start-ver=1.4 cd-journal=joma no-vol=493 cd-vols= no-issue= article-no= start-page=110069 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Coast uplifted by nearby shore-parallel active submarine faults during the 2024 Mw 7.5 Noto Peninsula earthquake en-subtitle= kn-subtitle= en-abstract= kn-abstract=An Mw 7.5 earthquake occurred at 16:10 JST on January 1, 2024 at a depth of 16 km on the Noto Peninsula, central Japan. This earthquake was the second-largest intraplate earthquake recorded in Japan during 120 years of seismic observation, and it caused approximately 100 km of coastal seafloor emergence along the peninsula's northern coast. Herein, we mapped the emergence of this coastal seafloor and measured the uplift along the coast. The movement of the coastline led to the emergence of approximately 4.4 km2 of seafloor, which is continuous and probably the longest in the world. We determined the uplift distribution along the coast using the white remains of a reddish seaweed called Corallina pilulifera. Its upper limit exhibited a distinct horizontal line, effectively representing the uplift amount throughout the peninsula. Two large, uplifted regions were identified, around Cape Saruyama (5.21 m) in the west and Cape Kurasaki (2.70 m) in the north. Although active offshore submarine faults have been extensively researched, the fault traces remain poorly defined because they are primarily interpreted from seismic reflection profiles. We identified the distribution of active submarine faults using anaglyph-type stereoscopic images, confirming the subsurface deformation structure seen through the seismic reflection profiles. The main fault trace is primarily straight and contiguous with the nearby north coast. The uplift amount is greater near the active fault traces on the north side and diminishes sharply with increasing distance from these faults, indicating a southward tilt of surface uplift related to the active submarine faults. en-copyright= kn-copyright= en-aut-name=GotoHideaki en-aut-sei=Goto en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamanakaTomoru en-aut-sei=Yamanaka en-aut-mei=Tomoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MakitaTomohiro en-aut-sei=Makita en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwasaYoshiya en-aut-sei=Iwasa en-aut-mei=Yoshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OguraTakuro en-aut-sei=Ogura en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KagoharaKyoko en-aut-sei=Kagohara en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KumaharaYasuhiro en-aut-sei=Kumahara en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzukiYasuhiro en-aut-sei=Suzuki en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MattaNobuhisa en-aut-sei=Matta en-aut-mei=Nobuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AokiTatsuto en-aut-sei=Aoki en-aut-mei=Tatsuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MoriWataru en-aut-sei=Mori en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HaranishiKenta en-aut-sei=Haranishi en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakataTakashi en-aut-sei=Nakata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Hiroshima University kn-affil= affil-num=2 en-affil=Natural History Museum and Institute Chiba kn-affil= affil-num=3 en-affil=Hiroshima University kn-affil= affil-num=4 en-affil=University of Teacher Education Fukuoka kn-affil= affil-num=5 en-affil=Hyogo University of Teacher Education kn-affil= affil-num=6 en-affil=Yamaguchi University kn-affil= affil-num=7 en-affil=Hiroshima University kn-affil= affil-num=8 en-affil=Nagoya University kn-affil= affil-num=9 en-affil=Okayama University kn-affil= affil-num=10 en-affil=Kanazawa University kn-affil= affil-num=11 en-affil=Hiroshima University kn-affil= affil-num=12 en-affil=Hiroshima University kn-affil= affil-num=13 en-affil=Hiroshima University kn-affil= en-keyword=Active submarine fault kn-keyword=Active submarine fault en-keyword=Tectonic landform kn-keyword=Tectonic landform en-keyword=Coseismic coastal uplift kn-keyword=Coseismic coastal uplift en-keyword=Noto Peninsula kn-keyword=Noto Peninsula en-keyword=Sea of Japan kn-keyword=Sea of Japan END start-ver=1.4 cd-journal=joma no-vol=94 cd-vols= no-issue=3 article-no= start-page=401 end-page=407 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Storage Temperature and a Sugar-ester Edible Coating on Postharvest Quality and Storage Life of eFuyuf Persimmon (Diospyros kaki Thunb.) en-subtitle= kn-subtitle= en-abstract= kn-abstract=In eFuyuf persimmons (Diospyros kaki Thunb.), crunchiness is a preferred postharvest attribute among both distributors and consumers. The present study first examined softening characteristics during storage at 0, 5, 10, 15, 20, and 25‹C. Fruit stored at 0‹C remained firm for 84 d, while that stored at 5‹C had a 100% softening rate within 35 d. At 10 and 15‹C, over 70% of fruit softened within 49 d and 63 d, respectively. The softening rate was relatively slower at 20 and 25‹C, with only 27% softened fruit after 56 d at 25‹C. The potential of a newly developed sugar-ester (SE) edible coating to delay fruit softening and maintain postharvest quality was then assessed during storage at 0 and 25‹C. Uncoated fruit stored at 0‹C for 56 d developed chilling injury (CI) symptoms (rapid fruit softening and peel browning) within 2 d of rewarming at 20‹C. These CI symptoms were notably mitigated in SE-coated fruit. At 25‹C, SE coating also delayed fruit softening and peel color change in addition to reducing fruit shrinkage. In conclusion, in eFuyuf persimmons ambient temperature (20?25‹C) storage in combination with an edible SE coating is recommended for the high demand Christmas and new year seasons and 0‹C storage with an edible SE coating is suitable for longer storage and distribution. en-copyright= kn-copyright= en-aut-name=MuqadasMaqsood en-aut-sei=Muqadas en-aut-mei=Maqsood kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitaloOscar W. en-aut-sei=Mitalo en-aut-mei=Oscar W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhashiKyohei en-aut-sei=Ohashi en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OtsukiTakumi en-aut-sei=Otsuki en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YanoChikara en-aut-sei=Yano en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HejaziZiaurrahman en-aut-sei=Hejazi en-aut-mei=Ziaurrahman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiraNatsuki en-aut-sei=Hira en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KuboYasutaka en-aut-sei=Kubo en-aut-mei=Yasutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University kn-affil= affil-num=2 en-affil=Faculty of Life and Environmental Sciences, University of Tsukuba kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Agriculture, University of Miyazaki kn-affil= affil-num=7 en-affil=Shiga R&D Center, Mitsubishi Chemical Corporation kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life Science, Natural Science and Technology Okayama University kn-affil= en-keyword=chilling injury kn-keyword=chilling injury en-keyword=long-term storage kn-keyword=long-term storage en-keyword=postharvest life kn-keyword=postharvest life en-keyword=shrinkage kn-keyword=shrinkage en-keyword=softening kn-keyword=softening END start-ver=1.4 cd-journal=joma no-vol=194 cd-vols= no-issue= article-no= start-page=50 end-page=62 dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Increasing visual uncertainty modulates multisensory decision-making en-subtitle= kn-subtitle= en-abstract= kn-abstract=The brain integrates and transforms information from multiple senses to make optimal decisions, a process that is critical for navigating complex environments with perceptual uncertainty. Despite a growing consensus that individuals adapt flexibly to uncertain sensory input, whether increasing visual uncertainty influences the decision process itself or other, non-decision sensory processes during multisensory decision-making are unclear. Here, an audiovisual categorization task was used to examine the responses of human participants (N = 30) to visual and audiovisual stimuli under low-, medium-, and high-uncertainty conditions. Modeling the behavioral data using a drift?diffusion model indicated that increased visual uncertainty in the audiovisual context decreased the evidence accumulation rate but had no effect on non-decision processes. Electrophysiological recordings confirmed and expanded upon these results: increased visual uncertainty in the audiovisual context reduced the amplitude during the late decision-making stage (300?380 msec) but had no effect on the amplitude during the early sensory encoding stage (140?220 msec). More importantly, electroencephalography analyses revealed that audiovisual integration in the early sensory encoding stage occurred robustly across all visual uncertainty conditions, whereas audiovisual integration in the late stage occurred only under medium and high visual uncertainty conditions. This study demonstrated that increased visual uncertainty modulates the decision process itself rather than early sensory encoding during multisensory decision-making. Moreover, multisensory integration strategies dynamically adapt to increasing visual uncertainty by engaging different mechanisms to maintain effective decision-making. en-copyright= kn-copyright= en-aut-name=YangXiangfu en-aut-sei=Yang en-aut-mei=Xiangfu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangWeiping en-aut-sei=Yang en-aut-mei=Weiping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YuYinghua en-aut-sei=Yu en-aut-mei=Yinghua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EjimaYoshimichi en-aut-sei=Ejima en-aut-mei=Yoshimichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YangJiajia en-aut-sei=Yang en-aut-mei=Jiajia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Psychology, Faculty of Education, Hubei University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Multisensory decision-making kn-keyword=Multisensory decision-making en-keyword=Visual uncertainty kn-keyword=Visual uncertainty en-keyword=Audiovisual integration kn-keyword=Audiovisual integration en-keyword=Event-related potential kn-keyword=Event-related potential en-keyword=Drift?diffusion model kn-keyword=Drift?diffusion model END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=6 article-no= start-page=1392 end-page=1399 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Directed Poisoning Attacks on FRIT in Adaptive Cruise Control en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recent advances in connected-vehicle technologies have enabled the large-scale collection of driving data, facilitating the deployment of data-driven control schemes. Although these methods offer advantages by eliminating the need for explicit modeling, they also introduce vulnerabilities due to their reliance on stored data. This study investigates a class of targeted data poisoning attacks on fictitious reference iterative tuning, a widely used data-driven controller tuning approach. We present a method that allows an adversary to influence closed-loop dynamics by manipulating the training data so that the resulting controller behavior matches a maliciously defined reference response. This strategy differs from conventional poisoning attacks, which aim only to the degrade control performance. Instead, it enables deliberate alteration of control characteristics such as overshoot and convergence time. The proposed attack is formulated as a constrained optimization problem under bounded tampering signals. Through a numerical study involving adaptive cruise control with stop functionality, we show that minor data modifications, indistinguishable from sensor noise, can cause significant degradation in control behavior. These findings highlight the need for robust security mechanisms in data-driven control implementation. en-copyright= kn-copyright= en-aut-name=IkezakiTaichi en-aut-sei=Ikezaki en-aut-mei=Taichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SawadaKenji en-aut-sei=Sawada en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanekoOsamu en-aut-sei=Kaneko en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate school of Mechanical Engineering, The University of Osaka kn-affil= affil-num=3 en-affil=Graduate School of Informatics and Engineering, The University of Electro-Communications kn-affil= en-keyword=cyberattack kn-keyword=cyberattack en-keyword=data-driven control kn-keyword=data-driven control en-keyword=cruise control kn-keyword=cruise control en-keyword=FRIT kn-keyword=FRIT en-keyword=poisoning attack kn-keyword=poisoning attack END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of size factors and velocity of impinging diesel spray flames on wall heat transfer en-subtitle= kn-subtitle= en-abstract= kn-abstract=To examine the effects of size and velocity of impinging diesel spray flames on wall heat transfer, this study conducted visualization of the spray flame and measurements of wall heat flux in a constant volume vessel. The impinging flame velocity was varied by adjusting the injection velocity. To vary the flame size independently of the flame velocity, the nozzle orifice diameter and the nozzle-to-wall distance were varied under similarity conditions, while maintaining a constant ratio of nozzle-to-wall distance to orifice diameter. Care was taken to minimize wall interference from the liquid phase and unburned regions of the spray flame by employing a high cetane number fuel and increasing the nozzle-to-wall distance. The experimental results showed that the wall heat flux increased as the impinging velocity increased, and the flame width decreased. The power-law correlations between the Nusselt and Reynolds numbers were determined based on the experimental results, revealing that the exponent of the Reynolds number reaches a local minimum at the impingement point. As the radial displacement from the impingement point increases, the exponent of the Reynolds number approaches approximately 0.8, which is a typical value for turbulent wall flow. en-copyright= kn-copyright= en-aut-name=KobashiYoshimitsu en-aut-sei=Kobashi en-aut-mei=Yoshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiraiRyoga en-aut-sei=Hirai en-aut-mei=Ryoga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShibataGen en-aut-sei=Shibata en-aut-mei=Gen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OgawaHideyuki en-aut-sei=Ogawa en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Engineering, Hokkaido University kn-affil= affil-num=3 en-affil=Graduate School of Engineering, Hokkaido University kn-affil= affil-num=4 en-affil=Graduate School of Engineering, Hokkaido University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=2 article-no= start-page=25-00212 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=DNS analysis on the correlation between local burning velocity and flame displacement speed of turbulent premixed flames en-subtitle= kn-subtitle= en-abstract= kn-abstract=The local burning velocity and flame displacement speed are the major properties of premixed flames. The local burning velocity, which is the instantaneous quantity based on the local consumption rate of the unburnt mixture, is considered to be the most appropriate burning velocity in terms of the definition. The local burning velocity can be evaluated theoretically and numerically; however, it is almost impossible to obtain it experimentally using the current technology of measurement. The flame displacement speed can be evaluated more easily than the local burning velocity and compared with the flame displacement speed obtained from experiments. However, the local burning velocity and flame displacement speed have been discussed separately in turbulent premixed flames. In this study, to clarify the relation between the local burning velocity and the flame displacement speed, numerical analyses were performed using the DNS database of statistically steady and fully developed turbulent premixed flames with different density ratios of the unburnt mixture to the burnt product and with different Lewis numbers. It was found that for different density ratios, the local burning velocity was little sensitive to the flame displacement speed in any case under the unity Lewis number. This means the correlation between the local burning velocity and the flame displacement speed is little affected by the dilation of a flame. For different Lewis numbers, the correlation between the local burning velocity and the flame displacement speed was negative in Le = 0.8, and positive in Le = 1.2. This can be explained by the effect of the Lewis number on the local burning velocity, and the flame displacement speed was little affected by the Lewis number in the correlation between the local burning velocity and the flame displacement speed. en-copyright= kn-copyright= en-aut-name=TSUBOIKazuya en-aut-sei=TSUBOI en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Direct Numerical Simulation (DNS) kn-keyword=Direct Numerical Simulation (DNS) en-keyword=Turbulent premixed flame kn-keyword=Turbulent premixed flame en-keyword=Local burning velocity kn-keyword=Local burning velocity en-keyword=Flame displacement speed kn-keyword=Flame displacement speed en-keyword=Density ratio kn-keyword=Density ratio en-keyword=Dilation kn-keyword=Dilation en-keyword=Lewis number kn-keyword=Lewis number END start-ver=1.4 cd-journal=joma no-vol=992 cd-vols= no-issue=1 article-no= start-page=27 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251003 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Observing Supernova Neutrino Light Curves with Super-Kamiokande. VI. A Practical Data Analysis Technique Considering Realistic Experimental Backgrounds en-subtitle= kn-subtitle= en-abstract= kn-abstract=Neutrinos from supernovae, especially those emitted during the late phase of core collapse, are essential for understanding the final stages of massive star evolution. We have been dedicated to developing methods for the analysis of neutrinos emitted during the late phase and observed at Super-Kamiokande (SK). Our previous studies have successfully demonstrated the potential of various analysis methods in extracting essential physical properties; however, the lack of background consideration has limited their practical application. In this study, we address this issue by incorporating a realistic treatment of the experimental signal and background events with the on-going SK experiment. We therefore optimize our analysis framework to reflect realistic observational conditions, including both signal and background events. Using this framework we study several long-time supernova models, simulating the late phase neutrino observation in SK and focusing in particular on the identification of the last observed event. We discuss the possibility of model discrimination methods using timing information from this last observed event. en-copyright= kn-copyright= en-aut-name=NakanishiFumi en-aut-sei=Nakanishi en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakazatoKenfichiro en-aut-sei=Nakazato en-aut-mei=Kenfichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaradaMasayuki en-aut-sei=Harada en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoshioYusuke en-aut-sei=Koshio en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkahoRyuichiro en-aut-sei=Akaho en-aut-mei=Ryuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AshidaYosuke en-aut-sei=Ashida en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HaradaAkira en-aut-sei=Harada en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoriMasamitsu en-aut-sei=Mori en-aut-mei=Masamitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SumiyoshiKohsuke en-aut-sei=Sumiyoshi en-aut-mei=Kohsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuwaYudai en-aut-sei=Suwa en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WendellRoger A. en-aut-sei=Wendell en-aut-mei=Roger A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ZaizenMasamichi en-aut-sei=Zaizen en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= affil-num=3 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Science and Engineering, Waseda University kn-affil= affil-num=6 en-affil=Department of Physics, Tohoku University kn-affil= affil-num=7 en-affil=National Institute of Technology, Ibaraki College kn-affil= affil-num=8 en-affil=Division of Science, National Astronomical Observatory of Japan kn-affil= affil-num=9 en-affil=National Institute of Technology, Numazu College kn-affil= affil-num=10 en-affil=Department of Earth Science and Astronomy, The University of Tokyo kn-affil= affil-num=11 en-affil=Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, The University of Tokyo kn-affil= affil-num=12 en-affil=Department of Earth Science and Astronomy, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=100998 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Robustness of the RGB image-based estimation for rice above-ground biomass by utilizing the dataset collected across multiple locations en-subtitle= kn-subtitle= en-abstract= kn-abstract=Above-ground biomass (AGB) is a critical phenotype representing crop growth. Non-invasive evaluations of AGB, including deep-learning-based red-green-blue (RGB) image analyses, are often specific to the training data. The robustness of the estimation model across untrained conditions is essential to monitor crop productivity globally, but it has yet to be fully assessed. This study aims to assess the robustness of a convolutional neural network (CNN) model for rice AGB estimation across five locations in three countries, and to demonstrate the feasibility of robust model via a practical approach. From transplanting to heading, 1957 RGB images were captured vertically downward over the rice canopy, covering approximately 1 m2. First, a base model was established using data collected from a single location. Then, its robustness was assessed using test datasets taken from the other four locations. The CNN model showed a significant variation in estimation accuracy across the untrained four locations, indicating insufficient robustness of the base model. Subsequently, we quantitatively tested the impact of improving training data diversity on model robustness by adding data from each of the four locations to the base model's training data. Adding at most 48 data points from a location achieved practical accuracy for the added location, with R2Ad above 0.8. Interestingly, adding data from one location sometimes improved the accuracy for other untrained locations as well. These findings suggest that collecting diverse training data for RGB-based estimation, combined with evaluation of robustness paves the way for on-site and instant AGB monitoring of rice. en-copyright= kn-copyright= en-aut-name=NakajimaKota en-aut-sei=Nakajima en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoKazuki en-aut-sei=Saito en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsujimotoYasuhiro en-aut-sei=Tsujimoto en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakaiToshiyuki en-aut-sei=Takai en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MochizukiAtsushi en-aut-sei=Mochizuki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamaguchiTomoaki en-aut-sei=Yamaguchi en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IbrahimAli en-aut-sei=Ibrahim en-aut-mei=Ali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MairouaSalifou Goube en-aut-sei=Mairoua en-aut-mei=Salifou Goube kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AndrianaryBruce Haja en-aut-sei=Andrianary en-aut-mei=Bruce Haja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatsuraKeisuke en-aut-sei=Katsura en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TanakaYu en-aut-sei=Tanaka en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=2 en-affil=International Rice Research Institute (IRRI) kn-affil= affil-num=3 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=4 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=5 en-affil=CHIBA Prefectural Agriculture and Forestry Research Center kn-affil= affil-num=6 en-affil=Faculty of Applied Biological Sciences, Gifu University kn-affil= affil-num=7 en-affil= Africa Rice Center (AfricaRice), Regional Station for the Sahel kn-affil= affil-num=8 en-affil=Africa Rice Center (AfricaRice) kn-affil= affil-num=9 en-affil=Laboratoire des Radioisotopes, Universit? dŒAntananarivo kn-affil= affil-num=10 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=11 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Robustness kn-keyword=Robustness en-keyword=RGB image kn-keyword=RGB image en-keyword=Rice, Above-ground biomass kn-keyword=Rice, Above-ground biomass en-keyword=Convolutional neural network kn-keyword=Convolutional neural network END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue= article-no= start-page=1599114 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of visual spatial frequency on audiovisual interaction: an event-related potential study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Spatial frequency is a fundamental characteristic of visual signals that modulates the audiovisual integration behavior, but the neural mechanisms underlying spatial frequency are not well established. In the present study, the high temporal resolution of event-related potentials was used to investigate how visual spatial frequency modulates audiovisual integration. A visual orientation discrimination task was used, and the spatial frequency of visual stimuli was manipulated under three conditions. Results showed that the influence of visual spatial frequency on audiovisual integration is a dynamic process. The earliest audiovisual integration occurred over the left temporal-occipital regions in the early sensory stage (60?90?ms) for high spatial frequency conditions but was absent for low and middle spatial frequency conditions. In addition, audiovisual integration over fronto-central regions was delayed as spatial frequency increased (from 230?260?ms to 260?320?ms). The integration effect was also observed over parietal and occipital regions at 350?380?ms, and its strength gradually decreased at higher spatial frequencies. These discrepancies in the temporal and spatial distributions of audiovisual integration imply that the role of spatial frequency varies between early sensory and late cognitive stages. The findings of this study offer the first neural demonstration that spatial frequency modulates audiovisual integration, thus providing a basis for studying complex multisensory integration, especially in semantic and emotional domains. en-copyright= kn-copyright= en-aut-name=WuFengxia en-aut-sei=Wu en-aut-mei=Fengxia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RenYanna en-aut-sei=Ren en-aut-mei=Yanna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaoTengfei en-aut-sei=Hao en-aut-mei=Tengfei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YangJingjing en-aut-sei=Yang en-aut-mei=Jingjing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WuQiong en-aut-sei=Wu en-aut-mei=Qiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YangJiajia en-aut-sei=Yang en-aut-mei=Jiajia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WangMeng en-aut-sei=Wang en-aut-mei=Meng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=School of Artificial Intelligence, Changchun University of Science and Technology kn-affil= affil-num=2 en-affil=Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine kn-affil= affil-num=3 en-affil=School of Artificial Intelligence, Changchun University of Science and Technology kn-affil= affil-num=4 en-affil=School of Artificial Intelligence, Changchun University of Science and Technology kn-affil= affil-num=5 en-affil=Department of Psychology, Suzhou University of Science and Technology kn-affil= affil-num=6 en-affil=Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=School of Artificial Intelligence, Changchun University of Science and Technology kn-affil= en-keyword=spatial frequency kn-keyword=spatial frequency en-keyword=visual orientation discrimination kn-keyword=visual orientation discrimination en-keyword=audiovisual integration kn-keyword=audiovisual integration en-keyword=early sensory stage kn-keyword=early sensory stage en-keyword=late cognitive stage kn-keyword=late cognitive stage en-keyword=event-related potentials kn-keyword=event-related potentials END start-ver=1.4 cd-journal=joma no-vol=260 cd-vols= no-issue= article-no= start-page=115195 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202512 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An entangled material made from fiber aerosol deposition method en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study demonstrates the successful application of Aerosol Deposition (AD) technology to short carbon fibers (length < 1 mm), enabling the rapid, three-dimensional (3D) fabrication of objects with vertical growth rates up to 0.3 mm/s, a significant improvement over conventional additive manufacturing. Through a series of experiments using this novel Fiber Aerosol Deposition (FAD) technology, three fiber lengths (47, 85, and 111 ƒÊm) and four substrate materials (carbon, polypropylene, polyethylene, and acrylonitrile butadiene styrene (ABS)) were investigated. Our findings indicate that both carbon substrate entanglement and fiber length critically influence deposition efficiency. Scanning electron microscopy (SEM) and X-ray computed tomography (CT) analyses reveal that during formation, longer fibers (>100 ƒÊm) initially create a cage-like framework, which is subsequently filled by shorter fibers. Density measurements and fiber distribution analysis confirmed that structures predominantly composed of shorter fibers exhibit higher packing densities, consistent with their role as filler material. These results collectively suggest that the FAD methodfs formation mechanism relies on frictional entanglement rather than the room-temperature impact consolidation (RTIC) effect characteristic of traditional AD. This breakthrough presents a promising new technique for forming short fibers into functional 3D architectures, with potential applications extending to proteins, polymer fibers, and biomaterial fibers. en-copyright= kn-copyright= en-aut-name=YuHongwu en-aut-sei=Yu en-aut-mei=Hongwu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaNaoshi en-aut-sei=Ikeda en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriMasakazu en-aut-sei=Mori en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanoJun en-aut-sei=Kano en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ParkJae-Hyuk en-aut-sei=Park en-aut-mei=Jae-Hyuk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkedoJun en-aut-sei=Akedo en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, University of Okayama kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, University of Okayama kn-affil= affil-num=3 en-affil=Ryukoku University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, University of Okayama kn-affil= affil-num=5 en-affil=School of Advanced Materials Science & Engineering, Sungkyunkwan University kn-affil= affil-num=6 en-affil=National Institute of Advanced Industrial Science and Technology kn-affil= en-keyword=Aerosol deposition kn-keyword=Aerosol deposition en-keyword=Thick film kn-keyword=Thick film en-keyword=Room temperature kn-keyword=Room temperature en-keyword=Ceramic coating kn-keyword=Ceramic coating en-keyword=RTIC kn-keyword=RTIC en-keyword=Carbon fiber kn-keyword=Carbon fiber END start-ver=1.4 cd-journal=joma no-vol=163 cd-vols= no-issue=22 article-no= start-page=224312 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fourier-transform infrared spectroscopy of hydrogen fluoride dimers in solid parahydrogen en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigate the Fourier-transform infrared spectra of hydrogen fluoride dimers in solid parahydrogen, the detailed analysis of which has remained unexplored. We propose a plausible analysis based on concentration dependence, light polarization, annealing, and time evolution. The absorption lines exhibited multiple peaks, with intensity ratios significantly altered by annealing and by time evolution at a constant temperature. The spectral patterns and isotopic effects suggest that the dimers do not rotate freely in solid parahydrogen, while multiple peaks arise from different stable structures, including single and double substitution sites. Unlike in the gas phase and helium droplets, no tunneling splitting was observed. The broad ƒË1 band suggests that some dimer structures may exhibit axial rotation. Spectral changes due to annealing likely result from site conversion, while observed IR-induced changes indicate preferential dissociation of dimers in double substitution sites. These findings still remain tentative, necessitating further experimental and theoretical studies. en-copyright= kn-copyright= en-aut-name=MiyamotoYuki en-aut-sei=Miyamoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OoeHiroki en-aut-sei=Ooe en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KumaSusumu en-aut-sei=Kuma en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Rikkyo University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=35 article-no= start-page=9749 end-page=9752 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250826 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Synthesis of a Pseudocytidine Nucleoside to Form a Stable and Selective Base Pair with Iso-guanosine in RNA en-subtitle= kn-subtitle= en-abstract= kn-abstract=Non-natural base pair formation provides insight into new functions of nucleic acids. Therefore, various artificial base pairs have been developed in both DNA and RNA. In this work, we successfully synthesized pseudocytidine from commercially available pseudouridine to form base pairs with isoguanine, also known as 2-OH-adenine, in RNA. Measurement of the melting temperature with the base pair incorporated at the center of a 13-mer RNA showed the highest value for the ƒÕ-rC and iso-rG (2-OH-rA) base pair. This base pair formation exhibited a high melting temperature regardless of whether it was incorporated into the pyrimidine or purine strand, indicating that it can form a stable and selective duplex RNA. en-copyright= kn-copyright= en-aut-name=MiyaharaRyo en-aut-sei=Miyahara en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TaniguchiYosuke en-aut-sei=Taniguchi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Pharmaceutical Sciences, Kyushu University kn-affil= affil-num=2 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=14 article-no= start-page=12551 end-page=12562 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250709 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mesoporous Oxyhalide Aggregates Exhibiting Improved Photocatalytic Activity for Visible-Light H2 Evolution and CO2 Reduction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oxyhalides are promising visible-light photocatalysts for water splitting and CO2 conversion; however, those exhibiting high activity for these reactions have rarely been reported. Here, we show that using water-soluble Ti complexes as precursors in the microwave-assisted hydrothermal synthesis of the oxyhalide photocatalyst Pb2Ti2O5.4F1.2 (PTOF) resulted in the production of nanoparticulate PTOF. The primary particle size of the synthesized PTOF ranged from several tens of nanometers to several hundreds of nanometers. Using Ti-citric acid or Ti-tartaric acid complexes as precursors, the PTOF was formed as mesoporous aggregates, compared with a bulky analogue (0.5?1 ƒÊm) prepared using a TiCl4 precursor. The PTOF prepared from Ti-citric acid complex had a particle size of 50?100 nm and showed a one-order-of-magnitude greater activity for H2 evolution from an aqueous ethylenediaminetetraacetic acid solution with the aid of a Rh cocatalyst. An apparent quantum yield (AQY) of 15.4 } 1.0% at 420 nm, which is the highest among the reported oxyhalide photocatalysts, was achieved under optimal conditions. Although excess particle size reduction of PTOF lowered the H2 evolution activity, the PTOF with the smallest possible primary particle size of 15?30 nm, prepared from Ti-tartaric acid complex, showed the highest activity toward the selective reduction of CO2 into formate in a nonaqueous environment when combined with a binuclear Ru(II) complex. The CO2 reduction AQY was 10.4 } 1.8% at 420 nm, a record-high value among metal-complex/semiconductor binary hybrid photocatalysts. This study highlights the importance of morphological control of oxyhalides for realizing their full potential as photocatalysts for artificial photosynthesis. en-copyright= kn-copyright= en-aut-name=UekiHiroto en-aut-sei=Ueki en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaToshiya en-aut-sei=Tanaka en-aut-mei=Toshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnabukiShuji en-aut-sei=Anabuki en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakadaRyuichi en-aut-sei=Nakada en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkazakiMegumi en-aut-sei=Okazaki en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AiharaKenta en-aut-sei=Aihara en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HattoriMasashi en-aut-sei=Hattori en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshiwariFumitaka en-aut-sei=Ishiwari en-aut-mei=Fumitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HarukiRie en-aut-sei=Haruki en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NozawaShunsuke en-aut-sei=Nozawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoiToshiyuki en-aut-sei=Yokoi en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HaraMichikazu en-aut-sei=Hara en-aut-mei=Michikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshitaniOsamu en-aut-sei=Ishitani en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SaekiAkinori en-aut-sei=Saeki en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MaedaKazuhiko en-aut-sei=Maeda en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=2 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=6 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=7 en-affil=Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=8 en-affil=Department of Applied Chemistry, Graduate School of Engineering, Osaka University kn-affil= affil-num=9 en-affil=Institute of Materials Structure Science, High Energy Accelerator Research Organization kn-affil= affil-num=10 en-affil=Institute of Materials Structure Science, High Energy Accelerator Research Organization kn-affil= affil-num=11 en-affil=Nanospace Catalysis Unit, Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=12 en-affil=Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=13 en-affil=Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University kn-affil= affil-num=14 en-affil=Department of Applied Chemistry, Graduate School of Engineering, Osaka University kn-affil= affil-num=15 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= en-keyword=artificial photosynthesis kn-keyword=artificial photosynthesis en-keyword=solar fuels kn-keyword=solar fuels en-keyword=mixed-anion compounds kn-keyword=mixed-anion compounds en-keyword=oxyfluorides kn-keyword=oxyfluorides en-keyword=water splitting kn-keyword=water splitting END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=6 article-no= start-page=3541 end-page=3552 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Metal-Cation Doping on Photocatalytic H2 Evolution Activity of Layered Perovskite Oxynitride K2LaTa2O6N en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aliovalent cation doping into a heterogeneous photocatalyst affects several of its physicochemical properties, including its morphological characteristics, optical absorption behavior, and charge carrier dynamics, causing a drastic change in its photocatalytic activity. In the present work, we investigated the effects of aliovalent cation doping on the visible-light H2-evolution photocatalytic activity of the Ruddlesden?Popper layered perovskite oxynitride K2LaTa2O6N. The photocatalytic activity toward H2 evolution from an aqueous NaI solution was found to be enhanced by an increase in the specific surface area of the K2LaTa2O6N photocatalyst, which could be realized upon doping with lower-valence cations (e.g., Mg2+, Al3+, and Ga3+). Among the dopants examined at 1 mol % doping, Ga resulted in the highest activity. The activity of the Ga-doped specimen was further improved with increasing Ga concentration, where the maximal activity was obtained at 10 mol %, corresponding to an apparent quantum yield of 2.7 } 0.4% at 420 nm from aqueous methanol. This number is the highest reported for a layered oxynitride photocatalyst. In the Ga-doped K2LaTa2O6N, a trade-off was observed between the Ga concentration and the photocatalytic activity. Although doping with Ga reduced the particle size of K2LaTa2O6N and suppressed undesirable charge recombination, it led to an enlarged bandgap, unsuitable for visible-light absorption. en-copyright= kn-copyright= en-aut-name=TsuchikadoHideya en-aut-sei=Tsuchikado en-aut-mei=Hideya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AnabukiShuji en-aut-sei=Anabuki en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=CretuOvidiu en-aut-sei=Cretu en-aut-mei=Ovidiu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaYuki en-aut-sei=Kinoshita en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HattoriMasashi en-aut-sei=Hattori en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShiromaYuta en-aut-sei=Shiroma en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FanDongxiao en-aut-sei=Fan en-aut-mei=Dongxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkazakiMegumi en-aut-sei=Okazaki en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SomaTakuto en-aut-sei=Soma en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshiwariFumitaka en-aut-sei=Ishiwari en-aut-mei=Fumitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NozawaShunsuke en-aut-sei=Nozawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YokoiToshiyuki en-aut-sei=Yokoi en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HaraMichikazu en-aut-sei=Hara en-aut-mei=Michikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KimotoKoji en-aut-sei=Kimoto en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SaekiAkinori en-aut-sei=Saeki en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MaedaKazuhiko en-aut-sei=Maeda en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Electron Microscopy Group, National Institute for Materials Science (NIMS) kn-affil= affil-num=4 en-affil=Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=6 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=7 en-affil=Institute of Materials Structure Science High Energy Accelerator Research Organization kn-affil= affil-num=8 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=9 en-affil=Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo kn-affil= affil-num=10 en-affil=Department of Applied Chemistry, Graduate School of Engineering, Osaka University kn-affil= affil-num=11 en-affil=Institute of Materials Structure Science High Energy Accelerator Research Organization kn-affil= affil-num=12 en-affil=Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=13 en-affil=Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=14 en-affil=Electron Microscopy Group, National Institute for Materials Science (NIMS) kn-affil= affil-num=15 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Department of Applied Chemistry, Graduate School of Engineering, Osaka University kn-affil= affil-num=17 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= en-keyword=artificial photosynthesis kn-keyword=artificial photosynthesis en-keyword=heterogeneous photocatalysis kn-keyword=heterogeneous photocatalysis en-keyword=mixed-anion compounds kn-keyword=mixed-anion compounds en-keyword=topochemical reaction kn-keyword=topochemical reaction en-keyword=visible light kn-keyword=visible light END start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue=3 article-no= start-page=e70091 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Autoclaved lightweight aerated concrete suppressed N2O and CO2 emissions from paddy soil en-subtitle= kn-subtitle= en-abstract= kn-abstract=Autoclaved lightweight aerated concrete (AAC), a construction waste that is utilized as a soil amendment, can influence terrestrial carbon dioxide (CO2) emissions. Still, no evidence exists regarding its impact on the emission of nitrous oxide (N2O), which has a higher global warming potential. This study examined effects of AAC on CO2 and N2O emissions from paddy soil under compacted and non-compacted conditions, under 60% and 100% water-holding capacity (WHC). Samples were incubated in glass vials (25‹C) for 21 days. Emissions of CO2 and N2O were measured on days 0, 1, 3, 7, 14, and 21 using gas chromatography. The results revealed that AAC significantly (p < 0.05) lowered N2O emission rate during the whole period of incubation, while it suppressed CO2 emission rate only at the early stages (?7 days) of incubation. In compacted soil, the emissions of CO2 were significantly lower, while N2O was significantly higher than that in non-compacted soil, showing the influence of soil physical conditions. The emissions of CO2 and N2O were significantly lower at 100% WHC than those at 60% WHC. AAC suppressed both CO2 and N2O emissions under both compaction and WHC levels. The results confirm that AAC supports suppressing terrestrial emission of both CO2 and N2O, indicating that AAC has a potential as a sustainable soil amendment that enhances the climate change resilience. en-copyright= kn-copyright= en-aut-name=RathnayakeNagoda R. R. W. S. en-aut-sei=Rathnayake en-aut-mei=Nagoda R. R. W. S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LeelamanieDewpura A. L. en-aut-sei=Leelamanie en-aut-mei=Dewpura A. L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YatagaiAtsushi en-aut-sei=Yatagai en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Soil Science, Faculty of Agriculture, University of Ruhuna kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Soil Science, Faculty of Agriculture, University of Ruhuna kn-affil= affil-num=4 en-affil=Clion Co. Ltd kn-affil= END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=3 article-no= start-page=e220018 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Origin of the unique topology of the triangular water cluster in <i>Rubrobacter xylanophilus</i> rhodopsin en-subtitle= kn-subtitle= en-abstract= kn-abstract=The crystal structure of Rubrobacter xylanophilus rhodopsin (RxR) reveals a triangular cluster of three water molecules (W413, W415, and W419) at the extracellular proton-release site, near Glu187 and Glu197. Using a quantum mechanical/molecular mechanical approach, we identified the structural nature of this unique water cluster. The triangular shape is best reproduced when all three water molecules are neutral H2O with protonated Glu187 and deprotonated Glu197. Attempts to place H3O+ at any of these water molecules result in spontaneous proton transfer to one of the acidic residues and significant distortion from the crystal structure. The plane defined by the triangular water cluster extends into the guanidinium plane of Arg71, with both aligned along the W413...W419 axis. This extended plane lies nearly perpendicular to a five-membered, ring-like H-bond network involving two carboxyl oxygen atoms from Glu187 and one from Glu197. The resulting bipartite planar architecture, defined by the water triangle, Arg71, and the Glu187/Glu197 network may reflect the exceptional thermal stability in RxR. en-copyright= kn-copyright= en-aut-name=NojiTomoyasu en-aut-sei=Noji en-aut-mei=Tomoyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsujimuraMasaki en-aut-sei=Tsujimura en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaitoKeisuke en-aut-sei=Saito en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Advanced Interdisciplinary Studies, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo kn-affil= affil-num=4 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo kn-affil= en-keyword=microbial rhodopsin kn-keyword=microbial rhodopsin en-keyword=proton transfer pathway kn-keyword=proton transfer pathway en-keyword=H3O+ kn-keyword=H3O+ en-keyword=pKa kn-keyword=pKa en-keyword=proton release group kn-keyword=proton release group END start-ver=1.4 cd-journal=joma no-vol=187 cd-vols= no-issue= article-no= start-page=106403 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nitrogen distribution and nitrogen isotope fractionation in synthetic 2:1 phyllosilicates under hydrothermal conditions at 200?‹C and saturated vapor pressure en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigates nitrogen distribution and isotope fractionation within synthetic 2:1 phyllosilicates, simulating submarine hydrothermal environments at 200 ‹C and saturated vapor pressure. XRD and EDS results revealed the potential coexistence of multiple cations in the interlayer of synthetic 2:1 phyllosilicate, concurrently suggesting cation substitution in the tetrahedral and/or octahedral sheets. Meanwhile, the iron-enriched 25-5 sample exhibited restricted interlayer expansibility. NH4+ absorptions were identified in the NH4-stretching (3200?2800 cm?1) and NH4-bending (1450?1400 cm?1) regions, with wavenumber shifts indicating the influence of interlayer water removal. At pH 10.56, over 95% of nitrogen was released into the gas phase, while at pH 8.88, nitrogen proportions in the liquid and gas phases were comparable (average 48?49%). Experiments with iron at pH ?8.80 showed that the nitrogen proportion in the gas phase (average 28%) was more than twofold lower than that in the liquid phase (average 68%). Equilibrium isotope fractionation factors indicated discernible preference for heavier nitrogen isotopes in the solid phase (ƒ¿solid-liquid = 1.009?1.021 and ƒ¿solid-gas = 1.011?1.027). The ƒ¿liquid-gas range for sample 25?2 was 1.001?1.008, while that for the iron-enriched composite 25?5 was 0.997?1.010. Our experimental studies have confirmed that, in the absence of exchange interactions with external substances possessing different nitrogen isotope ratios, nitrogen isotope fractionation between ammonium and ammonia, controlled by variations in temperature and pH during mineralization, plays a crucial role in the variation of nitrogen isotope ratios. Additionally, we confirmed that metal-amines influence nitrogen isotope fractionation by modulating ammonia gas emission. These findings enhance our understanding of nitrogen cycling across the gas, liquid, and solid phases in submarine hydrothermal systems. en-copyright= kn-copyright= en-aut-name=JoJaeguk en-aut-sei=Jo en-aut-mei=Jaeguk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamanakaToshiro en-aut-sei=Yamanaka en-aut-mei=Toshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyoshiYouko en-aut-sei=Miyoshi en-aut-mei=Youko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiMasaya en-aut-sei=Suzuki en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuwaharaYoshihiro en-aut-sei=Kuwahara en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ChibaHitoshi en-aut-sei=Chiba en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LeeBum Han en-aut-sei=Lee en-aut-mei=Bum Han kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=4 en-affil=Research Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=5 en-affil=Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Critical Minerals Research Center, Korea Institute of Geoscience & Mineral Resources (KIGAM) kn-affil= en-keyword=Synthetic 2:1 phyllosilicates kn-keyword=Synthetic 2:1 phyllosilicates en-keyword=Nitrogen distribution kn-keyword=Nitrogen distribution en-keyword=Nitrogen isotope fractionation kn-keyword=Nitrogen isotope fractionation en-keyword=Hydrothermal system kn-keyword=Hydrothermal system END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=13 article-no= start-page=e202419624 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250129 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Conduction Band and Defect Engineering for the Prominent Visible]Light Responsive Photocatalysts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Controlling trap depth is crucial to improve photocatalytic activity, but designing such crystal structures has been challenging. In this study, we discovered that in 2D materials like BiOCl and Bi4NbO8Cl, composed of interleaved [Bi2O2]2+ and Cl- slabs, the trap depth can be controlled by manipulating the slab stacking structure. In BiOCl, oxygen vacancies (VO) create deep electron traps, while chlorine vacancies (VCl) produce shallow traps. The depth is determined by the coordination around anion vacancies: VO forms strong ƒÐ bonds with Bi-6p dangling bonds below the conduction band minimum (CBM), while those around Cl are parallel, forming weak ƒÎ-bonding. The strong re-hybridization makes the trap depth deeper. In Bi4NbO8Cl, VCl also creates shallow traps, but VO does not produce deep traps although Bi-6p orbitals are also forming strong ƒÐ bonding. This difference is attributed to the difference of the energy level of CBM. In both cases, the CBM consists of Bi-6p orbitals extending into the Cl layers. However, these orbitals are isolated in BiOCl, but those in Bi4NbO8Cl are bonded with each other between neighboring [Bi2O2]2+ layers. This unique bonding-based CBM prevents the formation of deep electron traps, and significantly enhances H2 evolution activity by prolonging the lifetime of highly reactive free electrons. en-copyright= kn-copyright= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoKosaku en-aut-sei=Kato en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OgawaTakafumi en-aut-sei=Ogawa en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OgawaKanta en-aut-sei=Ogawa en-aut-mei=Kanta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaMakoto en-aut-sei=Ogawa en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoDaichi en-aut-sei=Kato en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhongChengchao en-aut-sei=Zhong en-aut-mei=Chengchao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KuwabaraAkihide en-aut-sei=Kuwabara en-aut-mei=Akihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AbeRyu en-aut-sei=Abe en-aut-mei=Ryu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KageyamaHiroshi en-aut-sei=Kageyama en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Nanostructures Research Laboratory, Japan Fine Ceramics Center kn-affil= affil-num=4 en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University kn-affil= affil-num=5 en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University kn-affil= affil-num=6 en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University kn-affil= affil-num=7 en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University kn-affil= affil-num=8 en-affil=Nanostructures Research Laboratory, Japan Fine Ceramics Center kn-affil= affil-num=9 en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University kn-affil= affil-num=10 en-affil=Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering, Kyoto University kn-affil= en-keyword=photocatalysis kn-keyword=photocatalysis en-keyword=defects kn-keyword=defects en-keyword=charge trapping kn-keyword=charge trapping en-keyword=recombination kn-keyword=recombination en-keyword=time-resolved spectroscopy kn-keyword=time-resolved spectroscopy END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=18 article-no= start-page=5359 end-page=5365 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deoxygenative dual CO2 conversions: methylenation and switchable N-formylation/N-methylation of tryptamines en-subtitle= kn-subtitle= en-abstract= kn-abstract=The unprecedented one-pot synthesis of N-formyl/N-methyltryptolines from tryptamines was achieved via phenylsilane-assisted deoxygenative dual CO2 conversions. Two CO2 molecules acted as different synthons and were converted into methylene and N-formyl/N-methyl groups. The CO2 reduction step was catalyzed by a pentanuclear zinc complex at atmospheric pressure under solvent-free conditions. The N-formyl/N-methyl products could be switched by changing the amount of phenylsilane, and the amounts of in situ generated bis(silyl)acetals and silyl formates were key to the chemoselectivity. Methylenation, N-formylation, and N-methylation proceeded via the Pictet?Spengler reaction, amine?acid condensation, and the Eschweiler?Clarke reaction, respectively. The CO2 reduction with phenylsilane could also be applied to the one-pot three-step synthesis of spiro[oxindole-pyrrolidine]s. en-copyright= kn-copyright= en-aut-name=TakaishiKazuto en-aut-sei=Takaishi en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MorishitaHajime en-aut-sei=Morishita en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwakiKosuke en-aut-sei=Iwaki en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced Charge-Transfer Kinetics Enabled by ZrO2?Based Dielectric Layers in Lithium-Ion Batteries en-subtitle= kn-subtitle= en-abstract= kn-abstract=The development of high-rate capability lithium-ion batteries (LIBs) requires suppression of charge-transfer resistance (RCT) at electrode?electrolyte interfaces. Here, zirconia-based dielectric oxides (MZ; M = Y, Gd, Sm, Er, etc.) were introduced onto LiCoO2 (LCO) surfaces as electronically and ionically insulating modifiers to accelerate interfacial ion transport. Electrochemical impedance spectroscopy showed that Y2O3 modified ZrO2 (YZ) decoration reduced RCT from 75.8 ƒ¶ in reference LCO to 38.3 ƒ¶, accompanied by a 2.3-fold improvement in capacity retention at 20C. Density functional theory molecular dynamics (DFT?MD) simulations showed that solvated Li ions coordinate with surface oxygen atoms in discharging, and that adsorption energies are governed by local charge distributions determined by stabilizing cations. Optimal adsorption activity, and thus the lowest RCT, occurred when the surface charge corrugation was balanced. These findings provide design principles for dielectric interface engineering to enhance rate capability of LIBs. en-copyright= kn-copyright= en-aut-name=TeranishiTakashi en-aut-sei=Teranishi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HigakiYusuke en-aut-sei=Higaki en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ImamuraTomonori en-aut-sei=Imamura en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoribeMotoki en-aut-sei=Horibe en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoShinya en-aut-sei=Kondo en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasaokaChinatsu en-aut-sei=Sasaoka en-aut-mei=Chinatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HirabaruHikaru en-aut-sei=Hirabaru en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatayamaShingo en-aut-sei=Katayama en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakayamaMasanobu en-aut-sei=Nakayama en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KishimotoAkira en-aut-sei=Kishimoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Advanced Ceramics, Nagoya Institute of Technology kn-affil= affil-num=5 en-affil=Department of Energy Engineering, Nagoya University kn-affil= affil-num=6 en-affil=R&D Laboratory, Nippon Denko Co., Ltd. kn-affil= affil-num=7 en-affil=R&D Laboratory, Nippon Denko Co., Ltd. kn-affil= affil-num=8 en-affil=R&D Laboratory, Nippon Denko Co., Ltd. kn-affil= affil-num=9 en-affil=Department of Advanced Ceramics, Nagoya Institute of Technology kn-affil= affil-num=10 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=lithium ion battery kn-keyword=lithium ion battery en-keyword=high rate capability kn-keyword=high rate capability en-keyword=charge transfer kn-keyword=charge transfer en-keyword=Li adsorption kn-keyword=Li adsorption en-keyword=dielectric interface kn-keyword=dielectric interface en-keyword=stabilized ZrO2 kn-keyword=stabilized ZrO2 END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=4 article-no= start-page=116 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Drip Fertigation in Greenhouse Eggplant Cultivation: Reducing N2O Emissions and Nitrate Leaching en-subtitle= kn-subtitle= en-abstract= kn-abstract=Drip fertigation (DF) is a sustainable agricultural management technique that optimizes water and nutrient usage, enhances crop productivity, and reduces environmental impact. Herein, we compared the effects of DF and conventional fertilization (CF) with a basal fertilizer on yield, soil inorganic nitrogen dynamics, N2O emissions, and nitrogen leaching during facility-grown eggplant cultivation. The experiment was conducted in a greenhouse from September 2023 to May 2024, with treatments arranged in three rows and three replicates. Soil, gas, and water samples were collected and analyzed throughout the growing season. The results revealed that the DF treatment produced yields comparable to those obtained with the CF treatment while significantly reducing nitrogen and phosphorus inputs. DF effectively prevented excessive nitrogen accumulation in the soil and reduced nitrogen loss through leaching and gas emissions. N2O emissions were significantly lower by more than 60% under DF than under CF. Precise nutrient management in DF suppressed nitrification and denitrification processes, mitigating N2O emissions. DF also significantly reduced nitrogen leaching by more than 70% compared with that in CF. These findings demonstrate that DF effectively enhances agricultural sustainability by improving nutrient use efficiency, reducing greenhouse gas emissions, and minimizing nitrogen leaching during the cultivation of facility-grown eggplant. en-copyright= kn-copyright= en-aut-name=ShiraishiWataru en-aut-sei=Shiraishi en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraShion en-aut-sei=Nishimura en-aut-mei=Shion kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UenoHideto en-aut-sei=Ueno en-aut-mei=Hideto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Kochi Prefectural Agricultural Research Center kn-affil= affil-num=2 en-affil=Department of Bioresource Production Science, United Graduate School of Agriculture, Ehime University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Bioresource Production Science, United Graduate School of Agriculture, Ehime University kn-affil= en-keyword=drip fertigation kn-keyword=drip fertigation en-keyword=eggplant kn-keyword=eggplant en-keyword=greenhouse cultivation kn-keyword=greenhouse cultivation en-keyword=nitrogen leaching kn-keyword=nitrogen leaching en-keyword=nitrogen use efficiency kn-keyword=nitrogen use efficiency en-keyword=nitrous oxide emissions kn-keyword=nitrous oxide emissions END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photochemical Macrolactonization of Hydroxyaldehydes via C?H Bromination en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KodakiSakura en-aut-sei=Kodaki en-aut-mei=Sakura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AndoHaru en-aut-sei=Ando en-aut-mei=Haru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Macrolactonization kn-keyword=Macrolactonization en-keyword=Hydroxyaldehydes kn-keyword=Hydroxyaldehydes en-keyword=Photochemical reaction kn-keyword=Photochemical reaction en-keyword=C?H Bromination kn-keyword=C?H Bromination en-keyword=Macrolactone kn-keyword=Macrolactone en-keyword=Visible light kn-keyword=Visible light en-keyword=Radical kn-keyword=Radical END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=8786 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251002 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficient and stable n-type sulfide overall water splitting with separated hydrogen production en-subtitle= kn-subtitle= en-abstract= kn-abstract=N-type sulfide semiconductors are promising photocatalysts due to their broad visible-light absorption, facile synthesis and chemical diversity. However, photocorrosion and limited electron transport in one-step excitation and solid-state Z-scheme systems hinder efficient overall water splitting. Liquid-phase Z-schemes offer a viable alternative, but sluggish mediator kinetics and interfacial side reactions impede their construction. Here we report a stable Z-scheme system integrating n-type CdS and BiVO? with a [Fe(CN)?]??/[Fe(CN)?]?? mediator, achieving 10.2% apparent quantum yield at 450?nm with stoichiometric H?/O? evolution. High activity reflects synergies between Pt@CrOx and Co3O4 cocatalysts on CdS, and cobalt-directed facet asymmetry in BiVO?, resulting in matched kinetics for hydrogen and oxygen evolution in a reversible mediator solution. Stability is dramatically improved through coating CdS and BiVO4 with different oxides to inhibit Fe4[Fe(CN)6]3 precipitation and deactivation by a hitherto unrecognized mechanism. Separate hydrogen and oxygen production is also demonstrated in a two-compartment reactor under visible light and ambient conditions. This work unlocks the long-sought potential of n-type sulfides for efficient, durable and safe solar-driven hydrogen production. en-copyright= kn-copyright= en-aut-name=LuoHaolin en-aut-sei=Luo en-aut-mei=Haolin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuZhixi en-aut-sei=Liu en-aut-mei=Zhixi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LvHaifeng en-aut-sei=Lv en-aut-mei=Haifeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=VequizoJunie Jhon M. en-aut-sei=Vequizo en-aut-mei=Junie Jhon M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZhengMengting en-aut-sei=Zheng en-aut-mei=Mengting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HanFeng en-aut-sei=Han en-aut-mei=Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YeZhen en-aut-sei=Ye en-aut-mei=Zhen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShangguanWenfeng en-aut-sei=Shangguan en-aut-mei=Wenfeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LeeAdam F. en-aut-sei=Lee en-aut-mei=Adam F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WuXiaojun en-aut-sei=Wu en-aut-mei=Xiaojun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KazunariDomen en-aut-sei=Kazunari en-aut-mei=Domen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=LuJun en-aut-sei=Lu en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=JiangZhi en-aut-sei=Jiang en-aut-mei=Zhi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University kn-affil= affil-num=2 en-affil=Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University kn-affil= affil-num=3 en-affil=State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China kn-affil= affil-num=4 en-affil=Institute of Aqua Regeneration, Shinshu University kn-affil= affil-num=5 en-affil=College of Chemical and Biological Engineering, Zhejiang University kn-affil= affil-num=6 en-affil=Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University kn-affil= affil-num=7 en-affil=Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University kn-affil= affil-num=8 en-affil=Faculty of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University kn-affil= affil-num=10 en-affil=Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University kn-affil= affil-num=11 en-affil=State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China kn-affil= affil-num=12 en-affil=Institute of Aqua Regeneration, Shinshu University kn-affil= affil-num=13 en-affil=College of Chemical and Biological Engineering, Zhejiang University kn-affil= affil-num=14 en-affil=Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=6 article-no= start-page=dsaf030 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=MedakaBase as a unified genomic resource platform for medaka fish biology en-subtitle= kn-subtitle= en-abstract= kn-abstract=Medaka, a group of small, mostly freshwater fishes in the teleost order Beloniformes, includes the rice fish Oryzias latipes, a useful model organism studied in diverse biological fields. Chromosome-scale genome sequences of the Hd-rR strain of this species were obtained in 2007, and its improved version has facilitated various genome-wide studies. However, despite its widespread utility, omics data for O. latipes are dispersed across various public databases and lack a unified platform. To address this, the medaka section of the National Bioresource Project (NBRP) of Japan established a genome informatics team in 2022 tasked with providing various in silico solutions for bench biologists. This initiative led to the launch of MedakaBase (https://medakabase.nbrp.jp), a web server that enables gene-oriented analysis including exhaustive sequence similarity searches. MedakaBase also provides on-demand browsing of diverse genome-wide datasets, including tissue-specific transcriptomes and intraspecific genomic variations, integrated with gene models from different sources. Additionally, the platform offers gene models optimized for single-cell transcriptome analysis, which often requires coverage of the 3Œ untranslated region (UTR) of transcripts. Currently, MedakaBase provides genome-wide data for seven Oryzias species, including original data for O. mekongensis and O. luzonensis produced by the NBRP team. This article outlines technical details behind the data provided by MedakaBase. en-copyright= kn-copyright= en-aut-name=MorikamiKenji en-aut-sei=Morikami en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanizawaYasuhiro en-aut-sei=Tanizawa en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaguraMasaru en-aut-sei=Yagura en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoMika en-aut-sei=Sakamoto en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamotoShoko en-aut-sei=Kawamoto en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraYasukazu en-aut-sei=Nakamura en-aut-mei=Yasukazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamaguchiKatsushi en-aut-sei=Yamaguchi en-aut-mei=Katsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShigenobuShuji en-aut-sei=Shigenobu en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NaruseKiyoshi en-aut-sei=Naruse en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AnsaiSatoshi en-aut-sei=Ansai en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KurakuShigehiro en-aut-sei=Kuraku en-aut-mei=Shigehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Research Organization of Information and Systems kn-affil= affil-num=2 en-affil=Genome Informatics Laboratory, National Institute of Genetics, Research Organization of Information and Systems kn-affil= affil-num=3 en-affil=Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Research Organization of Information and Systems kn-affil= affil-num=4 en-affil=Genome Informatics Laboratory, National Institute of Genetics, Research Organization of Information and Systems kn-affil= affil-num=5 en-affil=Department of Genetics, Sokendai (Graduate University for Advanced Studies) kn-affil= affil-num=6 en-affil=Genome Informatics Laboratory, National Institute of Genetics, Research Organization of Information and Systems kn-affil= affil-num=7 en-affil=Trans-Omics Facility, National Institute for Basic Biology kn-affil= affil-num=8 en-affil=Trans-Omics Facility, National Institute for Basic Biology kn-affil= affil-num=9 en-affil=Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences kn-affil= affil-num=10 en-affil=Ushimado Marine Institute, Okayama University kn-affil= affil-num=11 en-affil=Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Research Organization of Information and Systems kn-affil= en-keyword=medaka kn-keyword=medaka en-keyword=comparative genomics kn-keyword=comparative genomics en-keyword=genome browser kn-keyword=genome browser en-keyword=MedakaBase kn-keyword=MedakaBase en-keyword=Beloniformes kn-keyword=Beloniformes END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=1 article-no= start-page=1387 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tumor marker?guided precision BNCT for CA19-9?positive cancers: a new paradigm in molecularly targeted chemoradiation therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Boron neutron capture therapy (BNCT) is a molecularly targeted chemoradiation modality that relies on boron delivery agents such as p-borophenylalanine (BPA), which require LAT1 (L-type amino acid transporter 1) for tumor uptake. However, the limited efficacy of BPA in LAT1-low tumors restricts its therapeutic scope. To address this limitation, we developed a tumor marker?guided BNCT strategy targeting cancers overexpressing the clinically validated glycan biomarker CA19-9.
