPs and their authors, the ICTV will commence the annual publication of summaries of all TPs from each ICTV subcommittee. These summaries will provide a searchable compendium of all annual taxonomy changes and additions as well as direct links to the Master Species List and other ICTV bioinformatic resources. Their publication will provide due credit and citations for their authors, form the basis for disseminating taxonomy decisions and promote greater visibility and accessibility to taxonomy changes for the virology community.
en-copyright=
kn-copyright=
en-aut-name=MayneRichard
en-aut-sei=Mayne
en-aut-mei=Richard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SimmondsPeter
en-aut-sei=Simmonds
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SmithDonald B.
en-aut-sei=Smith
en-aut-mei=Donald B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AdriaenssensEvelien M.
en-aut-sei=Adriaenssens
en-aut-mei=Evelien M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LefkowitzElliot J.
en-aut-sei=Lefkowitz
en-aut-mei=Elliot J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OksanenHanna M.
en-aut-sei=Oksanen
en-aut-mei=Hanna M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZerbiniFrancisco Murilo
en-aut-sei=Zerbini
en-aut-mei=Francisco Murilo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Alfenas-ZerbiniPoliane
en-aut-sei=Alfenas-Zerbini
en-aut-mei=Poliane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AylwardFrank O
en-aut-sei=Aylward
en-aut-mei=Frank O
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=Freitas-AstúaJuliana
en-aut-sei=Freitas-Astúa
en-aut-mei=Juliana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HendricksonR. Curtis
en-aut-sei=Hendrickson
en-aut-mei=R. Curtis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HughesHolly R.
en-aut-sei=Hughes
en-aut-mei=Holly R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KrupovicMart
en-aut-sei=Krupovic
en-aut-mei=Mart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KuhnJens H.
en-aut-sei=Kuhn
en-aut-mei=Jens H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ŁobockaMałgorzata
en-aut-sei=Łobocka
en-aut-mei=Małgorzata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MushegianArcady R.
en-aut-sei=Mushegian
en-aut-mei=Arcady R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=PenzesJudit
en-aut-sei=Penzes
en-aut-mei=Judit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MuñozAlejandro Reyes
en-aut-sei=Muñoz
en-aut-mei=Alejandro Reyes
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=RobertsonDavid L.
en-aut-sei=Robertson
en-aut-mei=David L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=RouxSimon
en-aut-sei=Roux
en-aut-mei=Simon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=RubinoLuisa
en-aut-sei=Rubino
en-aut-mei=Luisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=SabanadzovicSead
en-aut-sei=Sabanadzovic
en-aut-mei=Sead
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TurnerDann
en-aut-sei=Turner
en-aut-mei=Dann
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=Van DoorslaerKoenraad
en-aut-sei=Van Doorslaer
en-aut-mei=Koenraad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=VarsaniArvind
en-aut-sei=Varsani
en-aut-mei=Arvind
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
affil-num=1
en-affil=Nuffield Department of Medicine, University of Oxford
kn-affil=
affil-num=2
en-affil=Nuffield Department of Medicine, University of Oxford
kn-affil=
affil-num=3
en-affil=Nuffield Department of Medicine, University of Oxford
kn-affil=
affil-num=4
en-affil=Quadram Institute Bioscience
kn-affil=
affil-num=5
en-affil=Department of Microbiology, University of Alabama at Birmingham
kn-affil=
affil-num=6
en-affil=Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki
kn-affil=
affil-num=7
en-affil=Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa
kn-affil=
affil-num=8
en-affil=Departamento de Microbiologia, Universidade Federal de Viçosa
kn-affil=
affil-num=9
en-affil=Department of Biological Sciences, Virginia Tech
kn-affil=
affil-num=10
en-affil=Embrapa Cassava and Fruits, Cruz das Almas
kn-affil=
affil-num=11
en-affil=Department of Microbiology, University of Alabama at Birmingham
kn-affil=
affil-num=12
en-affil=Centers for Disease Control and Prevention
kn-affil=
affil-num=13
en-affil=Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit
kn-affil=
affil-num=14
en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health
kn-affil=
affil-num=15
en-affil=Institute of Biochemistry and Biophysics of the Polish Academy of Sciences
kn-affil=
affil-num=16
en-affil=Division of Molecular and Cellular Biosciences, National Science Foundation
kn-affil=
affil-num=17
en-affil=Institute for Quantitative Biomedicine, Rutgers University
kn-affil=
affil-num=18
en-affil=Departamento de Ciencias Biológicas, Universidad de los Andes
kn-affil=
affil-num=19
en-affil=MRC-University of Glasgow Centre for Virus Research
kn-affil=
affil-num=20
en-affil=Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory
kn-affil=
affil-num=21
en-affil=Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari
kn-affil=
affil-num=22
en-affil=Department of Agricultural Science and Plant Protection, Mississippi State University
kn-affil=
affil-num=23
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=24
en-affil=Molecular Biology, University of the West of England
kn-affil=
affil-num=25
en-affil=Department of Immunobiology, School of Animal and Comparative Biomedical Sciences, BIO5 Institute, University of Arizona Cancer Center
kn-affil=
affil-num=26
en-affil=The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University
kn-affil=
en-keyword=ICTV
kn-keyword=ICTV
en-keyword=master species list
kn-keyword=master species list
en-keyword=taxonomy proposal
kn-keyword=taxonomy proposal
en-keyword=virus taxonomy
kn-keyword=virus taxonomy
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=
article-no=
start-page=101057
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mid-term (30- to 90-day) neurological changes in out-of-hospital cardiac arrest survivors receiving extracorporeal cardiopulmonary resuscitation: a nationwide retrospective study (the JAAM-OHCA registry)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Few studies have examined mid-term neurological changes in out-of-hospital cardiac arrest (OHCA) patients after receiving extracorporeal cardiopulmonary resuscitation (ECPR). This study aimed to evaluate neurological improvements between 30 and 90 days in OHCA patients treated with ECPR or conventional cardiopulmonary resuscitation (CCPR) using a large nationwide cohort.
Methods: This retrospective multicenter study used data from a Japanese nationwide OHCA registry. Participants were categorized into ECPR and CCPR groups based on the initial resuscitation method. Neurological changes between 30 and 90 days were assessed using Cerebral Performance Category (CPC) scores. The primary outcome was neurological improvement, defined as an improvement in CPC score during this period.
Results: A total of 4467 OHCA survivors at 30 days were included, 669 in the ECPR group and 3798 in the CCPR group. At 30 days, favorable neurological outcomes were observed in 318 ECPR patients (47.5 %) and 2103 CCPR patients (55.4 %). Neurological improvement between 30 and 90 days was more frequent in the ECPR group (83 [12.4 %] vs. 258 [6.7 %]). There was no significant difference in 90-day mortality between the two groups (82 [12.2 %] vs. 519 [13.6 %]). ECPR was independently associated with 30- to 90-day neurological improvement (adjusted odds ratio (OR) 2.01; 95 % confidence interval (CI), 1.38–2.93) but was not associated with 90-day mortality (adjusted OR 1.11; 95 % CI, 0.77–1.59).
Conclusion: ECPR was associated with a greater likelihood of neurological improvement between 30 and 90 days. By 90 days, mortality was nearly the same in both groups.
en-copyright=
kn-copyright=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UedaYoshiyuki
en-aut-sei=Ueda
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=2
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=3
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=4
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=5
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=6
en-affil=Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Epidemiology
kn-affil=
affil-num=7
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
affil-num=8
en-affil=Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine
kn-affil=
en-keyword=Post-cardiac arrest syndrome
kn-keyword=Post-cardiac arrest syndrome
en-keyword=Cardiac arrest
kn-keyword=Cardiac arrest
en-keyword=ECPR
kn-keyword=ECPR
en-keyword=Patient outcome assessment
kn-keyword=Patient outcome assessment
en-keyword=Prognostication
kn-keyword=Prognostication
en-keyword=Venoarterial ECMO
kn-keyword=Venoarterial ECMO
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=8
article-no=
start-page=e101809
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurological outcomes with hypothermia versus normothermia in patients with moderate initial illness severity following resuscitation from out-of-hospital cardiac arrest: protocol for a multicentre randomised controlled trial (R-CAST OHCA)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction Temperature control is a fundamental intervention for neuroprotection following resuscitation from cardiac arrest. However, evidence regarding the efficacy of hypothermia in post-cardiac arrest syndrome (PCAS) remains unclear. Retrospective studies suggest that the clinical effectiveness of hypothermia may depend on the severity of PCAS. The R-CAST OHCA trial aims to compare the efficacy of hypothermia versus normothermia in improving 30-day neurological outcomes in patients with moderately severe PCAS following out-of-hospital cardiac arrest.
Methods and analysis The multicentre, single-blind, parallel-group, superiority, randomised controlled trial (RCT) is conducted with the participation of 35 emergency and critical care centres and/or intensive care units at academic and non-academic hospitals. The study enrols moderately severe PCAS patients, defined as those with a revised post-Cardiac Arrest Syndrome for induced Therapeutic Hypothermia score of 5.5–15.5. A target number of 380 participants will be enrolled. Participants are randomised to undergo either hypothermia or normothermia within 3 hours after return of spontaneous circulation. Patients in the hypothermia group are cooled and maintained at 34°C until 28 hours post-randomisation, followed by rewarming to 37°C at a rate of 0.25°C/hour. Patients in the normothermia group are maintained at normothermia (36.5°C–37.7°C). Total periods of intervention, including the cooling, maintenance and rewarming phases, will occur 40 hours after randomisation. Other treatments for PCAS can be determined by the treating physicians. The primary outcome is a favourable neurological outcome, defined as Cerebral Performance Category 1 or 2 at 30 days after randomisation and compared using an intention-to-treat analysis.
Ethics and dissemination This study has been approved by the Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Ethics Committee (approval number: R2201-001). Written informed consent is obtained from all participants or their authorised surrogates. Results will be disseminated via publications and presentations.
Trial registration number jRCT1062220035.
en-copyright=
kn-copyright=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishikimiMitsuaki
en-aut-sei=Nishikimi
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkadaYohei
en-aut-sei=Okada
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaeyamaHiroki
en-aut-sei=Maeyama
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KiguchiTakeyuki
en-aut-sei=Kiguchi
en-aut-mei=Takeyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishidaKazuki
en-aut-sei=Nishida
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsuiShigeyuki
en-aut-sei=Matsui
en-aut-mei=Shigeyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KurodaYasuhiro
en-aut-sei=Kuroda
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishiyamaKei
en-aut-sei=Nishiyama
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IwamiTaku
en-aut-sei=Iwami
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=JAAM R-CAST OHCA Trial Group
en-aut-sei=JAAM R-CAST OHCA Trial Group
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=3
en-affil=Department of Preventive Services, School of Public Health, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=4
en-affil=Department of Emergency and Critical Care Medicine, Tsuyama Chuo Hospital
kn-affil=
affil-num=5
en-affil=Division of Trauma and Surgical Critical Care, Osaka General Medical Center
kn-affil=
affil-num=6
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Biostatistics, School of Public Health, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=8
en-affil=Department of Biostatistics, School of Public Health, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=9
en-affil=Emergency and Critical Care Center, TMG Asaka Medical Center
kn-affil=
affil-num=10
en-affil=Division of Emergency and Critical Care Medicine, Niigata University Graduate School of Medical and Dental Science
kn-affil=
affil-num=11
en-affil=Department of Preventive Services, School of Public Health, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=12
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=e70258
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Early-life exposures and child health outcomes: A narrative review of LSN21 research in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The Longitudinal Survey of Newborns in the 21st Century (LSN21) tracks two Japanese national birth cohorts—2001 (baseline n = 47,010) and 2010 (n = 38,554)—from infancy through young adulthood, capturing parenting practices and family environments. Most studies analyze single exposures or outcomes. We conducted a narrative review summarizing the findings published by the Okayama University group on diverse health and developmental outcomes.
Methods: We reviewed 59 LSN21 papers (2013–2025), extracting data on exposures, outcomes, and methods. Evidence was categorized into four exposure types (infant feeding, sleep, environmental, and perinatal) and three outcome domains (obesity, allergies/respiratory tract infections, and neurobehavioral development), including cohort comparisons.
Results: Exclusive breastfeeding was associated with a lower obesity risk at ages 7 (adjusted odds ratio 0.55, 95% confidence interval 0.39–0.78) and 15, later puberty, and fewer hospitalizations. Short or irregular sleep before age 3 was linked to behavioral problems and injuries. Maternal smoking and prenatal air pollution were associated with respiratory conditions and developmental challenges. Preterm birth and small-for-gestational-age predicted delays, especially without catch-up growth by age 2. Pneumococcal vaccination likely contributed to declining otitis media after 2010. Additional findings included associations between outdoor play and reduced obesity risk, and complex relationships between breastfeeding and food allergies that varied by infantile eczema status.
Conclusions: LSN21 findings highlight modifiable early-life factors (breastfeeding, sleep patterns, and smoke-free environments) and identify preterm and growth-restricted children for priority monitoring. While LSN21's strength lies in longitudinal social assessments, complementary perspectives from other Japanese cohorts could enhance understanding of biological mechanisms and intergenerational effects.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoNaomi
en-aut-sei=Matsumoto
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuoRumi
en-aut-sei=Matsuo
en-aut-mei=Rumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamamuraYuka
en-aut-sei=Yamamura
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsugeTakahiro
en-aut-sei=Tsuge
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KadowakiTomoka
en-aut-sei=Kadowaki
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UraguchiKensuke
en-aut-sei=Uraguchi
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TamaiKei
en-aut-sei=Tamai
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraKazue
en-aut-sei=Nakamura
en-aut-mei=Kazue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakeuchiAkihito
en-aut-sei=Takeuchi
en-aut-mei=Akihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Division of Neonatology, NHO Okayama Medical Center
kn-affil=
affil-num=10
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=breastfeeding
kn-keyword=breastfeeding
en-keyword=child health
kn-keyword=child health
en-keyword=environmental exposure
kn-keyword=environmental exposure
en-keyword=longitudinal studies
kn-keyword=longitudinal studies
en-keyword=perinatal
kn-keyword=perinatal
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=1
article-no=
start-page=234
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251114
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rotenone targets midbrain astrocytes to produce glial dysfunction-mediated dopaminergic neurodegeneration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Exposure to pesticides, such as rotenone or paraquat, is an environmental factor that plays an important role in the pathogenesis of Parkinson's disease (PD). Rotenone induces PD-like pathology and is therefore used to develop parkinsonian animal models. Dopaminergic neurotoxicity caused by rotenone has been attributed to the inhibition of mitochondrial complex I, oxidative stress and neuroinflammation; however, the mechanisms underlying selective dopaminergic neurodegeneration by rotenone remain unclear. To resolve this, we focused on glial diversity and examined whether the brain region-specific glial response to rotenone could determine the vulnerability of dopaminergic neurons using primary cultured neurons, astrocytes and microglia from the midbrain and striatum of rat embryos and rotenone-injected PD model mice. Direct neuronal treatment with low-dose rotenone failed to damage dopaminergic neurons. Conversely, rotenone exposure in the presence of midbrain astrocyte and microglia or conditioned media from rotenone-treated midbrain glial cultures containing astrocytes and microglia produced dopaminergic neurotoxicity, but striatal glia did not. Surprisingly, conditioned media from rotenone-treated midbrain astrocytes or microglia monocultures did not affect neuronal survival. We also demonstrated that rotenone targeted midbrain astrocytes prior to microglia to induce dopaminergic neurotoxicity. Rotenone-treated astrocytes produced secreted protein acidic and rich in cysteine (SPARC) extracellularly, which induced microglial proliferation, increase in IL-1β and TNF-α, and NF-κB (p65) nuclear translocation in microglia, resulting in dopaminergic neurodegeneration. In addition, rotenone exposure caused the secretion of NFAT-related inflammatory cytokines and a reduction in the level of an antioxidant metallothionein (MT)-1 from midbrain glia. Furthermore, we observed microglial proliferation and a decrease in the number of MT-positive astrocytes in the substantia nigra, but not the striatum, of low-dose rotenone-injected PD model mice. Our data highlight that rotenone targets midbrain astrocytes, leading to SPARC secretion, which promotes the neurotoxic conversion of microglia and leads to glial dysfunction-mediated dopaminergic neurodegeneration.
en-copyright=
kn-copyright=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IsookaNami
en-aut-sei=Isooka
en-aut-mei=Nami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikuokaRyo
en-aut-sei=Kikuoka
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImafukuFuminori
en-aut-sei=Imafuku
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasaiKaori
en-aut-sei=Masai
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TomimotoKana
en-aut-sei=Tomimoto
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SogawaChiharu
en-aut-sei=Sogawa
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SogawaNorio
en-aut-sei=Sogawa
en-aut-mei=Norio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KitamuraYoshihisa
en-aut-sei=Kitamura
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Food and Health Sciences, Faculty of Environmental Studies, Hiroshima Institute of Technology
kn-affil=
affil-num=9
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Pharmacotherapy, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=11
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Rotenone
kn-keyword=Rotenone
en-keyword=Astrocyte
kn-keyword=Astrocyte
en-keyword=Microglia
kn-keyword=Microglia
en-keyword=SPARC
kn-keyword=SPARC
en-keyword=Parkinson's disease
kn-keyword=Parkinson's disease
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251102
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PGN_0298 in the Assembly and Insertion Machinery (Aim) Operon Is Essential for the Viability of Porphyromonas gingivalis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Porphyromonas gingivalis is a typical periodontal pathogen, and one of its key virulence factors is the powerful protease gingipains. Gingipains are secreted via the type IX secretion system (T9SS) and are associated with the assembly and insertion machinery (Aim) operon (PGN_0296 to PGN_0301), which encodes both T9SS components and non-T9SS proteins. In this study, we investigated PGN_0298, a gene of unknown function within this operon, to elucidate its role in P. gingivalis and to gain insights into its potential function through bioinformatics analyses. Our results demonstrated that PGN_0298 is essential for the viability of P. gingivalis, despite having limited direct association with T9SS. Sequence homology and structure predictions indicate that PGN_0298 encodes a putative isoprenyl transferase. The essentiality of PGN_0298 underscores its potential as a novel drug target for the treatment of periodontal disease.
en-copyright=
kn-copyright=
en-aut-name=OnoShintaro
en-aut-sei=Ono
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakebeKatsuki
en-aut-sei=Takebe
en-aut-mei=Katsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TosaIkue
en-aut-sei=Tosa
en-aut-mei=Ikue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishiyaYuki
en-aut-sei=Nishiya
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakayamaMasaaki
en-aut-sei=Nakayama
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WadaTakayuki
en-aut-sei=Wada
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OharaNaoya
en-aut-sei=Ohara
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Human Life and Ecology, Osaka Metropolitan University
kn-affil=
affil-num=7
en-affil=Department of Pathophysiology–Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=PGN_0298
kn-keyword=PGN_0298
en-keyword=Porphyromonas gingivalis
kn-keyword=Porphyromonas gingivalis
en-keyword=undecaprenyl pyrophosphate synthase
kn-keyword=undecaprenyl pyrophosphate synthase
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=
article-no=
start-page=101081
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=AHA’s Life’s Essential-8 cardiovascular health metrics and progression of coronary artery calcification in Japanese men
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and aims: The American Heart Association’s Life’s Essential-8 (LE8) cardiovascular health (CVH) metrics is considered a comprehensive framework for optimal cardiovascular wellbeing. However, its relationship with the progression of subclinical atherosclerosis, like coronary artery calcification (CAC), is not clarified. We investigated the associations of LE8 CVH metrics with the prevalence and progression of CAC in Japanese men.
Methods: We analyzed data from 760 asymptomatic men participating in the Shiga Epidemiological Study of Subclinical Atherosclerosis. We assessed baseline (2006–2008) LE8 CVH (low, 0–49 points; moderate, 50–79 points; high, 80–100 points) using its eight components (diet, physical activity assessed by step count, smoking, sleep, body mass index, blood lipids, blood glucose, blood pressure). We quantified CAC at baseline and follow-up of 5 years employing Agatston’s method and defined its baseline prevalence (CAC >0) and progression (employing Berry’s criteria). Modified Poisson regression analyses were used to estimate risk ratio (RR) and 95 % confidence interval (CI), adjusted for age and family history of cardiovascular disease.
Results: Participants (mean [SD] age, 63.8 [9.4] years) had 63.2 % and 44.9 % prevalence of CAC at baseline and CAC progression at follow-up, respectively. Individuals with moderate and low CVH at baseline had a higher risk of prevalent CAC (RR [95 % CI], 1.42 [1.18–1.71] and 2.07 [1.67–2.57], respectively) at baseline, compared to those with high CVH. Those with moderate and low CVH at baseline had a higher risk of CAC progression (RR [95 % CI], 1.52 [1.17–1.97] and 1.99 [1.42–2.81], respectively), compared to high CVH individuals.