Methods: We conducted transcriptomic analyses using The Cancer Genome Atlas (TCGA) datasets to identify LAT1-low cancers with high CA19-9 expression. These analyses revealed elevated expression of fucosyltransferase 3 (FUT3), which underlies CA19-9 biosynthesis, in pancreatic, biliary, and ovarian malignancies. Based on this, we synthesized a novel boron compound, fucose-BSH, designed to selectively accumulate in CA19-9?positive tumors. We evaluated its physicochemical properties, pharmacokinetics, biodistribution, and antitumor efficacy in cell lines and xenograft models, comparing its performance to that of BPA.
Results: Fucose-BSH demonstrated significantly greater boron uptake in CA19-9?positive cell lines (AsPC-1, Panc 04.03, HuCCT-1, HSKTC, OVISE) compared to CA19-9?negative PANC-1. In HuCCT-1 xenografts, boron accumulation reached 36.2 ppm with a tumor/normal tissue ratio of 2.1, outperforming BPA. Upon neutron irradiation, fucose-BSH?mediated BNCT achieved?>?80% tumor growth inhibition. Notably, fucose-BSH retained therapeutic efficacy in LAT1-deficient models where BPA was ineffective, confirming LAT1-independent targeting.
Conclusions: This study establishes a novel precision BNCT approach by leveraging CA19-9 as a tumor-selective glycan marker for boron delivery. Fucose-BSH offers a promising platform for expanding BNCT to previously inaccessible LAT1-low malignancies, including pancreatic, biliary, and ovarian cancers. These findings provide a clinically actionable strategy for tumor marker?driven chemoradiation and lay the foundation for translational application in BNCT. This strategy has the potential to support companion diagnostic development and precision stratification in ongoing and future BNCT clinical trials.
Translational Relevance: Malignancies with elevated CA19-9 expression, such as pancreatic, biliary, and ovarian cancers, are associated with poor prognosis and limited response to current therapies. This study presents a tumor marker?guided strategy for boron neutron capture therapy (BNCT) by leveraging CA19-9 glycan biology to enable selective tumor targeting via fucose-BSH, a novel boron compound. Through transcriptomic data mining and preclinical validation, fucose-BSH demonstrated LAT1-independent boron delivery, potent BNCT-mediated cytotoxicity, and tumor-specific accumulation in CA19-9?positive models. These findings support a precision chemoradiation approach that addresses a critical gap in BNCT applicability, offering a clinically actionable pathway for patient stratification and therapeutic development in CA19-9?expressing cancers. en-copyright= kn-copyright= en-aut-name=KanehiraNoriyuki en-aut-sei=Kanehira en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TajimaTomoyuki en-aut-sei=Tajima en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OsoneTatsunori en-aut-sei=Osone en-aut-mei=Tatsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GotohKazuyoshi en-aut-sei=Gotoh en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujimotoTakuya en-aut-sei=Fujimoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakuraiYoshinori en-aut-sei=Sakurai en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoNatsuko en-aut-sei=Kondo en-aut-mei=Natsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NagahisaNarikazu en-aut-sei=Nagahisa en-aut-mei=Narikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KameiKaoru en-aut-sei=Kamei en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujitaTaiga en-aut-sei=Fujita en-aut-mei=Taiga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MoriharaAkira en-aut-sei=Morihara en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TakaguchiYutaka en-aut-sei=Takaguchi en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KitamatsuMizuki en-aut-sei=Kitamatsu en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakaradaTakeshi en-aut-sei=Takarada en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SuzukiMinoru en-aut-sei=Suzuki en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=8 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=Graduate School of Environmental, Life Science, Okayama University kn-affil= affil-num=13 en-affil=Faculty of Sustainable Design, Department of Material Design and Engineering, University of Toyama kn-affil= affil-num=14 en-affil=Department of Applied Chemistry, Kindai University kn-affil= affil-num=15 en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=18 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= en-keyword=Boron neutron capture therapy (BNCT) kn-keyword=Boron neutron capture therapy (BNCT) en-keyword=Precision BNCT kn-keyword=Precision BNCT en-keyword=Fucose-conjugated medicine kn-keyword=Fucose-conjugated medicine en-keyword=CA19-9 kn-keyword=CA19-9 en-keyword=Drug discovery kn-keyword=Drug discovery END start-ver=1.4 cd-journal=joma no-vol=133 cd-vols= no-issue=7 article-no= start-page=393 end-page=399 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Underwater superoleophobic NaNbO3-based photocatalyst thin films prepared on bare soda-lime glass by sol?gel process en-subtitle= kn-subtitle= en-abstract= kn-abstract=A self-cleaning flat transparent thin photocatalyst film was prepared on a bare soda-lime glass by a simple method using niobium alkoxide solution, which is a common coating solution for the sol?gel method. The film consisted of crystalline NaNbO3 and Na2Nb2O6?H2O phases. It was suggested that NaNbO3 and Na2Nb2O6?H2O were directly formed between the soda-lime glass and the niobium alkoxide coating solution during the heat treatment. Under UV irradiation, the film surface exhibited low photocatalytic oxidation activity and excellent photo-induced hydrophilicity. The hydrophilic state of the sample was maintained for 1 month in the dark, while the hydrophilicity of TiO2 sample prepared by a sol?gel method was decreased within 5 days in the dark. Additionally, the surface demonstrated excellent underwater oil repellency toward n-hexadecane and oleic acid and the ability to remove the adsorbed oily contaminant in water. These properties were also superior to those of the TiO2 surface. en-copyright= kn-copyright= en-aut-name=NishimotoShunsuke en-aut-sei=Nishimoto en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KageyamaKazuya en-aut-sei=Kageyama en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EgusaShusuke en-aut-sei=Egusa en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KameshimaYoshikazu en-aut-sei=Kameshima en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=NaNbO3 photocatalyst kn-keyword=NaNbO3 photocatalyst en-keyword=Wettability kn-keyword=Wettability en-keyword=Self-cleaning kn-keyword=Self-cleaning en-keyword=Superhydrophilicity kn-keyword=Superhydrophilicity en-keyword=Underwater superoleophobicity kn-keyword=Underwater superoleophobicity END start-ver=1.4 cd-journal=joma no-vol=177 cd-vols= no-issue= article-no= start-page=113652 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-term effects of forest growth dynamics and climate change on groundwater recharge and evapotranspiration in a steep catchment of western Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Growing water demand for human and environmental needs has led to increased reliance on groundwater resources. However, groundwater is a finite resource, and its sustainability is closely linked to recharge processes, which are influenced by forest growth dynamics as well as climate change. Evapotranspiration, largely driven by vegetation cover and climatic conditions, represents a major component of terrestrial water loss that can reduce groundwater recharge. In this study, forest growth trends, reflecting the complete developmental stages from juvenile to post-maturity of a representative species, were reconstructed using remote sensing data, forest inventories, and field studies, and incorporated into the SWAT model to evaluate their impacts on groundwater recharge and evapotranspiration as indicators of forest hydrological function and ecosystem health. The modelfs vegetation growth simulation was enhanced and uncertainty reduced by dynamically updating it with MODIS-derived leaf area index (LAI) at 5-year intervals. Groundwater recharge estimates were further improved through multi-variable calibration using Penman?Monteith?Leuning evapotranspiration (V2) and streamflow data to ensure water budget closure. Results showed that evergreen conifer growth from planting to maturity significantly reduced groundwater recharge (?4.7 mm/year) and increased evapotranspiration (+7.6 mm/year). In contrast, natural and mature deciduous broadleaf forests showed more stable recharge and evapotranspiration trends. Rising temperatures were identified as a key climatic driver of reduced recharge and increased evapotranspiration, reflecting broader global warming impacts. This study demonstrates that forest growth dynamics, especially during the critical transition from planting to maturity, alongside climate change, play a crucial role in shaping the catchmentfs water balance and offer valuable insights for sustainable groundwater management, particularly in transitional forest ecosystems. en-copyright= kn-copyright= en-aut-name=GuyoRendilicha Halake en-aut-sei=Guyo en-aut-mei=Rendilicha Halake kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangKunyang en-aut-sei=Wang en-aut-mei=Kunyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnoderaShin-ichi en-aut-sei=Onodera en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoMitsuyo en-aut-sei=Saito en-aut-mei=Mitsuyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoroizumiToshitsugu en-aut-sei=Moroizumi en-aut-mei=Toshitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University kn-affil= affil-num=3 en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University kn-affil= affil-num=4 en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University kn-affil= affil-num=5 en-affil= Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Forest growth kn-keyword=Forest growth en-keyword=SWAT kn-keyword=SWAT en-keyword=Groundwater recharge kn-keyword=Groundwater recharge en-keyword=Evapotranspiration kn-keyword=Evapotranspiration en-keyword=MODIS LAI kn-keyword=MODIS LAI en-keyword=PML_V2 kn-keyword=PML_V2 en-keyword=Climate change kn-keyword=Climate change END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e13537 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251203 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Atomic-Level Insights into Thermal Carbonization of Ethynyl-Containing Boron Compounds en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study reports the design, synthesis, and characterization of boron-doped carbon (BDC) derived from a triethynylborane-pyridine complex. Triethynylborane is stabilized by coordination with pyridine, facilitating its synthesis and handling in ambient conditions. The complex is subjected to thermal treatment at various temperatures to form BDC. Powder XRD and single-crystal XRD analyses reveal that BDC prepared at 200 ‹C retains an ordered structure, while higher temperatures induce alkyne structural changes without significant weight or surface area alterations. Coin cells are assembled using BDC as the anode, demonstrating unique Li-ion and Na-ion storage properties distinct from graphite. These results suggest that the BDC reflects the precursor's crystal structure, enabling novel electrochemical behavior. These findings offer insight into the development of advanced BDC materials for energy storage applications. en-copyright= kn-copyright= en-aut-name=OhkuraKentaro en-aut-sei=Ohkura en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HayakawaSatoshi en-aut-sei=Hayakawa en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiNaoki en-aut-sei=Takahashi en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamazakiKen en-aut-sei=Yamazaki en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanoJun en-aut-sei=Kano en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environment Life Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environment Life Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environment Life Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=boron-doped carbon kn-keyword=boron-doped carbon en-keyword=carbonization kn-keyword=carbonization en-keyword=ethynyl group kn-keyword=ethynyl group en-keyword=Li-ion kn-keyword=Li-ion en-keyword=Na-ion kn-keyword=Na-ion END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Linear Search Algorithm for Resource Allocation in Frequency Domain Non-Orthogonal Multiple Access en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper proposes a linear search algorithm for resource allocation in frequency domain non-orthogonal multiple access based on the low-density signature (LDS). Although the proposed linear search enables the non-orthogonal multiple access to achieve superior transmission performance, the proposed linear search makes the resource allocation implemented with lower and fixed computational complexity. The performance of the non-orthogonal access based on the proposed linear search is evaluated by computer simulation. The proposed linear search algorithm makes the non-orthogonal multiple access achieve a gain of about 6 dB at the BER of 10?5 when the overloading ratio is set to 2. The complexity of the non-orthogonal access based on the proposed linear search algorithm is approximately half as much as that of the conventional low complexity resource allocation when the overloading ratio is 2, if the complexity is evaluated in terms of the number of additions. en-copyright= kn-copyright= en-aut-name=DennoSatoshi en-aut-sei=Denno en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhbaYuto en-aut-sei=Ohba en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HouYafei en-aut-sei=Hou en-aut-mei=Yafei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=non-orthogonal multiple access kn-keyword=non-orthogonal multiple access en-keyword=frequency domain kn-keyword=frequency domain en-keyword=linear search kn-keyword=linear search en-keyword=low complexity kn-keyword=low complexity END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=10 article-no= start-page=908 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Comparative Study of Authoring Performances Between In-Situ Mobile and Desktop Tools for Outdoor Location-Based Augmented Reality en-subtitle= kn-subtitle= en-abstract= kn-abstract=In recent years, Location-Based Augmented Reality (LAR) systems have been increasingly implemented in various applications for tourism, navigation, education, and entertainment. Unfortunately, the LAR content creation using conventional desktop-based authoring tools has become a bottleneck, as it requires time-consuming and skilled work. Previously, we proposed an in-situ mobile authoring tool as an efficient solution to this problem by offering direct authoring interactions in real-world environments using a smartphone. Currently, the evaluation through the comparison between the proposal and conventional ones is not sufficient to show superiority, particularly in terms of interaction, authoring performance, and cognitive workload, where our tool uses 6DoF device movement for spatial input, while desktop ones rely on mouse-pointing. In this paper, we present a comparative study of authoring performances between the tools across three authoring phases: (1) Point of Interest (POI) location acquisition, (2) AR object creation, and (3) AR object registration. For the conventional tool, we adopt Unity and ARCore SDK. As a real-world application, we target the LAR content creation for pedestrian landmark annotation across campus environments at Okayama University, Japan, and Brawijaya University, Indonesia, and identify task-level bottlenecks in both tools. In our experiments, we asked 20 participants aged 22 to 35 with different LAR development experiences to complete equivalent authoring tasks in an outdoor campus environment, creating various LAR contents. We measured task completion time, phase-wise contribution, and cognitive workload using NASA-TLX. The results show that our tool made faster creations with 60% lower cognitive loads, where the desktop tool required higher mental efforts with manual data input and object verifications. en-copyright= kn-copyright= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Sandi KyawHtoo Htoo en-aut-sei=Sandi Kyaw en-aut-mei=Htoo Htoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RiyantokoPrismahardi Aji en-aut-sei=Riyantoko en-aut-mei=Prismahardi Aji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Noprianto en-aut-sei=Noprianto en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MentariMustika en-aut-sei=Mentari en-aut-mei=Mustika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=location-based augmented reality (LAR) kn-keyword=location-based augmented reality (LAR) en-keyword=in-situ authoring kn-keyword=in-situ authoring en-keyword=authoring workflow kn-keyword=authoring workflow en-keyword=cognitive workload kn-keyword=cognitive workload en-keyword=NASA-TLX kn-keyword=NASA-TLX END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=2 article-no= start-page=191 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Palladium-Catalyzed Decarbonylative Nucleophilic Halogenation of Acid Anhydrides en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, we developed a palladium-catalyzed decarbonylative nucleophilic halogenation reaction using inexpensive and readily available acid anhydrides as substrates. This approach effectively circumvents the instability of acyl chlorides and the low reactivity of acyl fluorides. The Pd/Xantphos catalyst system exhibited excellent compatibility with the thermodynamically and kinetically challenging reductive elimination of C?X bonds (X = I, Br, and Cl) from Pd(II) intermediates. Notably, for electron-donating substrates, adopting an open system significantly improved the reaction efficiency. The positive effect of the open system may be due to the reversible nature of CO insertion and deinsertion, which helps direct the reaction toward the desired pathway by allowing the generated CO to exit the reaction system. Mechanistic studies suggest that the reaction proceeds through a highly reactive acyl halide intermediate, followed by a unimolecular fragment coupling (UFC) pathway via decarbonylation or an alternative pathway involving the formation of an activated anionic palladate complex in the presence of lithium halide. en-copyright= kn-copyright= en-aut-name=TianTian en-aut-sei=Tian en-aut-mei=Tian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UeiShuhei en-aut-sei=Uei en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanWeidan en-aut-sei=Yan en-aut-mei=Weidan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiharaYasushi en-aut-sei=Nishihara en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= en-keyword=reductive elimination of C?X bond kn-keyword=reductive elimination of C?X bond en-keyword=nucleophilic halogenation kn-keyword=nucleophilic halogenation en-keyword=unimolecular fragment coupling (UFC) kn-keyword=unimolecular fragment coupling (UFC) en-keyword=acid anhydrides kn-keyword=acid anhydrides en-keyword=aryl halides kn-keyword=aryl halides END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e21664 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251014 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Biologically-Architected Wear and Damage-Resistant Nanoparticle Coating From the Radular Teeth of Cryptochiton stelleri en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nature utilizes simple building blocks to construct mechanically robust materials that demonstrate superior performance under extreme conditions. These exquisite structures result from the controlled synthesis and hierarchical assembly of nanoscale organic and mineral components that have provided critical evolutionary advantages to ensure survival. One such example is the ultrahard radular teeth found in mollusks, which are used to scrape against rock to feed on algae. Here, it is reported that the leading edges of these teeth consist of a wear-resistant coating that is comprised of densely packed ?65 nm magnetic nanoparticles integrated within an organic matrix of chitin and protein. These mesocrystalline magnetite-based structures are assembled from smaller, highly aligned nanocrystals with inter/intracrystalline organics introduced during the crystallization process. Nanomechanical testing reveals that this multi-scale, nano-architected coating has a combination of increased hardness and a slight decrease in modulus versus geologic magnetite provides the surface of the chiton tooth with superior abrasion resistance. The mesocrystalline structures fracture at primary domain interfaces, corroborated by computational models, providing significant toughening to the tooth under extreme contact stresses. The design features revealed provide insight for the design and fabrication of next-generation advanced wear- and impact-resistant coatings for tooling, machinery, wind turbines, armor, etc. en-copyright= kn-copyright= en-aut-name=WangTaifeng en-aut-sei=Wang en-aut-mei=Taifeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChenYu en-aut-sei=Chen en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SarmientoEzra en-aut-sei=Sarmiento en-aut-mei=Ezra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaoTaige en-aut-sei=Hao en-aut-mei=Taige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ArakakiAtsushi en-aut-sei=Arakaki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NemotoMichiko en-aut-sei=Nemoto en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZavattieriPablo en-aut-sei=Zavattieri en-aut-mei=Pablo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KisailusDavid en-aut-sei=Kisailus en-aut-mei=David kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Materials Science and Engineering, University of California kn-affil= affil-num=2 en-affil=Lyles School of Civil and Construction Engineering, Purdue University kn-affil= affil-num=3 en-affil=Department of Materials Science and Engineering, University of California kn-affil= affil-num=4 en-affil=Materials and Manufacturing Technologies Program, University of California kn-affil= affil-num=5 en-affil=Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Lyles School of Civil and Construction Engineering, Purdue University kn-affil= affil-num=8 en-affil=Department of Materials Science and Engineering, University of California kn-affil= en-keyword=biomineralization kn-keyword=biomineralization en-keyword=coatings kn-keyword=coatings en-keyword=damage tolerance kn-keyword=damage tolerance en-keyword=magnetite kn-keyword=magnetite en-keyword=mesocrystals kn-keyword=mesocrystals END start-ver=1.4 cd-journal=joma no-vol=1873 cd-vols= no-issue=2 article-no= start-page=120091 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SPRED2 controls the severity of cisplatin-induced acute kidney injury by inhibiting ERK activation and TNFƒ¿ production in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cisplatin is an effective chemotherapeutic agent used to treat solid tumors, but its clinical use is limited by acute kidney injury (AKI), in which ERK signaling plays a crucial role. Here, we investigated whether Sprouty-related EVH1 domain-containing protein 2 (SPRED2), an endogenous inhibitor of the Ras/Raf/ERK pathway, protects against cisplatin-induced AKI. Spred2?/? mice showed more severe renal injury and stronger ERK activation than wild-type (WT) mice, whereas pretreatment with the MEK inhibitor U0126 markedly attenuated the injury. In HK-2 cells (proximal tubular cells), SPRED2 knockdown enhanced cisplatin-induced apoptosis and caspase-3 activation, accompanied by decreased Bcl-2 expression. Spred2?/? kidneys displayed increased macrophage infiltration and elevated Tnfƒ¿, Il1b, and Ccl2 expression. Neutralization of TNFƒ¿ with anti-TNFƒ¿ antibody ameliorated renal injury and reduced the levels of Il1b and Ccl2 mRNA in Spred2?/? mice. In vitro, TNFƒ¿ slightly decreased the viability of control and SPRED2 knockdown HK-2 cells without cisplatin treatment, but the decreased viability was augmented in SPRED2 knockdown cells by cisplatin. Immunohistochemistry revealed that macrophages were the predominant TNFƒ¿-positive cell population. Bone marrow?derived macrophages from Spred2?/? mice produced higher levels of TNFƒ¿ in response to cisplatin compared with control cells, and this increase was markedly suppressed by U0126.
These findings indicate that endogenous SPRED2 protects kidneys from cisplatin-induced AKI by limiting ERK activation, tubular apoptosis, and TNFƒ¿-mediated inflammation. en-copyright= kn-copyright= en-aut-name=YangXu en-aut-sei=Yang en-aut-mei=Xu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HeJiali en-aut-sei=He en-aut-mei=Jiali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GaoTong en-aut-sei=Gao en-aut-mei=Tong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujisawaMasayoshi en-aut-sei=Fujisawa en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KunkelSteven L. en-aut-sei=Kunkel en-aut-mei=Steven L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshimuraTeizo en-aut-sei=Yoshimura en-aut-mei=Teizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pathology, University of Michigan Medical School kn-affil= affil-num=7 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Cisplatin kn-keyword=Cisplatin en-keyword=ERK kn-keyword=ERK en-keyword=Macrophage kn-keyword=Macrophage en-keyword=SPRED2 kn-keyword=SPRED2 en-keyword=TNFƒ¿ kn-keyword=TNFƒ¿ END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=‘æŽl‹‰’Y‘f‚Ì—§‘Ì‘I‘ð“I\’z‚É‚æ‚éƒeƒ‹ƒyƒ“œŠi‡¬–@‚ÌŠJ”­ kn-title=Development of a synthetic method for terpene scaffolds via stereoselective construction of quaternary carbon centers en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MATSUMARUNaochika en-aut-sei=MATSUMARU en-aut-mei=Naochika kn-aut-name=¼ŠÛ’¼–r kn-aut-sei=¼ŠÛ kn-aut-mei=’¼–r aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ƒAƒ‹ƒ~ƒjƒEƒ€‘Ï«‚ÉŠÖ‚í‚éƒNƒGƒ“Ž_—A‘—‘Ì‚Ì\‘¢“I’mŒ© kn-title=Structural insights into a citrate transporter that mediates aluminum tolerance en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TRAN NGUYEN THAO en-aut-sei=TRAN NGUYEN THAO en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=‘¾—zŒn‰~”Ղ̃Gƒ“ƒXƒ^ƒ^ƒCƒgEƒRƒ“ƒhƒ‰ƒCƒgŒ`¬—̈æ‚É‚¨‚¯‚éƒKƒX‚Ì’n‹…‰»Šw“I‹LÚ kn-title=Geochemical characterization of gaseous reservoirs in the enstatite-chondrite forming-region of the proto-solar nebula: Constraints from Li-isotope, O-isotope, and trace-element compositions in chondrule components en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TORII PHILIP DOUGLAS-SONG en-aut-sei=TORII PHILIP DOUGLAS-SONG en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=¬˜f¯•¨Ž¿‚©‚çƒ~ƒNƒƒ“ƒTƒCƒY‚Ì—L‹@•¨Ž¿‚ðŒŸo‚·‚éŽè–@‚ÌŠJ”­‚Æ‚»‚̉ž—p kn-title=Development of a micro-organic matter identifier and its application to characterise insoluble organic matter in carbonaceous chondrite and Ryugu samples en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=RAHUL KUMAR en-aut-sei=RAHUL KUMAR en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=CO2‚Ì’EŽ_‘f“I•ÏŠ·‚ðŒo—R‚·‚éƒCƒ“ƒh[ƒ‹—U“±‘̂̇¬ kn-title=Synthesis of Indole Derivatives via Deoxygenative CO2 Conversions en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=LISha en-aut-sei=LI en-aut-mei=Sha kn-aut-name=—›ä³ kn-aut-sei=—› kn-aut-mei=ä³ aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=1,3-ƒIƒLƒTƒ][ƒ‹‚ðƒwƒ€“SŒ‹‡•”ˆÊ‚Æ‚µ‚½ƒRƒŒƒXƒeƒ[ƒ‹24ƒqƒhƒƒLƒVƒ‰[ƒ[‘jŠQ܂̕ªŽqÝŒv‚Ƈ¬ kn-title=Design and Synthesis of Cholesterol 24-Hydroxylase Inhibitors Using 1,3-Oxazole as a Heme-Iron Binding Group en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ITOYoshiteru en-aut-sei=ITO en-aut-mei=Yoshiteru kn-aut-name=ˆÉ“¡‹g‹P kn-aut-sei=ˆÉ“¡ kn-aut-mei=‹g‹P aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=•Ï«ƒ^ƒ“ƒpƒNŽ¿‚̉»ŠwCü‚É‚æ‚é‰Â—n‰»‹Zp‚ð—˜—p‚µ‚½¶—Šˆ«‹…óƒ^ƒ“ƒpƒNŽ¿¶ŽY–@‚ÌŠJ”­ kn-title=Development of a production method for biologically active globular proteins through chemical modification-based solubilization of denatured proteins en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KIMURAShuichiro en-aut-sei=KIMURA en-aut-mei=Shuichiro kn-aut-name=–Ø‘ºCˆê˜Y kn-aut-sei=–Ø‘º kn-aut-mei=Cˆê˜Y aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ƒTƒCƒhƒvƒ‰ƒ“ƒWŒ¤í‚É‚¨‚¯‚錤퉷“x‚ÌŽÀŒ±“IŒŸ“¢‚ƃN[ƒ‰ƒ“ƒg‹Ÿ‹‹‚ÌÅ“K‰» en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=GaoLingxiao en-aut-sei=Gao en-aut-mei=Lingxiao kn-aut-name=‚—½èº kn-aut-sei=‚ kn-aut-mei=—½èº aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Raspberry Pi ‚É“±“ü‰Â”\‚ÈŒy—ʃfƒB[ƒvƒ‰[ƒjƒ“ƒOƒx[ƒX‚ÌN“üŒŸ’mƒVƒXƒeƒ€ kn-title=Lightweight Deep Learning-Based Intrusion Detection System for Deployment on Raspberry Pi en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MUHAMMAD BISRI MUSTHAFA en-aut-sei=MUHAMMAD BISRI MUSTHAFA en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ŽÔ—¼ƒAƒhƒzƒbƒNƒlƒbƒgƒ[ƒN ‚̃ZƒLƒ…ƒŠƒeƒBŠm•Û‚Ì‚½‚ß‚ÌKerberos-Blockchain“‡”F؃tƒŒ[ƒ€ƒ[ƒN kn-title=Integrated Kerberos-Blockchain Authentication Framework for Securing Vehicular Ad-Hoc Network en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MAYA RAHAYU en-aut-sei=MAYA RAHAYU en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ˆÀ‘S‚È“dŽqƒ[ƒ‹’ÊM‚Ì‚½‚߂̃uƒƒbƒNƒ`ƒF[ƒ“ƒx[ƒX‚ÌPGPŒ®‹¤—LƒƒJƒjƒYƒ€ kn-title=A Blockchain-Based PGP Key Sharing Mechanism for Secure Email Communication en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MD. BIPLOB HOSSAIN en-aut-sei=MD. BIPLOB HOSSAIN en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=UnityƒQ[ƒ€ƒGƒ“ƒWƒ“‚ƃXƒ}[ƒgƒtƒHƒ“‚ð—p‚¢‚½‰®“àƒiƒrƒQ[ƒVƒ‡ƒ“ƒVƒXƒeƒ€‚ÌŒ¤‹† kn-title=A Study of Indoor Navigation System Using Unity Game Engine and Smartphone en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=EVIANITA DEWI FAJRIANTI en-aut-sei=EVIANITA DEWI FAJRIANTI en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=WebƒXƒNƒŒƒCƒsƒ“ƒO‚ÆBERTƒ‚ƒfƒ‹‚ð—p‚¢‚½ŽQl•¶Œ£ŽûWƒVƒXƒeƒ€‚ÌŒ¤‹† kn-title=A Study of Reference Paper Collection System Using Web Scraping and BERT Model en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=INZALI NAING en-aut-sei=INZALI NAING en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=“º‚É‚æ‚é’Y‘f|…‘fŒ‹‡Šˆ«‰»‚ð—˜—p‚µ‚½ƒAƒ‹ƒPƒ“‚Ì“ñН”\Šî‰»”½‰ž en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YAMAMOTOYuichi en-aut-sei=YAMAMOTO en-aut-mei=Yuichi kn-aut-name=ŽR–{—Yˆê kn-aut-sei=ŽR–{ kn-aut-mei=—Yˆê aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=‰F’ˆƒ_[ƒNƒ}ƒ^[’Tõ‚ÉŒü‚¯‚½ƒZƒVƒEƒ€Œ´Žq‚É‚¨‚¯‚éƒRƒq[ƒŒƒ“ƒX¶¬ kn-title=Coherence Generation in Atomic Cesium for Cosmic Dark Matter Detection en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=WANGJING en-aut-sei=WANG en-aut-mei=JING kn-aut-name=‰¤äÅ kn-aut-sei=‰¤ kn-aut-mei=äÅ aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=CaF2Œ‹»ƒzƒXƒg’†‚É‚¨‚¯‚éƒgƒŠƒEƒ€229ƒAƒCƒ\ƒ}[ó‘Ô‚ÌXü—U‹NÁŒõ kn-title=The X-ray induced quenching of the thorium-229 isomer states in a CaF2 crystal host en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=GuanMing en-aut-sei=Guan en-aut-mei=Ming kn-aut-name=ŠÇ–¾ kn-aut-sei=ŠÇ kn-aut-mei=–¾ aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ƒ}ƒJƒNƒUƒ‹_Œo“à•ª”åŒn‚É‚¨‚¯‚éƒoƒ\ƒvƒŒƒVƒ“‚Ì‹@”\EŒ`‘Ô˜AŠÖ kn-title=Functional-morphological relationships of vasopressin in the macaque neuroendocrine system en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OTSUBOAkito en-aut-sei=OTSUBO en-aut-mei=Akito kn-aut-name=‘å’ØHl kn-aut-sei=‘å’Ø kn-aut-mei=Hl aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Caenorhabditis elegans‚É‚¨‚¯‚éŽ‰Ž¿•ªŽq\¬‚̃}ƒ‹ƒ`ƒ‚[ƒh‰ðÍ kn-title=Multimodal analysis of the Caenorhabditis elegans lipid molecular profile en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MandicSara en-aut-sei=Mandic en-aut-mei=Sara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Œð‘ã•„†s—ñ‚Æ”—•¨—ƒ‚ƒfƒ‹‚Ƃ̊֌W‚¨‚æ‚Ñ‘g‚݇‚킹ƒQ[ƒ€—˜_‚ւ̉ž—p en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OMOTOToyokazu en-aut-sei=OMOTO en-aut-mei=Toyokazu kn-aut-name=‘å–{–L” kn-aut-sei=‘å–{ kn-aut-mei=–L” aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=‰ªŽR‘åŠw‘åŠw‰@Ž©‘R‰ÈŠwŒ¤‹†‰È END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=19 article-no= start-page=3144 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250927 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Utility of Same-Modality, Cross-Domain Transfer Learning for Malignant Bone Tumor Detection on Radiographs: A Multi-Faceted Performance Comparison with a Scratch-Trained Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Developing high-performance artificial intelligence (AI) models for rare diseases like malignant bone tumors is limited by scarce annotated data. This study evaluates same-modality cross-domain transfer learning by comparing an AI model pretrained on chest radiographs with a model trained from scratch for detecting malignant bone tumors on knee radiographs. Methods: Two YOLOv5-based detectors differed only in initialization (transfer vs. scratch). Both were trained/validated on institutional data and tested on an independent external set of 743 radiographs (268 malignant, 475 normal). The primary outcome was AUC; prespecified operating points were high-sensitivity (?0.90), high-specificity (?0.90), and Youden-optimal. Secondary analyses included PR/F1, calibration (Brier, slope), and decision curve analysis (DCA). Results: AUC was similar (YOLO-TL 0.954 [95% CI 0.937?0.970] vs. YOLO-SC 0.961 [0.948?0.973]; DeLong p = 0.53). At the high-sensitivity point (both sensitivity = 0.903), YOLO-TL achieved higher specificity (0.903 vs. 0.867; McNemar p = 0.037) and PPV (0.840 vs. 0.793; bootstrap p = 0.030), reducing ~17 false positives among 475 negatives. At the high-specificity point (~0.902?0.903 for both), YOLO-TL showed higher sensitivity (0.798 vs. 0.764; p = 0.0077). At the Youden-optimal point, sensitivity favored YOLO-TL (0.914 vs. 0.892; p = 0.041) with a non-significant specificity difference. Conclusions: Transfer learning may not improve overall AUC but can enhance practical performance at clinically crucial thresholds. By maintaining high detection rates while reducing false positives, the transfer learning model offers superior clinical utility. Same-modality cross-domain transfer learning is an efficient strategy for developing robust AI systems for rare diseases, supporting tools more readily acceptable in real-world screening workflows. en-copyright= kn-copyright= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaYujiro en-aut-sei=Otsuka en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakeuchiKoichi en-aut-sei=Takeuchi en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakamuraYusuke en-aut-sei=Nakamura en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkutaKunihiro en-aut-sei=Ikuta en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OsakiShuhei en-aut-sei=Osaki en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TamiyaHironari en-aut-sei=Tamiya en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiwaShinji en-aut-sei=Miwa en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OhshikaShusa en-aut-sei=Ohshika en-aut-mei=Shusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishimuraShunji en-aut-sei=Nishimura en-aut-mei=Shunji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KaharaNaoaki en-aut-sei=Kahara en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KondoHiroya en-aut-sei=Kondo en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Medical Informatics and Clinical Support Technology Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Radiology, Juntendo University School of Medicine kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Plusman LCC kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University kn-affil= affil-num=7 en-affil=Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital kn-affil= affil-num=8 en-affil=Department of Musculoskeletal Oncology Service, Osaka International Cancer Institute, kn-affil= affil-num=9 en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=10 en-affil=Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Orthopaedic Surgery, Kindai University Hospital kn-affil= affil-num=12 en-affil=Department of Orthopedic Surgery, Mizushima Central Hospital kn-affil= affil-num=13 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=17 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=malignant bone tumors kn-keyword=malignant bone tumors en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=transfer learning kn-keyword=transfer learning en-keyword=YOLO kn-keyword=YOLO en-keyword=radiographs kn-keyword=radiographs en-keyword=cross-domain learning kn-keyword=cross-domain learning en-keyword=diagnostic imaging kn-keyword=diagnostic imaging END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhancing Soil Aggregation and Water Retention by Applying Kaolinite Clay to Post]Tin]Mined Land on Belitung Island, Indonesia en-subtitle= kn-subtitle= en-abstract= kn-abstract=Post-mining sandy soils have low water retention, which causes soil particle separation and persistent soil erosion. Although organic matter is commonly used for soil restoration, it is lightweight, washes away during heavy rain, and decomposes under strong sunlight. The high potential for extreme rainfall events in tropical regions poses significant challenges to restoration projects. Therefore, we investigated the impact of kaolinite clay particles on enhancing soil stability in post-mining sandy soils. Soil samples were collected from three sites representing different succession stages of post-mined land (0, 1, and 6?years since mining cessation) and an adjacent natural forest as the reference site on Belitung Island, Indonesia. Soil samples were treated with 1% or 5% kaolinite or left untreated (control) and incubated at 34‹C to mimic the local conditions of the study area. The samples were then analyzed to determine the soil aggregate distribution, water holding capacity, and soil erodibility, and SEM imaging was performed to examine the soil particle morphology. The results revealed an increasing trend in the silt-sized aggregate content and a 2%?5% increase in water retention in the 6-year soils relative to the untreated soils. The highest water retention was observed in the 6-year post-mining soil sample. Kaolinite amendment significantly reduced soil erodibility by 40%?50% compared to the untreated soils, even in the early restoration period (0?1?year post-mining). Kaolinite improved soil aggregation and water retention in post-mining sandy soils while reducing soil erodibility?highlighting its potential for accelerating land restoration in mining-affected areas. en-copyright= kn-copyright= en-aut-name=PutraHirmas F. en-aut-sei=Putra en-aut-mei=Hirmas F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriYasushi en-aut-sei=Mori en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=clay kn-keyword=clay en-keyword=kaolinite kn-keyword=kaolinite en-keyword=post-tin- mined soils kn-keyword=post-tin- mined soils en-keyword=soil aggregates kn-keyword=soil aggregates en-keyword=soil restoration kn-keyword=soil restoration en-keyword=water-holding capacity kn-keyword=water-holding capacity END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=17 article-no= start-page=2770 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250825 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Refining the Role of Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the tumor microenvironment, various immune and stromal cells, such as fibroblasts and vascular endothelial cells, contribute to tumor growth and progression by interacting with cancer cells. Tumor-associated macrophages (TAMs) have attracted attention as major players in the tumor microenvironment. The origin of TAMs is believed to be the infiltration of monocytes derived from bone marrow progenitor cells into tumor tissues and their differentiation into macrophages, whereas tissue-resident macrophages derived from yolk sacs have recently been reported. TAMs infiltrating tumor tissues act in a tumor-promoting manner through immunosuppression, angiogenesis, and the promotion of cancer cell invasion. Reflecting the nature of TAMs, increased TAM invasion and TAM-specific gene expression in tumor tissues may be the new biomarkers for cancer. Moreover, new therapeutic strategies targeting TAMs, such as transformation into immunostimulatory macrophages, suppression of TAM infiltration, and promotion of phagocytosis, are being investigated, and many clinical trials are underway. As the origin and function of TAMs are further elucidated, TAM-targeted therapy is expected to become a new option for the immunotherapy of various cancers, including oral cancers. en-copyright= kn-copyright= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TianyanPiao en-aut-sei=Tianyan en-aut-mei=Piao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ArashimaTakuma en-aut-sei=Arashima en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChangAnqi en-aut-sei=Chang en-aut-mei=Anqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MinZin Zin en-aut-sei=Min en-aut-mei=Zin Zin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiiMasae en-aut-sei=Fujii en-aut-mei=Masae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=tumor-associated macrophage (TAM) kn-keyword=tumor-associated macrophage (TAM) en-keyword=oral squamous cell carcinoma (OSCC) kn-keyword=oral squamous cell carcinoma (OSCC) en-keyword=macrophage polarity kn-keyword=macrophage polarity en-keyword=invasion kn-keyword=invasion en-keyword=carcinogenesis kn-keyword=carcinogenesis END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=6 article-no= start-page=e098532 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Protocol for a multicentre, open-label, dose-escalation phase I/II study evaluating the tolerability, safety, efficacy and pharmacokinetics of repeated continuous intravenous PPMX-T003 in patients with aggressive natural killer cell leukaemia en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction Aggressive natural killer cell leukaemia (ANKL) is a rare form of NK cell lymphoma with a very low incidence and poor prognosis. While multi-agent chemotherapy including L-asparaginase has been used to treat ANKL patients, they often cannot receive adequate chemotherapy at diagnosis due to liver dysfunction. PPMX-T003, a fully human monoclonal antibody targeting the transferrin receptor 1, shows promise in treating ANKL by helping patients recover from fulminant clinical conditions, potentially enabling a transition to chemotherapy. This study aimed to evaluate the tolerability, safety, efficacy, and pharmacokinetics of repeated continuous intravenous PPMX-T003 in patients with ANKL.
Methods and analysis This multicentre, open-label, dose-escalation phase I/II study will be conducted at nine hospitals in Japan. Patients diagnosed with ANKL (whether as a primary or recurrent disease) and exhibiting abnormal liver function or hepatomegaly due to the primary disease will be included. The primary endpoint is the tolerability and safety of repeated continuous intravenous administration of PPMX-T003 in the first course, based on adverse events and dose-limiting toxicities. PPMX-T003 will be administered as a continuous intravenous infusion every 24?hours for five consecutive days, followed by a 2-day break. Pretreatment will be provided to minimise the risk of infusion-related reactions. Initial doses of PPMX-T003 will be 0.5, 1.0 or 2.0 mg/kg, with subsequent dose increases determined by the Data and Safety Monitoring Committee. The sample size is set at seven participants, with enrolment increased to up to 12 participants if dose-limiting toxicities occur, based on feasibility due to the rarity of ANKL. Descriptive statistics will summarise data according to initial dose, and pharmacokinetic analysis will be conducted based on administered dose.
Ethics and dissemination This study was approved by the institutional review boards at participating hospitals. The results will be disseminated in peer-reviewed journals.
Trial registration number jRCT2061230008 (jRCT); NCT05863234 (ClinicalTrials.gov). en-copyright= kn-copyright= en-aut-name=FukuharaNoriko en-aut-sei=Fukuhara en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnizukaMakoto en-aut-sei=Onizuka en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KandaJunya en-aut-sei=Kanda en-aut-mei=Junya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AndoKiyoshi en-aut-sei=Ando en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Hematology, Tohoku University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Tokai University School of Medicine Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Hematology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=6 en-affil=Department of Hematology, Hiroshima University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=214 cd-vols= no-issue= article-no= start-page=111341 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The influence of lubricant additives and surface roughness and hardness of material on the damage behavior of gears en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigates the influence of lubricant additives, surface roughness, and material hardness on gear damage behavior under boundary lubrication conditions. We conducted both the Short-term Test and the Standard Test using an FZG gear test machine to evaluate how lubricant additives and gear surface roughness influence damage progression when the surface roughness exceeds the oil-film thickness. Acid phosphate ester effectively suppressed micropitting through surface smoothing but led to severe damage such as pitting and scuffing during prolonged use. In contrast, sulfurized fatty oil promoted mild wear, delaying catastrophic failures and extending gear life. Higher surface roughness accelerated wear, while increased hardness reduced deformation but it expanded damage areas. The study found that initial surface roughness and its progress during load stages strongly correlate with gear durability. Measurement of arithmetic mean roughness after sufficient running-in under actual load conditions proved useful for predicting long-term performance. These findings highlight the importance of selecting lubricant formulations tailored to specific gear operating environments and damage modes. Understanding the interplay between lubrication chemistry and material properties enables the design of more durable gear systems. en-copyright= kn-copyright= en-aut-name=OhnoTakuya en-aut-sei=Ohno en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShiotaTadashi en-aut-sei=Shiota en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiMasahiro en-aut-sei=Fujii en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Tribology kn-keyword=Tribology en-keyword=Gears kn-keyword=Gears en-keyword=Fatigue kn-keyword=Fatigue en-keyword=Micropitting kn-keyword=Micropitting en-keyword=Scuffing kn-keyword=Scuffing en-keyword=Pitting kn-keyword=Pitting en-keyword=Lubricant additives kn-keyword=Lubricant additives END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=3 article-no= start-page=124 end-page=129 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Water Lubrication of Polysiloxane-Containing Polyimide Coatings on Stainless Steel Substrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the water-lubricated tribological properties of coatings made of a novel polysiloxane-containing polyimide (si-PI) material that was recently developed for the aerospace industry and can be diluted with the harmless and environmentally friendly ethanol or water. The si-PI coatings were deposited on stainless steel (JIS SUS304) substrates at curing temperatures ranging from 160‹C to 275‹C. Their water lubrication properties were measured by rubbing the coatings against each other in water at room temperature. The coatings exhibited lower friction than conventional polyimide materials, with a minimum friction coefficient of 0.04, which was lower than that of polytetrafluoroethylene (PTFE) measured under the same sliding conditions. Unlike the conventional polyimide, the coatings did not exhibit any obvious wear or damage. The results demonstrate that the si-PI coating is a promising low-friction and highly durable coating for water lubrication. en-copyright= kn-copyright= en-aut-name=FanYuelin en-aut-sei=Fan en-aut-mei=Yuelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShiotaTadashi en-aut-sei=Shiota en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmiyaYuya en-aut-sei=Omiya en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiMasahiro en-aut-sei=Fujii en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=polyimide kn-keyword=polyimide en-keyword=polysiloxane kn-keyword=polysiloxane en-keyword=resin coating kn-keyword=resin coating en-keyword=water lubrication kn-keyword=water lubrication en-keyword=wear resistance kn-keyword=wear resistance END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=1 article-no= start-page=366 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Synthesis of thienoacenes by electrochemical double C?S cyclization using a halogen mediator en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thienoacenes are significant compounds as organic materials. One of the most efficient ways to synthesize thienoacenes is to form multiple C?S bonds in a single step. Because unprotected S?H bonds are easily oxidized to S?S bonds, S-Me protected substrates are commonly used for the purpose. However, their reactivity is insufficient, and one-step construction of multiple C?S bonds is still challenging. We herein report the electrochemical synthesis of thienoacenes from S-methoxymethyl (MOM)-protected diarylacetylenes. In the presence of Bu4NBr as a halogen mediator, electrochemical double C?S cyclization of diarylacetylenes bearing two MOM groups proceeded to afford [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives. While S-Me or S-p-methoxybenzyl (PMB)-protected diarylacetylenes did not afford BTBT, BTBT was selectively obtained when a substrate protected with S-MOM groups was used. The S-MOM protection strategy is also effective for the electrochemical synthesis of a more ƒÎ-expanded thienoacene such as dibenzo[d,dŒ]thieno[3,2-b,4,5-bŒ]dithiophene (DBTDT). en-copyright= kn-copyright= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagaharaTakuya en-aut-sei=Nagahara en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatauraNozomi en-aut-sei=Kataura en-aut-mei=Nozomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkamuraYuka en-aut-sei=Okamura en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YonezawaToki en-aut-sei=Yonezawa en-aut-mei=Toki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TachibanaYuri en-aut-sei=Tachibana en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Souli?Nolan en-aut-sei=Souli? en-aut-mei=Nolan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShigemoriKeisuke en-aut-sei=Shigemori en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatoEisuke en-aut-sei=Sato en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MandaiHiroki en-aut-sei=Mandai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Science and Engineering, Sorbonne Universit? kn-affil= affil-num=8 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=11 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=11 article-no= start-page=e70168 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative Genomic Analysis Identifies FleQ and GcbB as Virulence-Associated Factors in Pseudomonas syringae pv. tabaci Strains en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci (Pta) is an important plant pathogen, which causes wildfire disease in Nicotiana species. However, the genetic basis underlying strain-level differences in virulence remains largely unresolved. To address this, we performed a comparative genomic analysis between a highly virulent strain Pta6605 and a less virulent strain Pta7375. Despite high overall genome similarity, we identified key single-nucleotide polymorphisms, including premature stop-codon mutations in seven open reading frames in Pta7375. Notably, point mutations in two regulatory genes, such as fleQ, which encodes a transcription factor essential for flagellar biogenesis and biofilm formation, and gcbB, which encodes a GGDEF domain-containing diguanylate cyclase responsible for cyclic dimeric guanosine monophosphate (c-di-GMP) synthesis, were implicated in virulence disparity. Functional analyses using deletion and locus replacement mutants in the Pta6605 background revealed that the disruption of fleQ markedly reduced motility, flagellin production, c-di-GMP accumulation, biofilm formation and virulence level mirroring the Pta7375 phenotype. The gcbB replacement mutant showed reduced disease symptom development, although c-di-GMP levels remained comparable to the Pta6605 wild type. Locus replacement between strains confirmed that a point mutation in fleQ was the primary driver of reduced motility and flagellin expression in Pta7375. These findings indicate that the reduced virulence of Pta7375 is associated with impaired regulation of flagella-related genes and disruption of the FleQ-mediated c-di-GMP signalling, underscoring the value of comparative genomics in disentangling the complex regulatory networks that govern virulence in plant pathogens. en-copyright= kn-copyright= en-aut-name=HidayatMuhammad Taufiq en-aut-sei=Hidayat en-aut-mei=Muhammad Taufiq kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshiokaKei en-aut-sei=Yoshioka en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraTakafumi en-aut-sei=Nishimura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsaiShuta en-aut-sei=Asai en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasudaSachiko en-aut-sei=Masuda en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShirasuKen en-aut-sei=Shirasu en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Center for Sustainable Resource Science, RIKEN-TRIP kn-affil= affil-num=6 en-affil=Center for Sustainable Resource Science, RIKEN-TRIP kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=comparative genomics kn-keyword=comparative genomics en-keyword=cyclic-di- GMP kn-keyword=cyclic-di- GMP en-keyword=fleQ kn-keyword=fleQ en-keyword=gcbB kn-keyword=gcbB en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250924 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=DSOK-0011 Potentially Regulates Circadian Misalignment and Affects Gut Microbiota Composition in Activity-Based Anorexia Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: Anorexia nervosa (AN) is a metabolic-psychiatric disorder characterized by severe weight loss, hypercortisolemia, and hypothalamic?pituitary?adrenal (HPA) axis activation. In this study, we investigated the effect of inhibiting cortisol regeneration via the enzyme 11ƒÀ-hydroxysteroid dehydrogenase type 1 (11ƒÀ-HSD1) on the pathophysiology of AN.
Method: Female C57BL/6J mice underwent a 7-day activity-based anorexia (ABA) paradigm, involving 3?h daily feeding and free access to wheels, until 25% body weight loss or experiment completion. Mice were orally treated once daily with a potent 11ƒÀ-HSD1 inhibitor, DSOK-0011, or vehicle. Body weight, food intake, and activity transitions were recorded; plasma corticosterone and cholesterol levels were measured using a fluorometric assay; gut microbiota were analyzed using 16S rRNA sequencing; and hippocampal glial cells were analyzed using immunohistochemistry.
Results: DSOK-0011-treated mice exhibited a modest but significant increase in postprandial wheel-running activity compared to baseline (4?5?p.m., p?=?0.018; 5?6?p.m., p?=?0.043), whereas vehicle-treated mice showed higher preprandial activity (9?10?a.m., p?=?0.0229). Gut microbiota analysis revealed increased alpha diversity in ABA mice, with a specific enrichment of the Lachnospiraceae family in the DSOK-0011 group. However, DSOK-0011 did not significantly affect body weight, food intake, corticosterone, and lipid levels, or hippocampal glial cell populations.
Conclusion: Inhibition of 11ƒÀ-HSD1 by DSOK-0011 was associated with microbiota alterations and subtle shifts in activity timing under energy-deficient conditions. These findings suggest that peripheral glucocorticoid metabolism may influence microbial and behavioral responses in the ABA model, although its metabolic impact appears limited in the acute phase. en-copyright= kn-copyright= en-aut-name=KawaiHiroki en-aut-sei=Kawai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WadaNanami en-aut-sei=Wada en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakamotoShinji en-aut-sei=Sakamoto en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyazakiKenji en-aut-sei=Miyazaki en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoTaro en-aut-sei=Kato en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HoriuchiYoshihiro en-aut-sei=Horiuchi en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KiriiHiroshi en-aut-sei=Kirii en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NguyenHoang Duy en-aut-sei=Nguyen en-aut-mei=Hoang Duy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HinotsuKenji en-aut-sei=Hinotsu en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OhyaYoshio en-aut-sei=Ohya en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AsadaTakahiro en-aut-sei=Asada en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YokodeAkiyoshi en-aut-sei=Yokode en-aut-mei=Akiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkahisaYuko en-aut-sei=Okahisa en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MiyazakiHaruko en-aut-sei=Miyazaki en-aut-mei=Haruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OohashiToshitaka en-aut-sei=Oohashi en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TakakiManabu en-aut-sei=Takaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Sumitomo Pharma Co. Ltd kn-affil= affil-num=5 en-affil=Sumitomo Pharma Co. Ltd kn-affil= affil-num=6 en-affil=Sumitomo Pharma Co. Ltd kn-affil= affil-num=7 en-affil=Department of Animal Applied Microbiology, Okayama University Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=8 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=11ƒÀ-HSD1 kn-keyword=11ƒÀ-HSD1 en-keyword=activity-based anorexia kn-keyword=activity-based anorexia en-keyword=anorexia nervosa kn-keyword=anorexia nervosa en-keyword=corticosterone kn-keyword=corticosterone en-keyword=eating disorders kn-keyword=eating disorders en-keyword=microbiota kn-keyword=microbiota END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002115 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Fungal and Protist Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The Fungal and Protist Viruses Subcommittee (SC) of the International Committee on Taxonomy of Viruses (ICTV) has received a total of eight taxonomic proposals for the 2024 annual cycle. The extent of proposed changes varied, including nomenclatural updates, creation of new taxa and reorganization of established taxa. Following the ICTV procedures, all proposals were reviewed and voted upon by the members of the Executive Committee with ratification in March 2025. As a result, a total of 52 species in the families Botourmiaviridae and Marnaviridae were renamed to comply with the mandated binomial format. A new genus has been added to the dsRNA virus family Amalgaviridae, while two new families, Splipalmiviridae (Wolframvirales) and Mycoalphaviridae (Hepelivirales), were created to classify new groups of positive-sense (+) RNA mycoviruses. The class Arfiviricetes (Cressdnaviricota) was expanded by a new order Lineavirales and a new family Oomyviridae of ssDNA viruses. Additionally, a new class Orpoviricetes was created in the kingdom Orthornavirae to classify a group of bisegmented (+)RNA viruses reported from fungi and oomycetes. Finally, the order Pimascovirales was reorganized to better depict evolutionary relationships of pithoviruses and related viruses with large dsDNA genomes. The summary of updates in the taxonomy of fungal and protist viruses presented here is limited to taxa within the remit of this Subcommittee. For information on taxonomy changes on other fungal viruses closely related to animal and/or plant viruses, please see reports from sister ICTV Subcommittees (i.e. Plant Virus SC and Animal dsRNA and ssRNA(?) Viruses SC). en-copyright= kn-copyright= en-aut-name=SabanadzovicSead en-aut-sei=Sabanadzovic en-aut-mei=Sead kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbergelChantal en-aut-sei=Abergel en-aut-mei=Chantal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Ayll?nMar??a A. en-aut-sei=Ayll?n en-aut-mei=Mar??a A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BotellaLeticia en-aut-sei=Botella en-aut-mei=Leticia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=CanutiMarta en-aut-sei=Canuti en-aut-mei=Marta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChibaYuto en-aut-sei=Chiba en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ClaverieJean-Michel en-aut-sei=Claverie en-aut-mei=Jean-Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CouttsRobert H.A. en-aut-sei=Coutts en-aut-mei=Robert H.A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DaghinoStefania en-aut-sei=Daghino en-aut-mei=Stefania kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=DonaireLivia en-aut-sei=Donaire en-aut-mei=Livia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ForgiaMarco en-aut-sei=Forgia en-aut-mei=Marco kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HejnaOnd?ej en-aut-sei=Hejna en-aut-mei=Ond?ej kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=JiaJichun en-aut-sei=Jia en-aut-mei=Jichun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=JiangDaohong en-aut-sei=Jiang en-aut-mei=Daohong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=Kotta-LoizouIoly en-aut-sei=Kotta-Loizou en-aut-mei=Ioly kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=LangAndrew S. en-aut-sei=Lang en-aut-mei=Andrew S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=LegendreMatthieu en-aut-sei=Legendre en-aut-mei=Matthieu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=Lee MarzanoShin-Yi en-aut-sei=Lee Marzano en-aut-mei=Shin-Yi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NervaLuca en-aut-sei=Nerva en-aut-mei=Luca kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=P?nzesJudit en-aut-sei=P?nzes en-aut-mei=Judit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=PoimalaAnna en-aut-sei=Poimala en-aut-mei=Anna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=RigouSofia en-aut-sei=Rigou en-aut-mei=Sofia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=ShamsiWajeeha en-aut-sei=Shamsi en-aut-mei=Wajeeha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=TurinaMassimo en-aut-sei=Turina en-aut-mei=Massimo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=UrayamaSyun-ichi en-aut-sei=Urayama en-aut-mei=Syun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=VainioEeva J. en-aut-sei=Vainio en-aut-mei=Eeva J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=XieJiatao en-aut-sei=Xie en-aut-mei=Jiatao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= affil-num=1 en-affil=Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University kn-affil= affil-num=2 en-affil=Information G?nomique & Structurale, UMR7256, CNRS & Aix-Marseille Universit?, Marseille, IMM, IM2B, IOM kn-affil= affil-num=3 en-affil=Departamento de Biotecnolog?a-Biolog?a Vegetal, Escuela T?cnica Superior de Ingenier?a Agron?mica, Alimentaria y de Biosistemas, Universidad Polit?cnica de Madrid (UPM) kn-affil= affil-num=4 en-affil=Forest Protection and Wildlife Management Mendel University in Brno kn-affil= affil-num=5 en-affil=Department of Veterinary and Animal Sciences, University of Copenhagen kn-affil= affil-num=6 en-affil=School of Agriculture, Meiji University kn-affil= affil-num=7 en-affil=Information G?nomique & Structurale, UMR7256, CNRS & Aix-Marseille Universit?, Marseille, IMM, IM2B, IOM kn-affil= affil-num=8 en-affil=School of Health, Medicine and Life Sciences, University of Hertfordshire kn-affil= affil-num=9 en-affil=Institute for Sustainable Plant Protection, National Research Council of Italy kn-affil= affil-num=10 en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC kn-affil= affil-num=11 en-affil=Institute for Sustainable Plant Protection, CNR kn-affil= affil-num=12 en-affil=Department of Genetics and Biotechnologies, University of South Bohemia kn-affil= affil-num=13 en-affil=College of Plant Protection, Shanxi Agricultural University kn-affil= affil-num=14 en-affil=College of Plant Science and Technology, Huazhong Agricultural University kn-affil= affil-num=15 en-affil=School of Health, Medicine and Life Sciences, University of Hertfordshire kn-affil= affil-num=16 en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=17 en-affil=Department of Biology, Memorial University of Newfoundland kn-affil= affil-num=18 en-affil=Information G?nomique & Structurale, UMR7256, CNRS & Aix-Marseille Universit?, Marseille, IMM, IM2B, IOM kn-affil= affil-num=19 en-affil=United States Department of Agriculture, Agricultural Research Service, Application Technology Research Unit kn-affil= affil-num=20 en-affil=Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology kn-affil= affil-num=21 en-affil=Department of Entomology, Texas A&M University kn-affil= affil-num=22 en-affil=Natural Resources Institute Finland (Luke) kn-affil= affil-num=23 en-affil=Information G?nomique & Structurale, UMR7256, CNRS & Aix-Marseille Universit?, Marseille, IMM, IM2B, IOM kn-affil= affil-num=24 en-affil=Department of Biology, Institute for Plant Sciences, University of Cologne kn-affil= affil-num=25 en-affil=Department of Molecular Biology and Genetics, Aarhus University kn-affil= affil-num=26 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=27 en-affil=Department of Plant Protection, School of Agriculture, The University of Jordan kn-affil= affil-num=28 en-affil=Department of Life and Environmental Sciences, University of Tsukuba kn-affil= affil-num=29 en-affil=Natural Resources Institute Finland (Luke) kn-affil= affil-num=30 en-affil=College of Plant Science and Technology, Huazhong Agricultural University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e06572 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Viral RNA Silencing Suppressor Modulates Reactive Oxygen Species Levels to Induce the Autophagic Degradation of Dicer]Like and Argonaute]Like Proteins en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mounting evidence indicates that viruses exploit elevated reactive oxygen species (ROS) levels to promote replication and pathogenesis, yet the mechanistic underpinnings of this viral strategy remain elusive for many viral systems. This study uncovers a sophisticated viral counter-defense mechanism in the Cryphonectria hypovirus 1 (CHV1)-Fusarium graminearum system, where the viral p29 protein subverts host redox homeostasis to overcome antiviral responses. That p29 directly interacts with and inhibits the enzymatic activity of fungal NAD(P)H-dependent FMN reductase 1 (FMR1), leading to increased ROS accumulation and subsequent autophagy activation is demonstrated. Strikingly, this ROS-induced autophagy selectively targets for degradation two core antiviral RNA silencing components against CHV1 in F. graminearum, Dicer-like 2 (DCL2) and Argonaute-like 1 (AGL1), thereby compromising the host's primary antiviral defense system. Genetic analysis confirms this coordinated hijacking of host machineries, as CHV1 shows enhanced accumulation in the FMR1 knockout and reduced accumulation in autophagy-deficient fungal strains. This work reveals a tripartite interplay among oxidative stress, autophagy, and RNA silencing that CHV1 manipulates through p29 multifunctional activity. These findings provide a model for how viruses coordinately regulate distinct host defense systems to optimize infection. en-copyright= kn-copyright= en-aut-name=ZhaiShiyu en-aut-sei=Zhai en-aut-mei=Shiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PangTianxing en-aut-sei=Pang en-aut-mei=Tianxing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PengShiyu en-aut-sei=Peng en-aut-mei=Shiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZouShenshen en-aut-sei=Zou en-aut-mei=Shenshen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DengZhiping en-aut-sei=Deng en-aut-mei=Zhiping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KangZhensheng en-aut-sei=Kang en-aut-mei=Zhensheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SunLiying en-aut-sei=Sun en-aut-mei=Liying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=2 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=3 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=4 en-affil=Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University kn-affil= affil-num=5 en-affil=Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=7 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=8 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=9 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= en-keyword=argonaute kn-keyword=argonaute en-keyword=autophagic degradation kn-keyword=autophagic degradation en-keyword=cryphonectria hypovirus 1 kn-keyword=cryphonectria hypovirus 1 en-keyword=dicer kn-keyword=dicer en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=RNA silencing suppressor kn-keyword=RNA silencing suppressor END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=9916 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A node-localized efflux transporter for loading iron to developing tissues in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Iron (Fe) is an essential micronutrient for plant growth and development. It plays crucial roles in various organs and tissues of plants, but the molecular mechanisms governing its distribution to the above-ground parts after root uptake remain unclear. In this study, we identify OsIET1 (Oryza sativa Iron Efflux Transporter 1), a rice gene highly expressed in the nodes. OsIET1 encodes a plasma membrane-localized protein, which shows efflux transport activity for ferrous iron. It is predominantly expressed in the xylem regions of diffuse vascular bundles, and its expression is upregulated under high Fe conditions. Disruption of OsIET1 impairs Fe allocation, reducing Fe transport to developing tissues (young leaves and grains), while increasing accumulation in nodes and older leaves. This misdistribution causes chlorosis in young leaves and decreases grain yield, especially under Fe-deficient conditions. Furthermore, we detect excessive Fe deposition around the xylem of diffuse vascular bundles in the nodes. Given the pivotal role of nodes in mineral distribution, our results indicate that OsIET1 mediates inter-vascular Fe transfer by facilitating Fe loading into the xylem of diffuse vascular bundles. This process ensures preferential Fe delivery to developing tissues, thereby promoting optimal plant growth and productivity. en-copyright= kn-copyright= en-aut-name=CheJing en-aut-sei=Che en-aut-mei=Jing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HuangSheng en-aut-sei=Huang en-aut-mei=Sheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=QuYuting en-aut-sei=Qu en-aut-mei=Yuting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshiokaYuma en-aut-sei=Yoshioka en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomitaChiyuri en-aut-sei=Tomita en-aut-mei=Chiyuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LiuZhenyang en-aut-sei=Liu en-aut-mei=Zhenyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShenRenfang en-aut-sei=Shen en-aut-mei=Renfang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences kn-affil= affil-num=8 en-affil=State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=First Total Synthesis of the Kikai Island Polybrominated C3Œ?N1 Bisindole Alkaloid by a Directed Metalation Strategy en-subtitle= kn-subtitle= en-abstract= kn-abstract=The first total synthesis of one out of four Kikai Island polybrominated C3Œ?N1 bisindole alkaloids from red alga Laurencia brongniartii is described. The key steps involve both dehydration of trans-hemiaminal and a C2Œ-methylthiolation of bisindole using dimethyl disulfide through directed metalation, followed by C3-methylthiolation using a N-SMe succinimide reagent. en-copyright= kn-copyright= en-aut-name=TokushigeKeisuke en-aut-sei=Tokushige en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbeTakumi en-aut-sei=Abe en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=43 article-no= start-page=8323 end-page=8333 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of the pH value on compression and array structures of highly charged microgels at the air/water interface en-subtitle= kn-subtitle= en-abstract= kn-abstract=Understanding the interfacial behavior of stimuli-responsive microgels is critical for applications such as foam and emulsion stabilization, as well as for the fabrication of two-dimensional colloidal crystals using the interfaces. In this study, the pH-dependent compression behavior and array structures of micron-sized poly(N-isopropylacrylamide-co-acrylic acid) microgels at the air/water interface was investigated. By combining a Langmuir trough with fluorescence microscopy, microgel arrays under compression and acidic (pH = 3) or basic (pH = 9) conditions were directly visualized. At pH = 9, the carboxyl groups within the microgels are deprotonated, resulting in significant swelling and the formation of ordered hexagonal arrays with high crystallinity (ƒµ6 > 0.84) upon compression. In contrast, at pH = 3, the carboxyl groups within the microgels are protonated, leading to a suppression of the electrostatic repulsion between neighboring microgels and a reduction in crystallinity (ƒµ6 ? 0.70) of the microgel arrays before and after compression. Furthermore, the calculated surface-compression modulus using the compression isotherms indicated higher interfacial elasticity for charged microgels, demonstrating that electrostatic repulsion governs both array ordering and mechanical robustness. These findings provide fundamental insights into the role of charge in controlling the microgel structure and mechanics at interfaces, thus offering further guidelines for the design of stimuli-responsive materials and stabilizers for foams and emulsions. en-copyright= kn-copyright= en-aut-name=KawamotoTakahisa en-aut-sei=Kawamoto en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MinatoHaruka en-aut-sei=Minato en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=185111 end-page=185124 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhancing Protection Against Code Reuse Attacks on IoT Devices by Randomizing Function Addresses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Most Internet of Things (IoT) devices currently in use are vulnerable to code reuse attacks because manufacturers typically deploy the same firmware across all devices. This uniformity enables attackers to craft a single exploit that can compromise multiple devices. To mitigate this risk, we propose a firmware diversification approach that creates multiple executable files with varying software compositions. Our approach introduces two complementary techniques: Function Address Reordering (FAR), which randomizes the order of functions within object files during compilation, and Object Address Reordering (OAR), which permutes the linking order of object files in the final executable. These techniques collectively diversify firmware instances without altering runtime behavior, making executing code reuse attacks significantly more difficult. By deploying firmware with diverse executable files, it is possible to enhance security without altering device behavior. We evaluate the effectiveness and limitations of the proposed methods when integrated into actual IoT firmware, assessing their resilience to code reuse attacks, impact on runtime behavior, and compilation overhead. Experimental results demonstrate that FAR and OAR significantly reduce the success rate of return-oriented programming attacks while incurring minimal performance overhead. This study offers a scalable, hardware-independent defense against code reuse attacks that increases resilience without a significant performance overhead, rendering it practical for widespread adoption in various IoT applications. en-copyright= kn-copyright= en-aut-name=SajiKazuma en-aut-sei=Saji en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiSatoru en-aut-sei=Kobayashi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaniguchiHideo en-aut-sei=Taniguchi en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Code reuse attack kn-keyword=Code reuse attack en-keyword=IoT firmware kn-keyword=IoT firmware en-keyword=software diversity kn-keyword=software diversity en-keyword=function reordering kn-keyword=function reordering en-keyword=LLVM kn-keyword=LLVM END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=89 article-no= start-page=17364 end-page=17367 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The direct photochemical cross-esterification of alcohols via site-selective C?H bromination site-selective C?H bromination en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have developed a direct photochemical cross-esterification of alcohols that proceeds via the in situ generation of acyl bromides. The C?H bond of a benzyl alcohol is selectively activated by a bromo source under light irradiation, enabling the cross-esterification to afford a variety of functionalized esters. en-copyright= kn-copyright= en-aut-name=MiyamotoAtsuya en-aut-sei=Miyamoto en-aut-mei=Atsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue= article-no= start-page=114240 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of grain size and crystal orientation on tensile properties of pure titanium thin wires en-subtitle= kn-subtitle= en-abstract= kn-abstract=To clarify the effects of the grain size and crystal orientation on the tensile properties of pure titanium thin wires, tensile and stepwise tensile tests were conducted on pure titanium wires with diameters of approximately 180 ƒÊm and different average grain sizes (52, 37, 23, and 3.8 ƒÊm). When the grain size was large, the fracture strain was significantly smaller, the variation in tensile strength was larger, and the grain size threshold for such properties was a grain-size ratio to wire diameter of 0.13 or greater. For larger grain sizes, the slip system with the highest modified Schmid factor (MSF), which is the Schmid factor divided by the critical resolved shear stress of each slip system, was activated in all 15 grains whereas for smaller grain sizes, the percentage of slip systems activated with the highest MSF was slightly lower. In addition, the fracture location in a thin wire with larger grain sizes was highly correlated with the average MSF of the grains in the cross-section. en-copyright= kn-copyright= en-aut-name=SakamotoJunji en-aut-sei=Sakamoto en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TadaNaoya en-aut-sei=Tada en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemoriTakeshi en-aut-sei=Uemori en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Tensile properties kn-keyword=Tensile properties en-keyword=Pure titanium kn-keyword=Pure titanium en-keyword=Thin wire kn-keyword=Thin wire en-keyword=Slip deformation kn-keyword=Slip deformation en-keyword=Grain size kn-keyword=Grain size en-keyword=Crystal orientation kn-keyword=Crystal orientation en-keyword=Cross-section kn-keyword=Cross-section END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Repeated Gravity Casting on the Microstructure and Mechanical Properties of 6061 Aluminum Alloy en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study systematically investigates the effects of repeated gravity casting on the microstructure and mechanical properties of 6061 aluminum alloy. With an increasing number of casting cycles from one to ten, grain coarsening and a decrease in dislocation density were observed, mainly due to the significant depletion of magnesium from 1.03 to 0.01% and titanium from 0.009 to 0.005%. These microstructural changes led to a decrease in solid-solution strengthening and grain-boundary strengthening, resulting in a 30% reduction in tensile strength, while ductility increased by about three times. Moreover, work hardening decreased with increasing the casting cycle, which can be attributed not only to the microstructural changes but also to the increase in stacking fault energy (SFE) associated with compositional evolution. From the transmission electron microscopy (TEM) observations, in the 1-cycle sample, Mg2Si precipitates were finely dispersed and a high amount of Mg element in the matrix, resulting in significant dislocation accumulation, whereas the 10-cycle sample exhibited weaker dislocation tangling. These microstructural evolutions provide insight into the degradation of mechanical performance in aluminum alloys subjected to multiple casting processes. en-copyright= kn-copyright= en-aut-name=OkayasuMitsuhiro en-aut-sei=Okayasu en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakinoShouei en-aut-sei=Makino en-aut-mei=Shouei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakagawaShota en-aut-sei=Nakagawa en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakeuchiShuhei en-aut-sei=Takeuchi en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShinzatoYoshifumi en-aut-sei=Shinzato en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MinodaTadashi en-aut-sei=Minoda en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OhtsukaNaotaka en-aut-sei=Ohtsuka en-aut-mei=Naotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Mechanical Systems and Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Mechanical Systems and Engineering, Okayama University kn-affil= affil-num=3 en-affil=Research & Development Center, Marketing & Technology Division, UACJ Corporation kn-affil= affil-num=4 en-affil=Department of Mechanical Systems and Engineering, Okayama University kn-affil= affil-num=5 en-affil=Research & Development Center, Marketing & Technology Division, UACJ Corporation kn-affil= affil-num=6 en-affil=Research & Development Center, Marketing & Technology Division, UACJ Corporation kn-affil= affil-num=7 en-affil=Research & Development Center, Marketing & Technology Division, UACJ Corporation kn-affil= en-keyword=aluminum alloy kn-keyword=aluminum alloy en-keyword=repeated casting kn-keyword=repeated casting en-keyword=6061 kn-keyword=6061 en-keyword=microstructure kn-keyword=microstructure en-keyword=mechanical property kn-keyword=mechanical property END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251028 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced electric power generation in PZT ceramics via stress control en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study aimed to enhance the electric power generation of lead zirconate titanate piezoelectric (PZT) ceramics by optimizing stress distribution. Specifically, it focused on applying high stress over a broad area of the PZT ceramic to induce shape deformation in the PZT plate. Pre-straining the PZT plate into an arch shape improved voltage generation, reaching its peak at a maximum deflection of 0.04?mm due to the expanded and intensified stress distribution. However, exceeding this deflection threshold led to a decline in voltage output due to material degradation, including crack formation and 90‹ domain switching. Finite element analysis confirmed that the increased stress distribution in the pre-strained PZT plate contributed to higher voltage output. Additionally, electron backscatter diffraction analysis revealed that at higher pre-strains (deflection of 0.08?mm), 90‹domain switching occurred, resulting in increased internal strain and potential crack formation. Experimental investigations using bulk PZT rods further demonstrated that moderate pre-straining effectively enhanced voltage output. en-copyright= kn-copyright= en-aut-name=OkayasuMitsuhiro en-aut-sei=Okayasu en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimazuItsuki en-aut-sei=Shimazu en-aut-mei=Itsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Mechanical Systems and Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Mechanical Systems and Engineering, Okayama University kn-affil= en-keyword=PZT ceramic kn-keyword=PZT ceramic en-keyword=Electric voltage kn-keyword=Electric voltage en-keyword=Piezoelectric effect kn-keyword=Piezoelectric effect en-keyword=Stress distribution kn-keyword=Stress distribution END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250906 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Upgrading Recycle Technology for Iron Removal in ADC12 Alloy Using Gravity and Magnetic Force en-subtitle= kn-subtitle= en-abstract= kn-abstract=As there is a technical issue to remove iron elements during aluminum recycling process, an attempt was made to evaluate the effectiveness of magnetic and gravitational separation methods for removing iron from Al-Si-Cu alloy (ADC12). A rare-earth samarium?cobalt (SmCo) magnet was employed during the solidification process to attract Fe-rich eutectic structures. The microstructural analysis revealed that block-like Fe-Cr-Si-based phases formed preferentially near the magnet and at the bottom of the crucible, suggesting that magnetic and gravity attraction contributed to the localized segregation of these phases. However, other Fe-based phases, including Fe-Si-based ones, are not strongly affected by magnet. Additionally, prolonged heating in the solid?liquid coexistence (SLC) region at 577 ‹C for 10 h led to the settling of a largely grown Fe-Cr-Si-rich crystal at the bottom of the crucible due to gravity. Other structures, such as Si-rich eutectic phases, were not influenced by gravity, which may be caused by the low density of Si compared to Fe one. From this approach, combining magnetic attraction and gravitational settling is a promising method to promote the removal of iron impurities from aluminum alloys. en-copyright= kn-copyright= en-aut-name=OkayasuM. en-aut-sei=Okayasu en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiS. en-aut-sei=Takeuchi en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SyahidM. en-aut-sei=Syahid en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IkedaT. en-aut-sei=Ikeda en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Mechanical Systems and Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Mechanical Systems and Engineering, Okayama University kn-affil= affil-num=3 en-affil=Department of Mechanical Engineering, Hasanuddin University kn-affil= affil-num=4 en-affil=Department of Mechanical Systems and Engineering, Okayama University kn-affil= en-keyword=aluminum alloy kn-keyword=aluminum alloy en-keyword=upgrade recycle kn-keyword=upgrade recycle en-keyword=iron kn-keyword=iron en-keyword=microstructure kn-keyword=microstructure en-keyword=mechanical property kn-keyword=mechanical property END start-ver=1.4 cd-journal=joma no-vol=54 cd-vols= no-issue=7 article-no= start-page=5143 end-page=5150 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250429 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electric Power Generation of PZT Piezoelectric Ceramics Using Both Direct and Inverse Piezoelectric Effects en-subtitle= kn-subtitle= en-abstract= kn-abstract=The power generation characteristics of lead zirconate titanate (PZT) piezoelectric ceramics (E-PZT) were experimentally investigated using a specialized PZT system which utilizes both the direct and inverse piezoelectric effects inherent to PZT materials. Specifically, electric voltage was generated from the vibration of E-PZT through the inverse piezoelectric effect, induced by mechanical energy transferred from the vibration of a PZT piezoelectric ceramic plate, such as a buzzer (B-PZT). In this system, an insulating material was placed between the B-PZT and E-PZT plates to address the electrical conductivity of the PZT ceramic. Various insulating materials with different thicknesses and different hardness were prepared. Additionally, the PZT systems were mounted in several distinct configurations to evaluate their power generation performance: a fully fixed around the PZT plate and a free-hanging setup. The influence of insulation materials and mounting conditions on electrical output was analyzed at various loading conditions, e.g., loading value and frequency. The results demonstrated that the generated electric voltage decreased with increasing insulation thickness and hardness, suggesting that thinner and softer insulating materials enhance output voltage. Conversely, when the PZT system was securely fixed around the PZT plate with an appropriate fixture, a higher and more stable electric voltage was generated. The voltage generated also varied by the loading condition, which is related to the strain value of the E-PZT plate, demonstrating a linear relationship between the strain and the output voltage. Notably, the strain was significantly influenced by resonant frequencies, which played a crucial role in achieving higher voltage outputs. Based on these experimental results, two power generation systems have been proposed. en-copyright= kn-copyright= en-aut-name=OkayasuMitsuhiro en-aut-sei=Okayasu en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimazuItsuki en-aut-sei=Shimazu en-aut-mei=Itsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Mechanical Systems and Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Mechanical Systems and Engineering, Okayama University kn-affil= en-keyword=PZT ceramic kn-keyword=PZT ceramic en-keyword=electric voltage kn-keyword=electric voltage en-keyword=inverse piezoelectric effect kn-keyword=inverse piezoelectric effect en-keyword=resonant frequency kn-keyword=resonant frequency END start-ver=1.4 cd-journal=joma no-vol=81 cd-vols= no-issue= article-no= start-page=102548 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Does innovation-driven policy optimize urban energy consumption? Evidence from Chinafs innovation-driven city pilot policies en-subtitle= kn-subtitle= en-abstract= kn-abstract=Restructuring energy consumption is essential for promoting green, low-carbon economic and societal development. Innovation-driven policies, particularly those implemented in pilot cities, play a crucial role in this transformation. This study conducts a theoretical analysis to examine how such policies influence urban energy-consumption structures. Using a multitime-point difference-in-differences model, it treats Chinafs national innovation-driven city pilot policies as a quasi-natural experiment. The results indicate that these policies significantly improve urban energy structures. Mechanism analyses reveal that the improvements occur mainly through green innovation and industrial upgrading. Heterogeneity analysis further indicates that the effects are more pronounced in cities with lower administrative tiers, more challenging geographical conditions, and stronger environmental priorities. These findings provide valuable policy insights for refining innovation-driven strategies, enhancing urban energy-consumption structures, and promoting sustainable economic development in China. en-copyright= kn-copyright= en-aut-name=CongYingnan en-aut-sei=Cong en-aut-mei=Yingnan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HouYufei en-aut-sei=Hou en-aut-mei=Yufei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JiYuan en-aut-sei=Ji en-aut-mei=Yuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=CaiXiaojing en-aut-sei=Cai en-aut-mei=Xiaojing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Business School, China University of Political Science and Law kn-affil= affil-num=2 en-affil=School of Economics, Renmin University of China kn-affil= affil-num=3 en-affil=Business School, China University of Political Science and Law kn-affil= affil-num=4 en-affil=Graduate School of Humanities and Social Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=281 cd-vols= no-issue= article-no= start-page=111174 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=N-terminal domains and site-specific glycosylation regulate the secretion of avian melanocortin inverse agonists, agouti signaling protein (ASIP) and agouti-related protein (AGRP) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Agouti signaling protein (ASIP) and agouti-related protein (AGRP) are paralogous inverse agonists of melanocortin receptors with distinct physiological roles, but their structural and biochemical properties in birds remain poorly understood. Here, we characterized chicken ASIP and AGRP proteins. Analysis of available sequences revealed that a motif resembling the mammalian proprotein convertase 1/3 (PC1/3, also known as PCSK1) cleavage site is conserved across a broad range of avian orders, but Western blot analysis of transfected Chinese hamster ovary (CHO-K1) cells and chicken hypothalamus detected no cleavage, suggesting that avian AGRP may not be post-translationally processed at this site. Chicken ASIP mRNA contains an in-frame upstream ATG (uATG) and a putative N-linked glycosylation site at Asn-42, both conserved across multiple avian orders. Overexpression in CHO-K1 cells showed that ASIP translated from either ATG produces a mature protein of the same size that is N-glycosylated at Asn-42 and exhibits markedly lower secretion efficiency than AGRP. Domain-swapping experiments revealed that the N-terminal domain reduces secretion, whereas a naturally occurring ASIP-b variant with an additional N-glycan at Asn-47 shows enhanced secretion. Proteasome inhibition increased intracellular ASIP, and endoglycosidase H (Endo H) sensitivity indicated endoplasmic reticulum (ER) retention, suggesting that the N-terminal domain limits secretion via ER-associated proteasomal degradation. These findings reveal species-specific post-translational regulation of avian melanocortin inverse agonists, in which N-terminal features and site-specific N-glycosylation determine secretion efficiency, likely contributing to their distinct roles in pigmentation and hypothalamic energy balance. en-copyright= kn-copyright= en-aut-name=FukuchiHibiki en-aut-sei=Fukuchi en-aut-mei=Hibiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeRyoya en-aut-sei=Watanabe en-aut-mei=Ryoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IidaYuna en-aut-sei=Iida en-aut-mei=Yuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakanoSaya en-aut-sei=Nakano en-aut-mei=Saya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MizutaniAya en-aut-sei=Mizutani en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AboTatsuhiko en-aut-sei=Abo en-aut-mei=Tatsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AizawaSayaka en-aut-sei=Aizawa en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Agouti signaling protein kn-keyword=Agouti signaling protein en-keyword=Agouti-related protein kn-keyword=Agouti-related protein en-keyword=Avian melanocortin inverse agonists kn-keyword=Avian melanocortin inverse agonists en-keyword=Post-translational modification kn-keyword=Post-translational modification en-keyword=N-linked glycosylation kn-keyword=N-linked glycosylation en-keyword=Protein secretion kn-keyword=Protein secretion END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=27-28 article-no= start-page=e70357 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Algebraic Connectivity Maximizing Regular Graphs: Special Case Analysis and Depth]First Search en-subtitle= kn-subtitle= en-abstract= kn-abstract=The algebraic connectivity is an indicator of how well connected a graph is. It also characterizes the convergence speed of some dynamic processes over networks. In this paper, taking into account that homogeneous networks are modeled as regular graphs, we tackle the following problem: given a pair (?, ?) of positive integers such that ? is less than ? and kn is an even number, find a ?-regular graph with ? vertices that have the maximum algebraic connectivity. We first consider some special cases and derive solutions through theoretical analysis. We next present depth-first search algorithms for solving the problem, which reduce the search space by making use of some known properties of the regular graph and the algebraic connectivity.We also show the results of execution of the proposed algorithms for the values of ? up to 12. en-copyright= kn-copyright= en-aut-name=KurahashiMasashi en-aut-sei=Kurahashi en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SalaaniNajd en-aut-sei=Salaani en-aut-mei=Najd kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MigitaTsuyoshi en-aut-sei=Migita en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiNorikazu en-aut-sei=Takahashi en-aut-mei=Norikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Polytech Sorbonne, Sorbonne University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=algebraic connectivity kn-keyword=algebraic connectivity en-keyword=depth-first search kn-keyword=depth-first search en-keyword=optimization kn-keyword=optimization en-keyword=pruning kn-keyword=pruning en-keyword=regular graph kn-keyword=regular graph END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251020 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Coupling effects of biochar and sediment microbial fuel cells on CH4 and CO2 emissions from straw-amended paddy soil en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose The independent incorporation of biochar and sediment microbial fuel cells (SMFCs) into paddy soil has been shown to reduce methane (CH4) emissions. However, the application of rice straw into paddy soil enhances the availability of labile carbon that stimulates methanogen growth, counteracting the mitigation effects of both methods. This study, therefore, aimed to investigate the effect of coupling biochar and SMFC on CH4 and CO2 emissions from straw-amended paddy soil.
Materials and methods Single chamber SMFC setups constructed using acrylic columns (height, 25 cm; inner diameter, 9 cm) with six treatments were established using soil amended with 0% (0BC), 1% (1BC), and 2% (2BC) biochar: with and without SMFC conditions. Stainless steel mesh (15?~?3 cm) and graphite felt (6?~?5 cm) were used as anode and cathode materials, respectively.
Results Cumulative emission of CH4 in the 0BC treatment with SMFC was 39% less than in that without SMFC. Biochar addition and SMFC operation together further reduced CH4 emission by 57% and 60% in 1BC and 2BC treatments, respectively, compared to that in the 0BC treatment without SMFC operation. The relative abundance of microbial communities indicated methane-oxidizing bacteria were enriched in the presence of biochar and hydrogenotrophic Methanoregula were suppressed by SMFC operation. This suggested that SMFC mainly inhibited CH4 production by outcompeting hydrogenotrophic archaea.