Conclusions: A lower LE8 CVH is significantly associated with a higher risk of prevalence and progression of CAC in general Japanese men.
en-copyright=
kn-copyright=
en-aut-name=MondalRajib
en-aut-sei=Mondal
en-aut-mei=Rajib
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KadotaAya
en-aut-sei=Kadota
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanoYuichiro
en-aut-sei=Yano
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KadowakiSayaka
en-aut-sei=Kadowaki
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToriiSayuki
en-aut-sei=Torii
en-aut-mei=Sayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoKeiko
en-aut-sei=Kondo
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HaradaAkiko
en-aut-sei=Harada
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawashimaMegumi
en-aut-sei=Kawashima
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MiyazawaItsuko
en-aut-sei=Miyazawa
en-aut-mei=Itsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SegawaHiroyoshi
en-aut-sei=Segawa
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WatanabeYoshiyuki
en-aut-sei=Watanabe
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakagawaYoshihisa
en-aut-sei=Nakagawa
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FujiyoshiAkira
en-aut-sei=Fujiyoshi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MiuraKatsuyuki
en-aut-sei=Miura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=2
en-affil=Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Faculty of Medicine, Juntendo University
kn-affil=
affil-num=4
en-affil=Department of Public Health, Shiga University of Medical Science
kn-affil=
affil-num=5
en-affil=Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=6
en-affil=Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=7
en-affil=Department of Medical Statistics, NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=8
en-affil=Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=9
en-affil=Department of Internal Medicine, Shiga University of Medical Science
kn-affil=
affil-num=10
en-affil=NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=11
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Radiology, Shiga University of Medical Science
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Medicine, Shiga University of Medical Science
kn-affil=
affil-num=14
en-affil=Department of Hygiene, School of Medicine, Okayama Medical University
kn-affil=
affil-num=15
en-affil=Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
en-keyword=Life’s essential-8
kn-keyword=Life’s essential-8
en-keyword=Cardiovascular health metrics
kn-keyword=Cardiovascular health metrics
en-keyword=Subclinical atherosclerosis
kn-keyword=Subclinical atherosclerosis
en-keyword=Coronary artery calcification
kn-keyword=Coronary artery calcification
en-keyword=CAC progression
kn-keyword=CAC progression
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=10
article-no=
start-page=e0332595
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relationship between obesity indices and cognitive function in Japanese men: A cross-sectional study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We aimed to investigate the associations among various obesity indices, including visceral (VAT) and subcutaneous adipose tissue (SAT), and cognitive function in community-dwelling Japanese men. This population-based cross-sectional study used data of 853 men who participated in the follow-up examinations of the Shiga Epidemiological Study of Subclinical Atherosclerosis. Among them, we analyzed data of 776 men who completed the Cognitive Abilities Screening Instrument (CASI) and had abdominal VAT and SAT areas measured using computed tomography. The VAT-to-SAT ratio (VSR) was calculated; participants were categorized into VSR quartiles. Using analysis of covariance, we computed crude and adjusted means of the CASI total and domain scores across VSR quartiles, adjusting for potential confounders. No significant differences were observed in total CASI scores among body mass index, VAT, or SAT quartiles. However, in the multivariable-adjusted model, participants in the lowest VSR quartile (Q1) had significantly lower CASI total scores than those in the third quartile (Q3) (Q1: 89.5, Q3: 90.9). Low VSR was independently associated with lower cognitive function in a community-based sample of middle-aged and older Japanese men. In summary, VSR may be associated with cognitive function in Japanese men, highlighting the importance of fat distribution in cognitive health and highlighting VSR as a useful indicator.
en-copyright=
kn-copyright=
en-aut-name=MatsunoSatoshi
en-aut-sei=Matsuno
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OzekiYuji
en-aut-sei=Ozeki
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KadowakiSayaka
en-aut-sei=Kadowaki
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ToriiSayuki
en-aut-sei=Torii
en-aut-mei=Sayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KondoKeiko
en-aut-sei=Kondo
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyagawaNaoko
en-aut-sei=Miyagawa
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShimaAzusa
en-aut-sei=Shima
en-aut-mei=Azusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhashiMizuki
en-aut-sei=Ohashi
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MiyazawaItsuko
en-aut-sei=Miyazawa
en-aut-mei=Itsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SegawaHiroyoshi
en-aut-sei=Segawa
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KadotaAya
en-aut-sei=Kadota
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MiuraKatsuyuki
en-aut-sei=Miura
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Psychiatry, Shiga University of Medical Science
kn-affil=
affil-num=2
en-affil=Department of Psychiatry, Shiga University of Medical Science
kn-affil=
affil-num=3
en-affil=NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=4
en-affil=NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=5
en-affil=NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=6
en-affil=Department of Preventive Medicine and Public Health, Keio University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Clinical Nursing, Shiga University of Medical Science
kn-affil=
affil-num=8
en-affil=NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=9
en-affil=Department of Medicine, Shiga University of Medical Science
kn-affil=
affil-num=10
en-affil=NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=11
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
affil-num=13
en-affil=NCD Epidemiology Research Center, Shiga University of Medical Science
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=XLVIII-4/W9-2024
cd-vols=
no-issue=
article-no=
start-page=313
end-page=320
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=3D MONITORING OF COASTAL EROSION CONTROL STRUCTURES USING UAV
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Coastal erosion has increasingly become a problem in recent years due to rising sea levels caused by global warming. To prevent further coastal erosion and damage, control structures like seawalls and breakwaters have been installed along vulnerable coastlines. However, it is crucial that these structures are regularly and thoroughly inspected for any abnormalities or deformations. At present, inspections are done manually by visual surveys which are time-consuming and inefficient. There is great potential to optimize this process using drone technology equipped with 3D laser scanners. In this study, we utilized a drone with a green laser scanner to inspect and diagnose control structures along the coast. We conducted surveys to determine the basic performance of this approach and used ICP algorithms to extract any deformations in vanishing wave blocks over two time periods. Our results showed high variability in basic performance due to the influence of waves during the surveys. However, we were still able to detect strain of around 50 cm in a submerged breakwater located 3 meters below the water's surface. Furthermore, an overall settlement of approximately 34 cm was observed in the vanishing wave blocks along with some localized movements. This demonstrates that drones can be successfully implemented for efficient inspection, diagnosis and detection of abnormalities and deformations in coastal structures that are extremely difficult to identify through visual surveys alone. The use of this advanced technology will allow for quicker identification of at-risk structures, enabling timely maintenance and prevention of further coastal erosion.
en-copyright=
kn-copyright=
en-aut-name=SakamotoN.
en-aut-sei=Sakamoto
en-aut-mei=N.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiyamaS.
en-aut-sei=Nishiyama
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Laser surveying
kn-keyword=Laser surveying
en-keyword=Green laser drone
kn-keyword=Green laser drone
en-keyword=3D point cloud
kn-keyword=3D point cloud
en-keyword=Coastal erosion control
kn-keyword=Coastal erosion control
en-keyword=ICP
kn-keyword=ICP
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=11
article-no=
start-page=1677
end-page=1685
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250819
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of Cytoreductive Nephrectomy in the Immune Checkpoint Inhibitor Era: A Multicenter Collaborative Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: We aimed to evaluate overall survival (OS) and determine the optimal timing of cytoreductive nephrectomy (CN) in patients with metastatic renal cell carcinoma (mRCC) receiving immune checkpoint inhibitor (ICI)-based therapy.
Methods: This retrospective study reviewed medical records of 447 patients with mRCC treated with ICI at multiple Japanese institutions between January 2018 and August 2023. From this cohort, 178 patients with lymph node or distant metastases received either cytoreductive nephrectomy (CN group; n = 72) or ICI therapy without cytoreductive nephrectomy (non-CN group; n = 106) as first-line treatment.
Results: Median progression-free survival was 15.7 months, and median overall survival was 58.1 months. CN significantly improved OS, with the CN group's median OS not reached, compared to 29.6 months in the non-CN group (p = 0.01). Deferred CN also showed improved survival outcomes. Poor prognostic factors for immediate CN included International Metastatic Renal Cell Carcinoma Database Consortium poor risk, sarcomatoid differentiation, and a high neutrophil-to-lymphocyte ratio.
Conclusions: We developed a prognostic model to guide patient selection for CN, emphasizing the need for personalized treatment strategies.
en-copyright=
kn-copyright=
en-aut-name=NukayaTakuhisa
en-aut-sei=Nukaya
en-aut-mei=Takuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakaharaKiyoshi
en-aut-sei=Takahara
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToyodaShingo
en-aut-sei=Toyoda
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InokiLan
en-aut-sei=Inoki
en-aut-mei=Lan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuokayaWataru
en-aut-sei=Fukuokaya
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoriKeiichiro
en-aut-sei=Mori
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaenosonoRyoichi
en-aut-sei=Maenosono
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsujinoTakuya
en-aut-sei=Tsujino
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HirasawaYosuke
en-aut-sei=Hirasawa
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YanagisawaTakafumi
en-aut-sei=Yanagisawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HashimotoTakeshi
en-aut-sei=Hashimoto
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KomuraKazumasa
en-aut-sei=Komura
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujitaKazutoshi
en-aut-sei=Fujita
en-aut-mei=Kazutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OhnoYoshio
en-aut-sei=Ohno
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ShirokiRyoichi
en-aut-sei=Shiroki
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Urology, Fujita-Health University School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Urology, Fujita-Health University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=4
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=5
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=10
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=11
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=12
en-affil=Department of Urology, The Jikei University School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Department of Urology, Osaka Medical and Pharmaceutical University
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Urology, Kindai University Faculty of Medicine
kn-affil=
affil-num=17
en-affil=Department of Urology, Tokyo Medical University
kn-affil=
affil-num=18
en-affil=Department of Urology, Fujita-Health University School of Medicine
kn-affil=
en-keyword=cytoreductive nephrectomy
kn-keyword=cytoreductive nephrectomy
en-keyword=IMDC classification
kn-keyword=IMDC classification
en-keyword=immune checkpoint inhibitor
kn-keyword=immune checkpoint inhibitor
en-keyword=neutrophil-to- lymphocyte ratio
kn-keyword=neutrophil-to- lymphocyte ratio
en-keyword=sarcomatoid differentiation
kn-keyword=sarcomatoid differentiation
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=17
article-no=
start-page=6122
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250829
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Potential of Kidney Exchange Programs (KEPs) in Japan for Donor-Specific Antibody-Positive Kidney Transplants: A Questionnaire Survey on KEPs and a Multi-Institutional Study Conducting Virtual Cross-Matching Simulations
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To clarify the need for a kidney exchange program (KEP) in Japan by conducting a questionnaire survey on KEPs and simulated KEPs by virtual cross-matching based on past cases of transplantation avoidance. Methods: In addition to the content regarding KEPs, an electronic survey was conducted to investigate the number of cases of kidney transplant abandonment due to “immunological” reasons over the past 10 years (2012–2021). Virtual cross-matching was conducted to simulate the feasibility of avoiding immunological risks and enabling kidney transplantation in patients who were previously unable to undergo the procedure. Results: The survey received responses from 107 facilities (response rate: 81.7%). In response to the question about the necessity of a KEP in Japan, 71 facilities (66.4%) indicated that KEPs are necessary. In addition, 251 living-donor kidney transplants were abandoned for “immunological” reasons over the past decade (2012–2021). Among the 80 pairs for which detailed information was available, virtual cross-matching simulations showed that 37/80 pairs (46.3%) were donor-specific antibody (DSA)-negative for blood type-matched combinations, and 41/80 pairs (51.3%) were DSA-negative for blood type-incompatible transplants. Conclusions: The need for a KEP in Japan and its potential usefulness were demonstrated.
en-copyright=
kn-copyright=
en-aut-name=ItoTaihei
en-aut-sei=Ito
en-aut-mei=Taihei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoMiki
en-aut-sei=Ito
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AidaNaohiro
en-aut-sei=Aida
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuriharaKei
en-aut-sei=Kurihara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TeraoAkihiro
en-aut-sei=Terao
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WataraiYoshihiko
en-aut-sei=Watarai
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaitoMitsuru
en-aut-sei=Saito
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KakuKeizo
en-aut-sei=Kaku
en-aut-mei=Keizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshiiDaisuke
en-aut-sei=Ishii
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SekiguchiSatoshi
en-aut-sei=Sekiguchi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YonedaTatsuo
en-aut-sei=Yoneda
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UnagamiKohei
en-aut-sei=Unagami
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TasakiMasayuki
en-aut-sei=Tasaki
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwamotoHitoshi
en-aut-sei=Iwamoto
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakahashiKazuhiro
en-aut-sei=Takahashi
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamanakaKazuaki
en-aut-sei=Yamanaka
en-aut-mei=Kazuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SugimotoMikio
en-aut-sei=Sugimoto
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NishikawaKouhei
en-aut-sei=Nishikawa
en-aut-mei=Kouhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SetoChikashi
en-aut-sei=Seto
en-aut-mei=Chikashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MuramatsuMasaki
en-aut-sei=Muramatsu
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=AsaiToshihiro
en-aut-sei=Asai
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=IwamiDaiki
en-aut-sei=Iwami
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=YamadaYasutoshi
en-aut-sei=Yamada
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YamanagaShigeyoshi
en-aut-sei=Yamanaga
en-aut-mei=Shigeyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KomatsuTomonori
en-aut-sei=Komatsu
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=MiuraMasayoshi
en-aut-sei=Miura
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=NoharaTakahiro
en-aut-sei=Nohara
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=MaruyamaMichihiro
en-aut-sei=Maruyama
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=MiyauchiYuki
en-aut-sei=Miyauchi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=TanakaToshiaki
en-aut-sei=Tanaka
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=NakamuraMichio
en-aut-sei=Nakamura
en-aut-mei=Michio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=HottaKiyohiko
en-aut-sei=Hotta
en-aut-mei=Kiyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=KenmochiTakashi
en-aut-sei=Kenmochi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
affil-num=1
en-affil=Department of Transplantation and Regenerative Medicine, School of Medicine, Fujita Health University
kn-affil=
affil-num=2
en-affil=Department of Transplantation and Regenerative Medicine, School of Medicine, Fujita Health University
kn-affil=
affil-num=3
en-affil=Department of Transplantation and Regenerative Medicine, School of Medicine, Fujita Health University
kn-affil=
affil-num=4
en-affil=Department of Transplantation and Regenerative Medicine, School of Medicine, Fujita Health University
kn-affil=
affil-num=5
en-affil=Department of Transplantation and Regenerative Medicine, School of Medicine, Fujita Health University
kn-affil=
affil-num=6
en-affil=Department of Transplant Surgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital
kn-affil=
affil-num=7
en-affil=Division of Blood Purification, Akita University Hospital
kn-affil=
affil-num=8
en-affil=Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Urology, Kitasato University of Medicine
kn-affil=
affil-num=10
en-affil=Transplantation Surgery, Japan Community Healthcare Organization Sendai Hospital
kn-affil=
affil-num=11
en-affil=Unit of Dialysis, Department of Urology, Nara Medical University
kn-affil=
affil-num=12
en-affil=Organ Transplant Medicine, Tokyo Women’s Medical University
kn-affil=
affil-num=13
en-affil=Division of Urology, Department of Regenerative & Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=14
en-affil=Department of Kidney Transplantation Surgery, Tokyo Medical University Hachioji Medical Center
kn-affil=
affil-num=15
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastrointestinal and Hepatobiliary Pancreatic Surgery, University of Tsukuba
kn-affil=
affil-num=17
en-affil=Department of Urology, Osaka University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Urology, Faculty of Medicine, Adrenal Surgery and Renal Transplantation, Kagawa University
kn-affil=
affil-num=19
en-affil=Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Urology, Toyama Prefectural Central Hospital
kn-affil=
affil-num=21
en-affil=Department of Nephrology, Toho University Faculty of Medicine
kn-affil=
affil-num=22
en-affil=Department of Kidney Transplant and Dialysis, Osaka City General Hospital
kn-affil=
affil-num=23
en-affil=Division of Renal Surgery and Transplantation, Department of Urology, Jichi Medical University
kn-affil=
affil-num=24
en-affil=Department of Blood Purification, Kagoshima University Hospital
kn-affil=
affil-num=25
en-affil=Department of Transplant Surgery, Japanese Red Cross Kumamoto Hospital
kn-affil=
affil-num=26
en-affil=Department of Urology, Chukyo Hospital, Japan Community Healthcare Organization
kn-affil=
affil-num=27
en-affil=Department of Renal Transplantation Surgery and Urology, Sapporo Hokuyu Hospital
kn-affil=
affil-num=28
en-affil=Department of Urology, Kanazawa University Hospital
kn-affil=
affil-num=29
en-affil=Department of Frontier Surgery, Chiba University School of Medicine
kn-affil=
affil-num=30
en-affil=Department of Urology, Ehime University
kn-affil=
affil-num=31
en-affil=Department of Urology, Sapporo Medical University
kn-affil=
affil-num=32
en-affil=Department of Transplant Surgery, Tokai University School of Medicine
kn-affil=
affil-num=33
en-affil=Department of Renal and Genitourinary Surgery, Faculty of Medicine, Hokkaido University
kn-affil=
affil-num=34
en-affil=Department of Transplantation and Regenerative Medicine, School of Medicine, Fujita Health University
kn-affil=
en-keyword=kidney transplantation
kn-keyword=kidney transplantation
en-keyword=donor-specific antibodies
kn-keyword=donor-specific antibodies
en-keyword=kidney exchange program
kn-keyword=kidney exchange program
en-keyword=virtual cross-matching
kn-keyword=virtual cross-matching
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=43
article-no=
start-page=8323
end-page=8333
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of the pH value on compression and array structures of highly charged microgels at the air/water interface
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Understanding the interfacial behavior of stimuli-responsive microgels is critical for applications such as foam and emulsion stabilization, as well as for the fabrication of two-dimensional colloidal crystals using the interfaces. In this study, the pH-dependent compression behavior and array structures of micron-sized poly(N-isopropylacrylamide-co-acrylic acid) microgels at the air/water interface was investigated. By combining a Langmuir trough with fluorescence microscopy, microgel arrays under compression and acidic (pH = 3) or basic (pH = 9) conditions were directly visualized. At pH = 9, the carboxyl groups within the microgels are deprotonated, resulting in significant swelling and the formation of ordered hexagonal arrays with high crystallinity (Ψ6 > 0.84) upon compression. In contrast, at pH = 3, the carboxyl groups within the microgels are protonated, leading to a suppression of the electrostatic repulsion between neighboring microgels and a reduction in crystallinity (Ψ6 ∼ 0.70) of the microgel arrays before and after compression. Furthermore, the calculated surface-compression modulus using the compression isotherms indicated higher interfacial elasticity for charged microgels, demonstrating that electrostatic repulsion governs both array ordering and mechanical robustness. These findings provide fundamental insights into the role of charge in controlling the microgel structure and mechanics at interfaces, thus offering further guidelines for the design of stimuli-responsive materials and stabilizers for foams and emulsions.
en-copyright=
kn-copyright=
en-aut-name=KawamotoTakahisa
en-aut-sei=Kawamoto
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MinatoHaruka
en-aut-sei=Minato
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=178
cd-vols=
no-issue=
article-no=
start-page=106920
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=End-to-end time-dependent probabilistic assessment of landslide hazards using hybrid deep learning simulator
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Early warning detection of landslide hazards often requires real-time or near real-time predictions, which can be challenging due to the presence of multiple geo-uncertainties and time-variant external environmental loadings. The propagation of these uncertainties at the system level for understanding the spatiotemporal behavior of slopes often requires time-consuming numerical calculations, significantly hindering the establishment of an early warning system. This paper presents a hybrid deep learning simulator, which fuses parallel convolutional neural networks (CNNs) and long short-term memory (LSTM) networks through attention mechanisms, termed PCLA-Net, to facilitate time-dependent probabilistic assessment of landslide hazards. PCLA-Net features two novelties. First, it is capable of simultaneously handling both temporal and spatial information. CNNs specialize in interpreting spatial data, while LSTM excels in handling time-variant data. Coupled with two attention mechanisms, the two modules are combined to probabilistically predict the spatiotemporal behavior of slopes. Second, PCLA-Net realizes end-to-end predictions. In this paper, the Liangshuijing landslide in the Three Gorges Reservoir area of China is used to illustrate PCLA-Net. It is first validated followed by a comparison with existing techniques to demonstrate its improved predictive capabilities. The proposed PCLA-Net simulator can achieve the same level of accuracy with at least 50% reduction in computation resources.
en-copyright=
kn-copyright=
en-aut-name=HuangMenglu
en-aut-sei=Huang
en-aut-mei=Menglu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraShin-ichi
en-aut-sei=Nishimura
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShibataToshifumi
en-aut-sei=Shibata
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangZe Zhou
en-aut-sei=Wang
en-aut-mei=Ze Zhou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Civil and Environmental Engineering, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Civil and Environmental Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Civil and Environmental Engineering, Okayama University
kn-affil=
affil-num=4
en-affil=Marie Skłodowska-Curie Fellow, Department of Engineering, University of Cambridge
kn-affil=
en-keyword=Spatial variability
kn-keyword=Spatial variability
en-keyword=Time-dependent reliability
kn-keyword=Time-dependent reliability
en-keyword=Convolutional neural networks
kn-keyword=Convolutional neural networks
en-keyword=Long short-term memory networks
kn-keyword=Long short-term memory networks
en-keyword=Attention mechanisms
kn-keyword=Attention mechanisms
en-keyword=Landslide hazards
kn-keyword=Landslide hazards
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=185111
end-page=185124
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhancing Protection Against Code Reuse Attacks on IoT Devices by Randomizing Function Addresses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Most Internet of Things (IoT) devices currently in use are vulnerable to code reuse attacks because manufacturers typically deploy the same firmware across all devices. This uniformity enables attackers to craft a single exploit that can compromise multiple devices. To mitigate this risk, we propose a firmware diversification approach that creates multiple executable files with varying software compositions. Our approach introduces two complementary techniques: Function Address Reordering (FAR), which randomizes the order of functions within object files during compilation, and Object Address Reordering (OAR), which permutes the linking order of object files in the final executable. These techniques collectively diversify firmware instances without altering runtime behavior, making executing code reuse attacks significantly more difficult. By deploying firmware with diverse executable files, it is possible to enhance security without altering device behavior. We evaluate the effectiveness and limitations of the proposed methods when integrated into actual IoT firmware, assessing their resilience to code reuse attacks, impact on runtime behavior, and compilation overhead. Experimental results demonstrate that FAR and OAR significantly reduce the success rate of return-oriented programming attacks while incurring minimal performance overhead. This study offers a scalable, hardware-independent defense against code reuse attacks that increases resilience without a significant performance overhead, rendering it practical for widespread adoption in various IoT applications.