Conclusion The use of biochar made from leftover rice straw has an interactive effect on SMFC operation and both methods can be used to reduce CH4 emission from straw-amended paddy soil. en-copyright= kn-copyright= en-aut-name=BekeleAdhena Tesfau en-aut-sei=Bekele en-aut-mei=Adhena Tesfau kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakaharaNozomi en-aut-sei=Nakahara en-aut-mei=Nozomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HashiguchiAyumi en-aut-sei=Hashiguchi en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkaoSatoshi en-aut-sei=Akao en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakanoChiyu en-aut-sei=Nakano en-aut-mei=Chiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Faculty of Science and Engineering, Doshisha University kn-affil= affil-num=7 en-affil=Department of Comprehensive Technical Solutions, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Electrogenesis kn-keyword=Electrogenesis en-keyword=Methane oxidation kn-keyword=Methane oxidation en-keyword=Pyrolysis kn-keyword=Pyrolysis en-keyword=Paddy field kn-keyword=Paddy field en-keyword=Methanogens kn-keyword=Methanogens END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=10 article-no= start-page=107001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251028 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multichannel topological elastic waveguide in a multilayer Kagome phononic crystal en-subtitle= kn-subtitle= en-abstract= kn-abstract=By examining the geometric characteristics of various boundaries formed within the Kagome phononic lattice and vertically stacking the lattices, we designed an elastic waveguide that enables selective propagation of topologically protected edge modes across layers in a bilayer system. This layer-selective transmission is manifested as polarized boundary modes that appear in phononic dispersions of the systems incorporating the bridge, zigzag, and armchair boundaries. We numerically demonstrated that efficient elastic layer converters and splitters can be designed, thereby paving the way for the practical development of three-dimensional elastic-wave devices. en-copyright= kn-copyright= en-aut-name=HataYusuke en-aut-sei=Hata en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsurutaKenji en-aut-sei=Tsuruta en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251028 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The effect of pressure on dihedral angle between liquid Fe]S and orthopyroxene: Implication for percolative core formation in planetesimals and planetary embryos en-subtitle= kn-subtitle= en-abstract= kn-abstract=During precursor stages of planet formation, many planetesimals and planetary embryos are considered to have differentiated, forming an iron-alloy core and silicate mantle. Percolation of liquid iron-alloy in solid silicates is one of the major possible differentiation processes in these small bodies. Based on the dihedral angles between Fe-S melts and olivine, a criterion for determining whether melt can percolate through a solid, it has been reported that Fe-S melt can percolate through olivine matrices below 3?GPa in an oxidized environment. However, the dihedral angle between Fe-S melts and orthopyroxene (opx), the second most abundant mineral in the mantles of small bodies, has not yet been determined. In this study, high-pressure and high-temperature experiments were conducted under the conditions of planetesimal and planetary embryo interiors, 0.5?5.0?GPa, to determine the effect of pressure on the dihedral angle between Fe-S melts and opx. Dihedral angles tend to increase with pressure, although the pressure dependence is markedly reduced above 4?GPa. The dihedral angle is below the percolation threshold of 60‹ at pressures below 1.0?1.5?GPa, indicating that percolative core formation is possible in opx-rich interiors of bodies where internal pressures are lower than 1.0?1.5?GPa. The oxygen content of Fe-S melt decreases with increasing pressure. High oxygen contents in Fe-S melt reduce interfacial tension between Fe-S melt and opx, resulting in reduced dihedral angles at low pressure. Combined with previous results for dihedral angle variation of the olivine/Fe-S system, percolative core formation possibly occurs throughout bodies up to a radius of 1340?km for an olivine-dominated mantle, and up to 770?km for an opx-dominated mantle, in the case of S-rich cores segregating under relatively oxidizing conditions. For mantles of small bodies in which abundant olivine and opx coexist, the mineral with the largest volume fraction and/or smallest grain size will allow formation of interconnected mineral channels, and, therefore, the wetting property of this mineral determines the wettability of the melt, that is, controls core formation. en-copyright= kn-copyright= en-aut-name=MiuraTakumi en-aut-sei=Miura en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TerasakiHidenori en-aut-sei=Terasaki en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakiHyu en-aut-sei=Takaki en-aut-mei=Hyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiKotaro en-aut-sei=Kobayashi en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BromileyGeoffrey David en-aut-sei=Bromiley en-aut-mei=Geoffrey David kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshinoTakashi en-aut-sei=Yoshino en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Earth and Space Science, Osaka University kn-affil= affil-num=2 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=5 en-affil=School of Geosciences, The University of Edinburgh kn-affil= affil-num=6 en-affil=Institute for Planetary Materials, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=417 end-page=431 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251015 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of?a?Startup Program Identification for?Efficient and?Accurate IoT Security Investigations en-subtitle= kn-subtitle= en-abstract= kn-abstract=Not all file in firmware are executed while using Internet of Things (IoT) devices and hundreds to approximately a thousand executable and linkable format files exist in one firmware. Therefore, security investigations without prioritization may lead to investigate programs that are not executed while using IoT devices first. This has resulted in inefficient security investigations. To perform efficient security investigations, we proposed a method that can identify programs executed during the startup process. However, only two firmware were used for the evaluation which can only evaluate one of the two startup sequences in the OpenWrt-based firmware. In addition, security investigations to validate whether the proposed method addresses the problem of inefficient security investigations were limited to OpenWrt-based firmware. In this study, we use more firmware data for evaluation and validation. We use nine firmware not used in previous studies including startup methods that have not previously been used for evaluation. In addition, we increase the number of firmware used for validation to 225. The evaluation results demonstrate that the proposed method can identify with only few false positives. The validation demonstrates that efficiency can be improved and prioritizing investigations by considering the proposed method result is worthwhile. en-copyright= kn-copyright= en-aut-name=ShimamotoYuta en-aut-sei=Shimamoto en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PhinyodomJiratchaya en-aut-sei=Phinyodom en-aut-mei=Jiratchaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshimotoRyota en-aut-sei=Yoshimoto en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UekawaHiroyuki en-aut-sei=Uekawa en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkiyamaMitsuaki en-aut-sei=Akiyama en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=School of Engineering, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=NTT Social Informatics Laboratories kn-affil= affil-num=5 en-affil=NTT Social Informatics Laboratories kn-affil= affil-num=6 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword=Firmware kn-keyword=Firmware en-keyword=Startup script kn-keyword=Startup script en-keyword=SysVinit kn-keyword=SysVinit END start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue=11 article-no= start-page=337 end-page=343 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ti-18Nb-xAl‡‹à‚Ì\¬‘Š‚ÆÞ—¿“Á«‚É‹y‚Ú‚·Al“Y‰Á—ʂ̉e‹¿ en-subtitle= kn-subtitle= en-abstract= kn-abstract=The Ti-18mass%Nb alloy with a quenched ƒ¿h martensitic structure exhibited a high damping capacity. However, there are issues such as lower strength than annealed ƒ¿+ƒÀ structure and decreasing damping capacity due to heating until 400 K. Therefore, in this study, to address these issues, we investigated the effect of Al addition on the constituent phases and material properties of Ti-18Nb-xAl alloys. The crystal structure was determined by examining the lattice constant and unit volume using X-ray diffraction, and optical microscopy was also performed. The material properties were investigated by Vickers hardness, Youngfs modulus, internal friction, tensile tests, and DSC measurements. Vickers hardness and tensile strength increased with increasing Al content. This is thought to be due to the combined effects of the refinement of the microstructure and solid-solution strengthening due to Al addition. The Youngfs modulus increased slightly from 0Al to 1Al, but increased significantly to 4Al. Internal friction was highest for 0Al and decreased for 4Al, whereas 7Al showed a higher value than 1Al. In the DSC heating curves, there was a decrease in the exothermic peak starting temperature and an increase in the phase-transformation heat with the addition of Al, except for 1Al. It was suggested that these changes in Ti-18Nb-xAl alloys were influenced by the structure of the quenched ƒ¿h phase, texture, and pseudoelasticity or phase transformation by deformation. en-copyright= kn-copyright= en-aut-name=MantaniYoshikazu en-aut-sei=Mantani en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakemotoYoshito en-aut-sei=Takemoto en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=ternary titanium alloy kn-keyword=ternary titanium alloy en-keyword=martensite kn-keyword=martensite en-keyword=lattice constant kn-keyword=lattice constant en-keyword=hardness kn-keyword=hardness en-keyword=Youngfs modulus kn-keyword=Youngfs modulus en-keyword=internal friction kn-keyword=internal friction en-keyword=cyclic tensile test kn-keyword=cyclic tensile test en-keyword=texture kn-keyword=texture END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=20 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Natural Effects and Separable Effects: Insights into Mediation Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose of Review We compare natural effects and separable effects under nonparametric structural equation models with independent errors, highlighting their similarities and differences. By examining their required properties and sufficient conditions for identification, we aim to provide deeper insights into mediation analysis.
Recent Findings If certain assumptions about confounding, positivity, and consistency are met, we can identify natural direct and indirect effects under nonparametric structural equation models with independent errors. However, these effects have been criticized because they rely on a specific cross-world quantity, and the so-called cross-world independence assumption cannot be empirically verified. Furthermore, interventions on the mediator may sometimes be challenging to even conceive. As an alternative approach, separable effects have recently been proposed and applied in mediation analysis, often under finest fully randomized causally interpretable structured tree graph models. These effects are defined without relying on any cross-world quantities and are claimed to be identifiable under assumptions that are testable in principle, thereby addressing some of the challenges associated with natural direct and indirect effects.
Summary To conduct meaningful mediation analysis, it is crucial to clearly define the research question of interest, and the choice of methods should align with the nature of the question and the assumptions researchers are willing to make. Examining the underlying philosophical perspectives on causation and manipulation can provide valuable insights. en-copyright= kn-copyright= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShinozakiTomohiro en-aut-sei=Shinozaki en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoEiji en-aut-sei=Yamamoto en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Interfaculty Initiative in Information Studies, the University of Tokyo kn-affil= affil-num=3 en-affil=Okayama University of Science kn-affil= en-keyword=Causality kn-keyword=Causality en-keyword=Counterfactuals kn-keyword=Counterfactuals en-keyword=Cross-world independence assumption kn-keyword=Cross-world independence assumption en-keyword=Directed acyclic graphs kn-keyword=Directed acyclic graphs en-keyword=Mediation analysis kn-keyword=Mediation analysis en-keyword=Nonparametric structural equation models with independent errors kn-keyword=Nonparametric structural equation models with independent errors END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251005 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Artificial Selections for Life-History Traits Affect Effective Cumulative Temperature and Developmental Zero Point in Zeugoducus cucurbitae en-subtitle= kn-subtitle= en-abstract= kn-abstract=Effective cumulative temperature and developmental zero point are important indicators for estimating the timing of organism development and the area of distribution. These indicators are generally considered to have unique values for different species of organisms and are also important for predicting the distribution range of animals and plants, especially insect pests. These values generally are species-specific, but there is variation within populations in traits having a genetic component. However, there are no studies on what kind of selection pressure affects these indicator values. To address this issue, it would be worthwhile to compare these values using individuals of strains that have been artificially selected for life-history traits by rearing them at various temperatures and calculating these indicators from developmental days and temperatures. In the present study, eggs were taken from adults of strains with many generations of artificial selection on two life-history traits (age at reproduction and developmental period) of the melon fly, Zeugodacus cucurbitae, under constant temperature conditions. Eggs were reared at five different temperatures, and the effective cumulative temperatures and developmental zero points of the larval and developmental periods were compared. The results demonstrate that artificial selection on life-history traits in Z. cucurbitae induces evolutionary changes in both the effective cumulative temperature and the developmental zero point across successive generations. en-copyright= kn-copyright= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo kn-affil= en-keyword=age at reproduction kn-keyword=age at reproduction en-keyword=development time kn-keyword=development time en-keyword=developmental period kn-keyword=developmental period en-keyword=larval period kn-keyword=larval period en-keyword=melon fly kn-keyword=melon fly en-keyword=Tephritidae kn-keyword=Tephritidae en-keyword=thermal biology kn-keyword=thermal biology en-keyword=trade-offs kn-keyword=trade-offs END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of flight behaviors among laboratory and field strains in Tribolium castaneum (Coleoptera: Tenebrionidae) using a simple method to measure flight ability en-subtitle= kn-subtitle= en-abstract= kn-abstract=Most insects can fly. The acquisition of flight is a factor that allows insects to prosper on Earth. On the other hand, in the same species and population, individual differences in flight ability may occur. Flight ability can vary due to geographical conditions and cumulative rearing. Investigating these changes in flight performance is important for understanding dispersal polymorphism and the evolution of flight performance. Thus, in the present study, the flight behaviors between cumulative rearing and field strains and changes in flight behaviors between strains of the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), which is distributed around the world were compared. Tribolium castaneum is a worldwide pest of stored grains. Its body length is about 3?4 mm. Previous studies have investigated the influence of environmental and physiological factors on the flight of this species, but no studies have examined individual differences or polymorphism in flight behaviors within this species. In this study, we developed a simple apparatus that can quantify the flight behavior of this species. The experimental apparatus was set up as a double structure with two different size containers. This apparatus was able to assess the flight activity of insects by counting individuals in a big container because insects transfer to the big container only by flight. Moreover, upward flight ability was possible to be assessed by the apparatus adding the barrier. Then, the flight behavior was compared between strains of this species that have been bred in the laboratory for more than 45 years and several strains of this species collected in the field. The results showed no variation in flight activity between strains, but flying ability was higher in strains originating from warmer regions. Here, we discussed the variations in flight behavior of T. castaneum. en-copyright= kn-copyright= en-aut-name=SoneSota en-aut-sei=Sone en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Faculty of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environment, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Dispersal kn-keyword=Dispersal en-keyword=Flight behavior kn-keyword=Flight behavior en-keyword=Red flour beetle kn-keyword=Red flour beetle en-keyword=Upward flight kn-keyword=Upward flight END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=286 end-page=299 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of?Visual Stimuli on?Perceived Sound Volume in?Virtual Reality Spaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=With the proliferation of affordable and high-performance virtual reality (VR) devices, VR content such as games and the metaverse is becoming increasingly widespread. In VR environments, users experience various sensory stimuli, primarily through visual and auditory cues. However, subjective perception of these stimuli varies based on user context. Existing studies have shown that auditory perception can be influenced by visual stimuli, however, most of them have focused on congruent audiovisual stimuli, leaving the effects of non-congruent pairings unexplored. This study investigates how visual stimuli, specifically color and crowdedness, influence perceived sound volume in VR. In the experiment that participants experienced VR environments with different room colors while listening to test tones, the results showed that warm colors led to higher perceived volume at low sound levels. Also, in the experiment that participants viewed VR scenes with varying crowd densities while hearing announcements, less crowded environments resulted in higher perceived sound volume. These findings suggest that visual context impacts auditory perception, providing insights for optimizing hearable devices and enhancing VR auditory experiences. en-copyright= kn-copyright= en-aut-name=MatsudaYuki en-aut-sei=Matsuda en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiToma en-aut-sei=Kobayashi en-aut-mei=Toma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeHiroki en-aut-sei=Watanabe en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YasumotoKeiichi en-aut-sei=Yasumoto en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Nara Institute of Science and Technology kn-affil= affil-num=3 en-affil=Future University Hakodate kn-affil= affil-num=4 en-affil=Nara Institute of Science and Technology kn-affil= en-keyword=Virtual Reality kn-keyword=Virtual Reality en-keyword=Subjective sound volume kn-keyword=Subjective sound volume en-keyword=Visual stimuli kn-keyword=Visual stimuli END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251013 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Creep damage parameters based on the distribution of cavities on grain boundaries en-subtitle= kn-subtitle= en-abstract= kn-abstract=When polycrystalline heat-resistant steels are subjected to static or cyclic loading at high temperatures, they can exhibit various fracture modes and processes. This paper begins by outlining representative methods for life assessment under creep-dominated conditions. It then discusses the fracture processes and the underlying mechanisms. Under creep-dominated conditions, the initiation and growth of cavities serve as the primary form of material damage, making their quantitative assessment essential. Several parameters have been proposed to evaluate cavity distributions quantitatively. However, the relationship between these parameters and the actual cavity distribution in materials, as well as their physical significance, has remained unclear. In this study, a simple cavity distribution model was employed to clarify these issues. The results suggest that the area fraction of cavities is an appropriate damage evaluation parameter for transgranular fracture, while the fraction of cavities on grain boundary line is suitable for intergranular fracture. en-copyright= kn-copyright= en-aut-name=TadaNaoya en-aut-sei=Tada en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Creep kn-keyword=Creep en-keyword=cavity kn-keyword=cavity en-keyword=grain boundary kn-keyword=grain boundary en-keyword=damage parameter kn-keyword=damage parameter en-keyword=modelling kn-keyword=modelling en-keyword=geometrical analysis kn-keyword=geometrical analysis en-keyword=probabilistic analysis kn-keyword=probabilistic analysis END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251014 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative analysis of interactions between five strains of Pseudomonas syringae pv. tabaci and Nicotiana benthamiana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta 6605), the agent of wildfire disease in tobacco, has been used as a model strain for elucidating the virulence mechanisms of Pta. However, the host genes involved in resistance or susceptibility to Pta remain largely unknown. Nicotiana benthamiana is a model plant species in the Solanaceae family and is useful in functional analyses of genes. We herein compared five Pta strains (6605, 6823, 7372, 7375, and 7380) in terms of their phenotypes on medium and interactions with N. benthamiana. Pta 6605 and Pta 6823 showed more active proliferation than the other strains in a high cell density culture. Moreover, Pta 6605 exhibited markedly higher swarming motility than the other strains. In inoculated leaves of N. benthamiana, Pta 6605 and Pta 6823 caused more severe disease symptoms and proliferated to a higher cell density than the other strains. However, Pta 6823 as well as Pta 7372 and Pta 7380 induced the high accumulation of salicylic acid (SA). Moreover, the inoculations of Pta 6823 and Pta 7372 resulted in the upregulation of ethylene biosynthesis genes. On the other hand, Pta 6605 induced neither SA accumulation nor the expression of ethylene biosynthesis genes, and suppressed the expression of jasmonate biosynthesis genes. Moreover, chlorosis was clearly induced in the upper uninoculated leaves of Pta 6605-infected plants. These results suggest that Pta 6605 escapes from or suppresses plant immune systems and, thus, is the most virulent on N. benthamiana among the five strains tested. en-copyright= kn-copyright= en-aut-name=NakaoYuna en-aut-sei=Nakao en-aut-mei=Yuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsaiShuta en-aut-sei=Asai en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatouShinpei en-aut-sei=Katou en-aut-mei=Shinpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Science and Technology, Shinshu University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Science and Technology, Shinshu University kn-affil= en-keyword=Chlorosis kn-keyword=Chlorosis en-keyword=Nicotiana benthamiana kn-keyword=Nicotiana benthamiana en-keyword=Phytohormones kn-keyword=Phytohormones en-keyword=Pseudomonas syringae pv. tabaci kn-keyword=Pseudomonas syringae pv. tabaci END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue= article-no= start-page=110530 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surrogate-assisted motion planning and layout design of robotic cellular manufacturing systems en-subtitle= kn-subtitle= en-abstract= kn-abstract=A surrogate-assisted multi-objective evolutionary algorithm is proposed for simultaneous optimization of robot motion planning and layout design in robotic cellular manufacturing systems. A sequence-pair is used to represent the layout of components in a robotic cell to avoid overlapping in the evolutionary computation. The robot motion planning with Rapidly exploring Random Trees Star (RRT*) is applied to compute the total operation time of a robot arm for each layout. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to minimize the total required layout area and the operation time for a robot arm. The proposed surrogate model can estimate the robotfs operation time with 98% of accuracy without explicit computations of the motion planning algorithm. The experimental results with a physical 6 Degree of Freedom (DOF) manipulator show that the total computation time is approximately 1/400, significantly shorter than the conventional methods. en-copyright= kn-copyright= en-aut-name=KawabeTomoya en-aut-sei=Kawabe en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiTatsushi en-aut-sei=Nishi en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiuZiang en-aut-sei=Liu en-aut-mei=Ziang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiwaraTomofumi en-aut-sei=Fujiwara en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life and Natural Science and Technology, Okayama University kn-affil= en-keyword=Robotics kn-keyword=Robotics en-keyword=Cellular manufacturing kn-keyword=Cellular manufacturing en-keyword=Layout design kn-keyword=Layout design en-keyword=Sequence-pair kn-keyword=Sequence-pair en-keyword=Motion planning kn-keyword=Motion planning en-keyword=Surrogate optimization kn-keyword=Surrogate optimization en-keyword=Machine learning kn-keyword=Machine learning en-keyword=Artificial intelligence kn-keyword=Artificial intelligence END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=5 article-no= start-page=234 end-page=249 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biochar-amended Sediment Microbial Fuel Cells for Water Quality Improvement in Intensive and Extensive Pond Drainages in Central Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract=The use of nutrient-rich feed in shrimp farming in Central Vietnam has led to high nitrogen (N) and phosphorus (P) contents in the pond sediment. The objectives of the study were to assess the effectiveness of biochar-sediment microbial fuel cells (BC-SMFCs) in suppressing P and N release from two types of sediment in intensive (Int) and extensive (Ext) pond drainages in Central Vietnam. Single chamber SMFCs were set up and operated under open or closed-circuit (no SMFC or SMFC) conditions. Coconut shell biochar (BC) was amended to sediments at 1%. For Int-sediment, total phosphorus (TP) release was reduced by no BC-SMFCs through co-precipitation with Fe. On the other hand, BC-SMFCs did not suppress TP release because P was released from BC and organic matter decomposition was enhanced in the sediment. Application of BC enhanced organic N mineralization in the sediment. Nitrification and denitrification occurred in the overlying water, reducing mineral N concentrations. For Ext-sediment, BC addition and SMFC conditions did not affect TP and total nitrogen (TN) release because of low initial organic matter content, and less reductive condition. Our study suggested that the effect of SMFCs was masked by BC which released more P from Int-sediment to the water. en-copyright= kn-copyright= en-aut-name=NguyenUyen Tu en-aut-sei=Nguyen en-aut-mei=Uyen Tu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakaharaNozomi en-aut-sei=Nakahara en-aut-mei=Nozomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PereraGamamada Liyanage Erandi Priyangika en-aut-sei=Perera en-aut-mei=Gamamada Liyanage Erandi Priyangika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoChiyu en-aut-sei=Nakano en-aut-mei=Chiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LeHuu Tien en-aut-sei=Le en-aut-mei=Huu Tien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Comprehensive Technical Solutions, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Department of Education, Science and Technology Quang Tri Branch, Hue University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=biochar kn-keyword=biochar en-keyword=Central Vietnam kn-keyword=Central Vietnam en-keyword=electricity generation kn-keyword=electricity generation en-keyword=redox potential kn-keyword=redox potential en-keyword=shrimp farming kn-keyword=shrimp farming END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=10 article-no= start-page=105028 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluating the effects of electrolytes on the interaction forces between alumina surfaces in polyacrylic acid solutions using atomic force microscopy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Evaluation and control of ceramic slurry at the microscopic level are critical to ensure consistent quality in manufactured ceramics. Notably, metal ions such as Mg2+ and Al3+ are common in ceramic slurries and significantly influence the stability of particle. This study applied atomic force microscopy to investigate the interaction forces between alumina particle surfaces in the presence of different concentrations of three metal ions and polyacrylic acid (PAA), a widely used dispersant.
The attractive forces observed at low PAA concentrations were attributed to polymer bridging between alumina surfaces, whereas the repulsive forces observed at high PAA concentrations were attributed to the domination of steric repulsion between adsorbed PAA molecules. The presence of multivalent metal ions, such as Mg2+ and Al3+, modulated these interactions; an increasing ion valence induced a transition from repulsive to attractive force, primarily owing to electrostatic screening, which caused conformational collapse of the PAA chains and diminished the range of steric repulsion. Similarly, increasing the concentration of these metal ions decreased the range of repulsive forces, eventually resulting in a net attraction driven by the same electrostatic and polymer conformation mechanisms. Notably, the addition of 0.1 M AlCl3 produced an anomalous long-range attraction between surfaces that could not be explained by conventional mechanisms, such as polymer bridging or electrostatic interactions between charge domains. en-copyright= kn-copyright= en-aut-name=KishimotoNaoto en-aut-sei=Kishimoto en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KajiRyota en-aut-sei=Kaji en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsuchiyaKatsumi en-aut-sei=Tsuchiya en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImamuraKoreyoshi en-aut-sei=Imamura en-aut-mei=Koreyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshidaNaoyuki en-aut-sei=Ishida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Science and Engineering, Doshisha University kn-affil= affil-num=3 en-affil=Faculty of Science and Engineering, Doshisha University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Science and Engineering, Doshisha University kn-affil= en-keyword=Interaction force kn-keyword=Interaction force en-keyword=Alumina surface kn-keyword=Alumina surface en-keyword=Anionic polyelectrolyte kn-keyword=Anionic polyelectrolyte en-keyword=Coexisting electrolyte kn-keyword=Coexisting electrolyte en-keyword=Atomic force microscopy kn-keyword=Atomic force microscopy END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=3 article-no= start-page=ME25019 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of Formate Chemoreceptor in Pseudomonas syringae pv. tabaci 6605 in Tobacco Infection en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chemotaxis is essential for infection by plant pathogenic bacteria. The causal agent of tobacco wildfire disease, Pseudomonas syringae pv. tabaci 6605 (Pta6605), is known to cause severe leaf disease and is highly motile. The requirement of chemotaxis for infection has been demonstrated through the inoculation of mutant strains lacking chemotaxis sensory component proteins. Pta6605 possesses 54 genes that encode chemoreceptors (known as methyl-accepting chemotaxis proteins, MCPs). Chemoreceptors are classified into several groups based on the type and localization of ligand-binding domains (LBD). Cache LBD-type chemoreceptors have been reported to recognize formate in several bacterial species. In the present study, we identified Cache_3 Cache_2 LBD-type Mcp26 encoded by Pta6605_RS00335 as a chemoreceptor for formate using a quantitative capillary assay, and named it McpF. Although the deletion mutant of mcpF (ĢmcpF) retained attraction to 1% yeast extract, its chemotactic response to formate was markedly reduced. Swimming and swarming motilities were also impaired in the mutant. To investigate the effects of McpF on bacterial virulence, we conducted inoculations on tobacco plants using several methods. The ĢmcpF mutant exhibited weaker virulence in flood and spray assays than wild-type and complemented strains, highlighting not only the involvement of McpF in formate recognition, but also its critical role in leaf entry during the early stages of infection. en-copyright= kn-copyright= en-aut-name=NguyenPhuoc Quy Thang en-aut-sei=Nguyen en-aut-mei=Phuoc Quy Thang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeYuta en-aut-sei=Watanabe en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=chemoreceptor kn-keyword=chemoreceptor en-keyword=formate kn-keyword=formate en-keyword=mcpF kn-keyword=mcpF en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae en-keyword=virulence kn-keyword=virulence END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=9 article-no= start-page=251152 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250924 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On weapons allometry and the form of sexual selection en-subtitle= kn-subtitle= en-abstract= kn-abstract=The study of trait scaling with body size (allometry) has a long history, and it has been argued that positive static allometry is an indicator of directional sexual selection. However, a range of allometries exists for sexually selected traits, and modelling shows this variation can be generated by altering the form of selection (fitness functions) on the trait and/or body size. Interestingly, in all models, positive allometry appears to emerge only when there is directional selection on trait size. Here, we report on a sexually selected trait that shows strong positive static allometry and yet appears to be under stabilizing selection. This surprising finding suggests the evolution of trait scaling is even more nuanced than currently appreciated. en-copyright= kn-copyright= en-aut-name=ShinoharaHironori en-aut-sei=Shinohara en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SharmaManmohan D. en-aut-sei=Sharma en-aut-mei=Manmohan D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PennellTanya M. en-aut-sei=Pennell en-aut-mei=Tanya M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkadaKensuke en-aut-sei=Okada en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoskenDavid J. en-aut-sei=Hosken en-aut-mei=David J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus kn-affil= affil-num=2 en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus kn-affil= affil-num=3 en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Center for Ecology and Conservation, University of Exeter, Cornwall Campus kn-affil= en-keyword=inbreeding kn-keyword=inbreeding en-keyword=selection kn-keyword=selection en-keyword=beetle kn-keyword=beetle en-keyword=Gnatocerus kn-keyword=Gnatocerus END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=3 article-no= start-page=215 end-page=227 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Root-exuded sugars as drivers of rhizosphere microbiome assembly en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sugars in root exudates play a pivotal role in shaping plant-microbe interactions in the rhizosphere, serving as carbon sources and signaling molecules that orchestrate microbial behavior, community structure, and plant resilience. Recent research has shed light on the dynamics of sugar levels in root exudates, the factors that influence their secretion, and the mechanisms by which these sugars drive microbial colonization and community assembly in the rhizosphere. Microbial communities, in turn, contribute to plant physiological changes that enhance growth and stress tolerance. While well-studied sugars such as glucose, sucrose, and fructose are known to promote chemotaxis, motility, and biofilm formation, emerging evidence suggests that less-studied sugars like arabinose and trehalose may also play significant roles in microbial interactions and stress resilience. Key challenges remain, including the accurate measurement of labile sugars that are rapidly metabolized by microbes, and the elucidation of genetic mechanisms underlying rhizosphere metabolic interactions in both host plants and microbes. Addressing these challenges will advance our understanding of sugar-mediated interactions and inform the development of sustainable agricultural innovations. en-copyright= kn-copyright= en-aut-name=HemeldaNiarsi Merry en-aut-sei=Hemelda en-aut-mei=Niarsi Merry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=carbon sources kn-keyword=carbon sources en-keyword=plant-derived sugars kn-keyword=plant-derived sugars en-keyword=plant-microbe interactions kn-keyword=plant-microbe interactions en-keyword=rhizosphere kn-keyword=rhizosphere en-keyword=root exudate kn-keyword=root exudate END start-ver=1.4 cd-journal=joma no-vol=108 cd-vols= no-issue= article-no= start-page=104508 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Introduction to the gJapanese and Western approaches to psychotraumah symposium en-subtitle= kn-subtitle= en-abstract= kn-abstract=Understandings of psychotrauma have changed throughout medical history, shaped by cultural and social factors. Reviewing transcultural perspectives of psychotrauma helps understand its complexities and contextual impacts. This paper summarizes the Japan?Netherlands symposium on psychotrauma held on March 1, 2024. Despite experiencing psychological trauma from World War II and numerous natural disasters, Japan did not actively research post-traumatic stress disorder (PTSD) for nearly 50 years after the war. The Great Hanshin-Awaji Earthquake and the Tokyo subway Sarin gas attack (1995) popularized the term PTSD in Japan and triggered related research. The absence of psychotrauma research in Japan may reflect a form of state-level PTSD, characterized by avoidance. Japanfs collectivist culture, stigma against seeking psychological help, view of patience as a virtue, survivor guilt, and moral injury were potential related factors. Additionally, sociocultural factors (e.g., insufficient collective grieving and focusing on post-war reconstruction) were discussed as potential hinderances to discussing war experiences. From a European perspective, we examined how gKonzentrationslagerh (KZ) syndrome, a trauma-related disorder, evolved independently into diverse conceptual frameworks, ultimately contributing to the acceptance of PTSD following its introduction in 1980. Beyond state compensation for concentration camp survivors, advocacy by feminist movements and veterans' groups increased awareness of psychotrauma across Europe, fostering scholarly research and public discourse. Both PTSD and KZ syndromes are diagnostic categories shaped by specific historical and cultural contexts and should not be regarded as simple, universally applicable medical conditions. They reflect how trauma is interpreted and responded to differently depending on cultural, political, and historical factors. en-copyright= kn-copyright= en-aut-name=NagamineMasanori en-aut-sei=Nagamine en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakaoTomoyo en-aut-sei=Nakao en-aut-mei=Tomoyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=van BergenLeo en-aut-sei=van Bergen en-aut-mei=Leo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShigemuraJun en-aut-sei=Shigemura en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaitoTaku en-aut-sei=Saito en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=van der DoesFlorentine H.S. en-aut-sei=van der Does en-aut-mei=Florentine H.S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KitanoMasato en-aut-sei=Kitano en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GiltayErik J. en-aut-sei=Giltay en-aut-mei=Erik J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=van der WeeNic J. en-aut-sei=van der Wee en-aut-mei=Nic J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=VermettenEric en-aut-sei=Vermetten en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Division of Behavioral Science, National Defense Medical College Research Institute kn-affil= affil-num=2 en-affil=Graduate School of Humanities and Social Sciences, Okayama University kn-affil= affil-num=3 en-affil=Freelance Medical Historian kn-affil= affil-num=4 en-affil=Faculty of Health Sciences, Mejiro University kn-affil= affil-num=5 en-affil=Division of Behavioral Science, National Defense Medical College Research Institute kn-affil= affil-num=6 en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC) kn-affil= affil-num=7 en-affil=Division of Behavioral Science, National Defense Medical College Research Institute kn-affil= affil-num=8 en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC) kn-affil= affil-num=9 en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC) kn-affil= affil-num=10 en-affil=Department of Psychiatry, Leiden University Medical Center (LUMC) kn-affil= en-keyword=Psychotrauma kn-keyword=Psychotrauma en-keyword=World War II kn-keyword=World War II en-keyword=Japan kn-keyword=Japan en-keyword=Europe kn-keyword=Europe en-keyword=KZ syndrome kn-keyword=KZ syndrome en-keyword=Post-traumatic stress disorder kn-keyword=Post-traumatic stress disorder END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=5 article-no= start-page=345 end-page=352 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inhibition of Air-Exposure Stress?Induced Autolysis in Clostridium perfringens by Zn2+ en-subtitle= kn-subtitle= en-abstract= kn-abstract=Clostridium perfringens is a pathogenic anaerobe that causes gas gangrene and food poisoning. Although autolysin-mediated reorganization of the bacterial cell wall is crucial for cell division, excessive autolysin activity induced by stressors can lead to cell lysis. In C. perfringens, air exposure is a significant stressor that causes cell lysis, and Acp (N-acetylglucosaminidase) is known to be a major autolysin. To further facilitate C. perfringens research, a technology to prevent air-induced cell lysis must be developed. This study investigated the role of Acp in air-induced autolysis and explored potential inhibitors that would prevent cell lysis during experimental procedures. Morphological analyses confirmed that Acp functions as an autolysin in C. perfringens, as acpdeficient strains exhibited filamentous growth. The mutants exhibited negligible autolysis under air-exposure stress, confirming the involvement of Acp in the autolytic process. We also evaluated the effects of various divalent cations on Acp activity in vitro and identified Zn2+ as a potent inhibitor. Brief treatment with a Zn2+- containing buffer induced dose-dependent cell elongation and autolysis inhibition in C. perfringens. These findings demonstrate that simple Zn2+ treatment before experiments stabilizes C. perfringens cells, reducing autolysis under aerobic conditions and facilitating various biological studies, except morphological analyses. en-copyright= kn-copyright= en-aut-name=MatsunagaNozomu en-aut-sei=Matsunaga en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EgusaSeira en-aut-sei=Egusa en-aut-mei=Seira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AonoRiyo en-aut-sei=Aono en-aut-mei=Riyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TamaiEiji en-aut-sei=Tamai en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HitusmotoYasuo en-aut-sei=Hitusmoto en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatayamaSeiichi en-aut-sei=Katayama en-aut-mei=Seiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Life Science, Faculty of Science, Okayama University of Science kn-affil= affil-num=2 en-affil=Department of Life Science, Faculty of Science, Okayama University of Science kn-affil= affil-num=3 en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences kn-affil= affil-num=4 en-affil=Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University kn-affil= affil-num=5 en-affil=Department of Life Science, Faculty of Science, Okayama University of Science kn-affil= affil-num=6 en-affil=Department of Life Science, Faculty of Science, Okayama University of Science kn-affil= en-keyword=Clostridium perfringens kn-keyword=Clostridium perfringens en-keyword=autolysin kn-keyword=autolysin en-keyword=zinc kn-keyword=zinc en-keyword=air-exposure autolysis kn-keyword=air-exposure autolysis END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=5 article-no= start-page=3933 end-page=3946 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Topology-Driven Configuration of Emulation Networks With Deterministic Templating en-subtitle= kn-subtitle= en-abstract= kn-abstract=Network emulation is an important component of a digital twin for verifying network behavior without impacting on the service systems. Although we need to repeatedly change network topologies and configuration settings as a part of trial and error for verification, it is not easy to reflect the change without failures because the change affects multiple devices, even if it is as simple as adding a device. We present topology-driven configuration, an idea to separate network topology and generalized configuration to make it easy to change them. Based on this idea, we aim to realize a scalable, simple, and effective configuration platform for emulation networks. We design a configuration generation method using simple and deterministic config templates with a new network parameter data model, and implement it as dot2net. We evaluate three perspectives, scalability, simplicity, and efficacy, of the proposed method using dot2net through measurement and user experiments on existing test network scenarios. en-copyright= kn-copyright= en-aut-name=KobayashiSatoru en-aut-sei=Kobayashi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShiibaRyusei en-aut-sei=Shiiba en-aut-mei=Ryusei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiwaShinsuke en-aut-sei=Miwa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyachiToshiyuki en-aut-sei=Miyachi en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukudaKensuke en-aut-sei=Fukuda en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Informatics, School of Multidisciplinary Sciences, The Graduate University of Advanced Studies, Sokendai kn-affil= affil-num=3 en-affil=StarBED Technology Center, Testbed Research, Development and Operations Laboratory, National Institute of Information and Communications Technology kn-affil= affil-num=4 en-affil=Strategic Planning Department, Strategic Planning Office, National Institute of Information and Communications Technology kn-affil= affil-num=5 en-affil=Department of Informatics, School of Multidisciplinary Sciences, The Graduate University of Advanced Studies, Sokendai kn-affil= en-keyword=Configuration management kn-keyword=Configuration management en-keyword=template kn-keyword=template en-keyword=emulation network kn-keyword=emulation network en-keyword=topology graph kn-keyword=topology graph END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=22 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relay Node Selection Methods for UAV Navigation Route Constructions in Wireless Multi-Hop Network Using Smart Meter Devices en-subtitle= kn-subtitle= en-abstract= kn-abstract=Unmanned aerial vehicles (UAVs) offer solutions to issues like traffic congestion and labor shortages. We developed a distributed UAV management system inspired by virtual circuit and datagram methods in packet-switching networks. By installing houses with wireless terminals, UAVs navigate routes in a multi-hop network, communicating with ground nodes. UAVs are treated as network packets, ground devices are treated as routers, and their connections are treated as links. Activating all nodes as relays increases control message traffic and node load. To optimize connectivity, we minimize relay nodes, connecting non-relay nodes to the nearest relay. This study proposes four relay node selection methods: random selection, two adjacency-based methods, and our innovative approach using Multipoint Relay (MPR) from the Optimized Link State Routing Protocol (OLSR). We evaluated these methods according to their route construction success rates, relay node counts, route lengths, and so on. The MPR-based method proved most effective for UAV route construction. However, fewer relay nodes increase link collisions, and we identify the minimum relay density needed to balance efficiency and conflict reduction. en-copyright= kn-copyright= en-aut-name=OhkawaShuto en-aut-sei=Ohkawa en-aut-mei=Shuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaKiyoshi en-aut-sei=Ueda en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyoshiTakumi en-aut-sei=Miyoshi en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamazakiTaku en-aut-sei=Yamazaki en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoRyo en-aut-sei=Yamamoto en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Engineering, Nihon University kn-affil= affil-num=2 en-affil=Graduate School of Engineering, Nihon University kn-affil= affil-num=3 en-affil=College of Systems Engineering and Science, Shibaura Institute of Technology kn-affil= affil-num=4 en-affil=College of Systems Engineering and Science, Shibaura Institute of Technology kn-affil= affil-num=5 en-affil=Graduate School of Informatics and Engineering, The University of Electro-Communications kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=network of wireless devices kn-keyword=network of wireless devices en-keyword=UAV delivery kn-keyword=UAV delivery en-keyword=ad hoc network kn-keyword=ad hoc network END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=10 article-no= start-page=417 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Guided Self-Study Platform of Integrating Documentation, Code, Visual Output, and Exercise for Flutter Cross-Platform Mobile Programming en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, Flutter with the Dart programming language has become widely popular in mobile developments, allowing developers to build multi-platform applications using one codebase. An increasing number of companies are adopting these technologies to create scalable and maintainable mobile applications. Despite this increasing relevance, university curricula often lack structured resources for Flutter/Dart, limiting opportunities for students to learn it in academic environments. To address this gap, we previously developed the Flutter Programming Learning Assistance System (FPLAS), which supports self-learning through interactive problems focused on code comprehension through code-based exercises and visual interfaces. However, it was observed that many students completed the exercises without fully understanding even basic concepts, if they already had some knowledge of object-oriented programming (OOP). As a result, they may not be able to design and implement Flutter/Dart codes independently, highlighting a mismatch between the systemfs outcomes and intended learning goals. In this paper, we propose a guided self-study approach of integrating documentation, code, visual output, and exercise in FPLAS. Two existing problem types, namely, Grammar Understanding Problems (GUP) and Element Fill-in-Blank Problems (EFP), are combined together with documentation, code, and output into a new format called Integrated Introductory Problems (INTs). For evaluations, we generated 16 INT instances and conducted two rounds of evaluations. The first round with 23 master students in Okayama University, Japan, showed high correct answer rates but low usability ratings. After revising the documentation and the system design, the second round with 25 fourth-year undergraduate students in the same university demonstrated high usability and consistent performances, which confirms the effectiveness of the proposal. en-copyright= kn-copyright= en-aut-name=KinariSafira Adine en-aut-sei=Kinari en-aut-mei=Safira Adine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AungSoe Thandar en-aut-sei=Aung en-aut-mei=Soe Thandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KyawHtoo Htoo Sandi en-aut-sei=Kyaw en-aut-mei=Htoo Htoo Sandi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=Flutter kn-keyword=Flutter en-keyword=Dart kn-keyword=Dart en-keyword=cross-platform kn-keyword=cross-platform en-keyword=self-learning kn-keyword=self-learning en-keyword=introductory kn-keyword=introductory END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=3 article-no= start-page=52 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Extension of Input Setup Assistance Service Using Generative AI to Unlearned Sensors for the SEMAR IoT Application Server Platform en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, Internet of Things (IoT) application systems are broadly applied to various sectors of society for efficient management by monitoring environments using sensors, analyzing sampled data, and giving proper feedback. For their fast deployment, we have developed Smart Environmental Monitoring and Analysis in Real Time (SEMAR) as an integrated IoT application server platform and implemented the input setup assistance service using prompt engineering and a generative AI model to assist connecting sensors to SEMAR with step-by-step guidance. However, the current service cannot assist in connections of the sensors not learned by the AI model, such as newly released ones. To address this issue, in this paper, we propose an extension to the service for handling unlearned sensors by utilizing datasheets with four steps: (1) users input a PDF datasheet containing information about the sensor, (2) key specifications are extracted from the datasheet and structured into markdown format using a generative AI, (3) this data is saved to a vector database using chunking and embedding methods, and (4) the data is used in Retrieval-Augmented Generation (RAG) to provide additional context when guiding users through sensor setup. Our evaluation with five generative AI models shows that OpenAIfs GPT-4o achieves the highest accuracy in extracting specifications from PDF datasheets and the best answer relevancy (0.987), while Gemini 2.0 Flash delivers the most balanced results, with the highest overall RAGAs score (0.76). Other models produced competitive but mixed outcomes, averaging 0.74 across metrics. The step-by-step guidance function achieved a task success rate above 80%. In a course evaluation by 48 students, the system improved the student test scores, further confirming the effectiveness of our proposed extension. en-copyright= kn-copyright= en-aut-name=KotamaI Nyoman Darma en-aut-sei=Kotama en-aut-mei=I Nyoman Darma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PradhanaAnak Agung Surya en-aut-sei=Pradhana en-aut-mei=Anak Agung Surya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Noprianto en-aut-sei=Noprianto en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Information Science and Technology, The University of Osaka kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=Retrieval-Augmented Generation kn-keyword=Retrieval-Augmented Generation en-keyword=review kn-keyword=review en-keyword=application server platform kn-keyword=application server platform en-keyword=SEMAR kn-keyword=SEMAR en-keyword=sensor input kn-keyword=sensor input END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=7 article-no= start-page=607 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Fundamental Statistics Self-Learning Method with Python Programming for Data Science Implementations en-subtitle= kn-subtitle= en-abstract= kn-abstract=The increasing demand for data-driven decision making to maintain the innovations and competitiveness of organizations highlights the need for data science educations across academia and industry. At its core is a solid understanding of statistics, which is necessary for conducting a thorough analysis of data and deriving valuable insights. Unfortunately, conventional statistics learning often lacks practice in real-world applications using computer programs, causing a separation between conceptual knowledge of statistics equations and their hands-on skills. Integrating statistics learning into Python programming can convey an effective solution for this problem, where it has become essential in data science implementations, with extensive and versatile libraries. In this paper, we present a self-learning method for fundamental statistics through Python programming for data science studies. Unlike conventional approaches, our method integrates three types of interactive problems?element fill-in-blank problem (EFP), grammar-concept understanding problem (GUP), and value trace problem (VTP)?in the Programming Learning Assistant System (PLAS). This combination allows students to write code, understand concepts, and trace the output value while obtaining instant feedback so that they can improve retention, knowledge, and practical skills in learning statistics using Python programming. For evaluations, we generated 22 instances using source codes for fundamental statistics topics, and assigned them to 40 first-year undergraduate students at UPN Veteran Jawa Timur, Indonesia. Statistics analytical methods were utilized to analyze the student learning performances. The results show that a significant correlation (?<0.05) exists between the students who solved our proposal and those who did not. The results confirm that it can effectively assist students in learning fundamental statistics self-learning using Python programming for data science implementations. en-copyright= kn-copyright= en-aut-name=RiyantokoPrismahardi Aji en-aut-sei=Riyantoko en-aut-mei=Prismahardi Aji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MentariMustika en-aut-sei=Mentari en-aut-mei=Mustika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DamalianaAviolla Terza en-aut-sei=Damaliana en-aut-mei=Aviolla Terza kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PrasetyaDwi Arman en-aut-sei=Prasetya en-aut-mei=Dwi Arman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Data Science, Universitas Pembangunan Nasional Veteran Jawa Timur kn-affil= affil-num=6 en-affil=Department of Data Science, Universitas Pembangunan Nasional Veteran Jawa Timur kn-affil= en-keyword=fundamental statistics kn-keyword=fundamental statistics en-keyword=self-learning method kn-keyword=self-learning method en-keyword=Python programming kn-keyword=Python programming en-keyword=data science kn-keyword=data science END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=7 article-no= start-page=588 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250708 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Map Information Collection Tool for a Pedestrian Navigation System Using Smartphone en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, a pedestrian navigation system using a smartphone has become popular as a useful tool to reach an unknown destination. When the destination is the office of a person, a detailed map information is necessary on the target area such as the room number and location inside the building. The information can be collected from various sources including Google maps, websites for the building, and images of signs. In this paper, we propose a map information collection tool for a pedestrian navigation system. To improve the accuracy and completeness of information, it works with the four steps: (1) a user captures building and room images manually, (2) an OCR software using Google ML Kit v2 processes them to extract the sign information from images, (3) web scraping using Scrapy (v2.11.0) and crawling with Apache Nutch (v1.19) software collects additional details such as room numbers, facilities, and occupants from relevant websites, and (4) the collected data is stored in the database to be integrated with a pedestrian navigation system. For evaluations of the proposed tool, the map information was collected for 10 buildings at Okayama University, Japan, a representative environment combining complex indoor layouts (e.g., interconnected corridors, multi-floor facilities) and high pedestrian traffic, which are critical for testing real-world navigation challenges. The collected data is assessed in completeness and effectiveness. A university campus was selected as it presents a complex indoor and outdoor environment that can be ideal for testing pedestrian navigations in real-world scenarios. With the obtained map information, 10 users used the navigation system to successfully reach destinations. The System Usability Scale (SUS) results through a questionnaire confirms the high usability. en-copyright= kn-copyright= en-aut-name=BatubulanKadek Suarjuna en-aut-sei=Batubulan en-aut-mei=Kadek Suarjuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KotamaI Nyoman Darma en-aut-sei=Kotama en-aut-mei=I Nyoman Darma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KyawHtoo Htoo Sandi en-aut-sei=Kyaw en-aut-mei=Htoo Htoo Sandi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HidayatiShintami Chusnul en-aut-sei=Hidayati en-aut-mei=Shintami Chusnul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Informatics, Institut Teknologi Sepuluh Nopember kn-affil= en-keyword=pedestrian navigation kn-keyword=pedestrian navigation en-keyword=map information kn-keyword=map information en-keyword=optical character recognition (OCR) kn-keyword=optical character recognition (OCR) en-keyword=smartphones kn-keyword=smartphones en-keyword=web scraping kn-keyword=web scraping en-keyword=system usability scale (SUS) kn-keyword=system usability scale (SUS) END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=11 article-no= start-page=2261 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250531 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Automatic Code Generation Tool Using Generative Artificial Intelligence for Element Fill-in-the-Blank Problems in a Java Programming Learning Assistant System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Presently, Java is a fundamental object-oriented programming language that can be mastered by any student in information technology or computer science. To assist both teachers and students, we developed the Java Programming Learning Assistant System (JPLAS). It offers several types of practice problems with different levels and learning goals for step-by-step self-study, where any answer is automatically marked in the system. One challenge for teachers that is addressed with JPLAS is the generation of proper exercise problems that meet learning requirements. We implemented programs for generating new problems from given source codes, as collecting and evaluating suitable codes remains time-consuming. In this paper, we present an automatic code generation tool using generative AI to solve this challenge. Prompt engineering is used to help generate an appropriate source code, and the quality is controlled by optimizing the prompt based on the outputs. For applications in JPLAS, we implement a web application system to automatically generate an element fill-in-the-blank problem (EFP) in JPLAS. For evaluation, we select the element fill-in-the-blank problem (EFP) as the target type in JPLAS and generate several instances using this tool. The results confirm the validity and effectiveness of the proposed method. en-copyright= kn-copyright= en-aut-name=ZhuZihao en-aut-sei=Zhu en-aut-mei=Zihao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MentariMustika en-aut-sei=Mentari en-aut-mei=Mustika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AungSoe Thandar en-aut-sei=Aung en-aut-mei=Soe Thandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KaoWen-Chung en-aut-sei=Kao en-aut-mei=Wen-Chung kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LeeYi-Fang en-aut-sei=Lee en-aut-mei=Yi-Fang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Electrical Engineering, National Taiwan Normal University kn-affil= affil-num=6 en-affil=Department of Industrial Education, National Taiwan Normal University kn-affil= en-keyword=JPLAS kn-keyword=JPLAS en-keyword=Java programming learning kn-keyword=Java programming learning en-keyword=learning requirements kn-keyword=learning requirements en-keyword=generative AI kn-keyword=generative AI en-keyword=prompt engineering kn-keyword=prompt engineering en-keyword=quality control kn-keyword=quality control en-keyword=prompt optimization kn-keyword=prompt optimization END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=8 article-no= start-page=333 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Verilog Programming Learning Assistant System Focused on Basic Verilog with a Guided Learning Method en-subtitle= kn-subtitle= en-abstract= kn-abstract=With continuous advancements in semiconductor technology, mastering efficient designs of high-quality and advanced chips has become an important part of science and technology education. Chip performances will determine the futures of various aspects of societies. However, novice students often encounter difficulties in learning digital chip designs using Verilog programming, a common hardware design language. An efficient self-study system for supporting them that can offer various exercise problems, such that any answer is marked automatically, is in strong demand. In this paper, we design and implement a web-based Verilog programming learning assistant system (VPLAS), based on our previous works on software programming. Using a heuristic and guided learning method, VPLAS leads students to learn the basic circuit syntax step by step, until they acquire high-quality digital integrated circuit design abilities through self-study. For evaluation, we assign the proposal to 50 undergraduate students at the National Taipei University of Technology, Taiwan, who are taking the introductory chip-design course, and confirm that their learning outcomes using VPLAS together are far better than those obtained when following a traditional method. In our final statistics, students achieved an average initial accuracy rate of over 70% on their first attempts at answering questions after learning through our websitefs tutorials. With the help of the systemfs instant automated grading and rapid feedback, their average accuracy rate eventually exceeded 99%. This clearly demonstrates tha en-copyright= kn-copyright= en-aut-name=HsiehPin-Chieh en-aut-sei=Hsieh en-aut-mei=Pin-Chieh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FangTzu-Lun en-aut-sei=Fang en-aut-mei=Tzu-Lun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JinShaobo en-aut-sei=Jin en-aut-mei=Shaobo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangYuyan en-aut-sei=Wang en-aut-mei=Yuyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FanYu-Cheng en-aut-sei=Fan en-aut-mei=Yu-Cheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Electronic Engineering, National Taipei University of Technology kn-affil= affil-num=2 en-affil=Department of Electronic Engineering, National Taipei University of Technology kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Electronic Engineering, National Taipei University of Technology kn-affil= en-keyword=Verilog kn-keyword=Verilog en-keyword=online learning kn-keyword=online learning en-keyword=guided learning kn-keyword=guided learning en-keyword=heuristic learning kn-keyword=heuristic learning en-keyword=programming learning assistant system kn-keyword=programming learning assistant system en-keyword=Verilog web-based kn-keyword=Verilog web-based END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=5 article-no= start-page=195 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Improved Reference Paper Collection System Using Web Scraping with Three Enhancements en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, accessibility to academic papers has been significantly improved with electric publications on the internet, where open access has become common. At the same time, it has increased workloads in literature surveys for researchers who usually manually download PDF files and check their contents. To solve this drawback, we have proposed a reference paper collection system using a web scraping technology and natural language models. However, our previous system often finds a limited number of relevant reference papers after taking long time, since it relies on one paper search website and runs on a single thread at a multi-core CPU. In this paper, we present an improved reference paper collection system with three enhancements to solve them: (1) integrating the APIs from multiple paper search web sites, namely, the bulk search endpoint in the Semantic Scholar API, the article search endpoint in the DOAJ API, and the search and fetch endpoint in the PubMed API to retrieve article metadata, (2) running the program on multiple threads for multi-core CPU, and (3) implementing Dynamic URL Redirection, Regex-based URL Parsing, and HTML Scraping with URL Extraction for fast checking of PDF file accessibility, along with sentence embedding to assess relevance based on semantic similarity. For evaluations, we compare the number of obtained reference papers and the response time between the proposal, our previous work, and common literature search tools in five reference paper queries. The results show that the proposal increases the number of relevant reference papers by 64.38% and reduces the time by 59.78% on average compared to our previous work, while outperforming common literature search tools in reference papers. Thus, the effectiveness of the proposed system has been demonstrated in our experiments. en-copyright= kn-copyright= en-aut-name=FahrudinTresna Maulana en-aut-sei=Fahrudin en-aut-mei=Tresna Maulana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NaingInzali en-aut-sei=Naing en-aut-mei=Inzali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AungSoe Thandar en-aut-sei=Aung en-aut-mei=Soe Thandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MuhaiminAmri en-aut-sei=Muhaimin en-aut-mei=Amri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=PrasetyaDwi Arman en-aut-sei=Prasetya en-aut-mei=Dwi Arman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Data Science, Universitas Pembangunan Nasional Veteran Jawa Timur kn-affil= affil-num=7 en-affil=Department of Data Science, Universitas Pembangunan Nasional Veteran Jawa Timur kn-affil= en-keyword=reference paper collection kn-keyword=reference paper collection en-keyword=multiple API integration kn-keyword=multiple API integration en-keyword=PDF accessibility kn-keyword=PDF accessibility en-keyword=open access kn-keyword=open access en-keyword=multiple threads kn-keyword=multiple threads END start-ver=1.4 cd-journal=joma no-vol=135 cd-vols= no-issue=7 article-no= start-page=1329 end-page=1343 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250417 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular polymorphisms of the nuclear and chloroplast genomes among African melon germplasms reveal abundant and unique genetic diversity, especially in Sudan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Aims Africa is rich in wild species of Cucumis and is considered one of the places of origin of melon. However, our knowledge of African melon is limited, and genetic studies using melon germplasms with wide geographical coverage are required. Here, we analysed the genetic structure of African melons, with emphasis on Sudan.
Methods Ninety-seven accessions of African melon were examined along with 77 reference accessions representing Asian melon and major horticultural groups. Molecular polymorphisms in the nuclear and chloroplast genomes were investigated using 12 RAPD, 7 SSR and 3 SNP markers. Horticultural traits, including seed size, were measured for 46 accessions, mainly from Sudan.
Key Results African melons were divided into large and small seed-types based on seed length: large seed-type from Northern Africa and small seed-type from Western and Southern Africa. Both seed types are common in Sudan. Molecular genetic diversity in these geographical populations was as high as in India, the Asian centre of melon domestication. Large seed-types from Northern Africa were assigned to Pop4 by structure analysis and had Ib cytoplasm in common with Cantalupensis, Inodorus and Flexuosus. Small seed-types were highly diversified and geographically differentiated; specifically, Pop1 with Ia cytoplasm in Southern Africa and South Asia, Pop2 with Ia in East Asia, including Conomon and Makuwa, and Pop3 with Ia or Ic in Africa. Sudanese small seed-types were grouped in Pop3, while their cytoplasm type was a mixture of Ia and Ic. Sudanese Tibish had Ic cytoplasm, which was unique in Africa, common in Western Africa and Sudan, and also found in wild or feral types.
Conclusions Melon of Ic lineage, including Tibish, originated from wild melon in the ewestern Sudan regionf, and independently of melon with Ia or Ib cytoplasm, which originated in Asia. This clearly indicates the polyphyletic origin of melon. en-copyright= kn-copyright= en-aut-name=ImohOdirichi Nnennaya en-aut-sei=Imoh en-aut-mei=Odirichi Nnennaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShigitaGentaro en-aut-sei=Shigita en-aut-mei=Gentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugiyamaMitsuhiro en-aut-sei=Sugiyama en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DungTran Phuong en-aut-sei=Dung en-aut-mei=Tran Phuong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaKatsunori en-aut-sei=Tanaka en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiMami en-aut-sei=Takahashi en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishimuraKazusa en-aut-sei=Nishimura en-aut-mei=Kazusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MondenYuki en-aut-sei=Monden en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishidaHidetaka en-aut-sei=Nishida en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GodaMashaer en-aut-sei=Goda en-aut-mei=Mashaer kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=PitratMichel en-aut-sei=Pitrat en-aut-mei=Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KatoKenji en-aut-sei=Kato en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture and Life Science, Hirosaki University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Plant Genetic Resources Conservation and Research Center, Agricultural Research Corporation kn-affil= affil-num=11 en-affil=INRAE, UR1052, G?n?tique et am?lioration des fruits et l?gumes kn-affil= affil-num=12 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Cucumis melo kn-keyword=Cucumis melo en-keyword=Africa kn-keyword=Africa en-keyword=chloroplast genome kn-keyword=chloroplast genome en-keyword=domestication kn-keyword=domestication en-keyword=genetic diversity kn-keyword=genetic diversity en-keyword=genetic resources kn-keyword=genetic resources en-keyword=maternal lineage kn-keyword=maternal lineage en-keyword=melon kn-keyword=melon en-keyword=phylogeny kn-keyword=phylogeny en-keyword=polyphyletic origin kn-keyword=polyphyletic origin en-keyword=seed size kn-keyword=seed size en-keyword=Tibish kn-keyword=Tibish END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The response to thermospermine is fine-tuned by the balance between SAC51 and LHW family proteins in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thermospermine negatively regulates xylem formation. In Arabidopsis, SAC51 and SACL3, members of the SAC51 gene family encoding basic loop-helix-loop (bHLH) proteins play a key role in this regulation. These mRNAs contain an upstream open-reading-frame (uORF) that is highly conserved across species, and its inhibitory effect on the main ORF translation is alleviated by thermospermine. A double knockout of SAC51 and SACL3 results in thermospermine insensitivity at high concentrations that normally inhibit xylem formation and shoot growth in the wild type. Conversely, uORF mutants of SAC51, SACL3, and SACL1 suppress the excessive xylem formation and dwarf phenotype of acl5, a mutant defective in thermospermine biosynthesis. In this study, we generated genome-edited uORF mutants of SACL2 and confirmed that they partially recover the acl5 phenotype. All uORF mutants exhibited increased sensitivity to thermospermine. SACL3 represses the function of LHW, a key bHLH transcription factor required for xylem proliferation, through direct interaction. We found that the lhw mutant is also hypersensitive to thermospermine, while this sensitivity was suppressed by the sac51 sacl3 double knockout. Yeast two-hybrid assays demonstrated that all four SAC51 family members interact with LHW and its family members. These findings suggest that overaccumulation of SAC51 family proteins leads to thermospermine hypersensitivity by repressing the function of LHW family proteins, whose activity must be fine-tuned to ensure proper xylem development. en-copyright= kn-copyright= en-aut-name=XuYao en-aut-sei=Xu en-aut-mei=Yao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaraumiMitsuru en-aut-sei=Saraumi en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToyoshimaTomohiko en-aut-sei=Toyoshima en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=LHW family kn-keyword=LHW family en-keyword=SAC51 family kn-keyword=SAC51 family en-keyword=thermospermine kn-keyword=thermospermine en-keyword=xylem kn-keyword=xylem END start-ver=1.4 cd-journal=joma no-vol=123 cd-vols= no-issue=5 article-no= start-page=e70476 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=RNA processing/modifying enzymes play key roles in the response to thermospermine in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thermospermine is involved in negative regulation of xylem differentiation by enhancing the translation of mRNAs of the SAC51 gene family in Arabidopsis (Arabidopsis thaliana). These mRNAs contain conserved upstream open reading frames (uORFs) that interfere with the translation of the main ORF. To investigate the mechanism by which thermospermine acts in this process, we isolated mutants insensitive to thermospermine, named eitsf. We show that the four genes responsible for these mutants, its1 to its4, encode: (i) a homolog of SPOUT RNA methyltransferase, (ii) an rRNA pseudouridine synthase CBF5/NAP57, (iii) a putative spliceosome disassembly factor STIPL1/NTR1, and (iv) a plant-specific RNA-binding protein PHIP1. These four mutants were found to have much higher levels of thermospermine than the wild-type. While all these mutants except its1 appear almost normal, they enhance the dwarf phenotype of a mutant of ACL5, which encodes thermospermine synthase, resulting in tiny plants resembling a double knockout of ACL5 and SACL3, a member of the SAC51 family. Reporter assays revealed that GUS activity from the CaMV 35S promoter-SAC51 5Œ-GUS fusion construct was significantly reduced in its1 and its4 or not affected in its2 and its3, while it was slightly increased in its1, its3, and its4, or not changed in its2 by thermospermine. These findings underscore the critical role of RNA processing and modification in the thermospermine-dependent translational regulation of uORF-containing transcripts. en-copyright= kn-copyright= en-aut-name=SaraumiMitsuru en-aut-sei=Saraumi en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakahiro en-aut-sei=Tanaka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoyamaDaiki en-aut-sei=Koyama en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiYoshitaka en-aut-sei=Nishi en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiYoshihiro en-aut-sei=Takahashi en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Engineering, Kyushu Sangyo University kn-affil= affil-num=5 en-affil=Department of Life Science, Faculty of Life Science, Kyushu Sangyo University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=thermospermine kn-keyword=thermospermine en-keyword=uORF kn-keyword=uORF en-keyword=translation kn-keyword=translation en-keyword=xylem kn-keyword=xylem en-keyword=RNA methyltransferase kn-keyword=RNA methyltransferase en-keyword=pseudouridine synthase kn-keyword=pseudouridine synthase en-keyword=SPOUT domain kn-keyword=SPOUT domain en-keyword=spliceosome disassembly kn-keyword=spliceosome disassembly END start-ver=1.4 cd-journal=joma no-vol=105 cd-vols= no-issue=4 article-no= start-page=1157 end-page=1167 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of environmental conditions on seed germination and seedling growth in Cuscuta campestris en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dodder (Cuscuta) is an obligate parasitic plant that cannot survive without a host and causes significant damage to crop yields. To understand its growth characteristics before parasitism, we examined the effects of environmental conditions on seed germination and seedling growth in Cuscuta campestris Yunck. Among various factors, we focused on the effects of light, pH, temperature, sugars, salts, hormones, amino acids and polyamines on seeds sown on agar plates. Regarding the effect of light on germination, far-red light was preferable rather than red light and the reversible response of seeds to red and far-red light was confirmed, implicating a phytochrome-mediated signaling pathway opposite to that in many seed plants. Among the amino acids, aspartic acid and alanine had a promotive effect, while histidine had an inhibitory effect on germination. We further found that, in addition to gibberellic acid, methyl jasmonate stimulated both germination and shoot elongation. While 2,4-D extended the viability of trichomes around the root cap, kinetin induced the formation of scale leaves on the shoot and undifferentiated cell clusters at the base of the shoot and root tip. Real-time reverse transcriptase PCR (RT-PCR) experiments confirmed that the expression of a putative RbcS gene for photosynthesis showed no response to light, whereas that of a Phytochrome A homolog increased in the dark. Our results indicate that some of the molecular mechanisms involved in responding to light and hormone signals are uniquely modified in dodder seedlings, providing clues for understanding the survival strategy of parasitic plants. en-copyright= kn-copyright= en-aut-name=NagaoKoki en-aut-sei=Nagao en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokoyamaRyusuke en-aut-sei=Yokoyama en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= en-keyword=Cuscuta kn-keyword=Cuscuta en-keyword=Environmental conditions kn-keyword=Environmental conditions en-keyword=Germination kn-keyword=Germination en-keyword=Hormone responses kn-keyword=Hormone responses en-keyword=Seedling growth kn-keyword=Seedling growth END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=10 article-no= start-page=1623 end-page=1625 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251006 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The OsATG8?OsATG1?SPIN6 module: Linking nutrient sensing to OsRac1-mediated rice immunity via autophagy-independent mechanisms en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KouYanjun en-aut-sei=Kou en-aut-mei=Yanjun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=11 article-no= start-page=102658 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pathophysiology and Therapeutic Needs in Nonobstructive Hypertrophic Cardiomyopathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hypertrophic cardiomyopathy (HCM) affects individuals worldwide with an estimated prevalence of over 1 in 500 individuals. Nonobstructive HCM accounts for approximately 30% to 70% of cases, is extremely heterogeneous, and is associated with a notable degree of morbidity, including daily life limitations, ventricular tachyarrhythmias, progression to heart failure, and atrial fibrillation. No approved pharmaceutical therapies target the pathophysiology of nonobstructive HCM, although several clinical trials are underway. This narrative review provides a comprehensive overview of nonobstructive HCM, focusing on epidemiology, natural history, genetics, pathophysiology, clinical manifestations, diagnosis, burden of disease, and current treatments and ongoing clinical trials. en-copyright= kn-copyright= en-aut-name=DesaiMilind Y. en-aut-sei=Desai en-aut-mei=Milind Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MauriziNiccolo en-aut-sei=Maurizi en-aut-mei=Niccolo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BiaginiElena en-aut-sei=Biagini en-aut-mei=Elena kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=CharronPhilippe en-aut-sei=Charron en-aut-mei=Philippe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FernandesFabio en-aut-sei=Fernandes en-aut-mei=Fabio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Gonz?lez-L?pezEsther en-aut-sei=Gonz?lez-L?pez en-aut-mei=Esther kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=van HaelstPaul L. en-aut-sei=van Haelst en-aut-mei=Paul L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HaugaaKristina Hermann en-aut-sei=Haugaa en-aut-mei=Kristina Hermann kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KramerChristopher M. en-aut-sei=Kramer en-aut-mei=Christopher M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MederBenjamin en-aut-sei=Meder en-aut-mei=Benjamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MichelsMichelle en-aut-sei=Michels en-aut-mei=Michelle kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OwensAnjali en-aut-sei=Owens en-aut-mei=Anjali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ElliottPerry en-aut-sei=Elliott en-aut-mei=Perry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=HCM Center, Department of Cardiovascular Medicine, Cleveland Clinic kn-affil= affil-num=2 en-affil=Cardiomyopathy Unit, Careggi University Hospital kn-affil= affil-num=3 en-affil=Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna kn-affil= affil-num=4 en-affil=European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart) kn-affil= affil-num=5 en-affil=InCor, Faculdade de Medicina da Universidade de S?o Paulo kn-affil= affil-num=6 en-affil=Puerta de Hierro Majadahonda University Hospital, Health Research Institute of the Puerta de Hierro Majadahonda-Segovia de Arana University Hospital (IDIPHISA) kn-affil= affil-num=7 en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health kn-affil= affil-num=8 en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health kn-affil= affil-num=9 en-affil=Cardiovascular Division, Department of Medicine, University of Virginia Health kn-affil= affil-num=10 en-affil=Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg kn-affil= affil-num=11 en-affil=European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart) kn-affil= affil-num=12 en-affil=Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=UCL Institute of Cardiovascular Science and St Bartholomewfs Hospital kn-affil= en-keyword=heart failure kn-keyword=heart failure en-keyword=hypertrophic cardiomyopathy kn-keyword=hypertrophic cardiomyopathy en-keyword=nonobstructive kn-keyword=nonobstructive END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=1 article-no= start-page=6 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optical bandgap tuning in SnO2?MoS2 nanocomposites: manipulating the mass of SnO2 and MoS2 using sonochemical solution mixing en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigates controlled optical bandgap tuning through precise adjustment of the SnO2 and MoS2 mass in nanocomposites. A sonochemical solution mixing method, coupled with bath sonication, is employed for the preparation of SnO2?MoS2 nanocomposite. This approach allows for comprehensive characterization using UV?Vis FTIR, XRD, EDX, Raman spectroscopies, and FESEM, providing insights into morphology, chemical, and optical properties. Increasing the SnO2 mass leads to a linear decrease in the optical bandgap energy, from 3.0 to 1.7 eV. Similarly, increasing the MoS2 mass also results in a decrease in the optical bandgap energy, with a limitation of around 2.01 eV. This work demonstrates superior control over optical bandgap by manipulating the SnO2 mass compared to MoS2, highlighting the complexities introduced by MoS2 2D nanosheets during sonication. These findings hold significant value for optoelectronic applications, emphasizing enhanced control of optical bandgap through systematic mass manipulation. en-copyright= kn-copyright= en-aut-name=OngChinkhai en-aut-sei=Ong en-aut-mei=Chinkhai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LeeWeng Nam en-aut-sei=Lee en-aut-mei=Weng Nam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanYee Seng en-aut-sei=Tan en-aut-mei=Yee Seng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhbergPatrik en-aut-sei=Ohberg en-aut-mei=Patrik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishikawaTakeshi en-aut-sei=Nishikawa en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YapYuenkiat en-aut-sei=Yap en-aut-mei=Yuenkiat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=School of Engineering and Physical Sciences, Heriot-Watt University Malaysia kn-affil= affil-num=2 en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia kn-affil= affil-num=3 en-affil=Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University kn-affil= affil-num=4 en-affil=School of Engineering and Physical Sciences, Institute of Photonics and Quantum Sciences, Heriot-Watt University kn-affil= affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia kn-affil= END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue=2 article-no= start-page=196 end-page=212 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240228 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Influence of Dilution Upon the Ultraviolet-Visible Peak Absorbance and Optical Bandgap Estimation of Tin(IV) Oxide and Tin(IV) Oxide-Molybdenum(IV) Sulfide?Solutions en-subtitle= kn-subtitle= en-abstract= kn-abstract=The study investigated the constraints associated with the dilution technique in determining the optical bandgap of nanoparticle dispersion and modified nanocomposites, utilizing ultraviolet-visible absorbance spectra and Tauc plot analysis. A case study involving SnO2 dispersion and SnO2-MoS2 nanocomposite solutions, prepared through the direct solution mixing method, was conducted to assess the implications of dilution upon the absorbance spectra and bandgap estimation. The results emphasize the considerable impact of the dilution technique on the measured optical bandgap, demonstrating that higher dilution factors lead to shift in bandgap values. Furthermore, the study highlights that dilution can induce variations in the average nanoparticle sizes due to agglomeration, thereby influencing bandgap estimation. In the context of nanocomposites, the interaction between SnO2 nanoparticles and exfoliated MoS2 nanosheets diminishes with increasing dilution, leading to the estimated optical bandgap being primarily attributable to SnO2 nanoparticles alone. These observations underscore the necessity for caution when employing the dilution technique for bandgap estimation in nanoparticles dispersion and nanocomposites, offering valuable insights for researchers and practitioners in the field. en-copyright= kn-copyright= en-aut-name=OngChin Khai en-aut-sei=Ong en-aut-mei=Chin Khai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LeeWeng Nam en-aut-sei=Lee en-aut-mei=Weng Nam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KhalidMohammad en-aut-sei=Khalid en-aut-mei=Mohammad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Mohd AbdahMuhammad Amirul Aizat en-aut-sei=Mohd Abdah en-aut-mei=Muhammad Amirul Aizat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhbergPatrik en-aut-sei=Ohberg en-aut-mei=Patrik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LimLing Hong en-aut-sei=Lim en-aut-mei=Ling Hong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishikawaTakeshi en-aut-sei=Nishikawa en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YapYuenkiat en-aut-sei=Yap en-aut-mei=Yuenkiat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=School of Engineering and Physical Sciences, Heriot-Watt University Malaysia kn-affil= affil-num=2 en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia kn-affil= affil-num=3 en-affil=Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University kn-affil= affil-num=4 en-affil=Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University kn-affil= affil-num=5 en-affil=Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University kn-affil= affil-num=6 en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Faculty of Engineering, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Faculty of Engineering, Okayama University kn-affil= affil-num=9 en-affil=Heriot-Watt Global College, Heriot-Watt University Malaysia kn-affil= en-keyword=Colorimetry kn-keyword=Colorimetry en-keyword=nanocomposite kn-keyword=nanocomposite en-keyword=optical bandgap kn-keyword=optical bandgap en-keyword=tin(IV) oxide, molybdenum disulfide, spectrophotometry kn-keyword=tin(IV) oxide, molybdenum disulfide, spectrophotometry END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=9 article-no= start-page=4815 end-page=4837 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spatiotemporal evolution of ecosystem carbon storage under land use/land cover dynamics in the coastal region of Central Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ecosystem carbon storage is a cost-effective strategy for global climate change mitigation, and its fluctuation is markedly shaped by land use/land cover (LULC) dynamics. Taking Danang city as an example of Central Coastal Vietnam, this study aims to assess LULC changes and analyze the spatiotemporal evolution of carbon storage from 2023 to 2050 under four LULC change scenarios, including natural trend scenario (NTS), ecological protection scenario (EPS), economic development scenario (EDS), and cropland protection scenario (CPS), by integrating the support vector machine-cellular automata-Markov (SVM-CA-Markov) model and the InVEST model. The Optimal Parameters-based Geographical Detector (OPGD) model was subsequently employed to elucidate the impacts of driving factors on the spatial distribution of carbon storage. The results showed that, from 2007 to 2023, Danang city experienced a dramatic back-and-forth transformation between LULC types, with the predominant transitions being from natural forest to acacia tree-dominated plantation forest (6492.31 ha), and from cropland to settlements, acacia tree-dominated plantation forest, and other land (5483.05 ha, 3763.66 ha, 2762.35 ha, respectively). Between 2023 and 2050, LULC transformations in Danang city are projected to yield varying degrees of carbon storage levels across different scenarios. Specifically, carbon storage is anticipated to dwindle by 0.221 Mt, 0.223 Mt, and 0.298 Mt under NTS, EDS, and CPS, respectively, while enhancing by 0.141 Mt under EPS. Regarding the spatial distribution of carbon storage, high values will be chiefly found in the western high-elevation mountainous region, while low values will be concentrated mostly in the eastern lower-lying areas of the city. Additionally, elevation and temperature acted as the two most significant driving factors influencing the spatial distribution of carbon storage, with Q values of 0.88 and 0.86 (p-value < 0.05), respectively. For interaction detection, the combination of elevation and soil exhibited a synergistic reinforcement effect on the spatial partitioning of carbon storage, with a high Q value of 0.9566 (p-value < 0.05). Our study highlights the necessity of ecological conservation measures in Danang city in the on-track pursuit of national net-zero carbon emissions by 2050. en-copyright= kn-copyright= en-aut-name=HoViet Hoang en-aut-sei=Ho en-aut-mei=Viet Hoang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoritaHidenori en-aut-sei=Morita en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HoThanh Ha en-aut-sei=Ho en-aut-mei=Thanh Ha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BachoferFelix en-aut-sei=Bachofer en-aut-mei=Felix kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=University of Agriculture and Forestry, Hue University kn-affil= affil-num=4 en-affil=German Aerospace Center (DLR), Earth Observation Center kn-affil= en-keyword=Carbon sequestration kn-keyword=Carbon sequestration en-keyword=Scenario-based modeling kn-keyword=Scenario-based modeling en-keyword=Remote sensing kn-keyword=Remote sensing en-keyword=Spatial autocorrelation analysis kn-keyword=Spatial autocorrelation analysis END start-ver=1.4 cd-journal=joma no-vol=1019 cd-vols= no-issue= article-no= start-page=A22 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250918 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Experimental and numerical study on the inertial migration of hydrogel particles suspended in square channel flows en-subtitle= kn-subtitle= en-abstract= kn-abstract=The inertial migration of hydrogel particles suspended in a Newtonian fluid flowing through a square channel is studied both experimentally and numerically. Experimental results demonstrate significant differences in the focusing positions of the deformable and rigid particles, highlighting the role of particle deformability in inertial migration. At low Reynolds numbers (Re), hydrogel particles migrate towards the centre of the channel cross-section, whereas the rigid spheres exhibit negligible lateral motion. At finite Re, they focus at four points along the diagonals in the downstream cross-section, in contrast to the rigid particles which focus near the centre of the channel face at similar Re . Numerical simulations using viscous hyperelastic particles as a model for hydrogel particles reproduced the experimental results for the particle distribution with an appropriate Youngfs modulus of the hyperelastic particles. Further numerical simulations over a broader range of Re and the capillary number (Ca) reveal various focusing patterns of the particles in the channel cross-section. The phase transitions between them are discussed in terms of the inertial lift and the lift due to particle deformation, which would act in the direction towards lower shear. The stability of the channel centre is analysed using an asymptotic expansion approach to the migration force at low Re and Ca. The theoretical analysis predicts the critical condition for the transition, which is consistent with the direct numerical simulation. These experimental, numerical and theoretical results contribute to a deeper understanding of inertial migration of deformable particles. en-copyright= kn-copyright= en-aut-name=HirohataYuma en-aut-sei=Hirohata en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaiKazusa en-aut-sei=Sai en-aut-mei=Kazusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TangeYuki en-aut-sei=Tange en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiyamaTomohiro en-aut-sei=Nishiyama en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MinatoHaruka en-aut-sei=Minato en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItanoTomoaki en-aut-sei=Itano en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugiyamaKazuyasu en-aut-sei=Sugiyama en-aut-mei=Kazuyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Sugihara-SekiMasako en-aut-sei=Sugihara-Seki en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Engineering Science, The University of Osaka kn-affil= affil-num=2 en-affil=Department of Pure and Applied Physics, Kansai University kn-affil= affil-num=3 en-affil=Department of Pure and Applied Physics, Kansai University kn-affil= affil-num=4 en-affil=Department of Pure and Applied Physics, Kansai University kn-affil= affil-num=5 en-affil=Graduate School of Environmental Life Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental Life Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Pure and Applied Physics, Kansai University kn-affil= affil-num=8 en-affil=Graduate School of Engineering Science, The University of Osaka kn-affil= affil-num=9 en-affil=Department of Pure and Applied Physics, Kansai University kn-affil= en-keyword=flow-structure interactions kn-keyword=flow-structure interactions en-keyword=microfluidics kn-keyword=microfluidics en-keyword=particle/fluid flow kn-keyword=particle/fluid flow END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=5 article-no= start-page=939 end-page=948 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study on an Effective Coolant Supply Method in the Side Plunge Grinding Process en-subtitle= kn-subtitle= en-abstract= kn-abstract=Grinding is widely used for finishing components with journal and thrust surfaces, such as crankshafts. Side-plunge grinding enables the simultaneous finishing of thrust and cylindrical surfaces in a single plunge. However, compared to cylindrical grinding, it involves a larger contact area between the grinding wheel and the workpiece, leading to increased heat generation. In particular, poor coolant penetration near internal corners can degrade surface quality, potentially causing stress concentrations and cracks. To enhance coolant effectiveness in side-plunge grinding, this study installs a high-pressure nozzle that supplies coolant from the side of the grinding wheel. The effectiveness of this setup is experimentally verified. Additionally, the distribution of coolant flow within the contact area between the grinding wheel and the workpiece is measured to determine the optimal nozzle position for efficient coolant delivery. The nozzlefs performance is evaluated by measuring the workpiece surface temperature using a wire/workpiece thermocouple, the amount of coolant discharged from the grinding wheel, and the residual stress distribution. The results show that coolant penetrates the grinding wheel and effectively reaches the grinding zone, enhancing the cooling effect. This study clarifies the relationship between effective coolant supply and the position of the side nozzle. Considering physical constraints, such as potential interference during grinding, the optimal nozzle location is as close as possible to both the edge of the grinding wheel and the workpiece. This positioning ensures maximum coolant delivery, reduces grinding temperature, and helps suppress drastic variations in residual stress. en-copyright= kn-copyright= en-aut-name=GaoLingxiao en-aut-sei=Gao en-aut-mei=Lingxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujimotoTaichi en-aut-sei=Fujimoto en-aut-mei=Taichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KodamaHiroyuki en-aut-sei=Kodama en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhashiKazuhito en-aut-sei=Ohashi en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=grinding kn-keyword=grinding en-keyword=thrust surface kn-keyword=thrust surface en-keyword=grinding temperature kn-keyword=grinding temperature en-keyword=coolant flow kn-keyword=coolant flow en-keyword=residual stress kn-keyword=residual stress END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=8226 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Persistent homology elucidates hierarchical structures responsible for mechanical properties in covalent amorphous solids en-subtitle= kn-subtitle= en-abstract= kn-abstract=Understanding how atomic-level structures govern the mechanical properties of amorphous materials remains a fundamental challenge in solid-state physics. Under mechanical loading, amorphous materials exhibit simple affine and spatially inhomogeneous nonaffine displacements that contribute to the elastic modulus through the Born (affine) and nonaffine terms, respectively. The differences between soft local structures characterized by small Born terms or large nonaffine displacements have yet to be elucidated. This challenge is particularly complex in covalent amorphous materials such as silicon, where the medium-range order (MRO) plays a crucial role in the network structure. To address these issues, we combined molecular dynamics simulations with persistent homology analysis. Our results reveal that local structures with small Born terms are governed by short-range characteristics, whereas those with large nonaffine displacements exhibit hierarchical structures in which short-range disorder is embedded within the MRO. These hierarchical structures are also strongly correlated with low-energy localized vibrational excitations. Our findings demonstrate that the mechanical responses and dynamic properties of covalent amorphous materials are intrinsically linked to the MRO, providing a framework for understanding and tailoring their properties. en-copyright= kn-copyright= en-aut-name=MinamitaniEmi en-aut-sei=Minamitani en-aut-mei=Emi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraTakenobu en-aut-sei=Nakamura en-aut-mei=Takenobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ObayashiIppei en-aut-sei=Obayashi en-aut-mei=Ippei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizunoHideyuki en-aut-sei=Mizuno en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=SANKEN, The University of Osaka kn-affil= affil-num=2 en-affil=Department of Materials and Chemistry Materials DX Research Center, National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=3 en-affil=Center for Artificial Intelligence and Mathematical Data Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Arts and Sciences, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=20056 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pharmacokinetics and the effectiveness of pyrogen-free bioabsorbable wet adhesives en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bioabsorbable materials are essential for advanced therapies, including surgical sealing, cell therapy, and drug delivery. Natural bioabsorbable materials, including collagen and hyaluronic acid, have better biocompatibility than synthetic bioabsorbable polymers; however, they are mainly derived from animals, presenting infection risks. Non-animal origin polymers have a lower molecular weight than those of animal origins. Their viscosity increases with increase in molecular weight, making endotoxin removal difficult. Here, using the phosphoryl chloride disposal method, we present a strategy for synthesizing pyrogen-free bioabsorbable adhesives with controlled molecular weight. Phosphopullulan, a polysaccharide derivative, had less than detectable endotoxin levels and controllable average molecular weight of approximately 300,000 to over 1,400,000. Furthermore, it is important to ensure the safety as well as efficacy of bio-implantable materials. We have evaluated the biosafety of polysaccharide derivatives we are developing, and have examined their cell phagocytosis and pharmacokinetics in vitro and in vivo, and have confirmed that they are safe. We have also evaluated their adhesion to wet tissue adhesions and confirmed that they leak less than existing materials. en-copyright= kn-copyright= en-aut-name=OshimaRisa en-aut-sei=Oshima en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanishiKo en-aut-sei=Nakanishi en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkasakaTsukasa en-aut-sei=Akasaka en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimojiShinji en-aut-sei=Shimoji en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraTeppei en-aut-sei=Nakamura en-aut-mei=Teppei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraMariko en-aut-sei=Nakamura en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TamadaIkkei en-aut-sei=Tamada en-aut-mei=Ikkei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=Van MeerbeekBart en-aut-sei=Van Meerbeek en-aut-mei=Bart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SugayaTsutomu en-aut-sei=Sugaya en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=4 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=5 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=6 en-affil=Department of Applied Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University kn-affil= affil-num=7 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Department of Clinical Psychology, School of Clinical Psychology, Kyushu University of Medical and Science kn-affil= affil-num=9 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Plastic and Reconstructive Surgery, Tokyo Metropolitan Childrenfs Medical Center kn-affil= affil-num=11 en-affil=BIOMAT, Department of Oral Health Sciences, & UZ Leuven, Dentistry, KU Leuven kn-affil= affil-num=12 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=13 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= en-keyword=Phosphopullulan kn-keyword=Phosphopullulan en-keyword=Polysaccharide kn-keyword=Polysaccharide en-keyword=ADME kn-keyword=ADME en-keyword=Animal study kn-keyword=Animal study en-keyword=Endodontic sealer kn-keyword=Endodontic sealer END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=3643 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250417 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fully-gapped superconductivity with rotational symmetry breaking in pressurized kagome metal CsV3Sb5 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The discovery of the kagome metal CsV3Sb5 has generated significant interest in its complex physical properties, particularly its superconducting behavior under different pressures, though its nature remains debated. Here, we performed low-temperature, high-pressure 121/123Sb nuclear quadrupole resonance (NQR) measurements to explore the superconducting pairing symmetry in CsV3Sb5. At ambient pressure, we found that the spin-lattice relaxation rate 1/T1 exhibits a kink at T ~ 0.4 Tc within the superconducting state and follows a T3 variation as temperature further decreases. This suggests the presence of two superconducting gaps with line nodes in the smaller one. As pressure increases beyond Pc ~ 1.85?GPa, where the charge-density wave phase is completely suppressed, 1/T1 shows no Hebel-Slichter peak just below Tc, and decreases rapidly, even faster than T5, indicating that the gap is fully opened for pressures above Pc. In this high pressure region, the angular dependence of the in-plane upper critical magnetic field Hc2 breaks the C6 rotational symmetry. We propose the s + id pairing at P > Pc which explains both the 1/T1 and Hc2 behaviors. Our findings indicate that CsV3Sb5 is an unconventional superconductor and its superconducting state is even more exotic at high pressures. en-copyright= kn-copyright= en-aut-name=FengX. Y. en-aut-sei=Feng en-aut-mei=X. Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhaoZ. en-aut-sei=Zhao en-aut-mei=Z. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LuoJ. en-aut-sei=Luo en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhouY. Z. en-aut-sei=Zhou en-aut-mei=Y. Z. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YangJ. en-aut-sei=Yang en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FangA. F. en-aut-sei=Fang en-aut-mei=A. F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YangH. T. en-aut-sei=Yang en-aut-mei=H. T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GaoH.-J. en-aut-sei=Gao en-aut-mei=H.-J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ZhouR. en-aut-sei=Zhou en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ZhengGuo-qing en-aut-sei=Zheng en-aut-mei=Guo-qing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics kn-affil= affil-num=2 en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics kn-affil= affil-num=3 en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics kn-affil= affil-num=4 en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics kn-affil= affil-num=5 en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics kn-affil= affil-num=6 en-affil= kn-affil= affil-num=7 en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics kn-affil= affil-num=8 en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics kn-affil= affil-num=9 en-affil=Institute of Physics, Chinese Academy of Sciences, and BeijingNational Laboratory for CondensedMatter Physics kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=38 article-no= start-page=eadv9952 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250919 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Polymeric microwave rectifiers enabled by monolayer-thick ionized donors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Solution processing of polymeric semiconductors provides a facile way to fabricate functional diodes. However, energy barriers at metal-semiconductor interfaces often limit their performance. Here, we report rectifying polymer diodes with markedly modified energy-level alignments. The gold electrode surface was treated with a dimeric metal complex, which resulted in a shallow work function of 3.7 eV by forming a monolayer-thick ionized donor layer. When a polymeric semiconductor was coated on the treated electrode, most of the ionized donors remained at the metal-semiconductor interface. The confined ionized donors with the ideal thickness enabled fabrication of a polymer diode with a forward current density of over 100 A cm?2. Furthermore, a power conversion efficiency of 7.9% was observed for rectification at a microwave frequency of 920 MHz, which is orders of magnitude higher than that reported for organic diodes. Our findings will pave a way to solution-processed high-frequency and high-power devices. en-copyright= kn-copyright= en-aut-name=OsakabeNobutaka en-aut-sei=Osakabe en-aut-mei=Nobutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HerJeongeun en-aut-sei=Her en-aut-mei=Jeongeun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakahiro en-aut-sei=Kaneta en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TajimaAkiko en-aut-sei=Tajima en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LonghiElena en-aut-sei=Longhi en-aut-mei=Elena kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TangKan en-aut-sei=Tang en-aut-mei=Kan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujimoriKazuhiro en-aut-sei=Fujimori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=BarlowStephen en-aut-sei=Barlow en-aut-mei=Stephen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MarderSeth R. en-aut-sei=Marder en-aut-mei=Seth R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WatanabeShun en-aut-sei=Watanabe en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeyaJun en-aut-sei=Takeya en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YamashitaYu en-aut-sei=Yamashita en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=2 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=3 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=4 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=5 en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology kn-affil= affil-num=6 en-affil=Renewable and Sustainable Energy Institute, University of Colorado Boulder kn-affil= affil-num=7 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology kn-affil= affil-num=9 en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology kn-affil= affil-num=10 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=12 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=1333 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250816 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phosphorylated pullulan as a local drug delivery matrix for cationic antibacterial chemicals to prevent oral biofilm en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Preventing oral infections, such as oral caries and periodontal disease, helps reduce the risks of various systemic diseases. In this study, the polysaccharide pullulan produced by the black yeast Aureobasidium pullulans was modified in combination with the cationic surfactant cetylpyridinium chloride (CPC) to create a local drug delivery system, and its antibacterial potential on oral bacteria was examined in vitro.
Methods Pullulan was phosphorylated at the CH2OH residue of ƒ¿6 in the maltotriose structure and mixed with CPC. Bacterial attachment of cariogenic Streptococcus mutans on hydroxyapatite plates (HAPs) treated with the phosphorylated pullulan (PP) and CPC compound (0.01% PP and 0.001? 0.03% CPC, and vice versa) was assessed by observing bacteria using a field emission scanning electron microscope (FE-SEM) and quantified through 16 S rRNA amplification via real-time polymerase chain reaction (PCR). Additionally, the quartz crystal microbalance (QCM) method was employed to evaluate the sustained release of CPC.
Results PP-CPC compound maintained significant bactericidal activity even at 0.01%, which is one-fifth of the conventional applicable concentration of CPC. Additionally, a residual mixture was detected by the hydroxyapatite sensor of the crystal oscillator microbalance detector, suggesting an unknown molecular interaction that enables the sustained release of CPC after attachment to hydroxyapatite.