en-copyright=
kn-copyright=
en-aut-name=SajiKazuma
en-aut-sei=Saji
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiSatoru
en-aut-sei=Kobayashi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TaniguchiHideo
en-aut-sei=Taniguchi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Code reuse attack
kn-keyword=Code reuse attack
en-keyword=IoT firmware
kn-keyword=IoT firmware
en-keyword=software diversity
kn-keyword=software diversity
en-keyword=function reordering
kn-keyword=function reordering
en-keyword=LLVM
kn-keyword=LLVM
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=3
article-no=
start-page=101624
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spatial distribution estimation by considering the cross-correlation between components with indirect data using Gaussian process regression
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Generally, soil properties are measured only at limited locations. To rationally estimate the spatial distribution of soil properties, it is preferable to effectively use all available measurement data, including indirect data. We propose a Gaussian process regression with multiple random fields that considers the cross-correlation between one of the random fields of direct data and indirect data, and show the application to simulated data and actual measured data. In the application, the direct data are of CPT tip resistance (qc), which was obtained within a narrow area, and the indirect data are of shear wave velocity (Vs) obtained by surface wave exploration, which were obtained over a wide area. We estimate the spatial distribution of qc from the limited qc and wide area Vs data. The estimation accuracy of the proposed method is evaluated by cross-validation, and its effectiveness is discussed.
en-copyright=
kn-copyright=
en-aut-name=TsudaYuto
en-aut-sei=Tsuda
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaIkumasa
en-aut-sei=Yoshida
en-aut-mei=Ikumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimuraShinichi
en-aut-sei=Nishimura
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Postdoctoral Researcher, School of Integrative Science and Engineering, Tokyo City University
kn-affil=
affil-num=2
en-affil=Professor Emeritus, Department of Urban and Civil Engineering, Tokyo City University
kn-affil=
affil-num=3
en-affil=Department of Civil Environmental Engineering, Okayama University
kn-affil=
en-keyword=Shear wave velocity
kn-keyword=Shear wave velocity
en-keyword=Gaussian process regression
kn-keyword=Gaussian process regression
en-keyword=Random field
kn-keyword=Random field
en-keyword=CPT tip resistance
kn-keyword=CPT tip resistance
en-keyword=Indirect data
kn-keyword=Indirect data
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=89
article-no=
start-page=17364
end-page=17367
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The direct photochemical cross-esterification of alcohols via site-selective C–H bromination site-selective C–H bromination
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We have developed a direct photochemical cross-esterification of alcohols that proceeds via the in situ generation of acyl bromides. The C–H bond of a benzyl alcohol is selectively activated by a bromo source under light irradiation, enabling the cross-esterification to afford a variety of functionalized esters.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoAtsuya
en-aut-sei=Miyamoto
en-aut-mei=Atsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=82
cd-vols=
no-issue=10
article-no=
start-page=1626
end-page=1637
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Redefining AT1 Receptor PET Imaging: Introducing the Radiotracer [18F]DR29
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=BACKGROUND: AT1R (angiotensin II type 1 receptors) are central to the renin-angiotensin system and are involved in regulating blood pressure and renal physiology. This study introduces [18F]DR29, a fluorine-18-labeled radiotracer for positron emission tomography imaging, to enable noninvasive visualization of AT1R expression. Its potential applications in understanding AT1R-associated renal processes are explored in healthy and hypertensive rat models.
METHODS: Radiolabeling was established, and biodistribution studies were conducted on healthy Wistar rats with and without the AT1R antagonist candesartan and transporter inhibitors. Dynamic positron emission tomography imaging assessed tracer specificity, and feasibility for renal AT1R quantification was explored using a hypertensive rat model.
RESULTS: [18F]DR29 was radiolabeled with a yield of 36±6%. High kidney uptake was observed, significantly reduced by candesartan (kidney-to-blood ratio, 0.43±0.01 versus 4.54±1.59 in vehicle, where vehicle refers to saline without any treatment). Transporter inhibition protocols targeting organic anion transporting polypeptides (liver) and organic anion transporters (kidneys) successfully reduced radiotracer clearance, increasing the specific accumulation of [18F]DR29 in the kidneys and improving renal imaging contrast. Positron emission tomography imaging revealed rapid kidney uptake and stable retention over 2 hours. In hypertensive rats, kidney uptake was higher, aligning with AT1R expression levels.
CONCLUSIONS: These results support [18F]DR29 as a promising tool for the noninvasive evaluation of renal AT1R expression in healthy and diseased states. The findings lay the groundwork for clinical translation, offering potential applications in diagnosing and managing kidney-related diseases, including hypertension and other conditions involving AT1R dysregulation.
en-copyright=
kn-copyright=
en-aut-name=ChenXinyu
en-aut-sei=Chen
en-aut-mei=Xinyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraHiroyuki
en-aut-sei=Kimura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KlimekKonrad
en-aut-sei=Klimek
en-aut-mei=Konrad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MühligSaskia
en-aut-sei=Mühlig
en-aut-mei=Saskia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Arias-LozaAnahi Paula
en-aut-sei=Arias-Loza
en-aut-mei=Anahi Paula
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NoseNaoko
en-aut-sei=Nose
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YagiYusuke
en-aut-sei=Yagi
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=RoweSteven P
en-aut-sei=Rowe
en-aut-mei=Steven P
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LapaConstantin
en-aut-sei=Lapa
en-aut-mei=Constantin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WernerRudolf A.
en-aut-sei=Werner
en-aut-mei=Rudolf A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg
kn-affil=
affil-num=2
en-affil=Agency for Health, Safety and Environment, Kyoto University
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Goethe University Frankfurt, University Hospital, Clinic for Radiology and Nuclear Medicine, Department of Nuclear Medicine
kn-affil=
affil-num=5
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (DZHI), University Hospital Würzburg
kn-affil=
affil-num=6
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (DZHI), University Hospital Würzburg
kn-affil=
affil-num=7
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Molecular Imaging and Therapeutics, Department of Radiology, School of Medicine, University of North Carolina, Chapel Hill
kn-affil=
affil-num=10
en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg
kn-affil=
affil-num=11
en-affil=Department of Nuclear Medicine, LMU Hospital, Ludwig-Maximilians-University of Munich
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=angiotensin II type 1 receptor
kn-keyword=angiotensin II type 1 receptor
en-keyword=organic anion transporters
kn-keyword=organic anion transporters
en-keyword=organic anion transporting polypeptides
kn-keyword=organic anion transporting polypeptides
en-keyword=renal imaging
kn-keyword=renal imaging
en-keyword=renin-angiotensin system
kn-keyword=renin-angiotensin system
END
start-ver=1.4
cd-journal=joma
no-vol=50
cd-vols=
no-issue=
article-no=
start-page=114240
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of grain size and crystal orientation on tensile properties of pure titanium thin wires
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To clarify the effects of the grain size and crystal orientation on the tensile properties of pure titanium thin wires, tensile and stepwise tensile tests were conducted on pure titanium wires with diameters of approximately 180 μm and different average grain sizes (52, 37, 23, and 3.8 μm). When the grain size was large, the fracture strain was significantly smaller, the variation in tensile strength was larger, and the grain size threshold for such properties was a grain-size ratio to wire diameter of 0.13 or greater. For larger grain sizes, the slip system with the highest modified Schmid factor (MSF), which is the Schmid factor divided by the critical resolved shear stress of each slip system, was activated in all 15 grains whereas for smaller grain sizes, the percentage of slip systems activated with the highest MSF was slightly lower. In addition, the fracture location in a thin wire with larger grain sizes was highly correlated with the average MSF of the grains in the cross-section.
en-copyright=
kn-copyright=
en-aut-name=SakamotoJunji
en-aut-sei=Sakamoto
en-aut-mei=Junji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TadaNaoya
en-aut-sei=Tada
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemoriTakeshi
en-aut-sei=Uemori
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Tensile properties
kn-keyword=Tensile properties
en-keyword=Pure titanium
kn-keyword=Pure titanium
en-keyword=Thin wire
kn-keyword=Thin wire
en-keyword=Slip deformation
kn-keyword=Slip deformation
en-keyword=Grain size
kn-keyword=Grain size
en-keyword=Crystal orientation
kn-keyword=Crystal orientation
en-keyword=Cross-section
kn-keyword=Cross-section
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250704
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Admission prognostic nutritional index predicts prolonged hospitalization in severe odontogenic deep neck infections
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives Severe odontogenic deep neck infections (DNIs) can be life threatening. This study investigated the nutritional status of affected patients and evaluated the usefulness of the Prognostic Nutritional Index (PNI) at admission in helping maxillofacial surgeons identify, at presentation, those likely to require extended hospitalization.
Methods A total of 112 patients treated for odontogenic deep neck abscesses and necrotizing soft tissue infections at five hospitals in Japan. Patients were included. Patients were categorized by length of hospitalization duration and factors associated with prolonged hospitalization were analyzed using propensity score matching to minimize bias. Spearman’s rank correlation analysis was also performed to assess the relationship between PNI and hospitalization duration.
Results Fifty patients (44.6%) required hospitalization for more than 14 days. Multivariate analysis identified PNI ≤ 41.2 (odds ratio [OR] = 2.79) and the presence of abscesses in multiple deep neck spaces (OR = 2.76) as significant predictors of prolonged hospitalization. Propensity score analysis confirmed the significant association between PNI and length of hospitalization duration (P = 0.048). In addition, Spearman’s rank correlation coefficient was r = − 0.471 (P < 0.001), indicating a moderate negative correlation.
Conclusion The admission PNI may serve as a useful adjunctive indicator for predicting prolonged hospitalization in patients with severe odontogenic DNIs, as it reflects both nutritional status and systemic inflammation.
en-copyright=
kn-copyright=
en-aut-name=IwataEiji
en-aut-sei=Iwata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ObataKyoichi
en-aut-sei=Obata
en-aut-mei=Kyoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikutaShogo
en-aut-sei=Kikuta
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KanekoNaoki
en-aut-sei=Kaneko
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoKotaro
en-aut-sei=Sato
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KitagawaNorio
en-aut-sei=Kitagawa
en-aut-mei=Norio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsuoKatsuhisa
en-aut-sei=Matsuo
en-aut-mei=Katsuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SameshimaJunsei
en-aut-sei=Sameshima
en-aut-mei=Junsei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TachibanaAkira
en-aut-sei=Tachibana
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KawanoShintaro
en-aut-sei=Kawano
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KusukawaJingo
en-aut-sei=Kusukawa
en-aut-mei=Jingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AkashiMasaya
en-aut-sei=Akashi
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=4
en-affil=Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Radiology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=9
en-affil=Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
kn-affil=
affil-num=10
en-affil=Department of Oral and Maxillofacial Surgery, Kakogawa Central City Hospital
kn-affil=
affil-num=11
en-affil=Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
kn-affil=
affil-num=12
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Odontogenic deep neck infections
kn-keyword=Odontogenic deep neck infections
en-keyword=Nutrition status
kn-keyword=Nutrition status
en-keyword=Prognostic nutritional index
kn-keyword=Prognostic nutritional index
en-keyword=Prolonged hospitalization
kn-keyword=Prolonged hospitalization
en-keyword=Multiple spaces with abscess
kn-keyword=Multiple spaces with abscess
END
start-ver=1.4
cd-journal=joma
no-vol=81
cd-vols=
no-issue=
article-no=
start-page=102548
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Does innovation-driven policy optimize urban energy consumption? Evidence from China’s innovation-driven city pilot policies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Restructuring energy consumption is essential for promoting green, low-carbon economic and societal development. Innovation-driven policies, particularly those implemented in pilot cities, play a crucial role in this transformation. This study conducts a theoretical analysis to examine how such policies influence urban energy-consumption structures. Using a multitime-point difference-in-differences model, it treats China’s national innovation-driven city pilot policies as a quasi-natural experiment. The results indicate that these policies significantly improve urban energy structures. Mechanism analyses reveal that the improvements occur mainly through green innovation and industrial upgrading. Heterogeneity analysis further indicates that the effects are more pronounced in cities with lower administrative tiers, more challenging geographical conditions, and stronger environmental priorities. These findings provide valuable policy insights for refining innovation-driven strategies, enhancing urban energy-consumption structures, and promoting sustainable economic development in China.
en-copyright=
kn-copyright=
en-aut-name=CongYingnan
en-aut-sei=Cong
en-aut-mei=Yingnan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HouYufei
en-aut-sei=Hou
en-aut-mei=Yufei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=JiYuan
en-aut-sei=Ji
en-aut-mei=Yuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=CaiXiaojing
en-aut-sei=Cai
en-aut-mei=Xiaojing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Business School, China University of Political Science and Law
kn-affil=
affil-num=2
en-affil=School of Economics, Renmin University of China
kn-affil=
affil-num=3
en-affil=Business School, China University of Political Science and Law
kn-affil=
affil-num=4
en-affil=Graduate School of Humanities and Social Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=281
cd-vols=
no-issue=
article-no=
start-page=111174
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=N-terminal domains and site-specific glycosylation regulate the secretion of avian melanocortin inverse agonists, agouti signaling protein (ASIP) and agouti-related protein (AGRP)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Agouti signaling protein (ASIP) and agouti-related protein (AGRP) are paralogous inverse agonists of melanocortin receptors with distinct physiological roles, but their structural and biochemical properties in birds remain poorly understood. Here, we characterized chicken ASIP and AGRP proteins. Analysis of available sequences revealed that a motif resembling the mammalian proprotein convertase 1/3 (PC1/3, also known as PCSK1) cleavage site is conserved across a broad range of avian orders, but Western blot analysis of transfected Chinese hamster ovary (CHO-K1) cells and chicken hypothalamus detected no cleavage, suggesting that avian AGRP may not be post-translationally processed at this site. Chicken ASIP mRNA contains an in-frame upstream ATG (uATG) and a putative N-linked glycosylation site at Asn-42, both conserved across multiple avian orders. Overexpression in CHO-K1 cells showed that ASIP translated from either ATG produces a mature protein of the same size that is N-glycosylated at Asn-42 and exhibits markedly lower secretion efficiency than AGRP. Domain-swapping experiments revealed that the N-terminal domain reduces secretion, whereas a naturally occurring ASIP-b variant with an additional N-glycan at Asn-47 shows enhanced secretion. Proteasome inhibition increased intracellular ASIP, and endoglycosidase H (Endo H) sensitivity indicated endoplasmic reticulum (ER) retention, suggesting that the N-terminal domain limits secretion via ER-associated proteasomal degradation. These findings reveal species-specific post-translational regulation of avian melanocortin inverse agonists, in which N-terminal features and site-specific N-glycosylation determine secretion efficiency, likely contributing to their distinct roles in pigmentation and hypothalamic energy balance.
en-copyright=
kn-copyright=
en-aut-name=FukuchiHibiki
en-aut-sei=Fukuchi
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeRyoya
en-aut-sei=Watanabe
en-aut-mei=Ryoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IidaYuna
en-aut-sei=Iida
en-aut-mei=Yuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakanoSaya
en-aut-sei=Nakano
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MizutaniAya
en-aut-sei=Mizutani
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AboTatsuhiko
en-aut-sei=Abo
en-aut-mei=Tatsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakeuchiSakae
en-aut-sei=Takeuchi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Agouti signaling protein
kn-keyword=Agouti signaling protein
en-keyword=Agouti-related protein
kn-keyword=Agouti-related protein
en-keyword=Avian melanocortin inverse agonists
kn-keyword=Avian melanocortin inverse agonists
en-keyword=Post-translational modification
kn-keyword=Post-translational modification
en-keyword=N-linked glycosylation
kn-keyword=N-linked glycosylation
en-keyword=Protein secretion
kn-keyword=Protein secretion
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=27-28
article-no=
start-page=e70357
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251102
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Algebraic Connectivity Maximizing Regular Graphs: Special Case Analysis and Depth‐First Search
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The algebraic connectivity is an indicator of how well connected a graph is. It also characterizes the convergence speed of some dynamic processes over networks. In this paper, taking into account that homogeneous networks are modeled as regular graphs, we tackle the following problem: given a pair (𝑛, 𝑘) of positive integers such that 𝑘 is less than 𝑛 and kn is an even number, find a 𝑘-regular graph with 𝑛 vertices that have the maximum algebraic connectivity. We first consider some special cases and derive solutions through theoretical analysis. We next present depth-first search algorithms for solving the problem, which reduce the search space by making use of some known properties of the regular graph and the algebraic connectivity.We also show the results of execution of the proposed algorithms for the values of 𝑛 up to 12.
en-copyright=
kn-copyright=
en-aut-name=KurahashiMasashi
en-aut-sei=Kurahashi
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SalaaniNajd
en-aut-sei=Salaani
en-aut-mei=Najd
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MigitaTsuyoshi
en-aut-sei=Migita
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakahashiNorikazu
en-aut-sei=Takahashi
en-aut-mei=Norikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Polytech Sorbonne, Sorbonne University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=algebraic connectivity
kn-keyword=algebraic connectivity
en-keyword=depth-first search
kn-keyword=depth-first search
en-keyword=optimization
kn-keyword=optimization
en-keyword=pruning
kn-keyword=pruning
en-keyword=regular graph
kn-keyword=regular graph
END
start-ver=1.4
cd-journal=joma
no-vol=136
cd-vols=
no-issue=10
article-no=
start-page=lxaf217
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250828
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gut dysbiosis allows foodborne salmonella colonization in edible crickets: a probiotic strategy for enhanced food safety
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims: Edible insects, including crickets, represent a promising protein source, yet concerns over foodborne pathogens limit consumer acceptance. This study investigated whether gut microbiota modulates colonization by Salmonella enterica subsp. enterica serovar Enteritidis (SE) in the two-spotted cricket (Gryllus bimaculatus).
Methods and Results: Under standard conditions, SE was undetectable in crickets despite prolonged exposure; however, antibiotic-induced dysbiosis enabled stable SE colonization. Long-read 16S rRNA sequencing revealed significant microbiota shifts, notably a reduction in Lactococcus garvieae. In vitro assays showed strong inhibitory effects of L. garvieae against SE, and supplementation of dysbiotic crickets with L. garvieae reduced SE colonization by ∼1000-fold.
Conclusions: The native cricket gut microbiota, especially L. garvieae, plays a protective role against SE colonization. Enhancing beneficial gut bacteria could mitigate pathogen risks and promote edible insects as a sustainable protein.
en-copyright=
kn-copyright=
en-aut-name=TsujiShuma
en-aut-sei=Tsuji
en-aut-mei=Shuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsushitaOsamu
en-aut-sei=Matsushita
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokotaKenji
en-aut-sei=Yokota
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GotohKazuyoshi
en-aut-sei=Gotoh
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=food safety
kn-keyword=food safety
en-keyword=edible crickets
kn-keyword=edible crickets
en-keyword=Salmonella
kn-keyword=Salmonella
en-keyword=Lactococcus
kn-keyword=Lactococcus
en-keyword=probiotics
kn-keyword=probiotics
en-keyword=microbiome
kn-keyword=microbiome
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=8
article-no=
start-page=e89864
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Higher Liver Fibrosis-4 Index Is Associated With More Severe Hearing Loss in Idiopathic Sudden Sensorineural Hearing Loss
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Liver fibrosis is an important medical issue increasing over time in developed countries.
Aims/objectives
This study aimed to investigate whether liver fibrosis, as indicated by routine blood test parameters, influences the risk and severity of idiopathic sudden sensorineural hearing loss (ISSNHL).
Material and methods
Sixty-six patients with ISSNHL and 198 patients with benign parotid gland tumors (BPTs) (controls) were enrolled. Indices for liver fibrosis (Liver Fibrosis-4 index (FIB-4 index) and aspartate aminotransferase-to-platelet ratio index (APRI)) were calculated from the blood laboratory data. The pure tone average (PTA) was calculated as the mean of hearing levels at the six frequencies at the onset of ISSNHL. Severe hearing loss was defined as PTA≥60 decibels Hearing Level (dB HL).
Results
In risk evaluation, the FIB-4 index did not differ significantly between ISSNHL patients and controls. Regarding the severity of ISSNHL, the FIB-4 index was significantly higher in ISSNHL patients with severe hearing loss than in those with PTA<60 dB HL (P<0.05) on univariate comparison. After adjusting for age, sex, and indices of inflammation, both the FIB-4 index and APRI showed a significant association with severe hearing loss (odds ratio (OR): 5.9, 95% confidence interval (CI): 1.3-25.7, and OR: 2.2, 95% CI: 1.1-4.7).
Conclusions and significance
Higher liver fibrosis indices (FIB-4 index and APRI), derived from routine blood laboratory data, are associated with a more severe phenotype of ISSNHL.
en-copyright=
kn-copyright=
en-aut-name=MaedaYukihide
en-aut-sei=Maeda
en-aut-mei=Yukihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakaoSoshi
en-aut-sei=Takao
en-aut-mei=Soshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OmichiRyotaro
en-aut-sei=Omichi
en-aut-mei=Ryotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=aspartate aminotransferase-to-platelet ratio index
kn-keyword=aspartate aminotransferase-to-platelet ratio index
en-keyword=audiometry
kn-keyword=audiometry
en-keyword=fatty liver disease
kn-keyword=fatty liver disease
en-keyword=incidence
kn-keyword=incidence
en-keyword=liver fibrosis-4 index
kn-keyword=liver fibrosis-4 index
en-keyword=severity
kn-keyword=severity
en-keyword=sudden hearing loss
kn-keyword=sudden hearing loss
END
start-ver=1.4
cd-journal=joma
no-vol=52
cd-vols=
no-issue=10
article-no=
start-page=1483
end-page=1493
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biologics and Small‐Molecule Therapies in Netherton Syndrome: A Comprehensive Review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Netherton syndrome (NS) is a rare congenital ichthyosis caused by loss-of-function mutations in the SPINK5 gene, leading to defective expression of the serine protease inhibitor LEKTI. Dysregulated epidermal protease activity results in impaired skin barrier function and chronic inflammation, accompanied by complex immune profiles. NS patients commonly show activation of the inflammatory axis, centered on IL-17 and IL-36, in the skin and blood, and show a psoriasis-like shift to Th17. Conversely, the immune profile differs depending on the clinical type, with ichthyosis linearis circumflexa type characterized by complement activation and Th2-type allergic responses, and scaly erythroderma type characterized by a type I IFN signature and Th9-type allergic responses. While symptomatic treatments such as emollients and topical corticosteroids have been the mainstay of care, recent advances have opened new therapeutic avenues involving biologic agents and oral small-molecule immunomodulators. This review provides a comprehensive overview of the current clinical landscape and future directions of biologics (e.g., dupilumab, secukinumab, ustekinumab) and small-molecule therapies (e.g., JAK inhibitors such as tofacitinib, baricitinib, and upadacitinib) in the treatment of NS. Though evidence remains limited to case reports and small series, preliminary data suggest that cytokine-targeted interventions—particularly those inhibiting IL-4, IL-13, IL-17, IL-36, and JAK pathways—may offer tangible clinical benefits. Well-designed clinical trials and mechanistic investigations are crucial to establishing their place in NS management.