Conclusions The combination of PP and CPC may contribute to the low concentration and effective prevention of oral infections, such as dental caries. en-copyright= kn-copyright= en-aut-name=Namba-KoideNaoko en-aut-sei=Namba-Koide en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawataYusuke en-aut-sei=Kawata en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItoMasahiro en-aut-sei=Ito en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoTakashi en-aut-sei=Ito en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Takeuchi-HatanakaKazu en-aut-sei=Takeuchi-Hatanaka en-aut-mei=Kazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Shinoda-ItoYuki en-aut-sei=Shinoda-Ito en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=3 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=7 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Phosphorylated Pullulan kn-keyword=Phosphorylated Pullulan en-keyword=Local drug delivery system kn-keyword=Local drug delivery system en-keyword=Cationic antimicrobial agents kn-keyword=Cationic antimicrobial agents en-keyword=Cetylpyridinium chloride kn-keyword=Cetylpyridinium chloride en-keyword=Oral biofilm kn-keyword=Oral biofilm END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=4 article-no= start-page=463 end-page=474 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nationwide diversity of symbolic gcity flowersh in Japan is increasing en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recognizing and maintaining locally rooted human?nature interactions is essential for utilizing ecosystem services. Although the general public's awareness of biodiversity and ecosystem services has been examined using various proxies, it remains unclear how local governments?key sectors in creating conservation policies?appreciate them within a solid local context. Here, we focused on the gcity flower,h an official symbolic species of Japanese cities, as a new proxy for measuring governmental attitudes toward biota and its services. We aimed to capture temporal changes in the awareness of species with locally relevant value at the city government level by examining the changes in city flowers over more than half a century. Data from the official websites of municipalities, including the names, the adoption years, and the reasons for adoption, revealed two major periods of adoption, with a notable increase in species diversity in and after 1993. This increase could be attributed to a recent reduction in bias toward popular flowers and growing interest in alternative, less popular flowers. Analysis of the reasons for adoption suggested that the temporal change in adopted flower species was related to the increasing emphasis on species with an explicit local context, especially those with instrumental value to the city. Our findings indicate the tendency for local governments to increasingly recognize their biocultural backgrounds and the ecosystem services of plants within their regions. The growing awareness of the local governments regarding their biocultural background is a positive sign for the conservation of biodiversity and ecosystem services. en-copyright= kn-copyright= en-aut-name=TsuzukiYoichi en-aut-sei=Tsuzuki en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhsakiHaruna en-aut-sei=Ohsaki en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawaguchiYawako W. en-aut-sei=Kawaguchi en-aut-mei=Yawako W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiSayaka en-aut-sei=Suzuki en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaradaShogo en-aut-sei=Harada en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtakeYurie en-aut-sei=Otake en-aut-mei=Yurie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShinoharaNaoto en-aut-sei=Shinohara en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatsuharaKoki R. en-aut-sei=Katsuhara en-aut-mei=Koki R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Health and Environmental Risk Division, National Institute for Environmental Studies kn-affil= affil-num=2 en-affil=Department of Biological Sciences, Tokyo Metropolitan University kn-affil= affil-num=3 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=4 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=5 en-affil=Department of Biology, Graduate School of Science, Osaka City University kn-affil= affil-num=6 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=7 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=awareness of local governments kn-keyword=awareness of local governments en-keyword=biocultural diversity kn-keyword=biocultural diversity en-keyword=ecosystem services kn-keyword=ecosystem services en-keyword=manual web scraping kn-keyword=manual web scraping en-keyword=temporal trend kn-keyword=temporal trend END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=1 article-no= start-page=e70055 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Presence of a Deletion Mutation of Myostatin (MSTN) Gene Associated With Double-Muscling Phenotype in Japanese Black Cattle Population en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mutations in the bovine myostatin (MSTN) gene have been identified as the causative factor for the double-muscling phenotype in several European cattle breeds, including Belgian Blue, Piedmontese, and Shorthorn. In Japan, following the Meiji Restoration, several European breeds, including Shorthorn, Brown Swiss, Devon, Simmental, and Ayrshire, were introduced and crossbred with native cattle to develop modern Japanese beef cattle breeds, such as Japanese Black cattle. Historical records regarding the breeding of Japanese Black cattle indicate that the double-muscling phenotype, referred to as gButajiri,h occasionally appeared in Japanese Black cattle population. These historical observations suggest the potential presence of MSTN gene mutation in the Japanese Black cattle population. The aim of this study was, therefore, to investigate the presence of MSTN gene mutation in the current Japanese Black cattle population. Through screening 400 reproductive females, we identified one cow carrying an 11-bp deletion in the MSTN gene. While further investigation of the animals in the pedigree of this cow could not reveal any living animals with this mutation, this is the first report demonstrating the presence of the MSTN mutation in the Japanese Black cattle population. en-copyright= kn-copyright= en-aut-name=LeNu?Anh?Thu en-aut-sei=Le en-aut-mei=Nu?Anh?Thu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuboRena en-aut-sei=Kubo en-aut-mei=Rena kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BorjiginLiushiqi en-aut-sei=Borjigin en-aut-mei=Liushiqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IbiTakayuki en-aut-sei=Ibi en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SasakiShinji en-aut-sei=Sasaki en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuniedaTetsuo en-aut-sei=Kunieda en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari kn-affil= affil-num=2 en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari kn-affil= affil-num=3 en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture Ryukyu University Nishihara kn-affil= affil-num=6 en-affil=Faculty of Veterinary Medicine Okayama University of Science Imabari kn-affil= en-keyword=double muscle kn-keyword=double muscle en-keyword=Japanese Black cattle kn-keyword=Japanese Black cattle en-keyword=myostatin gene kn-keyword=myostatin gene END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=35 article-no= start-page=28887 end-page=28895 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Thermally polymerizable phthalocyanine realizes a metal?nitrogen-doped carbon material featuring a defined single-atom catalyst motif with CO2RR activity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Metal?nitrogen-doped carbon materials (MNCs) exhibit good electrocatalytic performance owing to the intrinsic advantages of carbon-based materials and the presence of isolated and stabilized metal atoms coordinated by nitrogen sites. However, conventional high-temperature pyrolysis of precursor molecules make it difficult to control the coordination structure precisely. To address this issue, here we report a new synthesis strategy for MNCs. Specifically, we design and synthesize Ni-phthalocyanine functionalized with ethynyl groups as solid-state thermal polymerization points. After depositing the Ni-phthalocyanine precursor on a carbon support and performing a thermal treatment, the resultant carbon composite material features a Ni?N4 coordination structure derived from the precursor, and enhanced porosity. This material demonstrates high catalytic activity for the CO2 reduction reaction (CO2RR). Our synthetic approach is applicable to various precursor molecules and carbon supports, paving the way for the further development of MNC-based electrode catalysts. en-copyright= kn-copyright= en-aut-name=SanoYuki en-aut-sei=Sano en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaDaichi en-aut-sei=Nakajima en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MannaBiplab en-aut-sei=Manna en-aut-mei=Biplab kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChidaKoki en-aut-sei=Chida en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaRyojun en-aut-sei=Toyoda en-aut-mei=Ryojun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakaishiShinya en-aut-sei=Takaishi en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IwaseKazuyuki en-aut-sei=Iwase en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HaranoKoji en-aut-sei=Harano en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshiiTakeharu en-aut-sei=Yoshii en-aut-mei=Takeharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakamotoRyota en-aut-sei=Sakamoto en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Science, Tohoku University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Science, Tohoku University kn-affil= affil-num=3 en-affil=Center for Basic Research on Materials, National Institute for Materials Science kn-affil= affil-num=4 en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Science, Tohoku University kn-affil= affil-num=6 en-affil=Department of Chemistry, Graduate School of Science, Tohoku University kn-affil= affil-num=7 en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University kn-affil= affil-num=8 en-affil=Center for Basic Research on Materials, National Institute for Materials Science kn-affil= affil-num=9 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Institute of Multidisciplinary Research for Advanced Materials, Tohoku University kn-affil= affil-num=11 en-affil=Department of Chemistry, Graduate School of Science, Tohoku University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=243 cd-vols= no-issue= article-no= start-page=120539 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Organic solvent transport through reduced graphene oxide membranes with controlled oxygen content en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recent advances in membranes based on 2-dimensional (2D) materials have enabled precise control over angstrom-scale pores, providing a unique platform for studying diverse mass transport mechanisms. In this work, we systematically investigate the transport of solvent vapors through 2D channels made of graphene oxide (GO) laminates with precisely controlled oxygen content. Using in-situ chemical reduction of GO with vitamin C, we fabricated reduced GO membranes (VRGMs) with oxygen content systematically decreased from 31.6 % (pristine GO) to 24.0 % (VRGM-maximum reduction). Vapor permeability measurements showed a distinct correlation between oxygen functional groups and solvent transport behaviour. Specifically, non-polar hexane exhibits 114 % of enhanced permeance through the reduced membranes with larger graphitic domains, while the permeance of water decreases by 55 %. With the support of density functional theory (DFT) simulations, we modelled the hydrogen-bond and dispersion complexes between the solvents and GO and calculated the complexation energies. The simulation results suggest that polar molecules interact with the oxygen functional groups of GO via a hydrogen-bond network, supporting in-plane transport. In contrast, van der Waals forces drive the transport of low-polarity solvents along the graphitic domains of the 2D channel in reduced GO membranes. Our findings provide potential strategies for future design of organic solvent nanofiltration membranes. en-copyright= kn-copyright= en-aut-name=ChenHongzhe en-aut-sei=Chen en-aut-mei=Hongzhe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LinTongxi en-aut-sei=Lin en-aut-mei=Tongxi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RamadhanZeno Rizqi en-aut-sei=Ramadhan en-aut-mei=Zeno Rizqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RawalAditya en-aut-sei=Rawal en-aut-mei=Aditya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KartonAmir en-aut-sei=Karton en-aut-mei=Amir kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=RenXiaojun en-aut-sei=Ren en-aut-mei=Xiaojun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=JoshiRakesh en-aut-sei=Joshi en-aut-mei=Rakesh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=School of Materials Science and Engineering, University of New South Wales Sydney kn-affil= affil-num=2 en-affil=School of Materials Science and Engineering, University of New South Wales Sydney kn-affil= affil-num=3 en-affil=Electron Microscope Unit, University of New South Wales kn-affil= affil-num=4 en-affil=Mark Wainwright Analytical Centre, University of New South Wales kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=School of Science and Technology, University of New England kn-affil= affil-num=7 en-affil=School of Materials Science and Engineering, University of New South Wales Sydney kn-affil= affil-num=8 en-affil=School of Materials Science and Engineering, University of New South Wales Sydney kn-affil= en-keyword=Graphene oxide kn-keyword=Graphene oxide en-keyword=Organic solvent nanofiltration kn-keyword=Organic solvent nanofiltration END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=4 article-no= start-page=045010 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250911 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Covalent cross-linked graphene oxide aerogels for moisture adsorption en-subtitle= kn-subtitle= en-abstract= kn-abstract=Covalent cross-linking is an effective approach to enhance the hydrophilicity and water adsorption properties of graphene oxide (GO). We studied moisture absorption in GO cross-linked with poly(ethylene glycol) diamines. At relative humidity (RH) of 85%, the PEG-cross-linked GO exhibited a significantly enhanced water uptake capacity of 0.59 g of water per gram of GO (gg?1), compared to 0.37 for unmodified GO. This is attributed to the presence of alkoxy groups via cross-linking, resulting in the enhanced interaction between GO and water molecules. These findings highlight the potential of PEG-based covalent functionalisation for efficient moisture capture in GO-based materials. en-copyright= kn-copyright= en-aut-name=CaoZhijian en-aut-sei=Cao en-aut-mei=Zhijian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RenXiaojun en-aut-sei=Ren en-aut-mei=Xiaojun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LinTongxi en-aut-sei=Lin en-aut-mei=Tongxi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshimuraMasamichi en-aut-sei=Yoshimura en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JoshiRakesh en-aut-sei=Joshi en-aut-mei=Rakesh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=School of Materials Science and Engineering, University of New South Wales kn-affil= affil-num=2 en-affil=School of Materials Science and Engineering, University of New South Wales kn-affil= affil-num=3 en-affil=School of Materials Science and Engineering, University of New South Wales kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Engineering, Toyota Technological Institute kn-affil= affil-num=6 en-affil=School of Materials Science and Engineering, University of New South Wales kn-affil= en-keyword=graphene oxide (GO) kn-keyword=graphene oxide (GO) en-keyword=covalent cross-linking kn-keyword=covalent cross-linking en-keyword=poly(ethylene glycol) (PEG) kn-keyword=poly(ethylene glycol) (PEG) en-keyword=moisture adsorption kn-keyword=moisture adsorption en-keyword=hydrophilicity enhancement kn-keyword=hydrophilicity enhancement END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=5 article-no= start-page=209 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250514 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel Anti-MRSA Peptide from Mangrove-Derived Virgibacillus chiguensis FN33 Supported by Genomics and Molecular Dynamics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Antimicrobial resistance (AMR) is a global health threat, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the major resistant pathogens. This study reports the isolation of a novel mangrove-derived bacterium, Virgibacillus chiguensis FN33, as identified through genome analysis and the discovery of a new anionic antimicrobial peptide (AMP) exhibiting anti-MRSA activity. The AMP was composed of 23 amino acids, which were elucidated as NH3-Glu-Gly-Gly-Cys-Gly-Val-Asp-Thr-Trp-Gly-Cys-Leu-Thr-Pro-Cys-His-Cys-Asp-Leu-Phe-Cys-Thr-Thr-COOH. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for MRSA were 8 ?g/mL and 16 ?g/mL, respectively. FN33 AMP induced cell membrane permeabilization, suggesting a membrane-disrupting mechanism. The AMP remained stable at 30?40 ‹C but lost activity at higher temperatures and following exposure to proteases, surfactants, and extreme pH. All-atom molecular dynamics simulations showed that the AMP adopts a ƒÀ-sheet structure upon membrane interaction. These findings suggest that Virgibacillus chiguensis FN33 is a promising source of novel antibacterial agents against MRSA, supporting alternative strategies for drug-resistant infections. en-copyright= kn-copyright= en-aut-name=SermkaewNamfa en-aut-sei=Sermkaew en-aut-mei=Namfa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AtipairinApichart en-aut-sei=Atipairin en-aut-mei=Apichart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BoonruamkaewPhetcharat en-aut-sei=Boonruamkaew en-aut-mei=Phetcharat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KrobthongSucheewin en-aut-sei=Krobthong en-aut-mei=Sucheewin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AonbangkhenChanat en-aut-sei=Aonbangkhen en-aut-mei=Chanat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YingchutrakulYodying en-aut-sei=Yingchutrakul en-aut-mei=Yodying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SongnakaNuttapon en-aut-sei=Songnaka en-aut-mei=Nuttapon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=School of Pharmacy, Walailak University kn-affil= affil-num=2 en-affil=School of Pharmacy, Walailak University kn-affil= affil-num=3 en-affil=School of Pharmacy, Walailak University kn-affil= affil-num=4 en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University kn-affil= affil-num=5 en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University kn-affil= affil-num=6 en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency kn-affil= affil-num=8 en-affil=School of Pharmacy, Walailak University kn-affil= en-keyword=anionic AMP kn-keyword=anionic AMP en-keyword=AMP kn-keyword=AMP en-keyword=antimicrobial peptide kn-keyword=antimicrobial peptide en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=FN33 kn-keyword=FN33 en-keyword=genome kn-keyword=genome en-keyword=molecular dynamics simulations kn-keyword=molecular dynamics simulations en-keyword=MRSA kn-keyword=MRSA en-keyword=Virgibacillus chiguensis kn-keyword=Virgibacillus chiguensis END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250811 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=RNA Delivery Using a Graphene Oxide-Polyethylenimine Hybrid Inhibiting Myotube Differentiation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Graphene oxide (GO) conjugated with short polyethylenimine (PEI) chains (GO-PEI) has been designed as a candidate nanocarrier for small interfering RNA (siRNA) delivery to mammalian cells based on the efficient interaction between the positively charged GO-based platform and the negatively charged siRNA. The function and efficiency of siRNA delivery using GO-PEI were compared to those using the positive control Lipofectamine RNAiMax by analyzing the differentiation to myotubes, and myogenin gene and protein expression in C2C12 cells. RNAiMax transfection induced cellularization and reduction of both myogenin gene and protein expression, suggesting that the differentiation of C2C12 cells was triggered by gene silencing. While GO-PEI also promoted cellularization, the myogenin gene expression remained comparable to scrambled controls, whereas the protein levels were higher than those observed with RNAiMax. Mechanistically, we attributed the reduced gene silencing efficiency of GO-PEI to a poor endosomal escape, despite strong siRNA complexation. This limitation was likely due to a low buffering capacity of GO-PEI, as a significant fraction of nitrogen atoms were already protonated, reducing the availability of free amines necessary for endosomal disruption. An appropriate chemical modification to enhance siRNA release from the endosomes is therefore essential for advancing the development of GO-based platforms as versatile and efficient nanocarriers in gene therapy applications. en-copyright= kn-copyright= en-aut-name=MatsuuraKoji en-aut-sei=Matsuura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ReinaGiacomo en-aut-sei=Reina en-aut-mei=Giacomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GaoZhengfeng en-aut-sei=Gao en-aut-mei=Zhengfeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BiancoAlberto en-aut-sei=Bianco en-aut-mei=Alberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS kn-affil= affil-num=2 en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS kn-affil= affil-num=3 en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS kn-affil= en-keyword=graphene oxide kn-keyword=graphene oxide en-keyword=polyethylenimine kn-keyword=polyethylenimine en-keyword=myotubes kn-keyword=myotubes en-keyword=myogenin kn-keyword=myogenin en-keyword=small interfering RNA kn-keyword=small interfering RNA en-keyword=transfection kn-keyword=transfection END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=2500368 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250629 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Integration of Cholesterol Oxidase]Based Biosensors on a Smart Contact Lens for Wireless Cholesterol Monitoring from Tears en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cholesterol plays a critical role in physiological functions, but elevated levels increase the risk of cardiovascular disease. Regular cholesterol monitoring is essential for elderly or obese individuals. Current methods, such as blood tests, are invasive, inconvenient, and require a professional operator. In contrast, tears, as an accessible body fluid, offer a promising alternative for noninvasive monitoring due to their correlation with blood cholesterol levels. Herein, a noninvasive approach for monitoring cholesterol levels in tears using a biosensor integrated into a smart contact lens is reported. The biosensor employs cholesterol oxidases as the biocatalyst, coupled with an osmium-based mediator, to detect cholesterol concentrations ranging from 0.1?mM to 1.2?mM in artificial tears. A key challenge is the extremely low cholesterol concentration in tears, which is addressed using a parity-time (P-T) symmetry-based magnetic resonance coupling system. This system enables wireless signal reading and achieves high sensitivity due to its high-quality (Q) factor, which can achieve a detection limit of 0.061?mM. This portable, high-sensitivity smart contact lens demonstrates significant potential as a wearable device for continuous, noninvasive cholesterol monitoring. The findings contribute to advancing tear-based diagnostic systems and highlight the scientific importance of utilizing tear biomarkers for health monitoring. en-copyright= kn-copyright= en-aut-name=CuiYang en-aut-sei=Cui en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhuoLin en-aut-sei=Zhuo en-aut-mei=Lin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AzhariSaman en-aut-sei=Azhari en-aut-mei=Saman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyakeTakeo en-aut-sei=Miyake en-aut-mei=Takeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= affil-num=2 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= affil-num=5 en-affil=Graduate school of Information, Production and Systems, Waseda University kn-affil= en-keyword=cholesterol kn-keyword=cholesterol en-keyword=magnetic resonance coupling kn-keyword=magnetic resonance coupling en-keyword=parity-time symmetry kn-keyword=parity-time symmetry en-keyword=smart contact lens kn-keyword=smart contact lens END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=9 article-no= start-page=846 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Unveiling a New Antimicrobial Peptide with Efficacy against P. aeruginosa and K. pneumoniae from Mangrove-Derived Paenibacillus thiaminolyticus NNS5-6 and Genomic Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study focused on the discovery of the antimicrobial peptide (AMP) derived from mangrove bacteria. The most promising isolate, NNS5-6, showed the closest taxonomic relation to Paenibacillus thiaminolyticus, with the highest similarity of 74.9%. The AMP produced by Paenibacillus thiaminolyticus NNS5-6 exhibited antibacterial activity against various Gram-negative pathogens, especially Pseudomonas aeruginosa and Klebsiella pneumoniae. The peptide sequence consisted of 13 amino acids and was elucidated as Val-Lys-Gly-Asp-Gly-Gly-Pro-Gly-Thr-Val-Tyr-Thr-Met. The AMP mainly exhibited random coil and antiparallel beta-sheet structures. The stability study indicated that this AMP was tolerant of various conditions, including proteolytic enzymes, pH (1.2?14), surfactants, and temperatures up to 40 ‹C for 12 h. The AMP demonstrated 4 ?g/mL of MIC and 4?8 ?g/mL of MBC against both pathogens. Time-kill kinetics showed that the AMP acted in a time- and concentration-dependent manner. A cell permeability assay and scanning electron microscopy revealed that the AMP exerted the mode of action by disrupting bacterial membranes. Additionally, nineteen biosynthetic gene clusters of secondary metabolites were identified in the genome. NNS5-6 was susceptible to various commonly used antibiotics supporting the primary safety requirement. The findings of this research could pave the way for new therapeutic approaches in combating antibiotic-resistant pathogens. en-copyright= kn-copyright= en-aut-name=SermkaewNamfa en-aut-sei=Sermkaew en-aut-mei=Namfa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AtipairinApichart en-aut-sei=Atipairin en-aut-mei=Apichart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KrobthongSucheewin en-aut-sei=Krobthong en-aut-mei=Sucheewin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AonbangkhenChanat en-aut-sei=Aonbangkhen en-aut-mei=Chanat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YingchutrakulYodying en-aut-sei=Yingchutrakul en-aut-mei=Yodying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SongnakaNuttapon en-aut-sei=Songnaka en-aut-mei=Nuttapon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=School of Pharmacy, Walailak University kn-affil= affil-num=2 en-affil=School of Pharmacy, Walailak University kn-affil= affil-num=3 en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University kn-affil= affil-num=4 en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University kn-affil= affil-num=5 en-affil=National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency kn-affil= affil-num=6 en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=School of Pharmacy, Walailak University kn-affil= en-keyword=antimicrobial peptide kn-keyword=antimicrobial peptide en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=bacterial genome kn-keyword=bacterial genome en-keyword=biosynthetic gene cluster kn-keyword=biosynthetic gene cluster en-keyword=Klebsiella pneumoniae kn-keyword=Klebsiella pneumoniae en-keyword=Mangrove kn-keyword=Mangrove en-keyword=mass spectrometry kn-keyword=mass spectrometry en-keyword=NNS5-6 kn-keyword=NNS5-6 en-keyword=Paenibacillus thiaminolyticus kn-keyword=Paenibacillus thiaminolyticus en-keyword=Pseudomonas aeruginosa kn-keyword=Pseudomonas aeruginosa END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250921 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Urbanised landscape and microhabitat differences can influence flowering phenology and synchrony in an annual herb en-subtitle= kn-subtitle= en-abstract= kn-abstract=1. Flowering phenology, a crucial determinant of plant reproductive success and biotic interactions, is susceptible to urbanisation. Numerous studies have shown the impact of urbanised landscapes on flowering phenology based on comparisons along urban?rural gradients. Phenological patterns among microenvironments in the urban ecosystem have received less attention, although they often offer unique habitats with varying artificial influences, such as roadsides, drainage ditches and vacant lots. If differences in microenvironments diversify flowering phenology, the urban matrix might reduce flowering synchrony with neighbouring populations, limiting outcrossing opportunities and therefore reducing reproductive success.
2. We investigated the flowering phenology and synchrony of the native annual herb Commelina communis in approximately 250 populations at two rural and two urban sites over 3?years. To determine the effect of microhabitat differences, we categorised the microhabitats of C. communis populations into five types: drains, roadsides, vacant land, farmland and forest edge. In some study populations, we investigated reproductive success (seed set) to estimate the degree of outcross pollination limitation.
3. Our findings revealed that populations in urban sites exhibited earlier flowering onset and longer flowering duration compared to rural locations. Besides, we did not detect consistent patterns of flowering onset, peak and duration among the different microhabitat types. For flowering synchrony, we found that the population in urban sites, growing in drain habitats, and with artificial disturbances exhibited relatively lower interpopulation flowering synchrony, suggesting their phenology differed from neighbouring populations within the same landscape. Additionally, populations in urban sites, especially those growing in drain and roadside habitats, suffered severe outcross pollen limitation compared to those in rural landscapes.
4. Synthesis and applications. In conclusion, our results indicate that in addition to landscape changes associated with urbanisation, variations in local microhabitats also influence the flowering phenology and synchrony of C. communis populations. Urbanised landscapes and differences in microhabitats could contribute to the diversification of phenological patterns between populations, potentially having a negative impact on the reproductive success of native plant species. These findings highlight the need to consider not only spatial but also temporal fragmentation from diversified flowering phenology when addressing conservation in the urban matrix. en-copyright= kn-copyright= en-aut-name=FujiwaraHinata en-aut-sei=Fujiwara en-aut-mei=Hinata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamaguchiHiroto en-aut-sei=Yamaguchi en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakataKazuyoshi en-aut-sei=Nakata en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuharaKoki R. en-aut-sei=Katsuhara en-aut-mei=Koki R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=artificial disturbance kn-keyword=artificial disturbance en-keyword=Commelina kn-keyword=Commelina en-keyword=drainage ditches kn-keyword=drainage ditches en-keyword=flowering synchrony kn-keyword=flowering synchrony en-keyword=roadside kn-keyword=roadside en-keyword=ruderal plants kn-keyword=ruderal plants en-keyword=temporal fragmentation kn-keyword=temporal fragmentation en-keyword=urban ecology kn-keyword=urban ecology END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=1 end-page=3 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250919 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dual-action intranasal oxytocin enhances both male sexual performance and fertility in rats en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=EnomotoChica en-aut-sei=Enomoto en-aut-mei=Chica kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtiTakumi en-aut-sei=Oti en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamanakaTakahiro en-aut-sei=Yamanaka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimadaMasayuki en-aut-sei=Shimada en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University kn-affil= affil-num=4 en-affil=Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University kn-affil= affil-num=5 en-affil=Department of Biology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=oxytocin kn-keyword=oxytocin en-keyword=intranasal administration kn-keyword=intranasal administration en-keyword=sexual behavior kn-keyword=sexual behavior en-keyword=sperm motility kn-keyword=sperm motility en-keyword=paraventricular nucleus kn-keyword=paraventricular nucleus en-keyword=male sexual function kn-keyword=male sexual function en-keyword=androgen signaling kn-keyword=androgen signaling END start-ver=1.4 cd-journal=joma no-vol=133 cd-vols= no-issue=1 article-no= start-page=15 end-page=24 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative study of the effects of fluoride treatment with cyclic variations in pH on the structures of stoichiometric, calcium-deficient, and carbonated hydroxyapatites en-subtitle= kn-subtitle= en-abstract= kn-abstract=The primary objective of this study was to analyze the effects of fluoride treatment with cyclic variations in pH on the structure of stoichiometric hydroxyapatite (HAp), calcium-deficient HAp (CDHAp), and carbonated HAp (CHAp) powders. The structures of HAp, CDHAp, and CHAp before and after fluoride treatment were investigated using X-ray diffraction, Fourier-transform infrared, Raman, and nuclear magnetic resonance spectroscopic analyses. The fluoride treatment with cyclic variations in pH increased the calcium deficiency in HAp and CHAp but decreased in CDHAp. During fluoride treatment, fluoridated CDHAp or fluoridated calcium-deficient CHAp was formed on the surface of the HAp samples via dissolution and crystal growth, accompanied by the selective elution of component ions and partial substitution of OH? groups in the HAp hexagonal lattice with F? ions. No evidence of the formation of Ca(OH)2 and OH? groups outside the HAp crystal lattice was obtained. A new perspective on the formation of structured water at the surface termination of the OH columns (disordered region), with possible interactions with adsorbed water molecules or nonspecifically adsorbed F? ions was provided. The top surface of the fluoridated CDHAp consisted of an amorphous fluoride-rich hydrated layer, which included calcium phosphate and CaF2. en-copyright= kn-copyright= en-aut-name=HayakawaSatoshi en-aut-sei=Hayakawa en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaYu en-aut-sei=Okada en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiokaTomohiko en-aut-sei=Yoshioka en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Hydroxyapatite kn-keyword=Hydroxyapatite en-keyword=Fluoride treatment kn-keyword=Fluoride treatment en-keyword=Microstructure kn-keyword=Microstructure en-keyword=Calcium fluoride kn-keyword=Calcium fluoride en-keyword=Structured water kn-keyword=Structured water END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=9 article-no= start-page=1135 end-page=1151 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250910 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heart failure-specific cardiac fibroblasts contribute to cardiac dysfunction via the MYC?CXCL1?CXCR2 axis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Heart failure (HF) is a growing global health issue. While most studies focus on cardiomyocytes, here we highlight the role of cardiac fibroblasts (CFs) in HF. Single-cell RNA sequencing of mouse hearts under pressure overload identified six CF subclusters, with one specific to the HF stage. This HF-specific CF population highly expresses the transcription factor Myc. Deleting Myc in CFs improves cardiac function without reducing fibrosis. MYC directly regulates the expression of the chemokine CXCL1, which is elevated in HF-specific CFs and downregulated in Myc-deficient CFs. The CXCL1 receptor, CXCR2, is expressed in cardiomyocytes, and blocking the CXCL1?CXCR2 axis mitigates HF. CXCL1 impairs contractility in neonatal rat and human iPSC-derived cardiomyocytes. Human CFs from failing hearts also express MYC and CXCL1, unlike those from controls. These findings reveal that HF-specific CFs contribute to HF via the MYC?CXCL1?CXCR2 pathway, offering a promising therapeutic target beyond cardiomyocytes. en-copyright= kn-copyright= en-aut-name=KomuroJin en-aut-sei=Komuro en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HashimotoHisayuki en-aut-sei=Hashimoto en-aut-mei=Hisayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsukiToshiomi en-aut-sei=Katsuki en-aut-mei=Toshiomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KusumotoDai en-aut-sei=Kusumoto en-aut-mei=Dai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatohManami en-aut-sei=Katoh en-aut-mei=Manami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KoToshiyuki en-aut-sei=Ko en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoMasamichi en-aut-sei=Ito en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatagiriMikako en-aut-sei=Katagiri en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KubotaMasayuki en-aut-sei=Kubota en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaShintaro en-aut-sei=Yamada en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamuraTakahiro en-aut-sei=Nakamura en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AkibaYohei en-aut-sei=Akiba en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KoukaThukaa en-aut-sei=Kouka en-aut-mei=Thukaa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KomuroKaoruko en-aut-sei=Komuro en-aut-mei=Kaoruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraMai en-aut-sei=Kimura en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ItoShogo en-aut-sei=Ito en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NomuraSeitaro en-aut-sei=Nomura en-aut-mei=Seitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KomuroIssei en-aut-sei=Komuro en-aut-mei=Issei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FukudaKeiichi en-aut-sei=Fukuda en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=IedaMasaki en-aut-sei=Ieda en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=2 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=4 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=5 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=12 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=13 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=14 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=15 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=16 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=17 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=18 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=19 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=20 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= END start-ver=1.4 cd-journal=joma no-vol=118 cd-vols= no-issue=10 article-no= start-page=146 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Duganella hordei sp. nov., Duganella caerulea sp. nov., and Duganella rhizosphaerae sp. nov., isolated from barley rhizosphere en-subtitle= kn-subtitle= en-abstract= kn-abstract=Duganella sp. strains R1T, R57T, and R64T, isolated from barley roots in Japan, are Gram-stain-negative, motile, rod-shaped bacteria. Duganella species abundantly colonized barley roots. Strains R1T, R57T, and R64T were capable of growth at 4 ‹C, suggesting adaptation to colonize winter barley roots. Strains R57T and R64T formed purple colonies, indicating violacein production, while strain R1T did not. Based on 16S rRNA gene sequence similarities, strains R1T, R57T, and R64T were most closely related to D. violaceipulchra HSC-15S17T (99.10%), D. vulcania FT81WT (99.45%), and D. violaceipulchra HSC-15S17T (99.86%), respectively. Their genome sizes ranged from 7.05 to 7.38 Mbp, and their genomic G+C contents were 64.2?64.7%. The average nucleotide identity and digital DNA?DNA hybridization values between R1T and D. violaceipulchra HSC-15S17T, R57T and D. vulcania FT81WT, R64T and D. violaceipulchra HSC-15S17T were 86.0% and 33.2%, 95.7% and 67.9%, and 92.7% and 52.6%, respectively. Their fatty acids were predominantly composed of C16:0, C17:0 cyclo, and summed feature 3 (C16:1 ƒÖ7c and/or C16:1 ƒÖ6c). Based on their distinct genetic and phenotypic characteristics, and supported by chemotaxonomic analyses, we propose that strains R1T, R57T, and R64T represent novel species within the Duganella genus, for which the names Duganella hordei (type strain R1T?=?NBRC 115982 T?=?DSM 115069 T), Duganella caerulea (type strain R57T?=?NBRC 115983 T?=?DSM 115070 T), and Duganella rhizosphaerae (type strain R64T?=?NBRC 115984 T?=?DSM 115071 T) are proposed. en-copyright= kn-copyright= en-aut-name=KishiroKatsumoto en-aut-sei=Kishiro en-aut-mei=Katsumoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SahinNurettin en-aut-sei=Sahin en-aut-mei=Nurettin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaishoDaisuke en-aut-sei=Saisho en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamashitaJun en-aut-sei=Yamashita en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MondenYuki en-aut-sei=Monden en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakagawaTomoyuki en-aut-sei=Nakagawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Egitim Fakultesi, Mugla Sitki Kocman University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Applied Biological Sciences, Gifu University kn-affil= affil-num=8 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Barley kn-keyword=Barley en-keyword=Duganella kn-keyword=Duganella en-keyword=Novel species kn-keyword=Novel species en-keyword=Rhizosphere kn-keyword=Rhizosphere END start-ver=1.4 cd-journal=joma no-vol=198 cd-vols= no-issue=1 article-no= start-page=kiaf137 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The thylakoid membrane remodeling protein VIPP1 forms bundled oligomers in tobacco chloroplasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=The thylakoid membrane (TM) serves as the scaffold for oxygen-evolving photosynthesis, hosting the protein complexes responsible for the light reactions and ATP synthesis. Vesicle inducing protein in plastid 1 (VIPP1), a key protein in TM remodeling, has been recognized as essential for TM homeostasis. In vitro studies of cyanobacterial VIPP1 demonstrated its ability to form large homo-oligomers (2?MDa) manifesting as ring-like or filament-like assemblies associated with membranes. Similarly, VIPP1 in Chlamydomonas reinhardtii assembles into rods that encapsulate liposomes or into stacked spiral structures. However, the nature of VIPP1 assemblies in chloroplasts, particularly in Arabidopsis, remains uncharacterized. Here, we expressed Arabidopsis thaliana VIPP1 fused to GFP (AtVIPP1-GFP) in tobacco (Nicotiana tabacum) chloroplasts and performed transmission electron microscopy (TEM). A purified AtVIPP1-GFP fraction was enriched with long filamentous tubule-like structures. Detailed TEM observations of chloroplasts in fixed resin-embedded tissues identified VIPP1 assemblies in situ that appeared to colocalize with GFP fluorescence. Electron tomography demonstrated that the AtVIPP1 oligomers consisted of bundled filaments near membranes, some of which appeared connected to the TM or inner chloroplast envelope at their contact sites. The observed bundles were never detected in wild-type Arabidopsis but were observed in Arabidopsis vipp1 mutants expressing AtVIPP1-GFP. Taken together, we propose that the bundled filaments are the dominant AtVIPP1 oligomers that represent its static state in vivo. en-copyright= kn-copyright= en-aut-name=GachieSarah W en-aut-sei=Gachie en-aut-mei=Sarah W kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MuhireAlexandre en-aut-sei=Muhire en-aut-mei=Alexandre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiDi en-aut-sei=Li en-aut-mei=Di kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawamotoAkihiro en-aut-sei=Kawamoto en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Takeda-KamiyaNoriko en-aut-sei=Takeda-Kamiya en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoYumi en-aut-sei=Goto en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatoMayuko en-aut-sei=Sato en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyookaKiminori en-aut-sei=Toyooka en-aut-mei=Kiminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshimuraRyo en-aut-sei=Yoshimura en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakamiTsuneaki en-aut-sei=Takami en-aut-mei=Tsuneaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ZhangLingang en-aut-sei=Zhang en-aut-mei=Lingang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KurisuGenji en-aut-sei=Kurisu en-aut-mei=Genji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TerachiToru en-aut-sei=Terachi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=5 en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=8 en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=11 en-affil=School of Life Sciences, Inner Mongolia University/Key Laboratory of Herbage and Endemic Crop Biotechnology kn-affil= affil-num=12 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=13 en-affil=Faculty of Life Sciences, Kyoto Sangyo University kn-affil= affil-num=14 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Generation of alkyl radicals via C(sp3)?C(sp3) bond cleavage of xanthene-based precursors for photocatalytic Giese-type reaction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Novel xanthene-based alkyl radical precursors were developed and subjected to photocatalytic C(sp3)?C(sp3) bond cleavage for the efficient generation of alkyl radicals, which were subsequently reacted with various alkenes to afford the corresponding Giese-type products. After the reaction, the produced xanthones can be recovered in high yield. en-copyright= kn-copyright= en-aut-name=HoriuchiShuta en-aut-sei=Horiuchi en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OishiMasato en-aut-sei=Oishi en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizutaniAsuka en-aut-sei=Mizutani en-aut-mei=Asuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=10 article-no= start-page=4724 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250515 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stem Cell Factors BAM1 and WOX1 Suppressing Longitudinal Cell Division of Margin Cells Evoked by Low-Concentration Auxin in Young Cotyledon of Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Highly differentiated tissues and organs play essential biological functions in multicellular organisms. Coordination of organ developmental process with tissue differentiation is necessary to achieve proper development of mature organs, but mechanisms for such coordination are not well understood. We used cotyledon margin cells from Arabidopsis plant as a new model system to investigate cell elongation and cell division during organ growth and found that margin cells endured a developmental phase transition from the gelongationh phase to the gelongation and divisionh phase at the early stage in germinating seedlings. We also discovered that the stem cell factors BARELY ANY MERISTEM 1 (BAM1) and WUSCHEL-related homeobox1 (WOX1) are involved in the regulation of margin cell developmental phase transition. Furthermore, exogenous auxin treatment (1 nanomolar,nM) promotes cell division, especially longitudinal cell division. This promotion of cell division did not occur in bam1 and wox1 mutants. Based on these findings, we hypothesized a new gmoderate auxin concentrationh model which emphasizes that a moderate auxin concentration is the key to triggering the developmental transition of meristematic cells. en-copyright= kn-copyright= en-aut-name=JiangYuli en-aut-sei=Jiang en-aut-mei=Yuli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiangJian en-aut-sei=Liang en-aut-mei=Jian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangChunyan en-aut-sei=Wang en-aut-mei=Chunyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanLi en-aut-sei=Tan en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagawaShingo en-aut-sei=Nagawa en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute for Translational Brain Reaearch, Fudan University kn-affil= affil-num=2 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= en-keyword=BAM1 kn-keyword=BAM1 en-keyword=WOX1 kn-keyword=WOX1 en-keyword=margin cells kn-keyword=margin cells en-keyword=auxin kn-keyword=auxin END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250909 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation en-subtitle= kn-subtitle= en-abstract= kn-abstract=S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis. However, the exact mechanisms by which S100A8/A9 contributes to GC pathogenesis remain unclear. This study investigates the role of S100A8/A9 and its receptor in GC. Immunohistochemical analysis was performed on GC tissue samples to assess the expression of the S100A8/A9 receptor melanoma cell adhesion molecule (MCAM). In vitro transwell migration and invasion assays were used to evaluate the motility and invasiveness of GC cells. Cell proliferation was assessed using a growth assay, and Western blotting (WB) was employed to examine downstream signaling pathways, including ERK and the transcription factor c-Jun, in response to S100A8/A9?MCAM interaction. S100A8/A9 stimulation enhanced both proliferation and migration through MCAM binding in GC cell lines. These cellular events were accompanied by ERK activation and c-Jun induction. Downregulation of MCAM suppressed both ERK phosphorylation and c-Jun expression, highlighting the importance of the S100A8/A9?MCAM?ERK?c-Jun axis in promoting GC progression. These findings indicate that S100A8/A9 contributes to GC progression via MCAM, which activates the ERK?c-Jun pathway. The S100A8/A9?signaling axis may represent a novel therapeutic target in GC. en-copyright= kn-copyright= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YangXu en-aut-sei=Yang en-aut-mei=Xu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PanBo en-aut-sei=Pan en-aut-mei=Bo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WuFangping en-aut-sei=Wu en-aut-mei=Fangping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangXu en-aut-sei=Zhang en-aut-mei=Xu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SagayamaKazumi en-aut-sei=Sagayama en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SunBei en-aut-sei=Sun en-aut-mei=Bei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=2 en-affil=Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=6 en-affil=School of Pharmaceutical Sciences, Zhejiang Chinese Medical University kn-affil= affil-num=7 en-affil=Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=8 en-affil=Faculties of Educational and Research Management Field, Okayama University kn-affil= affil-num=9 en-affil=Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University kn-affil= affil-num=10 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Gastric cancer kn-keyword=Gastric cancer en-keyword=S100 protein kn-keyword=S100 protein en-keyword=MCAM kn-keyword=MCAM en-keyword=Inflammation kn-keyword=Inflammation en-keyword=Metastasis kn-keyword=Metastasis END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of 50 krpm Ultra-High Speed IPMSM For EV Traction en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper develops an ultra-high-speed 50 krpm motor for traction applications. A typical IPMSM structure is used for the rotor in this paper. At ultra-high speeds, the winding structure has a large effect on winding losses. Hence, this paper investigates the AC loss of the winding. The AC loss includes the eddy current loss and circulating current loss in the winding. Additionally, the ultra-high speed raises concerns about the rotor's critical speed. Therefore, in this paper, the shaft of the developed motor is manufactured, and the critical speed is evaluated. en-copyright= kn-copyright= en-aut-name=TsunataRen en-aut-sei=Tsunata en-aut-mei=Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraMasaki en-aut-sei=Kimura en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakemotoMasatsugu en-aut-sei=Takemoto en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImaiJun en-aut-sei=Imai en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=2 en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=3 en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=4 en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= en-keyword=IPMSM kn-keyword=IPMSM en-keyword=winding kn-keyword=winding en-keyword=traction motor kn-keyword=traction motor en-keyword=50 krpm kn-keyword=50 krpm en-keyword=eddy current loss kn-keyword=eddy current loss END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=5 article-no= start-page=6848 end-page=6860 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of SMC Property on Axial-Flux Permanent Magnet Machine in Traction Applications en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper investigates the impact of soft magnetic composite (SMC) properties on an axial flux permanent magnet machine (AFPM) employing ferrite permanent magnet (PM) in traction applications. In general, the efficiency of an AFPM increases as the iron loss of the SMC decreases. However, the torque and output power of the AFPM also decrease at higher speed above the base speed due to the decrease in magnetic permeability because, typically, when the iron loss of an SMC decreases, the permeability also decreases. In this paper, many virtual SMC materials with different iron loss and permeability are used for finite element analysis of the proposed AFPM in order to clarify the sensitivity to SMC characteristics. First, the impact of the permeability on the torque and output power is investigated because the output power is very important in traction applications. Additionally, the total energy loss of AFPMs employing various SMCs is evaluated using the WLTC driving cycle. Furthermore, accuracy of simulation is evaluated using experiments of downscaled and actual size prototypes employing some SMC materials. Finally, this paper shows the newly developed SMC materials and discusses suitable SMC properties from the perspective of efficiency and output power in traction applications. en-copyright= kn-copyright= en-aut-name=TsunataRen en-aut-sei=Tsunata en-aut-mei=Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakemotoMasatsugu en-aut-sei=Takemoto en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ImaiJun en-aut-sei=Imai en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoTatsuya en-aut-sei=Saito en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UenoTomoyuki en-aut-sei=Ueno en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Sumitomo Electric Industries Ltd. kn-affil= affil-num=5 en-affil=Sumitomo Electric Industries Ltd. kn-affil= en-keyword=Axial gap electrical machine kn-keyword=Axial gap electrical machine en-keyword=axial flux electrical machine kn-keyword=axial flux electrical machine en-keyword=traction applications kn-keyword=traction applications en-keyword=soft magnetic composite (SMC) kn-keyword=soft magnetic composite (SMC) en-keyword=WLTC cycle kn-keyword=WLTC cycle en-keyword=ferrite magnet kn-keyword=ferrite magnet en-keyword=carbon fiber rotor kn-keyword=carbon fiber rotor en-keyword=output power kn-keyword=output power en-keyword=permanent magnet kn-keyword=permanent magnet END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue= article-no= start-page=1370 end-page=1386 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250815 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Time-Efficient and Practical Design Method for Skewed PMSMs: Integrating Numerical Calculations With Limited 3-D-FEA en-subtitle= kn-subtitle= en-abstract= kn-abstract=This article proposes a time-efficient and practical design method for determining appropriate skew structures for permanent magnet synchronous motors (PMSMs). Various PMSMs use skew to suppress torque ripple, but 3-D finite element analysis (3-D-FEA) is required in order to accurately determine an appropriate structure for skewed PMSMs, resulting in a long analysis time. Therefore, this article constructs a hybrid analysis method that combines numerical calculations and minimal 3-D-FEA. The aim of this method is to be practical and easy to use, even for novice designers, and to accurately and quickly design skewed PMSMs. In this article, the effectiveness of the proposed method is clarified through several case studies, and then, a skewed PMSM designed using the proposed method is verified experimentally. It is also revealed that suppression of voltage harmonics contributes to improving the performance of PMSMs in experiments. en-copyright= kn-copyright= en-aut-name=TsunataRen en-aut-sei=Tsunata en-aut-mei=Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchimuraYu en-aut-sei=Ichimura en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakemotoMasatsugu en-aut-sei=Takemoto en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImaiJun en-aut-sei=Imai en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Design method kn-keyword=Design method en-keyword=efficiency kn-keyword=efficiency en-keyword=field weakening control kn-keyword=field weakening control en-keyword=interior permanent magnet synchronous motor (IPMSM) kn-keyword=interior permanent magnet synchronous motor (IPMSM) en-keyword=PMSMs kn-keyword=PMSMs en-keyword=skew kn-keyword=skew en-keyword=torque ripple kn-keyword=torque ripple en-keyword=voltage harmonics kn-keyword=voltage harmonics END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=17 article-no= start-page=8145 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250822 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Augmentation of the Benzyl Isothiocyanate-Induced Antiproliferation by NBDHEX in the HCT-116 Human Colorectal Cancer Cell Line en-subtitle= kn-subtitle= en-abstract= kn-abstract=Increased drug metabolism and elimination are prominent mechanisms mediating multidrug resistance (MDR) to not only chemotherapy drugs but also anti-cancer natural products, such as benzyl isothiocyanate (BITC). To evaluate the possibility of combined utilization of a certain compound to overcome this resistance, we focused on glutathione S-transferase (GST)-dependent metabolism of BITC. The pharmacological treatment of a pi-class GST-selective inhibitor, 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX), significantly increased BITC-induced toxicity in human colorectal cancer HCT-116 cells. However, NBDHEX unexpectedly increased the level of the BITC?glutathione (GSH) conjugate as well as BITC-modified proteins, suggesting that NBDHEX might increase BITC-modified protein accumulation by inhibiting BITC?GSH excretion instead of inhibiting GST. Furthermore, NBDHEX significantly potentiated BITC-induced apoptosis with the enhanced activation of apoptosis-related pathways, such as c-Jun N-terminal kinase and caspase-3 pathways. These results suggested that combination treatment with NBDHEX may be an effective way to overcome MDR with drug efflux and thus induce the biological activity of BITC at lower doses. en-copyright= kn-copyright= en-aut-name=SunRuitong en-aut-sei=Sun en-aut-mei=Ruitong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YanoAina en-aut-sei=Yano en-aut-mei=Aina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatohAyano en-aut-sei=Satoh en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraToshiyuki en-aut-sei=Nakamura en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=benzyl isothiocyanate kn-keyword=benzyl isothiocyanate en-keyword=multidrug resistance kn-keyword=multidrug resistance en-keyword=glutathione S-transferase kn-keyword=glutathione S-transferase en-keyword=NBDHEX kn-keyword=NBDHEX en-keyword=apoptosis kn-keyword=apoptosis en-keyword=c-Jun N-terminal kinase kn-keyword=c-Jun N-terminal kinase END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=113544 end-page=113556 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimized Ensemble Deep Learning for Real-Time Intrusion Detection on Resource-Constrained Raspberry Pi Devices en-subtitle= kn-subtitle= en-abstract= kn-abstract=The rapid growth of Internet of Things (IoT) networks has increased security risks, making it essential to have effective Intrusion Detection Systems (IDS) for real-time threat detection. Deep learning techniques offer promising solutions for such detection due to their superior complex pattern recognition and anomaly detection capabilities in large datasets. This paper proposes an optimized ensemble-based IDS designed specifically for efficient deployment on edge hardware. However, deploying such computationally intensive models on resource-limited edge devices remains a significant challenge due to model size and computational overhead on devices with limited processing capabilities. Building upon our previously developed stacked Long Short-Term Memory (LSTM) model integrated with ANOVA feature selection, we optimize it by integrating dual-stage model compression: pruning and quantization to create a lightweight model suitable for real-time inference on Raspberry Pi devices. To evaluate the system under realistic conditions, we combined with a Kafka-based testbed to simulate dynamic IoT environments with variable traffic loads, delays, and multiple simultaneous attack sources. This enables the assessment of detection performance under varying traffic volumes, latency, and overlapping attack scenarios. The proposed system maintains high detection performance with accuracy of 97.3% across all test scenarios, while efficiently leveraging multi-core processing with peak CPU usage reaching 111.8%. These results demonstrate the systemfs practical viability for real-time IoT security at the edge. en-copyright= kn-copyright= en-aut-name=MusthafaMuhammad Bisri en-aut-sei=Musthafa en-aut-mei=Muhammad Bisri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HudaSamsul en-aut-sei=Huda en-aut-mei=Samsul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NguyenTuy Tan en-aut-sei=Nguyen en-aut-mei=Tuy Tan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoderaYuta en-aut-sei=Kodera en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NogamiYasuyuki en-aut-sei=Nogami en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Interdisciplinary Education and Research Field, Okayama University kn-affil= affil-num=3 en-affil=School of Informatics, Computing, and Cyber Systems, Northern Arizona University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Internet of things kn-keyword=Internet of things en-keyword=intrusion detection system kn-keyword=intrusion detection system en-keyword=stacked lstm kn-keyword=stacked lstm en-keyword=pruning model kn-keyword=pruning model en-keyword=optimizing model kn-keyword=optimizing model en-keyword=quantization model kn-keyword=quantization model en-keyword=raspberry pi kn-keyword=raspberry pi en-keyword=real-time detection kn-keyword=real-time detection en-keyword=apache kafka kn-keyword=apache kafka END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=89003 end-page=89024 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Security in Post-Quantum Era: A Comprehensive Survey on Lattice-Based Algorithms en-subtitle= kn-subtitle= en-abstract= kn-abstract=Lattice-based post-quantum cryptography (PQC) has attracted significant attention as a promising solution to the security challenges posed by quantum computing. Unlike traditional cryptographic algorithms, lattice-based schemes are expected to remain secure even in the presence of quantum attacks, making them essential for securing future data. Despite their strong theoretical foundations, lattice-based schemes face several practical challenges, particularly in optimizing performance and scalability for real-world applications. This survey provides a novel taxonomy that categorizes lattice-based PQC designs, with an emphasis on computational paradigms and security considerations. We systematically evaluate lattice-based PQC implementations across both software platforms, including central processing units and graphics processing units, as well as hardware platforms like field-programmable gate arrays and application-specific integrated circuits, highlighting their strengths and limitations. In addition, we explore the practical applications of lattice-based cryptography in fields such as secure communication, critical infrastructure, privacy-preserving data analytics, artificial intelligence, and trust and authentication systems. By offering a comprehensive overview of the current state of lattice-based PQC, this survey aims to provide valuable insights into the ongoing advancements and future research directions in the field as we transition to a post-quantum era. en-copyright= kn-copyright= en-aut-name=NguyenHien en-aut-sei=Nguyen en-aut-mei=Hien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HudaSamsul en-aut-sei=Huda en-aut-mei=Samsul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NogamiYasuyuki en-aut-sei=Nogami en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NguyenTuy Tan en-aut-sei=Nguyen en-aut-mei=Tuy Tan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=School of Informatics, Computing, and Cyber Systems, Northern Arizona University kn-affil= affil-num=2 en-affil=Interdisciplinary Education and Research Field, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=School of Informatics, Computing, and Cyber Systems, Northern Arizona University kn-affil= en-keyword=Post-quantum cryptography kn-keyword=Post-quantum cryptography en-keyword=lattice-based cryptography kn-keyword=lattice-based cryptography en-keyword=number theoretic transform kn-keyword=number theoretic transform en-keyword=hardware and software implementation kn-keyword=hardware and software implementation END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=MATERIAL PROPERTIES OF DIE-CASTING DIE AROUND HEAT-CHECKING CREATED BY A HIGH-PRESSURE ALUMINUM ALLOY DIE-CASTING OPERATION en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, the material properties of a nitride die-casting die exhibiting heat-checking after the die-casting process were experimentally investigated using various methods. Based on the obtained results, the authors believe that several possible mechanisms underlying the formation of heat-checking can be identified. The microstructure of the die-casting die near the heat-checking region is characterized by equiaxed grains along the vicinity of the prior ƒÁ-grain boundaries, resulting from the lath martensitic formation. Additionally, numerous Cr?Mo?V-based nitride particles, approximately 100 nm in diameter, are precipitated. The surface hardness of the die-casting die, enhanced by nitriding, induces compressive residual stresses and increases adhesive forces. As a result of changes in microstructural characteristics and crack formation, the stress state near the die-casting die is altered, where compressive residual stresses, observed in the die-casting die, are released, leading to the tensile residual stresses. This phenomenon could accelerate the formation of a large number of heat-checking cracks. en-copyright= kn-copyright= en-aut-name=OkayasuMitsuhiro en-aut-sei=Okayasu en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimazuJunya en-aut-sei=Shimazu en-aut-mei=Junya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Mechanical Systems Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Mechanical Systems Engineering, Okayama University kn-affil= en-keyword=die-casting kn-keyword=die-casting en-keyword=die kn-keyword=die en-keyword=heat-checking kn-keyword=heat-checking en-keyword=hydrogen embrittlement kn-keyword=hydrogen embrittlement en-keyword=mechanical property kn-keyword=mechanical property END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=4 article-no= start-page=139 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Implementation of Creep Test Assisting System with Dial Gauge Needle Reading and Smart Lighting Function for Laboratory Automation en-subtitle= kn-subtitle= en-abstract= kn-abstract=For decades, analog dial gauges have been essential for measuring and monitoring data at various industrial instruments including production machines and laboratory equipment. Among them, we focus on the instrument for creep test in a mechanical engineering laboratory, which evaluates material strength under sustained stress. Manual reading of gauges imposes significant labor demands, especially in long-duration tests. This burden further increases under low-lighting environments, where poor visibility can lead to misreading data points, potentially compromising the accuracy of test results. In