en-copyright=
kn-copyright=
en-aut-name=MorizaneShin
en-aut-sei=Morizane
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MukaiTomoyuki
en-aut-sei=Mukai
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SunagawaKo
en-aut-sei=Sunagawa
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HasuiKen‐ichi
en-aut-sei=Hasui
en-aut-mei=Ken‐ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoritaAnri
en-aut-sei=Morita
en-aut-mei=Anri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NomuraHayato
en-aut-sei=Nomura
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OuchidaMamoru
en-aut-sei=Ouchida
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Immunology and Molecular Genetics, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=27
article-no=
start-page=6557
end-page=6563
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fluorescence detection of DNA with a single-base mismatch by a Tm-independent peptide nucleic acid (PNA) twin probe
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=There is a need to develop efficient methods for detecting target nucleic acids to enable the rapid diagnosis and early treatment of diseases. We previously demonstrated that a peptide nucleic acid (PNA) twin probe, consisting of two PNAs each containing a fluorescent dye, with pyrene at one end, detects target DNA sequence-specifically through pyrene excimer emission. In this study, to advance the development of this probe system, we further investigated the fluorescence properties of the PNA twin probe P1 and P2, and found that the excimer fluorescence was significantly reduced when a mismatched base in the DNA sequence was present at the site of P1 closest to the pyrene. In other words, this probe was found to detect single-base mismatches without taking into account the thermal stability of the PNA/DNA hybrid. The detection limit of this PNA twin probe for the single-base-mismatched DNA was 2.7 nM. In the future, this probe should lead to a method to detect point mutations in endogenous nucleic acids within cells.
en-copyright=
kn-copyright=
en-aut-name=IshiiKoki
en-aut-sei=Ishii
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigetoHajime
en-aut-sei=Shigeto
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamamuraShohei
en-aut-sei=Yamamura
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImaiYoshitane
en-aut-sei=Imai
en-aut-mei=Yoshitane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KitamatsuMizuki
en-aut-sei=Kitamatsu
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Applied Chemistry, Kindai University
kn-affil=
affil-num=2
en-affil=Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=3
en-affil=Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=4
en-affil=Department of Applied Chemistry, Kindai University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Applied Chemistry, Kindai University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=27684
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250729
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The significance of adding posterior decompression to spine stabilization in metastatic spinal surgery: a multicenter prospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The usefulness of spine stabilization for treating metastatic spinal tumors with tumor-induced instability has been reported. However, no reports have prospectively evaluated the effectiveness of adding posterior decompression to stabilization surgery for improving symptoms. This multicenter prospective study aimed to determine whether adding posterior decompression to spine stabilization surgery for metastatic spinal tumors affects postoperative outcomes and complications. A total of 263 patients who underwent spine stabilization with (n = 189) or without (n = 74) decompression were analyzed. Patient demographics, the Spinal Instability Neoplastic Score (SINS), and the Epidural Spinal Cord Compression (ESCC) score were recorded. The outcomes were assessed preoperatively and at 1 and 6 months postoperatively in terms of neurological status, the Barthel Index, the EQ-5D-5 L, and the visual analog scale (VAS). Decompression was primarily performed in patients with severe neurological deficits and high-grade ESCC. Both groups showed postoperative improvement. Propensity score matching was applied to adjust for baseline differences. After matching, there were no significant differences in functional improvement between the decompression and nondecompression groups, and the complication rates were comparable. In matched patients presenting primarily with spinal instability and pain, the addition of decompression did not appear to confer a significant functional benefit within 6 months postoperatively.
en-copyright=
kn-copyright=
en-aut-name=TominagaHiroyuki
en-aut-sei=Tominaga
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawamuraIchiro
en-aut-sei=Kawamura
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShimadaHirofumi
en-aut-sei=Shimada
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SasakiHiromi
en-aut-sei=Sasaki
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TaniguchiNoboru
en-aut-sei=Taniguchi
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShirataniYuki
en-aut-sei=Shiratani
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzukiAkinobu
en-aut-sei=Suzuki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TeraiHidetomi
en-aut-sei=Terai
en-aut-mei=Hidetomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimizuTakaki
en-aut-sei=Shimizu
en-aut-mei=Takaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KakutaniKenichiro
en-aut-sei=Kakutani
en-aut-mei=Kenichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KandaYutaro
en-aut-sei=Kanda
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IshiharaMasayuki
en-aut-sei=Ishihara
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=PakuMasaaki
en-aut-sei=Paku
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TakahashiYohei
en-aut-sei=Takahashi
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FunayamaToru
en-aut-sei=Funayama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MiuraKousei
en-aut-sei=Miura
en-aut-mei=Kousei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ShirasawaEiki
en-aut-sei=Shirasawa
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=InoueHirokazu
en-aut-sei=Inoue
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KimuraAtsushi
en-aut-sei=Kimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=IimuraTakuya
en-aut-sei=Iimura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MoridairaHiroshi
en-aut-sei=Moridaira
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=NakajimaHideaki
en-aut-sei=Nakajima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=WatanabeShuji
en-aut-sei=Watanabe
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=AkedaKoji
en-aut-sei=Akeda
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=TakegamiNorihiko
en-aut-sei=Takegami
en-aut-mei=Norihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=NakanishiKazuo
en-aut-sei=Nakanishi
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=SawadaHirokatsu
en-aut-sei=Sawada
en-aut-mei=Hirokatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=MatsumotoKoji
en-aut-sei=Matsumoto
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=FunabaMasahiro
en-aut-sei=Funaba
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=SuzukiHidenori
en-aut-sei=Suzuki
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=FunaoHaruki
en-aut-sei=Funao
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=OshigiriTsutomu
en-aut-sei=Oshigiri
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=HiraiTakashi
en-aut-sei=Hirai
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=OtsukiBungo
en-aut-sei=Otsuki
en-aut-mei=Bungo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=KobayakawaKazu
en-aut-sei=Kobayakawa
en-aut-mei=Kazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=36
ORCID=
en-aut-name=ManabeHiroaki
en-aut-sei=Manabe
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=37
ORCID=
en-aut-name=TanishimaShinji
en-aut-sei=Tanishima
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=38
ORCID=
en-aut-name=HashimotoKo
en-aut-sei=Hashimoto
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=39
ORCID=
en-aut-name=IwaiChizuo
en-aut-sei=Iwai
en-aut-mei=Chizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=40
ORCID=
en-aut-name=YamabeDaisuke
en-aut-sei=Yamabe
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=41
ORCID=
en-aut-name=HiyamaAkihiko
en-aut-sei=Hiyama
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=42
ORCID=
en-aut-name=SekiShoji
en-aut-sei=Seki
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=43
ORCID=
en-aut-name=GotoYuta
en-aut-sei=Goto
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=44
ORCID=
en-aut-name=MiyazakiMasashi
en-aut-sei=Miyazaki
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=45
ORCID=
en-aut-name=WatanabeKazuyuki
en-aut-sei=Watanabe
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=46
ORCID=
en-aut-name=NakamaeToshio
en-aut-sei=Nakamae
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=47
ORCID=
en-aut-name=KaitoTakashi
en-aut-sei=Kaito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=48
ORCID=
en-aut-name=NakashimaHiroaki
en-aut-sei=Nakashima
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=49
ORCID=
en-aut-name=NagoshiNarihito
en-aut-sei=Nagoshi
en-aut-mei=Narihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=50
ORCID=
en-aut-name=KatoSatoshi
en-aut-sei=Kato
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=51
ORCID=
en-aut-name=ImagamaShiro
en-aut-sei=Imagama
en-aut-mei=Shiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=52
ORCID=
en-aut-name=WatanabeKota
en-aut-sei=Watanabe
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=53
ORCID=
en-aut-name=InoueGen
en-aut-sei=Inoue
en-aut-mei=Gen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=54
ORCID=
en-aut-name=FuruyaTakeo
en-aut-sei=Furuya
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=55
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Osaka Metropolitan University
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Orthopaedic Surgery, Kansai Medical University Hospital
kn-affil=
affil-num=13
en-affil=Department of Orthopaedic Surgery, Kansai Medical University Hospital
kn-affil=
affil-num=14
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=15
en-affil=Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba
kn-affil=
affil-num=16
en-affil=Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba
kn-affil=
affil-num=17
en-affil=Department of Orthopaedic Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=18
en-affil=Rehabilitation Center, Jichi Medical University Hospital
kn-affil=
affil-num=19
en-affil=Department of Orthopaedics, Jichi Medical University
kn-affil=
affil-num=20
en-affil=Department of Orthopaedic Surgery, Dokkyo Medical University
kn-affil=
affil-num=21
en-affil=Department of Orthopaedic Surgery, Dokkyo Medical University
kn-affil=
affil-num=22
en-affil=Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui
kn-affil=
affil-num=23
en-affil=Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui
kn-affil=
affil-num=24
en-affil=Department of Orthopaedic Surgery, Mie University Graduate School of Medicine
kn-affil=
affil-num=25
en-affil=Department of Orthopaedic Surgery, Mie University Graduate School of Medicine
kn-affil=
affil-num=26
en-affil=Department of Orthopaedic Surgery, Kawasaki Medical School
kn-affil=
affil-num=27
en-affil=Department of Orthopaedic Surgery, Nihon University School of Medicine
kn-affil=
affil-num=28
en-affil=Department of Orthopaedic Surgery, Nihon University School of Medicine
kn-affil=
affil-num=29
en-affil=Department of Orthopaedics Surgery, Yamaguchi University Graduate school of Medicine
kn-affil=
affil-num=30
en-affil=Department of Orthopaedics Surgery, Yamaguchi University Graduate school of Medicine
kn-affil=
affil-num=31
en-affil=Department of Orthopaedic Surgery, International University of Health and Welfare Narita Hospital
kn-affil=
affil-num=32
en-affil=Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine
kn-affil=
affil-num=33
en-affil=Department of Orthopedic Surgery, Institute of Science Tokyo
kn-affil=
affil-num=34
en-affil=Department of Orthopaedic Surgery, Kyoto University Hospital
kn-affil=
affil-num=35
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=36
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=37
en-affil=Department of Orthopedics, Tokushima University
kn-affil=
affil-num=38
en-affil=Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University
kn-affil=
affil-num=39
en-affil=Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=40
en-affil=Department of Orthopaedic Surgery, Gifu University Hospital
kn-affil=
affil-num=41
en-affil=Department of Orthopaedic Surgery, Iwate Medical University
kn-affil=
affil-num=42
en-affil=Department of Orthopaedic Surgery, Tokai University School of Medicine
kn-affil=
affil-num=43
en-affil=Department of Orthopaedic Surgery, University of Toyama
kn-affil=
affil-num=44
en-affil=Department of Orthopaedic Surgery, Nagoya City University
kn-affil=
affil-num=45
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Oita University
kn-affil=
affil-num=46
en-affil=Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine
kn-affil=
affil-num=47
en-affil=Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=48
en-affil=Department of Orthopedic Surgery, Osaka University Graduate School of Medicine
kn-affil=
affil-num=49
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=50
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=51
en-affil=Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=52
en-affil=Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=53
en-affil=Department of Orthopaedic Surgery, Keio University
kn-affil=
affil-num=54
en-affil=Department of Orthopaedic Surgery, Kitasato University School of Medicine
kn-affil=
affil-num=55
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University
kn-affil=
en-keyword=Metastatic spinal tumors
kn-keyword=Metastatic spinal tumors
en-keyword=Spine stabilization
kn-keyword=Spine stabilization
en-keyword=Decompression
kn-keyword=Decompression
en-keyword=Propensity score matching
kn-keyword=Propensity score matching
en-keyword=Multicenter prospective study
kn-keyword=Multicenter prospective study
en-keyword=The epidural spinal cord compression (ESCC) score
kn-keyword=The epidural spinal cord compression (ESCC) score
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=9
article-no=
start-page=e91856
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250908
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Incidence and Factors Influencing Locomotive Syndrome in Cancer Patients Living in the Community
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Investigating locomotive syndrome (LS) of cancer survivors in the community will help clarify the importance of rehabilitation for cancer survivors in the community and provide a basis for exploring effective interventions. The primary purpose of this study was to conduct a comparison of LS, fatigue, psychological problems, and physical activity in cancer survivors and those without cancer in the community. The secondary purpose was to analyze factors influencing LS in cancer patients.