this paper, to address the challenges, we implement a creep test assisting system that possesses the following features: (1) to save the installation cost, a web camera and Raspberry Pi are employed to capture images of the dial gauge and automate the needle reading by image processing in real time, (2) to ensure reliability under low-lighting environments, a smart lighting mechanism is integrated to turn on a supplementary light when the dial gauge is not clearly visible, and (3) to allow a user to stay in a distant place from the instrument during a creep test, material break is detected and the corresponding message is notified to a laboratory staff using LINE automatically. For evaluations, we install the implemented system into a material strength measuring instrument at Okayama University, Japan, and confirm the effectiveness and accuracy through conducting experiments under various lighting conditions. en-copyright= kn-copyright= en-aut-name=KongDezheng en-aut-sei=Kong en-aut-mei=Dezheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FangShihao en-aut-sei=Fang en-aut-mei=Shihao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Noprianto en-aut-sei=Noprianto en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkayasuMitsuhiro en-aut-sei=Okayasu en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PuspitaningayuPradini en-aut-sei=Puspitaningayu en-aut-mei=Pradini kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil= Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil= Department of Electrical Engineering, Universitas Negeri Surabaya kn-affil= en-keyword=creep test kn-keyword=creep test en-keyword=Raspberry Pi kn-keyword=Raspberry Pi en-keyword=dial gauge kn-keyword=dial gauge en-keyword=needle reading kn-keyword=needle reading en-keyword=smart lighting kn-keyword=smart lighting END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue=3 article-no= start-page=1571 end-page=1577 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250203 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Synthesis and Postfunctionalization of Acrylate-Appended Poly(cyclohexene carbonate)s: Modulation of Properties of CO2-Based Polymers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Functional CO2-based polycarbonates are expected to be sustainable materials. Herein, a bifunctional aluminum porphyrin catalyzed the terpolymerization of cyclohexene oxide (CHO), acrylate-appended CHO, and CO2 to provide poly(cyclohexene carbonate)s (PCHCs) with acrylate groups. Postfunctionalization of PCHCs via Michael addition or Heck reaction enabled the incorporation of thiol, amine, and aromatics into PCHCs with high selectivity and efficiency. PCHCs with the flexible long alkyl chains showed a glass-transition temperature (Tg) of down to 52 ‹C, which was much lower than that of PCHC (127 ‹C). In sharp contrast, PCHCs with rigid pyrenyl groups showed Tg values of up to 152 ‹C and fluorescence emission. Thus, a wide range of polymers were obtained by robust and sustainable synthetic methods, and the functional groups modulated the properties of the CO2-based polycarbonates. en-copyright= kn-copyright= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InoueHina en-aut-sei=Inoue en-aut-mei=Hina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=131 cd-vols= no-issue=9 article-no= start-page=744 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250828 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optical and chemical properties of silver tree-like structure treated with gold galvanic substitution en-subtitle= kn-subtitle= en-abstract= kn-abstract=Galvanic gold substitution was executed in the presence of trisodium citrate on silver tree-like structures. No discernible difference in geometry was observed between the pre- and post-gold substitution phases, which benefited from the presence of citrate ions. The extent of gold substitution was regulated by the amount of gold ion solution added. After the gold substitution, an increase in extinction was observed in the ultraviolet region, indicating that gold was deposited at the surface. Raman scattering of para-toluenethiol was measured on the gold/silver tree-like structures at 488 nm excitations, where a decrease in the Raman peak intensity was observed as the quantity of gold ion solution increased. The results indicated that the optical property of silver was lost due to the increase of the amount of gold deposition. Concurrently, an investigation was conducted into the chemical resistance of the gold/silver tree-like structures, which was evaluated by measuring the resistivity inverse-proportional to the amount of silver ions dissolved by the diluted nitric acid. As the amount of gold ion solution added increased, the resistivity increased and became constant. The result implied that the surface chemical property had undergone a complete transformation into gold. en-copyright= kn-copyright= en-aut-name=HondaKazushi en-aut-sei=Honda en-aut-mei=Kazushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeyasuNobuyuki en-aut-sei=Takeyasu en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Gold/silver tree-like structures kn-keyword=Gold/silver tree-like structures en-keyword=Galvanic substitution kn-keyword=Galvanic substitution en-keyword=SERS kn-keyword=SERS en-keyword=Raman mapping kn-keyword=Raman mapping END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=5 article-no= start-page=513 end-page=514 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250828 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Illuminating DNA repair in action: structural insights into a photocaged glycosylase complex en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=X-ray free-electron lasers kn-keyword=X-ray free-electron lasers en-keyword=XFELs kn-keyword=XFELs en-keyword=time-resolved crystallography kn-keyword=time-resolved crystallography en-keyword=DNA repair kn-keyword=DNA repair en-keyword=hOGG1 kn-keyword=hOGG1 en-keyword=photocaged substrate analogs kn-keyword=photocaged substrate analogs END start-ver=1.4 cd-journal=joma no-vol=287 cd-vols= no-issue= article-no= start-page=117674 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A plant-insertable multi-enzyme biosensor for the real-time monitoring of stomatal sucrose uptake en-subtitle= kn-subtitle= en-abstract= kn-abstract=Monitoring sucrose transport in plants is essential for understanding plant physiology and improving agricultural practices, yet effective sensors for continuous and real-time in-vivo monitoring are lacking. In this study, we developed a plant-insertable sucrose sensor capable of real-time sucrose concentration monitoring and demonstrated its application as a useful tool for plant research by monitoring the sugar-translocating path from leaves to the lower portion of plants through the stem in living plants. The biosensor consists of a bilirubin oxidase-based biocathode and a needle-type bioanode integrating glucose oxidase, invertase, and mutarotase, with the two electrodes separated by an agarose gel for ionic connection. The sensor exhibits a sensitivity of 6.22 ƒÊA mM?1 cm?2, a limit of detection of 100 ƒÊM, a detection range up to 60 mM, and a response time of 90 s at 100 ƒÊM sucrose. Additionally, the sensor retained 86 % of its initial signal after 72 h of continuous measurement. Day-night monitoring from the biosensor inserted in strawberry guava (Psidium cattleianum) showed higher sucrose transport activity at night, following well the redistribution of photosynthetically produced sugars. In addition, by monitoring the forced translocation of sucrose dissolved in the stable isotopically labeled water, we demonstrated that a young seedling of Japanese cedar known as Sugi (Cryptomeria japonica) can absorb and transport both water and sucrose through light-dependently opened stomata, which is the recently revealed path for liquid uptake by higher plants. These findings highlight the potential of our sensor for studying dynamic plant processes and its applicability in real-time monitoring of sugar transport under diverse environmental conditions. en-copyright= kn-copyright= en-aut-name=WuShiqi en-aut-sei=Wu en-aut-mei=Shiqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakagawaWakutaka en-aut-sei=Nakagawa en-aut-mei=Wakutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriYuki en-aut-sei=Mori en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AzhariSaman en-aut-sei=Azhari en-aut-mei=Saman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=M?hesG?bor en-aut-sei=M?hes en-aut-mei=G?bor kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawanoTomonori en-aut-sei=Kawano en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyakeTakeo en-aut-sei=Miyake en-aut-mei=Takeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=2 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=3 en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu kn-affil= affil-num=4 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=5 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu kn-affil= affil-num=8 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= en-keyword=Flexible wearable sensor kn-keyword=Flexible wearable sensor en-keyword=Plant monitoring kn-keyword=Plant monitoring en-keyword=Carbon fiber kn-keyword=Carbon fiber en-keyword=Multi-enzyme system kn-keyword=Multi-enzyme system END start-ver=1.4 cd-journal=joma no-vol=2892 cd-vols= no-issue= article-no= start-page=012002 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal Grain Rotation during Tensile Test of Polycrystalline Pure Titanium Thin Sheet Based on Surface Height and Crystal Orientation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thin sheets and wires of polycrystalline pure titanium are important materials for various devices used in electrical, mechanical, dental, and medical fields. Since pure titanium shows strong anisotropy in elastic and plastic deformation, and the individual grains comprising a polycrystalline body have different orientations and geometries, inhomogeneous deformation always occurs on the microscopic scale. This inhomogeneity is more significant in thin films than in bulk materials. It is therefore important to investigate the inhomogeneous deformation of pure titanium thin sheets to ensure the reliability of various titanium devices. In this study, thin-sheet specimens made of polycrystalline pure titanium were subjected to tensile testing. Inhomogeneous deformation was evaluated on the basis of two kinds of crystal grain rotations based on surface height and crystal orientation. The results under elastic and plastic tensile conditions were compared. en-copyright= kn-copyright= en-aut-name=TadaNaoya en-aut-sei=Tada en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhashiHiroaki en-aut-sei=Ohashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemoriTakeshi en-aut-sei=Uemori en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoJunji en-aut-sei=Sakamoto en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=S1 article-no= start-page=7 end-page=12 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Basic biology is not just gfor the birdsh: how avian studies have informed us about vertebrate reproduction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Avian reproductive physiology has been studied for centuries, largely because of the importance of birds as food animals. It is likely that the ubiquity and ease of access to domesticated chickens led to them being used in some of the first experiments on transplantation of endocrine structures?in this case, the testes. Since then, study of seasonal changes in reproductive physiology (photoperiodism) in different orders of bird species has led to advances in the understanding of endocrine regulation of reproductive physiology and behavior. These include mechanisms of adult neuroplasticity, sexual selection, sperm competition, stress physiology, and circadian physiology. Here, we focus mainly on the discovery in birds of a neuropeptide named gonadotropin-inhibitory hormone that mostly has inhibitory effects on reproduction. This hormone has since been shown to exist in all mammals studied to date, including humans (it is known as RFamide-related peptide in mammals). We discuss the history and implications of avian studies on gonadotropin-inhibitory hormone/RFamide-related peptide for human reproductive biology. en-copyright= kn-copyright= en-aut-name=BentleyGeorge E. en-aut-sei=Bentley en-aut-mei=George E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AizawaSayaka en-aut-sei=Aizawa en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=GnRH kn-keyword=GnRH en-keyword=GnIH kn-keyword=GnIH en-keyword=RFamide kn-keyword=RFamide END start-ver=1.4 cd-journal=joma no-vol=1863 cd-vols= no-issue= article-no= start-page=149752 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spearmint extract Neumentix downregulates amyloid-ƒÀ accumulation by promoting phagocytosis in APP23 mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=In recent years, many researchers have focused on natural compounds that can effectively delay symptoms of Alzheimerfs disease (AD). The spearmint extract Neumentix, which is rich in phenolic compounds, has been shown to reduce inflammatory responses and oxidative stress in mice. However, the effect of Neumentix on AD has not been thoroughly studied. In this study, APP23 transgenic female and male mice were administered Neumentix orally from 4 to 18 months of age at a dosage of 2.65 g/kg/day (containing 0.41 g/kg/day of rosmarinic acid). The impact was evaluated by behavioral tests and histological analyses and compared with APP23 mice to which Neumentix was not administered. The results showed that Neumentix administration increased the survival rate of APP23 mice and effectively reduced AƒÀ accumulation by enhancing its phagocytosis by microglial cells. These findings suggest that Neumentix is a potential natural nutritional treatment for improving the progression of AD. en-copyright= kn-copyright= en-aut-name=HuXinran en-aut-sei=Hu en-aut-mei=Xinran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BianYuting en-aut-sei=Bian en-aut-mei=Yuting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SunHongming en-aut-sei=Sun en-aut-mei=Hongming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Ota-ElliottRicardo Satoshi en-aut-sei=Ota-Elliott en-aut-mei=Ricardo Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=National Center Hospital, National Center of Neurology and Psychiatry kn-affil= affil-num=9 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Alzheimer's disease kn-keyword=Alzheimer's disease en-keyword=Amyloid-beta kn-keyword=Amyloid-beta en-keyword=Inflammation kn-keyword=Inflammation en-keyword=Neumentix kn-keyword=Neumentix en-keyword=Phagocytosis kn-keyword=Phagocytosis en-keyword=Survival rate kn-keyword=Survival rate END start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue=8 article-no= start-page=1217 end-page=1226 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250527 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microbial biotransformation of proteins into amino acids in unpolished Thai and polished Japanese rice varieties cultivated with distinct industrial strains of koji mold en-subtitle= kn-subtitle= en-abstract= kn-abstract=We previously reported the cultivation of industrial koji mold strains to produce unpolished Thai-colored rice kojis. These kojis, along with those made from unpolished Thai white rice and polished Japanese white rice, showed increased polyphenol content after cultivation, with the highest levels observed in unpolished Thai-colored rice kojis. In this study, an increase in both proteinogenic and non-proteinogenic amino acid contents, particularly ƒÁ-aminobutyric acid (GABA) content, was observed in both unpolished Thai and polished Japanese rice kojis, suggesting the ability of koji mold in the biotransformation of proteins. This increase was almost comparable even when using different rice varieties; in contrast, it varied depending on the koji mold strain used. The observed increase in both polyphenol and functional amino acid contents, especially GABA content, highlights the potential of unpolished Thai and polished Japanese rice kojis, particularly unpolished Thai-colored rice koji, as multifunctional materials, benefiting from polyphenol and amino acid functionalities. en-copyright= kn-copyright= en-aut-name=JitpakdeeJirayu en-aut-sei=Jitpakdee en-aut-mei=Jirayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ItoKazunari en-aut-sei=Ito en-aut-mei=Kazunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaninoYuka en-aut-sei=Tanino en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakeuchiHayato en-aut-sei=Takeuchi en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamashitaHideyuki en-aut-sei=Yamashita en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagawaTakuro en-aut-sei=Nakagawa en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NitodaTeruhiko en-aut-sei=Nitoda en-aut-mei=Teruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanzakiHiroshi en-aut-sei=Kanzaki en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Industrial Technology Center of Okayama Prefecture kn-affil= affil-num=3 en-affil=Industrial Technology Center of Okayama Prefecture kn-affil= affil-num=4 en-affil=Industrial Technology Center of Okayama Prefecture kn-affil= affil-num=5 en-affil=Higuchi Matsunosuke Shoten Co., Ltd. kn-affil= affil-num=6 en-affil=Higuchi Matsunosuke Shoten Co., Ltd. kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Amino acid kn-keyword=Amino acid en-keyword=GABA kn-keyword=GABA en-keyword=koji mold kn-keyword=koji mold en-keyword=rice koji kn-keyword=rice koji en-keyword=Thai-colored rice kn-keyword=Thai-colored rice END start-ver=1.4 cd-journal=joma no-vol=98 cd-vols= no-issue=6 article-no= start-page=uoaf044 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes for the regio- and diastereoselective synthesis of multisubstituted halogenocyclobutanes en-subtitle= kn-subtitle= en-abstract= kn-abstract=The redox potential is an important factor for controlling the outcome of photoredox catalysis. Particularly, the selective oxidation of substrates and the control over the reactions are challenging when using photoredox catalysts that have high excited-state reduction potentials. In this study, a redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes using a thioxanthylium organophotoredox (TXT) catalyst has been developed. This TXT catalyst selectively oxidizes ƒÀ-halogenostyrenes and smoothly promotes the subsequent intermolecular [2 + 2] cycloadditions to give multisubstituted halogenocyclobutanes with excellent regio- and diastereoselectivity, which has not been effectively achieved by the hitherto reported representative photoredox catalysts. The synthesized halogenocyclobutanes exhibit interesting free radical scavenging activity. The present reaction contributes to the field of redox-potential-controlled electron transfer chemistry. en-copyright= kn-copyright= en-aut-name=MizutaniAsuka en-aut-sei=Mizutani en-aut-mei=Asuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoMomo en-aut-sei=Kondo en-aut-mei=Momo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ItakuraShoko en-aut-sei=Itakura en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoshinoYujiro en-aut-sei=Hoshino en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishikawaMakiya en-aut-sei=Nishikawa en-aut-mei=Makiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KusamoriKosuke en-aut-sei=Kusamori en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=3 en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environment and Information Sciences, Yokohama National University kn-affil= affil-num=6 en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=redox potential kn-keyword=redox potential en-keyword=photoredox catalysis kn-keyword=photoredox catalysis en-keyword=[2 + 2] cycloaddition kn-keyword=[2 + 2] cycloaddition END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250813 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The stress?strain behavior of poly(methyl acrylate) microparticle-based polymers determined via optical microscopy en-subtitle= kn-subtitle= en-abstract= kn-abstract=The structural integrity of microparticle-based films is maintained through interpenetration of the superficial polymer chains of the microparticles that physically crosslink neighboring microparticles. This structural feature is fundamentally different from those of conventional polymers prepared by solvent casting or bulk polymerization. To understand the mechanical properties of such microparticle-based films, it is necessary to investigate the behavior of their constituent particles. However, methods are still being developed to evaluate microscale structural changes in microparticle-based films during the stretching process leading to film fracture. In this study, we propose a method that combines a stretching stage with optical microscopy to investigate the changes in particle morphology and its positional relationship with surrounding particles during uniaxial tensile tests on microparticle-based films. In a film consisting of cross-linked poly(methyl acrylate) microparticles, the deformation of the particles deviated from affine deformation due to the cross-linked structure. However, the deformation of a group of several (local) particles was confirmed to be location-dependent and larger than that of each particle forming the film. The method established here can be used to contribute to the design of tough microparticle-based films. en-copyright= kn-copyright= en-aut-name=NishizawaYuichiro en-aut-sei=Nishizawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawamuraYuto en-aut-sei=Kawamura en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasakiYuma en-aut-sei=Sasaki en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=raduate School of Textile Science & Technology, Shinshu University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=140 cd-vols= no-issue= article-no= start-page=745 end-page=776 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Advances in filler-crosslinked membranes for hydrogen fuel cells in sustainable energy generation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fuel cell membranes can be used in various ways to achieve zero-emission transport and energy systems, which offer a promising way to power production due to their higher efficiency compared to the internal combustion engine and the eco-environment. Perfluoro sulfonic acid membranes used for proton exchange membranes (PEMs) have certain drawbacks, like higher fuel permeability and expense, lower mechanical and chemical durability, and proton conductivity under low humidity and above 80 ‹C temperature. Researchers have drawn their attention to the production of polymer electrolyte membranes with higher proton conductivity, thermal and chemical resilience, maximum power density, lower fuel permeability, and lower expense. For sustainable clean energy generation, a review covering the most useful features of advanced material-associated membranes would be of great benefit to all interested communities. This paper endeavors to explore several types of novel inorganic fillers and crosslinking agents, which have been incorporated into membrane matrices to design the desired properties for an advanced fuel cell system. Membrane parameters such as proton conductivity, the ability of H2 transport, and the stability of the membrane are described. Research directions for developing fuel cell membranes are addressed based on several challenges suggested. The technological advancement of nanostructured materials for fuel cell applications is believed to significantly promote the future clean energy generation technology in practice. en-copyright= kn-copyright= en-aut-name=IslamAminul en-aut-sei=Islam en-aut-mei=Aminul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShahriarMamun en-aut-sei=Shahriar en-aut-mei=Mamun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IslamMd. Tarekul en-aut-sei=Islam en-aut-mei=Md. Tarekul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TeoSiow Hwa en-aut-sei=Teo en-aut-mei=Siow Hwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KhanM. Azizur R. en-aut-sei=Khan en-aut-mei=M. Azizur R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Taufiq-YapYun Hin en-aut-sei=Taufiq-Yap en-aut-mei=Yun Hin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MohantaSuman C. en-aut-sei=Mohanta en-aut-mei=Suman C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RehanAriyan Islam en-aut-sei=Rehan en-aut-mei=Ariyan Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=RaseeAdiba Islam en-aut-sei=Rasee en-aut-mei=Adiba Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KubraKhadiza Tul en-aut-sei=Kubra en-aut-mei=Khadiza Tul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HasanMd. Munjur en-aut-sei=Hasan en-aut-mei=Md. Munjur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SalmanMd. Shad en-aut-sei=Salman en-aut-mei=Md. Shad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WaliullahR.M. en-aut-sei=Waliullah en-aut-mei=R.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HasanMd. Nazmul en-aut-sei=Hasan en-aut-mei=Md. Nazmul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SheikhMd. Chanmiya en-aut-sei=Sheikh en-aut-mei=Md. Chanmiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=UchidaTetsuya en-aut-sei=Uchida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=AwualMrs Eti en-aut-sei=Awual en-aut-mei=Mrs Eti kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=HossainMohammed Sohrab en-aut-sei=Hossain en-aut-mei=Mohammed Sohrab kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ZnadHussein en-aut-sei=Znad en-aut-mei=Hussein kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=AwualMd. Rabiul en-aut-sei=Awual en-aut-mei=Md. Rabiul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=2 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=3 en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology kn-affil= affil-num=4 en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah kn-affil= affil-num=5 en-affil=Department of Chemistry, Jashore University of Science and Technology kn-affil= affil-num=6 en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia kn-affil= affil-num=7 en-affil=Department of Chemistry, Jashore University of Science and Technology kn-affil= affil-num=8 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=10 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=11 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=12 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=13 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=14 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=15 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=18 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=19 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= affil-num=20 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= en-keyword=Advanced materials kn-keyword=Advanced materials en-keyword=Fuel cell kn-keyword=Fuel cell en-keyword=Hydrogen gas generation kn-keyword=Hydrogen gas generation en-keyword=Proton exchange membrane kn-keyword=Proton exchange membrane en-keyword=Polymer kn-keyword=Polymer END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue= article-no= start-page=173 end-page=211 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Next frontier in photocatalytic hydrogen production through CdS heterojunctions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photocatalytic hydrogen (H?) generation via solar-powered water splitting represents a sustainable solution to the global energy crisis. Cadmium sulfide (CdS) has emerged as a promising semiconductor photocatalyst due to its tunable bandgap, high physicochemical stability, cost-effectiveness, and widespread availability. This review systematically examines recent advancements in CdS-based heterojunctions, categorized into CdS-metal (Schottky), CdS-semiconductor (p-n, Z-scheme, S-scheme), and CdS-carbon heterojunctions. Various strategies employed to enhance photocatalytic efficiency and stability are discussed, including band structure engineering, surface modification, and the incorporation of crosslinked architectures. A critical evaluation of the underlying photocatalytic mechanisms highlights recent efforts to improve charge separation and photostability under operational conditions. This review highlights the challenges and opportunities in advancing CdS-based photocatalysts and provides a direction for future research. The insights presented aim to accelerate the development of efficient and durable CdS-based photocatalysts for sustainable H? production. en-copyright= kn-copyright= en-aut-name=IslamAminul en-aut-sei=Islam en-aut-mei=Aminul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MalekAbdul en-aut-sei=Malek en-aut-mei=Abdul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IslamMd. Tarekul en-aut-sei=Islam en-aut-mei=Md. Tarekul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NipaFarzana Yeasmin en-aut-sei=Nipa en-aut-mei=Farzana Yeasmin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RaihanObayed en-aut-sei=Raihan en-aut-mei=Obayed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MahmudHasan en-aut-sei=Mahmud en-aut-mei=Hasan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UddinMd. Elias en-aut-sei=Uddin en-aut-mei=Md. Elias kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IbrahimMohd Lokman en-aut-sei=Ibrahim en-aut-mei=Mohd Lokman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Abdulkareem-AlsultanG. en-aut-sei=Abdulkareem-Alsultan en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MondalAlam Hossain en-aut-sei=Mondal en-aut-mei=Alam Hossain kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HasanMd. Munjur en-aut-sei=Hasan en-aut-mei=Md. Munjur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SalmanMd. Shad en-aut-sei=Salman en-aut-mei=Md. Shad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KubraKhadiza Tul en-aut-sei=Kubra en-aut-mei=Khadiza Tul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HasanMd. Nazmul en-aut-sei=Hasan en-aut-mei=Md. Nazmul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SheikhMd. Chanmiya en-aut-sei=Sheikh en-aut-mei=Md. Chanmiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=UchidaTetsuya en-aut-sei=Uchida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=RaseeAdiba Islam en-aut-sei=Rasee en-aut-mei=Adiba Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=RehanAriyan Islam en-aut-sei=Rehan en-aut-mei=Ariyan Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=AwualMrs Eti en-aut-sei=Awual en-aut-mei=Mrs Eti kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HossainMohammed Sohrab en-aut-sei=Hossain en-aut-mei=Mohammed Sohrab kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=WaliullahR.M. en-aut-sei=Waliullah en-aut-mei=R.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=AwualMd. Rabiul en-aut-sei=Awual en-aut-mei=Md. Rabiul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=2 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=3 en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology kn-affil= affil-num=4 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=5 en-affil=Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University kn-affil= affil-num=6 en-affil=Bangladesh Energy and Power Research Council (BEPRC) kn-affil= affil-num=7 en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology kn-affil= affil-num=8 en-affil=School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA kn-affil= affil-num=9 en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia kn-affil= affil-num=10 en-affil=USAID - Bangladesh Advancing Development and Growth through Energy (BADGE) Project, Tetra Tech kn-affil= affil-num=11 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=12 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=13 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=14 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=15 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=18 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=19 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=20 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=21 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=22 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= en-keyword=H2 kn-keyword=H2 en-keyword=Sustainability kn-keyword=Sustainability en-keyword=Photocatalytic kn-keyword=Photocatalytic en-keyword=Photo-stability kn-keyword=Photo-stability en-keyword=Heterojunction kn-keyword=Heterojunction en-keyword=CdS kn-keyword=CdS END start-ver=1.4 cd-journal=joma no-vol=390 cd-vols= no-issue= article-no= start-page=116594 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Extension-type flexible pneumatic actuator with a large extension force using a cross-link mechanism based on pantographs en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, we propose an extension-type flexible pneumatic actuator (EFPA) with a high extension force and no buckling. In a previous study, soft actuators that extended in the axial direction by applying a supply pressure were unable to generate the extensionfs pushing force because the actuators buckled owing to their high flexibility. To generate a pushing force, the circumferential stiffness of an extension-type flexible soft actuator must be reinforced. Therefore, a cross-linked EFPA (CL-EFPA) was developed, inspired by a pantograph that restrains the EFPA three-dimensionally using the proposed link mechanism. The proposed CL-EFPA consists of three EFPAs and a cross-linking mechanism for integrating each EFPA circumference. The pushing force of the CL-EFPA is approximately 3.0 times compared with that generated by the previous EFPA with plates to restrain its plane. To perform various bending motions, attitude control was performed using an analytical model and a system that included valves, sensors, and controllers. en-copyright= kn-copyright= en-aut-name=ShimookaSo en-aut-sei=Shimooka en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TadachiKazuma en-aut-sei=Tadachi en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KamegawaTetsushi en-aut-sei=Kamegawa en-aut-mei=Tetsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Mechanical and Systems Engineering Program, School of Engineering, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Soft robot kn-keyword=Soft robot en-keyword=Extension soft actuator kn-keyword=Extension soft actuator en-keyword=Link mechanism kn-keyword=Link mechanism en-keyword=Pantograph kn-keyword=Pantograph en-keyword=Attitude control kn-keyword=Attitude control END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=From sewage sludge to agriculture: governmental initiatives, technologies, and sustainable practices in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sewage sludge (SS), an underutilized but valuable resource for agriculture, contains essential nutrients, such as phosphorus. In Japan, where dependence on imported fertilizers is high and global price fluctuations persist, using SS as fertilizer presents a sustainable alternative aligned with circular economy goals. This review analyzes Japanfs current efforts to repurpose SS, focusing on technological developments and key policy initiatives that promote safe and effective application. Selective phosphorus recovery technologies mitigate resource depletion, while holistic approaches, such as composting and carbonization, maximize sludge utilization for agricultural applications. Government-led initiatives, including public awareness campaigns, quality assurance standards and research support, have facilitated the adoption of sludge-based fertilizers. To contextualize Japanfs position, international trends, particularly in the EU, are also examined. These comparisons reveal both common strategies and areas for policy and technological advancement, especially regarding regulation of emerging contaminants. By integrating national case studies with global perspectives, the study offers insights into the economic, environmental, and social benefits of SS reuse, contributing to Japanfs goals of resource self-sufficiency and carbon neutrality, while also informing broader sustainable agriculture transitions worldwide. en-copyright= kn-copyright= en-aut-name=NguyenThu Huong en-aut-sei=Nguyen en-aut-mei=Thu Huong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraTaku en-aut-sei=Fujiwara en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamashitaHiromasa en-aut-sei=Yamashita en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TogawaHironori en-aut-sei=Togawa en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyakeHaruo en-aut-sei=Miyake en-aut-mei=Haruo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoMasako en-aut-sei=Goto en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagareHideaki en-aut-sei=Nagare en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraMasato en-aut-sei=Nakamura en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OritateFumiko en-aut-sei=Oritate en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IharaHirotaka en-aut-sei=Ihara en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Engineering, Kyoto University kn-affil= affil-num=2 en-affil=Graduate School of Engineering, Kyoto University kn-affil= affil-num=3 en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management kn-affil= affil-num=4 en-affil=Water Supply and Sewerage Department, National Institute for Land and Infrastructure Management kn-affil= affil-num=5 en-affil=R & D Department, Japan Sewage Works Agency kn-affil= affil-num=6 en-affil=1St Research Department, Japan Institute of Wastewater Engineering and Technology kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Institute for Rural Engineering, NARO kn-affil= affil-num=9 en-affil=Institute for Rural Engineering, NARO kn-affil= affil-num=10 en-affil=Institute for Agro-Environmental Sciences, NARO kn-affil= affil-num=11 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Japan kn-keyword=Japan en-keyword=Sewage sludge kn-keyword=Sewage sludge en-keyword=Agriculture kn-keyword=Agriculture en-keyword=Sludge fertilizers kn-keyword=Sludge fertilizers en-keyword=Governmental initiatives kn-keyword=Governmental initiatives END start-ver=1.4 cd-journal=joma no-vol=343 cd-vols= no-issue= article-no= start-page=103558 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Progress in silicon-based materials for emerging solar-powered green hydrogen (H2) production en-subtitle= kn-subtitle= en-abstract= kn-abstract=The imperative demand for sustainable and renewable energy solutions has precipitated profound scientific investigations into photocatalysts designed for the processes of water splitting and hydrogen fuel generation. The abundance, low toxicity, high conductivity, and cost-effectiveness of silicon-based compounds make them attractive candidates for hydrogen production, driving ongoing research and technological advancements. Developing an effective synthesis method that is simple, economically feasible, and environmentally friendly is crucial for the widespread implementation of silicon-based heterojunctions for sustainable hydrogen production. Balancing the performance benefits with the economic and environmental considerations is a key challenge in the development of these systems. The specific performance of each catalyst type can vary depending on the synthesis method, surface modifications, catalyst loading, and reaction conditions. The confluence of high crystallinity, reduced oxygen concentration, and calcination temperature within the silicon nanoparticle has significantly contributed to its noteworthy hydrogen evolution rate. This review provides an up-to-date evaluation of Si-based photocatalysts, summarizing recent developments, guiding future research directions, and identifying areas that require further investigation. By combining theoretical insights and experimental findings, this review offers a comprehensive understanding of Si-based photocatalysts for water splitting. Through a comprehensive analysis, it aims to elucidate existing knowledge gaps and inspire future research directions towards optimized photocatalytic performance and scalability, ultimately contributing to the realization of sustainable hydrogen generation. en-copyright= kn-copyright= en-aut-name=IslamAminul en-aut-sei=Islam en-aut-mei=Aminul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IslamMd. Tarekul en-aut-sei=Islam en-aut-mei=Md. Tarekul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TeoSiow Hwa en-aut-sei=Teo en-aut-mei=Siow Hwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MahmudHasan en-aut-sei=Mahmud en-aut-mei=Hasan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SwarazA.M. en-aut-sei=Swaraz en-aut-mei=A.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RehanAriyan Islam en-aut-sei=Rehan en-aut-mei=Ariyan Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=RaseeAdiba Islam en-aut-sei=Rasee en-aut-mei=Adiba Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubraKhadiza Tul en-aut-sei=Kubra en-aut-mei=Khadiza Tul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HasanMd. Munjur en-aut-sei=Hasan en-aut-mei=Md. Munjur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SalmanMd. Shad en-aut-sei=Salman en-aut-mei=Md. Shad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WaliullahR.M. en-aut-sei=Waliullah en-aut-mei=R.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HasanMd. Nazmul en-aut-sei=Hasan en-aut-mei=Md. Nazmul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SheikhMd. Chanmiya en-aut-sei=Sheikh en-aut-mei=Md. Chanmiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=UchidaTetsuya en-aut-sei=Uchida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AwualMrs Eti en-aut-sei=Awual en-aut-mei=Mrs Eti kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HossainMohammed Sohrab en-aut-sei=Hossain en-aut-mei=Mohammed Sohrab kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ZnadHussein en-aut-sei=Znad en-aut-mei=Hussein kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=AwualMd. Rabiul en-aut-sei=Awual en-aut-mei=Md. Rabiul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=2 en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology kn-affil= affil-num=3 en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah kn-affil= affil-num=4 en-affil=Bangladesh Energy and Power Research Council (BEPRC) kn-affil= affil-num=5 en-affil=Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology kn-affil= affil-num=6 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=8 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=9 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=10 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=11 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=12 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=13 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=14 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=15 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=16 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=17 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= affil-num=18 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= en-keyword=Silicon-based materials kn-keyword=Silicon-based materials en-keyword=Water splitting kn-keyword=Water splitting en-keyword=Hydrogen kn-keyword=Hydrogen en-keyword=Sustainable kn-keyword=Sustainable en-keyword=Clean and renewable energy kn-keyword=Clean and renewable energy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250810 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elucidation of the relationship between solid]state photoluminescence and crystal structures in 2,6]substituted naphthalene derivatives en-subtitle= kn-subtitle= en-abstract= kn-abstract=Polycyclic aromatic hydrocarbons (PAHs) are known to exhibit fluorescence in solution, but generally do not emit in the solid state, with the notable exception of anthracene. We previously reported that PAHs containing multiple chromophores show solid-state emission, and we have investigated the relationship between their crystal structures and photoluminescence properties. In particular, PAHs with herringbone-type crystal packing, such as 2,6-diphenylnaphthalene (DPhNp), which has a slender and elongated molecular structure, exhibits red-shifted solid-state fluorescence spectra relative to their solution-phase counterparts. In this study, we synthesized 2,6-naphthalene derivatives bearing phenyl and/or pyridyl substituents (PhPyNp and DPyNp) and observed distinct, red-shifted emission in the solid state compared with that in solution. Crystallographic analysis revealed that both PhPyNp and DPyNp adopt herringbone packing motifs. These findings support our hypothesis that the spectral characteristics of PAH emission are closely linked to crystal packing arrangements, providing a useful strategy for screening PAH candidates for applications in organic semiconducting materials. en-copyright= kn-copyright= en-aut-name=YamajiMinoru en-aut-sei=Yamaji en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshikawaIsao en-aut-sei=Yoshikawa en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MutaiToshiki en-aut-sei=Mutai en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoujouHirohiko en-aut-sei=Houjou en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GotoKenta en-aut-sei=Goto en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaniFumito en-aut-sei=Tani en-aut-mei=Fumito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzukiKengo en-aut-sei=Suzuki en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkamotoHideki en-aut-sei=Okamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Division of Materials and Environment, Graduate School of Science and Engineering, Gunma University kn-affil= affil-num=2 en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=3 en-affil=Technology Transfer Service Corporation kn-affil= affil-num=4 en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=5 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=6 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=7 en-affil=Hamamatsu Photonics K.K kn-affil= affil-num=8 en-affil=Department of Chemistry, Faculty of Environment, Life, Natural Sciences and Technology, Okayama University kn-affil= en-keyword=herringbone kn-keyword=herringbone en-keyword=polycyclic aromatic hydrocarbon kn-keyword=polycyclic aromatic hydrocarbon en-keyword=solid-state emission kn-keyword=solid-state emission END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=2 article-no= start-page=71 end-page=81 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study on the Removal Technology of Trichloramine from Drinking Water Using Ultraviolet Light en-subtitle= kn-subtitle= en-abstract= kn-abstract=Trichloramine (NCl3) is an inorganic chloramine that causes a pungent chlorine-like odor, and it is difficult to remove its precursors (nitrogen organic compounds and/or ammonia) completely from water. Powdered activated carbon, ozonation, and UV treatment have been applied for decomposing NCl3, but free chlorine was also decomposed. So, it is necessary to develop a technique that can selectively control NCl3 without losing free chlorine. UV light-emitting diodes (265, 280, and 300?nm) and plasma emission UV sheet (347 } 52?nm, hereafter 350?nm) were compared to find the optimal wavelengths that decompose NCl3 but not free chlorine. As a result, 90.6, 96.7, 92.5, and 77.8% of NCl3 were removed at 265, 280, 300 (3,600?mJ/cm2), and 350?nm (14,400?mJ/cm2), respectively. On the other hand, free chlorine at neutral pH (hypochlorous acid is dominant) and slightly alkaline pH (hypochlorite ion is dominant) was not decomposed at 350?nm, but at other wavelengths (i.e., 265, 280, and 300?nm) the removals were more than 64%. Therefore, UV radiation at 350?nm can be candidates to remove NCl3 while maintaining free chlorine. However, this method requires high input energy, and further study is needed for evaluating the practical applicability of this method by considering optimal reactor design. en-copyright= kn-copyright= en-aut-name=HashiguchiAyumi en-aut-sei=Hashiguchi en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaShiho en-aut-sei=Yoshida en-aut-mei=Shiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EchigoShinya en-aut-sei=Echigo en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakanamiRyohei en-aut-sei=Takanami en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagareHideaki en-aut-sei=Nagare en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Shimane University kn-affil= affil-num=3 en-affil=Graduate School of Global Environmental Studies, Kyoto University kn-affil= affil-num=4 en-affil=Faculty of Design Technology, Osaka Sangyo University kn-affil= affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=trichloramine kn-keyword=trichloramine en-keyword=disinfection byproducts kn-keyword=disinfection byproducts en-keyword=drinking water kn-keyword=drinking water en-keyword=ultraviolet light kn-keyword=ultraviolet light END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=1 article-no= start-page=43 end-page=53 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fan-Shaped Pneumatic Soft Actuator that Can Operate Bending Motion for Ankle-Joint Rehabilitation Device en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, owing to declining birthrates and an aging population, patients and the elderly requiring rehabilitation are not getting enough physical activity. In addressing this issue, devices for rehabilitating them have been researched and developed. However, rehabilitation devices are almost exclusively used for patients who can get up, rather than those who are bedridden. In this study, we aim to develop a rehabilitation device that can provide passive exercise for bedridden patients. The ankle joint was selected as the target joint because the patients who have undergone surgery for cerebrovascular disease remain bedridden, and early recovery in the acute stage is highly desirable. We proposed and tested a fan-shaped pneumatic soft actuator (FPSA) that can expand and bend stably at angles when supply pressure is applied as an actuator for a rehabilitation device to encourage patient exercise. However, the previous FPSAfs movement deviates from the arch of the foot owing to increased supply pressure. In the ideal case, FPSA should push the arch of the foot in an arc motion. This study proposes and tests the FPSA that can operate a bending motion to provide passive exercise to the ankle joint using tensile springs and a winding mechanism powered by a servo motor. The proposed FPSA has a significant advantage of exhibiting no hysteresis in its pressure-displacement characteristics. The configuration and static analytical model of the improved FPSA are described. en-copyright= kn-copyright= en-aut-name=ShimookaSo en-aut-sei=Shimooka en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokoyaHirosato en-aut-sei=Yokoya en-aut-mei=Hirosato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaMasanori en-aut-sei=Hamada en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShiomiShun en-aut-sei=Shiomi en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UeharaTakenori en-aut-sei=Uehara en-aut-mei=Takenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KamegawaTetsushi en-aut-sei=Kamegawa en-aut-mei=Tetsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Rehabilitation Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Rehabilitation Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, NHO Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=fan-shaped pneumatic soft actuator kn-keyword=fan-shaped pneumatic soft actuator en-keyword=ankle-joint rehabilitation device kn-keyword=ankle-joint rehabilitation device en-keyword=hysteresis kn-keyword=hysteresis en-keyword=range of motion kn-keyword=range of motion END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=7661 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240916 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neurotransmitter recognition by human vesicular monoamine transporter 2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human vesicular monoamine transporter 2 (VMAT2), a member of the SLC18 family, plays a crucial role in regulating neurotransmitters in the brain by facilitating their uptake and storage within vesicles, preparing them for exocytotic release. Because of its central role in neurotransmitter signalling and neuroprotection, VMAT2 is a target for neurodegenerative diseases and movement disorders, with its inhibitor being used as therapeutics. Despite the importance of VMAT2 in pharmacophysiology, the molecular basis of VMAT2-mediated neurotransmitter transport and its inhibition remains unclear. Here we show the cryo-electron microscopy structure of VMAT2 in the substrate-free state, in complex with the neurotransmitter dopamine, and in complex with the inhibitor tetrabenazine. In addition to these structural determinations, monoamine uptake assays, mutational studies, and pKa value predictions were performed to characterize the dynamic changes in VMAT2 structure. These results provide a structural basis for understanding VMAT2-mediated vesicular transport of neurotransmitters and a platform for modulation of current inhibitor design. en-copyright= kn-copyright= en-aut-name=ImDohyun en-aut-sei=Im en-aut-mei=Dohyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JormakkaMika en-aut-sei=Jormakka en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JugeNarinobu en-aut-sei=Juge en-aut-mei=Narinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KishikawaJun-ichi en-aut-sei=Kishikawa en-aut-mei=Jun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoTakayuki en-aut-sei=Kato en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugitaYukihiko en-aut-sei=Sugita en-aut-mei=Yukihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NodaTakeshi en-aut-sei=Noda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UemuraTomoko en-aut-sei=Uemura en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShiimuraYuki en-aut-sei=Shiimura en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AsadaHidetsugu en-aut-sei=Asada en-aut-mei=Hidetsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=2 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=3 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=4 en-affil=Department of Applied Biology, Kyoto Institute of Technology kn-affil= affil-num=5 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=6 en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University kn-affil= affil-num=7 en-affil=Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University kn-affil= affil-num=8 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=9 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=10 en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University kn-affil= affil-num=11 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= affil-num=12 en-affil=Department of Cell Biology, Graduate School of Medicine, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=2503029 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Polyglycerol]Grafted Graphene Oxide with pH]Responsive Charge]Convertible Surface to Dynamically Control the Nanobiointeractions for Enhanced in Vivo Tumor Internalization en-subtitle= kn-subtitle= en-abstract= kn-abstract=pH-responsive charge-convertible nanomaterials (NMs) ameliorate the treatment of cancer via simultaneously reducing nonspecific interactions during systemic circulation and improving targeted uptake within solid tumors. While promising, little is known about how the pH-responsiveness of charge-convertible NMs directs their interactions with biological systems, leading to compromised performance, including off-target retention and low specificity to tumor cells. In the present study, polyglycerol-grafted graphene oxide bearing amino groups (GOPGNH2) at different densities are reacted with dimethylmaleic anhydride (DMMA), a pH-responsive moiety, to generate a set of charge-convertible GOPGNH-DMMA variants. This permits the assessment of a quantitative correlation between the structure of GOPGNH-DMMA to their pH-responsiveness, their dynamic interactions with proteins and cells, as well as their in vivo biological fate. Through a systematic investigation, it is revealed that GOPGNH115-DMMA prepared from GOPGNH2 with higher amine density experienced fast charge conversion at pH 7.4 to induce non-specific interactions at early stages, whereas GOPGNH60-DMMA and GOPGNH30-DMMA prepared from lower amine density retarded off-target charge conversion to enhance tumor accumulation. Notably, GOPGNH60-DMMA is also associated with enough amounts of proteins under acidic conditions to promote in vivo tumor internalization. The findings will inform the design of pH-responsive NMs for enhanced treatment accuracy and efficacy. en-copyright= kn-copyright= en-aut-name=ZouYajuan en-aut-sei=Zou en-aut-mei=Yajuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BiancoAlberto en-aut-sei=Bianco en-aut-mei=Alberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=charge conversion kn-keyword=charge conversion en-keyword=in vivo tumor internalization kn-keyword=in vivo tumor internalization en-keyword=non-specific interaction kn-keyword=non-specific interaction en-keyword=pH-responsiveness kn-keyword=pH-responsiveness en-keyword=polyglycerol-grafted graphene oxide kn-keyword=polyglycerol-grafted graphene oxide END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=4 article-no= start-page=350 end-page=359 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=N-Phenylphenothiazine Radical Cation with Extended ƒÎ-Systems: Enhanced Heat Resistance of Triarylamine Radical Cations as Near-Infrared Absorbing Dyes en-subtitle= kn-subtitle= en-abstract= kn-abstract=N-Phenylphenothiazine derivatives extended with various aryl groups were designed and synthesized. These derivatives have bent conformation in crystal and exhibit high solubility. Radical cations obtained by one-electron oxidation of these derivatives gave stable radical cations in solution and showed absorption in the near-infrared region. A radical cation was isolated as a stable salt, which exhibited heat resistance up to around 200 ‹C. A design strategy for radical cation-based near-infrared absorbing dyes, which are easily oxidized and stable not only as a solution but in solid form, is described. en-copyright= kn-copyright= en-aut-name=YanoMasafumi en-aut-sei=Yano en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaMinami en-aut-sei=Ueda en-aut-mei=Minami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YajimaTatsuo en-aut-sei=Yajima en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KashiwagiYukiyasu en-aut-sei=Kashiwagi en-aut-mei=Yukiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University kn-affil= affil-num=2 en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University kn-affil= affil-num=3 en-affil=Faculty of Chemistry, Material and Bioengineering, Kansai University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Osaka Research Institute of Industrial Science and Technology kn-affil= en-keyword=triarylamines kn-keyword=triarylamines en-keyword=N-phenylphenothiazine kn-keyword=N-phenylphenothiazine en-keyword=radical cation kn-keyword=radical cation en-keyword=near-infrared absorption kn-keyword=near-infrared absorption END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=2 article-no= start-page=606 end-page=617 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Heat shock factor 1 (Hsf1), a hub protein in the stress response and cell fate decisions, senses the strength, type, and duration of stress to balance cell survival and death through an unknown mechanism. Recently, changes in the physical property of Hsf1 condensates due to persistent stress have been suggested to trigger apoptosis, highlighting the importance of biological phase separation and transition in cell fate decisions. In this study, the mechanism underlying Hsf1 droplet formation and oxidative response was investigated through 3D refractive index imaging of the internal architecture, corroborated by molecular dynamics simulations and biophysical/biochemical experiments. We found that, in response to oxidative conditions, Hsf1 formed liquid condensates that suppressed its internal mobility. Furthermore, these conditions triggered the hyper-oligomerization of Hsf1, mediated by disulfide bonds and secondary structure stabilization, leading to the formation of dense core particles in the Hsf1 droplet. Collectively, these data demonstrate how the physical property of Hsf1 condensates undergoes an oxidative transition by sensing redox conditions to potentially drive cell fate decisions. en-copyright= kn-copyright= en-aut-name=KawagoeSoichiro en-aut-sei=Kawagoe en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsusakiMotonori en-aut-sei=Matsusaki en-aut-mei=Motonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MabuchiTakuya en-aut-sei=Mabuchi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OgasawaraYuto en-aut-sei=Ogasawara en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeKazunori en-aut-sei=Watanabe en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshimoriKoichiro en-aut-sei=Ishimori en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaioTomohide en-aut-sei=Saio en-aut-mei=Tomohide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= affil-num=2 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= affil-num=3 en-affil=Frontier Research Institute for Interdisciplinary Sciences, Tohoku University kn-affil= affil-num=4 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Chemistry, Faculty of Science, Hokkaido University kn-affil= affil-num=7 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= en-keyword=heat shock factor 1 kn-keyword=heat shock factor 1 en-keyword=oxidative hyper-oligomerization kn-keyword=oxidative hyper-oligomerization en-keyword=biological phase transition kn-keyword=biological phase transition en-keyword=stress response kn-keyword=stress response en-keyword=biophysics kn-keyword=biophysics END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250819 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hydrogen Embrittlement Characteristics of Austenitic Stainless Steels After Punching Process en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigates the influence of microstructural characteristics on the hydrogen embrittlement of SUS304 austenitic stainless steel. The investigation utilized SUS304 sheets with a thickness of 1.5 mm, which were processed by punching with an 8 mm diameter to make specimens. Severe plastic deformation was localized near the punching edge, with the extent of deformation determined by the punching speed. Slower punching speeds induced more pronounced plastic strain, which was closely associated with work hardening and strain-induced martensitic (SIM) transformation. The SIM phase was predominantly observed within a depth of approximately 0.1 mm from the punched edge when processed at a punching speed of 0.25 mm/s, corresponding to roughly 10% of the cross-sectional area of the sample. These microstructural changes led to a significant reduction in tensile and fatigue strength, thereby exacerbating susceptibility to severe hydrogen embrittlement, despite the limited extent of microstructural alteration. Based on these findings, a modified Goodman diagram for SUS304 austenitic stainless steel, incorporating mechanical properties and hydrogen embrittlement behavior, was proposed. en-copyright= kn-copyright= en-aut-name=OkayasuMitsuhiro en-aut-sei=Okayasu en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiXichang en-aut-sei=Li en-aut-mei=Xichang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawakamiTomohisa en-aut-sei=Kawakami en-aut-mei=Tomohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Mechanical and Systems Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Mechanical and Systems Engineering, Okayama University kn-affil= affil-num=3 en-affil=SHOYO SANGYO Co., Ltd. kn-affil= en-keyword= Hydrogen embrittlement kn-keyword= Hydrogen embrittlement en-keyword=Stainless steel kn-keyword=Stainless steel en-keyword=Punching process kn-keyword=Punching process en-keyword=Fatigue kn-keyword=Fatigue en-keyword=Tensile strength kn-keyword=Tensile strength END start-ver=1.4 cd-journal=joma no-vol=638 cd-vols= no-issue=8049 article-no= start-page=225 end-page=236 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immune evasion through mitochondrial transfer in the tumour microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T?cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2,3,4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T?cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies. en-copyright= kn-copyright= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsuya en-aut-sei=Nishi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeTomofumi en-aut-sei=Watanabe en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakenagaKeizo en-aut-sei=Takenaga en-aut-mei=Keizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkiSho en-aut-sei=Aki en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LinJason en-aut-sei=Lin en-aut-mei=Jason kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SuzukiShinichiro en-aut-sei=Suzuki en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MakinoshimaHideki en-aut-sei=Makinoshima en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ItamiMakiko en-aut-sei=Itami en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraYuki en-aut-sei=Nakamura en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TatsumiYasutoshi en-aut-sei=Tatsumi en-aut-mei=Yasutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuenagaYusuke en-aut-sei=Suenaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MorinagaTakao en-aut-sei=Morinaga en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=OhnumaTakehiro en-aut-sei=Ohnuma en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=UmedaYoshiyasu en-aut-sei=Umeda en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KiniwaYukiko en-aut-sei=Kiniwa en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HayashiHidetoshi en-aut-sei=Hayashi en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=IkedaJun-ichiro en-aut-sei=Ikeda en-aut-mei=Jun-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=HanazawaToyoyuki en-aut-sei=Hanazawa en-aut-mei=Toyoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=SuzukiTakuji en-aut-sei=Suzuki en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=OsawaTsuyoshi en-aut-sei=Osawa en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= affil-num=1 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=2 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute kn-affil= affil-num=6 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=7 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo kn-affil= affil-num=9 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=10 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan Department of Dermatology, Graduate School of Medicine, Chiba University kn-affil= affil-num=11 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=14 en-affil=Tsuruoka Metabolomics Laboratory, National Cancer Center kn-affil= affil-num=15 en-affil=Department of Surgical Pathology, Chiba Cancer Center kn-affil= affil-num=16 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=17 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=18 en-affil=Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute kn-affil= affil-num=19 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=20 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=21 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=22 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=23 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=24 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=25 en-affil=Department of Dermatology, Shinshu University School of Medicine kn-affil= affil-num=26 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=27 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=28 en-affil=Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University kn-affil= affil-num=29 en-affil=Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine kn-affil= affil-num=30 en-affil=Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=31 en-affil=Division of Cellular Signalling, National Cancer Center Research Institute kn-affil= affil-num=32 en-affil=Department of Respirology, Graduate School of Medicine, Chiba University kn-affil= affil-num=33 en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo kn-affil= affil-num=34 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=35 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=5 article-no= start-page=271 end-page=277 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240329 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Japan MSA registry: A multicenter cohort study of multiple system atrophy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by autonomic failure and various motor symptoms. While MSA-C (cerebellar type) predominates in East Asia, MSA-P (parkinsonian type) predominates in Europe and North America. This nationwide patient registry aimed to (1) conduct a prospective natural history study of MSA in Japan, (2) facilitate patient recruitment for clinical trials, and (3) deposit bioresources and clinical information in a biobank.