Methods The study involved 59 cancer patients undergoing chemotherapy at home and 59 people without cancer. The cancer patients were those undergoing chemotherapy as outpatients and constituted the cancer group. The non-cancer people were living in the community and constituted the non-cancer group.
Cancer and non-cancer groups were surveyed and measured for LS, fatigue, psychological problems, and physical activity. The cancer group was also surveyed for the duration of chemotherapy treatment and the presence or absence of bone metastases.
Results The cancer group was significantly more likely than the non-cancer group to have LS stage 2, to have fatigue, and to have psychological problems. Fatigue and psychological problems were significantly associated with LS stage 2.
Conclusions Cancer patients in the community need to be assessed regularly by healthcare providers and interventions should be made according to their condition.
en-copyright=
kn-copyright=
en-aut-name=AkezakiYoshiteru
en-aut-sei=Akezaki
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KikuuchiMasato
en-aut-sei=Kikuuchi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatayamaYoshimi
en-aut-sei=Katayama
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Rehabilitation Medicine, National Hospital Organization Shikoku Cancer Center
kn-affil=
en-keyword=cancer
kn-keyword=cancer
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=factor
kn-keyword=factor
en-keyword=locomotive syndrome
kn-keyword=locomotive syndrome
en-keyword=rehabilitation
kn-keyword=rehabilitation
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=20
article-no=
start-page=3351
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tertiary Lymphoid Structures Are Associated with Favorable Clinical Outcomes and Negatively Correlated with Cancer-Associated Fibroblasts in Esophageal Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Esophageal cancer remains a highly aggressive malignant tumor with poor prognosis, despite advances in combination therapies and novel immunotherapies. Tertiary lymphoid structures (TLSs), characterized by densely packed CD20+ B cells in a germinal-center-like structure, have recently been recognized as immune-stimulating components within the tumor microenvironment. In contrast, cancer-associated fibroblasts (CAFs) are stromal cells expressing fibroblast-activating protein (FAP) involved in immunosuppression. Methods: In this retrospective study, 124 clinical samples from patients who underwent radical surgery for esophageal cancer at our institute were analyzed. We investigated whether TLSs could serve as a prognostic factor and examined their association with tumor microenvironment factors. Results: The presence of TLSs was an independent prognostic factor for overall and progression-free survival in multivariate analyses. A high level of TLS formation correlated with better nutritional status, fewer M2 macrophages, and greater plasma cell infiltration. Additionally, little TLS formation was observed in areas with abundant CAFs, and quantitative analyses revealed a significant negative correlation between TLSs and CAFs. Conclusions: TLSs enhance antitumor immunity via macrophages and plasma cells and can be a valuable prognostic indicator in patients undergoing surgery for esophageal cancer. Targeting CAFs may prove to be a promising therapeutic strategy to enhance tumor-immunity-related TLSs.
en-copyright=
kn-copyright=
en-aut-name=KunitomoTomoyoshi
en-aut-sei=Kunitomo
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiwakiNoriyuki
en-aut-sei=Nishiwaki
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraSeitaro
en-aut-sei=Nishimura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakedaYasushige
en-aut-sei=Takeda
en-aut-mei=Yasushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumotoHijiri
en-aut-sei=Matsumoto
en-aut-mei=Hijiri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiTatsuya
en-aut-sei=Takahashi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawasakiKento
en-aut-sei=Kawasaki
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AkaiMasaaki
en-aut-sei=Akai
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MaedaNaoaki
en-aut-sei=Maeda
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TanabeShunsuke
en-aut-sei=Tanabe
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ShirakawaYasuhiro
en-aut-sei=Shirakawa
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=tertiary lymphoid structures (TLSs)
kn-keyword=tertiary lymphoid structures (TLSs)
en-keyword=cancer-associated fibroblasts (CAFs)
kn-keyword=cancer-associated fibroblasts (CAFs)
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=tumor microenvironment
kn-keyword=tumor microenvironment
en-keyword=prognosis
kn-keyword=prognosis
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=6
article-no=
start-page=738
end-page=748
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Risk of Heart Failure Hospitalization in Patients Treated With Osimertinib
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Osimertinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, is used to treat patients with epidermal growth factor receptor–mutant non–small-cell lung cancer. Although osimertinib has been linked to heart failure (HF), detailed risk estimates remain unclear.
Objectives The aim of this study was to examine the association between osimertinib use and HF hospitalization.
Methods In this retrospective cohort study using a large-scale Japanese claims database, patients diagnosed with lung cancer between April 2008 and December 2021 who received cancer therapy were identified. Patients were categorized into osimertinib and control groups according to treatment received. The incidence of HF hospitalization during the treatment period was compared between the groups. Multivariable analyses were performed before and after propensity score matching.
Results The osimertinib and control groups included 11,391 and 108,144 patients, respectively. Among the entire cohort, the median age was 70 years (Q1-Q3: 64-76 years), and the median follow-up duration was 173 days (Q1-Q3: 73-448 days). The incidence of HF hospitalization was 9.9 and 4.1 cases per 1,000 person-years in the osimertinib and control groups, respectively. In multivariable analysis, osimertinib was associated with a higher risk for HF hospitalization than control therapy (subdistribution HR: 2.56; 95% CI: 2.07-3.18; P < 0.001). This association remained significant after propensity score matching (subdistribution HR: 2.29; 95% CI: 1.62-3.24; P < 0.001).
Conclusions Osimertinib use was associated with an increased risk for HF hospitalization. Cardiac function should be closely monitored in patients receiving osimertinib.
en-copyright=
kn-copyright=
en-aut-name=TatebeYasuhisa
en-aut-sei=Tatebe
en-aut-mei=Yasuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaYuta
en-aut-sei=Tanaka
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ManabeYohei
en-aut-sei=Manabe
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkanoShinobu
en-aut-sei=Okano
en-aut-mei=Shinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HigashionnaTsukasa
en-aut-sei=Higashionna
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurakawaKiminaka
en-aut-sei=Murakawa
en-aut-mei=Kiminaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
en-keyword=adverse events
kn-keyword=adverse events
en-keyword=cardiotoxicity
kn-keyword=cardiotoxicity
en-keyword=epidermal growth factor receptor tyrosine kinase inhibitor
kn-keyword=epidermal growth factor receptor tyrosine kinase inhibitor
en-keyword=heart failure
kn-keyword=heart failure
en-keyword=lung cancer
kn-keyword=lung cancer
en-keyword=pharmacotherapy
kn-keyword=pharmacotherapy
en-keyword=propensity score matching
kn-keyword=propensity score matching
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250912
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Radiological assessment of dissected cervical lymph nodes in level III affected by the area of supraomohyoid neck dissection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: To compare the number of dissected cervical lymph nodes in the anatomical level III with that in supraomohyoid neck dissection (SOHND) level III affected by the anatomical relationship between the omohyoid muscle and cricoid cartilage using contrast-enhanced CT (CE-CT) images to assess the validity of the current SOHND.
Methods: CE-CT images of the patients who suffered from malignant tumours in the oral and maxillofacial regions were reviewed. The number of cervical lymph nodes both in the anatomical level III (area between the centre of the inferior border of the hyoid bone [HB] and the inferior border of the cricoid cartilage [CC]) and SOHND level III (area between HB and the intersection of the omohyoid muscle and internal jugular vein [OM-IJ]) were recorded, respectively.
Results: The rate of patients whose number of lymph nodes in level III was affected by the positional relationship between the OM-IJ and CC was almost equal in males and females. As for the patients with OM-IJ below the CC, the number of lymph nodes in SOHND level III increased from that of anatomical level III. Females showed significantly higher values than males (P < .05). Meanwhile, for patients with OM-IJ at or above the CC, the number of lymph nodes in SOHND level III decreased from that of anatomical level III.
Conclusions: The number of dissected cervical lymph nodes differed between the SOHND dissection area and levels I, II, and III. In most cases, SOHND dissects more cervical lymph nodes, especially in female patients.
en-copyright=
kn-copyright=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OhyamaYoshio
en-aut-sei=Ohyama
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsushitaYuki
en-aut-sei=Matsushita
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TubbsR Shane
en-aut-sei=Tubbs
en-aut-mei=R Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KitagawaNorio
en-aut-sei=Kitagawa
en-aut-mei=Norio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawazuToshiyuki
en-aut-sei=Kawazu
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HisatomiMiki
en-aut-sei=Hisatomi
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkadaShunsuke
en-aut-sei=Okada
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujikuraMamiko
en-aut-sei=Fujikura
en-aut-mei=Mamiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YanagiYoshinobu
en-aut-sei=Yanagi
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Clinical Anatomy Research Association in Oral and Maxillofacial Surgery
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Clinical Anatomy Research Association in Oral and Maxillofacial Surgery
kn-affil=
affil-num=5
en-affil=Clinical Anatomy Research Association in Oral and Maxillofacial Surgery
kn-affil=
affil-num=6
en-affil=Clinical Anatomy Research Association in Oral and Maxillofacial Surgery
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Clinical Anatomy Research Association in Oral and Maxillofacial Surgery
kn-affil=
en-keyword=omohyoid muscle
kn-keyword=omohyoid muscle
en-keyword=CT
kn-keyword=CT
en-keyword=neck dissection
kn-keyword=neck dissection
en-keyword=cervical lymph nodes
kn-keyword=cervical lymph nodes
en-keyword=cancer
kn-keyword=cancer
END