Methods: Thirteen institutions participated in this study. Clinical information was obtained by neurologists from the patients visiting the hospital every 12?months to assess the UMSARS Part 2 scores and by telephone interviews by nurses every 6?months to assess UMSARS Part 1 scores and to determine whether clinical events had occurred.
Results: Demographic data from 329 MSA patients (216 MSA-C and 113 MSA-P) were analyzed. The mean age at symptom onset was 58.2?years (standard deviation, 8.9); the mean duration of symptoms at enrollment was 3.5?years (standard deviation, 2.2). The mean 12-month changes in the UMSARS Part 1 and Part 2 scores were 7.9 (standard deviation, 5.6) and 6.4 (standard deviation, 5.9), respectively. The patient registry proved useful in recruiting participants for clinical trials, including those with gene variants. Clinical information and biospecimens were deposited in a biobank.
Discussion: The study highlighted the importance of telephone interviews in minimizing drop-out rates in natural history studies and demonstrated similar MSA progression rates across populations. The deposited bioresources are available to researchers upon request, aiming to contribute to future MSA researches. en-copyright= kn-copyright= en-aut-name=ChikadaAyaka en-aut-sei=Chikada en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OrimoKenta en-aut-sei=Orimo en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MizusawaHidehiro en-aut-sei=Mizusawa en-aut-mei=Hidehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiYuji en-aut-sei=Takahashi en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatsunoMasahisa en-aut-sei=Katsuno en-aut-mei=Masahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HaraKazuhiro en-aut-sei=Hara en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OnoderaOsamu en-aut-sei=Onodera en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IshiharaTomohiko en-aut-sei=Ishihara en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TadaMasayoshi en-aut-sei=Tada en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KuwabaraSatoshi en-aut-sei=Kuwabara en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SugiyamaAtsuhiko en-aut-sei=Sugiyama en-aut-mei=Atsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamanakaYoshitaka en-aut-sei=Yamanaka en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakahashiRyosuke en-aut-sei=Takahashi en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SawamotoNobukatsu en-aut-sei=Sawamoto en-aut-mei=Nobukatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SakatoYusuke en-aut-sei=Sakato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IshimotoTomoyuki en-aut-sei=Ishimoto en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HanajimaRitsuko en-aut-sei=Hanajima en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=WatanabeYasuhiro en-aut-sei=Watanabe en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=TakigawaHiroshi en-aut-sei=Takigawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=AdachiTadashi en-aut-sei=Adachi en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=TakashimaHiroshi en-aut-sei=Takashima en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=HigashiKeiko en-aut-sei=Higashi en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KiraJunichi en-aut-sei=Kira en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=YabeIchiro en-aut-sei=Yabe en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=MatsushimaMasaaki en-aut-sei=Matsushima en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=OgataKatsuhisa en-aut-sei=Ogata en-aut-mei=Katsuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=IshikawaKinya en-aut-sei=Ishikawa en-aut-mei=Kinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=NishidaYoichiro en-aut-sei=Nishida en-aut-mei=Yoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=IshiguroTaro en-aut-sei=Ishiguro en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=OzakiKokoro en-aut-sei=Ozaki en-aut-mei=Kokoro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=NagataTetsuya en-aut-sei=Nagata en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Neurology, Nagoya University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Neurology, Nagoya University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Neurology, Brain Research Institute, Niigata University kn-affil= affil-num=12 en-affil=Department of Neurology, Brain Research Institute, Niigata University kn-affil= affil-num=13 en-affil=Department of Neurology, Brain Research Institute, Niigata University kn-affil= affil-num=14 en-affil=Department of Neurology, Graduate School of Medicine, Chiba University kn-affil= affil-num=15 en-affil=Department of Neurology, Graduate School of Medicine, Chiba University kn-affil= affil-num=16 en-affil=Department of Neurology, Graduate School of Medicine, Chiba University kn-affil= affil-num=17 en-affil=Department of Neurology, Kyoto University Graduate School of Medicine kn-affil= affil-num=18 en-affil=Department of Human Health Sciences, Kyoto University Graduate School of Medicine kn-affil= affil-num=19 en-affil=Department of Neurology, Kyoto University Graduate School of Medicine kn-affil= affil-num=20 en-affil=Department of Neurology, Kyoto University Graduate School of Medicine kn-affil= affil-num=21 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=22 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=23 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=24 en-affil=Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University kn-affil= affil-num=25 en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=26 en-affil=Department of Neurology, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=27 en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University kn-affil= affil-num=28 en-affil=Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University kn-affil= affil-num=29 en-affil=Department of Neurology, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=30 en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University kn-affil= affil-num=31 en-affil=Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University kn-affil= affil-num=32 en-affil=Department of Neurology, Higashi-Saitama National Hospital kn-affil= affil-num=33 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=34 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=35 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=36 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=37 en-affil=Department of Neurology and Neurological Science, Tokyo Medical and Dental University kn-affil= affil-num=38 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= en-keyword=multicenter cohort study kn-keyword=multicenter cohort study en-keyword=multiple system atrophy kn-keyword=multiple system atrophy en-keyword=natural history kn-keyword=natural history en-keyword=patient registry kn-keyword=patient registry END start-ver=1.4 cd-journal=joma no-vol=508 cd-vols= no-issue= article-no= start-page=111242 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced aboveground biomass density estimation in Central Vietnamese forests en-subtitle= kn-subtitle= en-abstract= kn-abstract=Accurate estimation of spatially explicit forest aboveground biomass density (AGBD) is essential for supporting climate change mitigation strategies. Recent studies have demonstrated the predictive effectiveness of the random forest (RF) algorithm in forest AGBD estimation utilizing multi-source remote sensing (RS) data. However, the RF-based estimates may be further enhanced by integrating RF with kriging techniques that account for spatial autocorrelation in model residuals. Therefore, we investigated the performance of random forest ordinary kriging (RFOK) and random forest co-kriging (RFCK) for estimating AGBD in Central Vietnamese forests using Advanced Land Observing Satellite-2 Phased Array L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2), Sentinel-1 (S1), and Sentinel-2 (S2) imageries. 277 predictors, including spectral bands, radar backscatter coefficients, vegetation indices, biophysical variables, and texture metrics, were derived from these RS datasets and statistically linked to field measurements from 104 geo-referenced forest inventory plots. The results showed that textures, modified chlorophyll absorption ratio index (MCARI), and radar backscatters were key contributors to AGBD variability. The fusion of ALOS-2 PALSAR-2 and S2 data yielded the highest RF performance, with coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) achieving 0.75, 39.15 t.ha-1, and 32.20 t.ha-1, respectively. Incorporating interpolated residuals by ordinary kriging and co-kriging into RF predictions enhanced estimation accuracy, with relative improvements of 5.74?7.04 % in R2, 8.73?10.91 % in RMSE, and 13.62?15.27 % in MAE, yet these gains remained limited. Although RFOK achieved marginally better accuracy (R2 = 0.80, RMSE = 34.88 t.ha-1, MAE = 27.28 t.ha-1) compared to RFCK (R2 = 0.79, RMSE = 35.73 t.ha-1, MAE = 27.81 t.ha-1), the latter reduced estimation bias more effectively, likely due to the inclusion of elevation as a covariate in the co-kriging process. These findings underscore the potential of the hybrid RF-kriging frameworks for improving spatial AGBD estimation, offering a robust approach for carbon accounting in tropical ecosystems. en-copyright= kn-copyright= en-aut-name=HoViet Hoang en-aut-sei=Ho en-aut-mei=Viet Hoang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoritaHidenori en-aut-sei=Morita en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BachoferFelix en-aut-sei=Bachofer en-aut-mei=Felix kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoThanh Ha en-aut-sei=Ho en-aut-mei=Thanh Ha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=German Aerospace Center (DLR), Earth Observation Center kn-affil= affil-num=4 en-affil=University of Agriculture and Forestry, Hue University kn-affil= en-keyword=Forest aboveground biomass density kn-keyword=Forest aboveground biomass density en-keyword=Random forest kn-keyword=Random forest en-keyword=Ordinary kriging kn-keyword=Ordinary kriging en-keyword=Co-kriging kn-keyword=Co-kriging en-keyword=Multispectral kn-keyword=Multispectral en-keyword=Multi-frequency synthetic aperture radar kn-keyword=Multi-frequency synthetic aperture radar END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=5 article-no= start-page=1554 end-page=1577 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of geostatistics, machine learning algorithms, and their hybrid approaches for modeling soil organic carbon density in tropical forests en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose Understanding the spatial variability of soil organic carbon density (SOCD) in tropical forests is necessary for efficient climate change mitigation initiatives. However, accurately modeling SOCD in these landscapes is challenging due to low-density sampling efforts and the limited availability of in-situ data caused by constrained accessibility. In this study, we aimed to explore the most suitable modeling technique for SOCD estimation in the context of tropical forest ecosystems.
Methods To support the research, thirty predictor covariates derived from remote sensing data, topographic attributes, climatic factors, and geographic positions were utilized, along with 104 soil samples collected from the top 30 cm of soil in Central Vietnamese tropical forests. We compared the effectiveness of geostatistics (ordinary kriging, universal kriging, and kriging with external drift), machine learning (ML) algorithms (random forest and boosted regression tree), and their hybrid approaches (random forest regression kriging and boosted regression tree regression kriging) for the prediction of SOCD. Prediction accuracy was evaluated using the coefficient of determination (R2), the root mean squared error (RMSE), and the mean absolute error (MAE) obtained from leave-one-out cross-validation.
Results The study results indicated that hybrid approaches performed best in predicting forest SOCD with the greatest values of R2 and the lowest values of MAE and RMSE, and the ML algorithms were more accurate than geostatistics. Additionally, the prediction maps produced by the hybridization showed the most realistic SOCD pattern, whereas the kriged maps were prone to have smoother patterns, and ML-based maps were inclined to possess more detailed patterns. The result also revealed the superiority of the ML plus residual kriging approaches over the ML models in reducing the underestimation of large SOCD values in high-altitude mountain areas and the overestimation of low SOCD values in low-lying terrain areas.
Conclusion Our findings suggest that the hybrid approaches of geostatistics and ML models are most suitable for modeling SOCD in tropical forests. en-copyright= kn-copyright= en-aut-name=HoViet Hoang en-aut-sei=Ho en-aut-mei=Viet Hoang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoritaHidenori en-aut-sei=Morita en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HoThanh Ha en-aut-sei=Ho en-aut-mei=Thanh Ha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BachoferFelix en-aut-sei=Bachofer en-aut-mei=Felix kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NguyenThi Thuong en-aut-sei=Nguyen en-aut-mei=Thi Thuong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=University of Agriculture and Forestry, Hue University kn-affil= affil-num=4 en-affil=German Aerospace Center (DLR), Earth Observation Center kn-affil= affil-num=5 en-affil=University of Agriculture and Forestry, Hue University kn-affil= en-keyword=Digital soil mapping kn-keyword=Digital soil mapping en-keyword=Hybrid approaches kn-keyword=Hybrid approaches en-keyword=Kriging kn-keyword=Kriging en-keyword=Machine learning kn-keyword=Machine learning en-keyword=Soil organic carbon density kn-keyword=Soil organic carbon density en-keyword=Tropical forests kn-keyword=Tropical forests END start-ver=1.4 cd-journal=joma no-vol=68 cd-vols= no-issue= article-no= start-page=1319 end-page=1323 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Method for predicting crack size using amplitude change in titanium alloy under bending vibration en-subtitle= kn-subtitle= en-abstract= kn-abstract=The natural frequency of a material decreases owing to the presence of cracks. Thus, when a crack initiates in a material under vibration, the amplitude of the vibration changes with the crack propagation. In this study, we investigated a method for predicting crack size using the amplitude change in a plate specimen of a titanium alloy under bending vibration. The bending displacement amplitudes were measured using high-speed camera images of the specimens. The crack sizes were measured using optical microscopy images of plastic replicas of the specimen surfaces that were obtained after interrupting tests at specified intervals. By using the relationship between the total area of the cracks and bending displacement amplitude for tests at two different vibration frequencies as well as the relationship between the vibration frequency and bending displacement amplitude for an undamaged specimen, the bending displacement amplitude at any vibration frequency can be monitored to predict the total area of the cracks. en-copyright= kn-copyright= en-aut-name=SakamotoJunji en-aut-sei=Sakamoto en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TadaNaoya en-aut-sei=Tada en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemoriTakeshi en-aut-sei=Uemori en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology kn-affil= affil-num=2 en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology kn-affil= affil-num=3 en-affil=Okayama University, Faculty of Environmental, Life, Natural Science and Technology kn-affil= en-keyword=Vibration kn-keyword=Vibration en-keyword=Fatigue crack propagation kn-keyword=Fatigue crack propagation en-keyword=Non-destructive inspection kn-keyword=Non-destructive inspection en-keyword=Titanium alloy kn-keyword=Titanium alloy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250811 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study of the Mechanical Properties of Al?Mg ADC6 Aluminum Alloy Produced by Unidirectional Casting Under Various Cooling Rates en-subtitle= kn-subtitle= en-abstract= kn-abstract=To create the high strength and high ductility of Al?Mg-based aluminum alloy (JIS?ADC6), ADC6 samples were produced by the unidirectional continuous casting (HMC). The HMC process was conducted with direct water cooling to melt ADC6, which can make fine microstructures and control crystal orientation. The cast samples were prepared under various cooling rates (CRs): 6.3, 34, and 62 K/s. The microstructure and crystal orientation of the samples were altered with CR. At CRs of 34 K/s and 62 K/s, the ƒ¿-Al phases and intermetallic compounds, e.g., Mg2Si and Al15(Fe, Mn)3Si2, became finer and more spherical. The secondary dendrite arm spacing for the sample at 62 K/s was 8.7 ?m?more than 70% smaller than the ADC6 sample (ingot) made by a gravity casting process. Notably, at a CR of 34 K/s, the crystal orientation was predominantly arranged with the (101) plane. Tensile properties?ultimate tensile strength (ƒÐUTS), 0.2% proof stress (ƒÐ0.2), and failure strain (ƒÃf)?varied with the CR. The tensile strength (ƒÐUTS and ƒÐ0.2) consistently increased with increasing the CR. The improvement in the tensile strength resulted from the refined microstructures, such as the ƒ¿-Al phase and intermetallic compounds. Similarly, the failure strain also increased with increasing CR, which was severely affected by the finer and more spherical intermetallic compounds. In this case, the ƒÃf value of the sample at 34 K/s was, however, slightly higher than that at 62 K/s, due to more uniformly organized crystal orientation, while their ductility was much higher than that of the gravity cast sample. The tensile properties in detail were further analyzed using their failure characteristics. en-copyright= kn-copyright= en-aut-name=TakeuchiS. en-aut-sei=Takeuchi en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkayasuM. en-aut-sei=Okayasu en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil= kn-affil= en-keyword=Al-Mg alloy kn-keyword=Al-Mg alloy en-keyword=heated mold continuous casting kn-keyword=heated mold continuous casting en-keyword=mechanical property kn-keyword=mechanical property en-keyword=microstructural characteristics kn-keyword=microstructural characteristics en-keyword=crystal orientation kn-keyword=crystal orientation en-keyword=fractography kn-keyword=fractography END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e06765 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Droplet Transportation on Janus Harp Wires for Enhanced Fog Harvesting en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ensuring freshwater resources is a vital issue for human beings worldwide. Fog harvesting is one promising way to provide water from unconventional sources. However, clogging by the captured liquid depresses the fog harvesting performance. Here, a harp-shaped Janus harvesting system, which has thin wires with a superhydrophobic side facing the fog stream and a superhydrophilic back side to transport the droplets, is used to yield simultaneous fog capturing and water transport abilities. Attached droplets on the Janus wire transported along the periphery avoided clogging and enhanced the performance. The Janus system thus suppressed the increase and fluctuations of actual shade coefficients, which indicated blockage of the fog stream. This optimized the design of the harvester. Experiments using a multilayered Janus harvester demonstrated a significant enhancement compared with that constructed with mono-wettability wires. Overall, the results indicated the promise of droplet transportation on single wires for improving fog harvesting, as well as for other applications such as oil mist recovery and demulsification. en-copyright= kn-copyright= en-aut-name=YamadaYutaka en-aut-sei=Yamada en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaTaku en-aut-sei=Ishikawa en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsobeKazuma en-aut-sei=Isobe en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoribeAkihiko en-aut-sei=Horibe en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=droplet transport kn-keyword=droplet transport en-keyword=fog harvesting kn-keyword=fog harvesting en-keyword=janus wire kn-keyword=janus wire en-keyword=wettability difference kn-keyword=wettability difference END start-ver=1.4 cd-journal=joma no-vol=122 cd-vols= no-issue=32 article-no= start-page=e2501933122 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250805 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural insights into a citrate transporter that mediates aluminum tolerance in barley en-subtitle= kn-subtitle= en-abstract= kn-abstract=HvAACT1 is a major aluminum (Al)-tolerance gene in barley, encoding a citrate transporter that belongs to the multidrug and toxic compound extrusion (MATE) family. This transporter facilitates citrate secretion from the roots, thereby detoxifying external Al ions?a major constraint of crop production on acidic soils. In this study, we present the outward-facing crystal structure of HvAACT1, providing insights into a citrate transport mechanism. The putative citrate binding site consists of three basic residues?K126 in transmembrane helix 2 (TM2), R358 in TM7, and R535 in TM12?creating substantial positive charges in the C-lobe cavity. Proton coupling for substrate transport may involve two pairs of aspartate residues in the N-lobe cavity, one of which corresponds to the essential Asp pair found in prokaryotic H+-coupled MATE transporters belonging to the DinF subfamily. Structural coupling between proton uptake in the N-lobe and citrate extrusion in the C-lobe can be enabled by an extensive, unique hydrogen-bonding network at the extracellular half of the N-lobe. Mutation-based functional analysis, structural comparisons, molecular dynamics simulation, and phylogenic analysis suggest an evolutionary link between citrate MATE transporters and the DinF MATE subfamily. Our findings provide a solid structural basis for citrate transport by HvAACT1 in barley and contribute to a broader understanding of citrate transporter structures in other plant species. en-copyright= kn-copyright= en-aut-name=Nguyen ThaoTran en-aut-sei=Nguyen Thao en-aut-mei=Tran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Mitani-UenoNamiki en-aut-sei=Mitani-Ueno en-aut-mei=Namiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UranoRyo en-aut-sei=Urano en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangPeitong en-aut-sei=Wang en-aut-mei=Peitong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinodaWataru en-aut-sei=Shinoda en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Division of Superconducting and Functional Materials, Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=8 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=9 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=10 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= en-keyword=barley kn-keyword=barley en-keyword=aluminum resistance kn-keyword=aluminum resistance en-keyword=membrane protein structure kn-keyword=membrane protein structure en-keyword=citrate transporter kn-keyword=citrate transporter en-keyword=MATE transporter kn-keyword=MATE transporter END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tailoring Mechanical Properties and Ionic Conductivity of Poly(ionic liquid)-Based Ion Gels by Tuning Anion Compositions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Poly(ionic liquid) (PIL)-based ion gels have emerged as promising materials for advanced electrochemical applications because of their excellent miscibility with ionic liquids (IL), tunable mechanical properties, and high ionic conductivity. Despite extensive studies on PIL-based ion gels, a comprehensive understanding of how different anion combinations in the system affect physicochemical properties is lacking. In this study, we systematically investigate the effect of different anion species, such as bis(trifluoromethanesulfonyl)imide (TFSI) and hexafluorophosphate (PF6), on the mechanical, viscoelastic, and ion conductive behaviors of PIL-based ion gels. We investigate the interplay between anion size, packing density, and polymer segmental dynamics by varying the anion composition in both the PIL network and IL component. Rheological analysis and uniaxial tensile testing results indicate that PF6-containing ion gels exhibit enhanced higher Youngfs modulus because of their restricted chain mobility resulting in higher glass transition temperature (Tg). In addition, we confirm the anion exchange between PIL and IL during gel preparation and find that the mechanical and ion conductive properties of the gels are governed by the total molar ratio of anions in the gels. Our findings highlight that tuning the anion composition in PIL-based ion gels provides an effective strategy to tailor their performance, with potential applications for flexible electronics and solid-state electrochemical devices. en-copyright= kn-copyright= en-aut-name=WatanabeTakaichi en-aut-sei=Watanabe en-aut-mei=Takaichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MizutaniYuna en-aut-sei=Mizutani en-aut-mei=Yuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LopezCarlos G. en-aut-sei=Lopez en-aut-mei=Carlos G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoTsutomu en-aut-sei=Ono en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=3 en-affil=Material Science and Engineering Department, The Pennsylvania State University, 80 Pollock Road, State College kn-affil= affil-num=4 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= en-keyword=poly(ionic liquid) kn-keyword=poly(ionic liquid) en-keyword=anion exchange kn-keyword=anion exchange en-keyword=gel kn-keyword=gel en-keyword=conductivity kn-keyword=conductivity en-keyword=toughness kn-keyword=toughness END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrostatically]Driven Collapse of Polyelectrolytes: The?Role of the Solvent's Dielectric Constant en-subtitle= kn-subtitle= en-abstract= kn-abstract=We experimentally confirm a longstanding theoretical prediction of counterion-induced polyelectrolyte collapse in low dielectric media. The scattering behavior of polystyrene sulfonate in different solvents with dielectric permittivities in the range of ƒÃ ? 12 ? 180 is investigated. For high and intermediate ƒÃ media, typical polyelectrolyte behavior is observed: the correlation length (ƒÌ) scales with concentration (c) as ƒÌ ? c?1?2, as predicted by various theories. When the dielectric constant of the solvent decreases below ? 22, a scaling of ƒÌ ? c?1?3, characteristic of partially collapsed polyelectrolytes, is observed. For these solvents, the correlation peak disappears at high concentrations. Interestingly, polyelectrolyte collapse is observed under both solvophilic and solvophobic conditions, supporting the existence of attractive electrostatic interactions. These results are in qualitative agreement with theoretical predictions which expect chain collapse in low dielectric media due to the influence of condensed counterions, either via dipolar attraction and/or charge-correlation-induced attractions. en-copyright= kn-copyright= en-aut-name=GulatiAnish en-aut-sei=Gulati en-aut-mei=Anish kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MengLingzi en-aut-sei=Meng en-aut-mei=Lingzi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeTakaichi en-aut-sei=Watanabe en-aut-mei=Takaichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LopezCarlos G. en-aut-sei=Lopez en-aut-mei=Carlos G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute of Physical Chemistry, RWTH Aachen University kn-affil= affil-num=2 en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=4 en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College kn-affil= en-keyword=counterion kn-keyword=counterion en-keyword=dipole kn-keyword=dipole en-keyword=polyelectrolyte kn-keyword=polyelectrolyte en-keyword=SANS kn-keyword=SANS en-keyword=SAXS kn-keyword=SAXS en-keyword=scattering kn-keyword=scattering END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002112 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal dsRNA and ssRNA(?) Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=RNA viruses are ubiquitous in the environment and are important pathogens of humans, animals and plants. In 2024, the International Committee on Taxonomy of Viruses Animal dsRNA and ssRNA(?) Viruses Subcommittee submitted 18 taxonomic proposals for consideration. These proposals expanded the known virosphere by classifying 9 new genera and 88 species for newly detected virus genomes. Of note, newly established species expand the large family of Rhabdoviridae to 580 species. A new species in the family Arenaviridae includes a virus detected in Antarctic fish with a unique split nucleoprotein ORF. Additionally, four new species were established for historically isolated viruses with previously unsequenced genomes. Furthermore, three species were abolished due to incomplete genome sequence information, and one family was moved from being unassigned in the phylum Negarnaviricota into a subphylum and order. Herein, we summarize the 18 ratified taxonomic proposals and the general features of the current taxonomy, thereby supporting public and animal health responses. en-copyright= kn-copyright= en-aut-name=HughesHolly R. en-aut-sei=Hughes en-aut-mei=Holly R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BallingerMatthew J. en-aut-sei=Ballinger en-aut-mei=Matthew J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BaoYiming en-aut-sei=Bao en-aut-mei=Yiming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BejermanNicolas en-aut-sei=Bejerman en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BlasdellKim R. en-aut-sei=Blasdell en-aut-mei=Kim R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BrieseThomas en-aut-sei=Briese en-aut-mei=Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BrignoneJulia en-aut-sei=Brignone en-aut-mei=Julia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CarreraJean Paul en-aut-sei=Carrera en-aut-mei=Jean Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=De ConinckLander en-aut-sei=De Coninck en-aut-mei=Lander kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=de SouzaWilliam Marciel en-aut-sei=de Souza en-aut-mei=William Marciel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DebatHumberto en-aut-sei=Debat en-aut-mei=Humberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DietzgenRalf G. en-aut-sei=Dietzgen en-aut-mei=Ralf G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=D?rrwaldRalf en-aut-sei=D?rrwald en-aut-mei=Ralf kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ErdinMert en-aut-sei=Erdin en-aut-mei=Mert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FooksAnthony R. en-aut-sei=Fooks en-aut-mei=Anthony R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ForbesKristian M. en-aut-sei=Forbes en-aut-mei=Kristian M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Freitas-Ast?aJuliana en-aut-sei=Freitas-Ast?a en-aut-mei=Juliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=GarciaJorge B. en-aut-sei=Garcia en-aut-mei=Jorge B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=GeogheganJemma L. en-aut-sei=Geoghegan en-aut-mei=Jemma L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=GrimwoodRebecca M. en-aut-sei=Grimwood en-aut-mei=Rebecca M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HorieMasayuki en-aut-sei=Horie en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HyndmanTimothy H. en-aut-sei=Hyndman en-aut-mei=Timothy H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=JohneReimar en-aut-sei=Johne en-aut-mei=Reimar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KlenaJohn D. en-aut-sei=Klena en-aut-mei=John D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KooninEugene V. en-aut-sei=Koonin en-aut-mei=Eugene V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KostygovAlexei Y. en-aut-sei=Kostygov en-aut-mei=Alexei Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KuhnJens H. en-aut-sei=Kuhn en-aut-mei=Jens H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=LetkoMichael en-aut-sei=Letko en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=LiJun-Min en-aut-sei=Li en-aut-mei=Jun-Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=LiuYiyun en-aut-sei=Liu en-aut-mei=Yiyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=MartinMaria Laura en-aut-sei=Martin en-aut-mei=Maria Laura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=MullNathaniel en-aut-sei=Mull en-aut-mei=Nathaniel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=NazarYael en-aut-sei=Nazar en-aut-mei=Yael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=NowotnyNorbert en-aut-sei=Nowotny en-aut-mei=Norbert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=NunesM?rcio Roberto Teixeira en-aut-sei=Nunes en-aut-mei=M?rcio Roberto Teixeira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=?klandArnfinn Lodden en-aut-sei=?kland en-aut-mei=Arnfinn Lodden kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=RubbenstrothDennis en-aut-sei=Rubbenstroth en-aut-mei=Dennis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=RussellBrandy J. en-aut-sei=Russell en-aut-mei=Brandy J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=SchottEric en-aut-sei=Schott en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=SeifertStephanie en-aut-sei=Seifert en-aut-mei=Stephanie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=SenCarina en-aut-sei=Sen en-aut-mei=Carina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=ShedroffElizabeth en-aut-sei=Shedroff en-aut-mei=Elizabeth kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=SironenTarja en-aut-sei=Sironen en-aut-mei=Tarja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=SmuraTeemu en-aut-sei=Smura en-aut-mei=Teemu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=TavaresCamila Prestes Dos Santos en-aut-sei=Tavares en-aut-mei=Camila Prestes Dos Santos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=TeshRobert B. en-aut-sei=Tesh en-aut-mei=Robert B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=TilstonNatasha L. en-aut-sei=Tilston en-aut-mei=Natasha L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=TordoNo?l en-aut-sei=Tordo en-aut-mei=No?l kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=VasilakisNikos en-aut-sei=Vasilakis en-aut-mei=Nikos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=WalkerPeter J. en-aut-sei=Walker en-aut-mei=Peter J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=WangFei en-aut-sei=Wang en-aut-mei=Fei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=WhitfieldAnna E. en-aut-sei=Whitfield en-aut-mei=Anna E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=WhitmerShannon L.M. en-aut-sei=Whitmer en-aut-mei=Shannon L.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=WolfYuri I. en-aut-sei=Wolf en-aut-mei=Yuri I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=XiaHan en-aut-sei=Xia en-aut-mei=Han kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=YeGong-Yin en-aut-sei=Ye en-aut-mei=Gong-Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=YeZhuangxin en-aut-sei=Ye en-aut-mei=Zhuangxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=YurchenkoVyacheslav en-aut-sei=Yurchenko en-aut-mei=Vyacheslav kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=ZhaoMingli en-aut-sei=Zhao en-aut-mei=Mingli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= affil-num=1 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=2 en-affil=Biological Sciences, Mississippi State University kn-affil= affil-num=3 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Consejo Nacional de Investigaciones Cient?ficas y T?cnicas (CONICET) and Instituto Nacional de Tecnolog?a Agropecuaria (INTA) kn-affil= affil-num=5 en-affil=CSIRO Health and Biosecurity kn-affil= affil-num=6 en-affil=Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University kn-affil= affil-num=7 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=8 en-affil=Instituto Conmemorativo Gorgas de Estudios de la Salud kn-affil= affil-num=9 en-affil=Division of Clinical and Epidemiological Virology, KU Leuven kn-affil= affil-num=10 en-affil=Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky kn-affil= affil-num=11 en-affil=Instituto Nacional de Tecnolog?a Agropecuaria (INTA) kn-affil= affil-num=12 en-affil=QAAFI, The University of Queensland kn-affil= affil-num=13 en-affil=Robert Koch Institut kn-affil= affil-num=14 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=15 en-affil=Animal and Plant Health Agency (APHA) kn-affil= affil-num=16 en-affil=Department of Biological Sciences, University of Arkansas kn-affil= affil-num=17 en-affil=Embrapa Cassava and Fruits kn-affil= affil-num=18 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=19 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=20 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=21 en-affil=Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University kn-affil= affil-num=22 en-affil=School of Veterinary Medicine, Murdoch University kn-affil= affil-num=23 en-affil=German Federal Institute for Risk Assessment kn-affil= affil-num=24 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=25 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=26 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=27 en-affil=University of Ostrava kn-affil= affil-num=28 en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=29 en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health kn-affil= affil-num=30 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=31 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=32 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=33 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=34 en-affil=Department of Natural Sciences, Shawnee State University kn-affil= affil-num=35 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=36 en-affil=College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health kn-affil= affil-num=37 en-affil=Universidade Federal do Par? kn-affil= affil-num=38 en-affil=Pharmaq Analytiq kn-affil= affil-num=39 en-affil=Institute of Diagnostic Virology, Friedrich-Loeffler-Institut kn-affil= affil-num=40 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=41 en-affil=Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science kn-affil= affil-num=42 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=43 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=44 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=45 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=46 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=47 en-affil=Integrated Group of Aquaculture and Environmental Studies, Federal University of Paran? kn-affil= affil-num=48 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=49 en-affil=Department of Microbiology and Immunology, Indiana University School of Medicine kn-affil= affil-num=50 en-affil=Institut Pasteur kn-affil= affil-num=51 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=52 en-affil=University of Queensland kn-affil= affil-num=53 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=54 en-affil=North Carolina State University kn-affil= affil-num=55 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=56 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=57 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=58 en-affil=Institute of Insect Sciences, Zhejiang University kn-affil= affil-num=59 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=60 en-affil=University of Ostrava kn-affil= affil-num=61 en-affil=Department of Pathobiology and Population Sciences, Royal Veterinary College kn-affil= END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002114 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses from the Plant Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In March 2025, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote, newly proposed taxa were added to those under the mandate of the Plant Viruses Subcommittee. In brief, 1 new order, 3 new families, 6 new genera, 2 new subgenera and 206 new species were created. Some taxa were reorganized. Genus Cytorhabdovirus in the family Rhabdoviridae was abolished and its taxa were redistributed into three new genera Alphacytorhabdovirus, Betacytorhabdovirus and Gammacytorhabdovirus. Genus Waikavirus in the family Secoviridae was reorganized into two subgenera (Actinidivirus and Ritunrivirus). One family and four previously unaffiliated genera were moved to the newly established order Tombendovirales. Twelve species not assigned to a genus were abolished. To comply with the ICTV mandate of a binomial format for virus species, eight species were renamed. Demarcation criteria in the absence of biological information were defined in the genus Ilarvirus (family Bromoviridae). This article presents the updated taxonomy put forth by the Plant Viruses Subcommittee and ratified by the ICTV. en-copyright= kn-copyright= en-aut-name=RubinoLuisa en-aut-sei=Rubino en-aut-mei=Luisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbrahamianPeter en-aut-sei=Abrahamian en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnWenxia en-aut-sei=An en-aut-mei=Wenxia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArandaMiguel A. en-aut-sei=Aranda en-aut-mei=Miguel A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Ascencio-Iba?ezJos? T. en-aut-sei=Ascencio-Iba?ez en-aut-mei=Jos? T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BejermanNicolas en-aut-sei=Bejerman en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BlouinArnaud G. en-aut-sei=Blouin en-aut-mei=Arnaud G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CandresseThierry en-aut-sei=Candresse en-aut-mei=Thierry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=CantoTomas en-aut-sei=Canto en-aut-mei=Tomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=CaoMengji en-aut-sei=Cao en-aut-mei=Mengji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=CarrJohn P. en-aut-sei=Carr en-aut-mei=John P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ChoWon Kyong en-aut-sei=Cho en-aut-mei=Won Kyong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ConstableFiona en-aut-sei=Constable en-aut-mei=Fiona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=DasguptaIndranil en-aut-sei=Dasgupta en-aut-mei=Indranil kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=DebatHumberto en-aut-sei=Debat en-aut-mei=Humberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=DietzgenRalf G. en-aut-sei=Dietzgen en-aut-mei=Ralf G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=DigiaroMichele en-aut-sei=Digiaro en-aut-mei=Michele kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=DonaireLivia en-aut-sei=Donaire en-aut-mei=Livia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ElbeainoToufic en-aut-sei=Elbeaino en-aut-mei=Toufic kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FargetteDenis en-aut-sei=Fargette en-aut-mei=Denis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=FilardoFiona en-aut-sei=Filardo en-aut-mei=Fiona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=FischerMatthias G. en-aut-sei=Fischer en-aut-mei=Matthias G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FontdevilaNuria en-aut-sei=Fontdevila en-aut-mei=Nuria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=FoxAdrian en-aut-sei=Fox en-aut-mei=Adrian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=Freitas-AstuaJuliana en-aut-sei=Freitas-Astua en-aut-mei=Juliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=FuchsMarc en-aut-sei=Fuchs en-aut-mei=Marc kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=GeeringAndrew D.W. en-aut-sei=Geering en-aut-mei=Andrew D.W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=GhafariMahan en-aut-sei=Ghafari en-aut-mei=Mahan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=Hafr?nAnders en-aut-sei=Hafr?n en-aut-mei=Anders kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=HammondJohn en-aut-sei=Hammond en-aut-mei=John kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=HammondRosemarie en-aut-sei=Hammond en-aut-mei=Rosemarie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=Hasi?w-JaroszewskaBeata en-aut-sei=Hasi?w-Jaroszewska en-aut-mei=Beata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=HebrardEugenie en-aut-sei=Hebrard en-aut-mei=Eugenie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=Hern?ndezCarmen en-aut-sei=Hern?ndez en-aut-mei=Carmen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=HilyJean-Michel en-aut-sei=Hily en-aut-mei=Jean-Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=HosseiniAhmed en-aut-sei=Hosseini en-aut-mei=Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=HullRoger en-aut-sei=Hull en-aut-mei=Roger kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=Inoue-NagataAlice K. en-aut-sei=Inoue-Nagata en-aut-mei=Alice K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=JordanRamon en-aut-sei=Jordan en-aut-mei=Ramon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=KreuzeJan F. en-aut-sei=Kreuze en-aut-mei=Jan F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=KubotaKenji en-aut-sei=Kubota en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=KuhnJens H. en-aut-sei=Kuhn en-aut-mei=Jens H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=LeisnerScott en-aut-sei=Leisner en-aut-mei=Scott kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=LettJean-Michel en-aut-sei=Lett en-aut-mei=Jean-Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=LiChengyu en-aut-sei=Li en-aut-mei=Chengyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=LiFan en-aut-sei=Li en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=LiJun Min en-aut-sei=Li en-aut-mei=Jun Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=L?pez-LambertiniPaola M. en-aut-sei=L?pez-Lambertini en-aut-mei=Paola M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=Lopez-MoyaJuan J. en-aut-sei=Lopez-Moya en-aut-mei=Juan J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=MaclotFrancois en-aut-sei=Maclot en-aut-mei=Francois kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=M?kinenKristiina en-aut-sei=M?kinen en-aut-mei=Kristiina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=MartinDarren en-aut-sei=Martin en-aut-mei=Darren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=MassartSebastien en-aut-sei=Massart en-aut-mei=Sebastien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=MillerW. Allen en-aut-sei=Miller en-aut-mei=W. Allen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=MohammadiMusa en-aut-sei=Mohammadi en-aut-mei=Musa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=MollovDimitre en-aut-sei=Mollov en-aut-mei=Dimitre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=MullerEmmanuelle en-aut-sei=Muller en-aut-mei=Emmanuelle kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=NagataTatsuya en-aut-sei=Nagata en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=Navas-CastilloJes?s en-aut-sei=Navas-Castillo en-aut-mei=Jes?s kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= en-aut-name=NeriyaYutaro en-aut-sei=Neriya en-aut-mei=Yutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=62 ORCID= en-aut-name=Ochoa-CoronaFrancisco M. en-aut-sei=Ochoa-Corona en-aut-mei=Francisco M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=63 ORCID= en-aut-name=OhshimaKazusato en-aut-sei=Ohshima en-aut-mei=Kazusato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=64 ORCID= en-aut-name=Pall?sVicente en-aut-sei=Pall?s en-aut-mei=Vicente kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=65 ORCID= en-aut-name=PappuHanu en-aut-sei=Pappu en-aut-mei=Hanu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=66 ORCID= en-aut-name=PetrzikKarel en-aut-sei=Petrzik en-aut-mei=Karel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=67 ORCID= en-aut-name=PoogginMikhail en-aut-sei=Pooggin en-aut-mei=Mikhail kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=68 ORCID= en-aut-name=PrigigalloMaria Isabella en-aut-sei=Prigigallo en-aut-mei=Maria Isabella kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=69 ORCID= en-aut-name=Ramos-Gonz?lezPedro L. en-aut-sei=Ramos-Gonz?lez en-aut-mei=Pedro L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=70 ORCID= en-aut-name=RibeiroSimone en-aut-sei=Ribeiro en-aut-mei=Simone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=71 ORCID= en-aut-name=Richert-P?ggelerKatja R. en-aut-sei=Richert-P?ggeler en-aut-mei=Katja R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=72 ORCID= en-aut-name=RoumagnacPhilippe en-aut-sei=Roumagnac en-aut-mei=Philippe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=73 ORCID= en-aut-name=RoyAvijit en-aut-sei=Roy en-aut-mei=Avijit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=74 ORCID= en-aut-name=SabanadzovicSead en-aut-sei=Sabanadzovic en-aut-mei=Sead kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=75 ORCID= en-aut-name=?af??ov?Dana en-aut-sei=?af??ov? en-aut-mei=Dana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=76 ORCID= en-aut-name=SaldarelliPasquale en-aut-sei=Saldarelli en-aut-mei=Pasquale kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=77 ORCID= en-aut-name=Sanfa?onH?l?ne en-aut-sei=Sanfa?on en-aut-mei=H?l?ne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=78 ORCID= en-aut-name=SarmientoCecilia en-aut-sei=Sarmiento en-aut-mei=Cecilia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=79 ORCID= en-aut-name=SasayaTakahide en-aut-sei=Sasaya en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=80 ORCID= en-aut-name=ScheetsKay en-aut-sei=Scheets en-aut-mei=Kay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=81 ORCID= en-aut-name=SchravesandeWillem E.W. en-aut-sei=Schravesande en-aut-mei=Willem E.W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=82 ORCID= en-aut-name=SealSusan en-aut-sei=Seal en-aut-mei=Susan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=83 ORCID= en-aut-name=ShimomotoYoshifumi en-aut-sei=Shimomoto en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=84 ORCID= en-aut-name=S?meraMerike en-aut-sei=S?mera en-aut-mei=Merike kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=85 ORCID= en-aut-name=StavoloneLivia en-aut-sei=Stavolone en-aut-mei=Livia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=86 ORCID= en-aut-name=StewartLucy R. en-aut-sei=Stewart en-aut-mei=Lucy R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=87 ORCID= en-aut-name=TeycheneyPierre-Yves en-aut-sei=Teycheney en-aut-mei=Pierre-Yves kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=88 ORCID= en-aut-name=ThomasJohn E. en-aut-sei=Thomas en-aut-mei=John E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=89 ORCID= en-aut-name=ThompsonJeremy R. en-aut-sei=Thompson en-aut-mei=Jeremy R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=90 ORCID= en-aut-name=TiberiniAntonio en-aut-sei=Tiberini en-aut-mei=Antonio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=91 ORCID= en-aut-name=TomitakaYasuhiro en-aut-sei=Tomitaka en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=92 ORCID= en-aut-name=TzanetakisIoannis en-aut-sei=Tzanetakis en-aut-mei=Ioannis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=93 ORCID= en-aut-name=UmberMarie en-aut-sei=Umber en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=94 ORCID= en-aut-name=UrbinoCica en-aut-sei=Urbino en-aut-mei=Cica kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=95 ORCID= en-aut-name=van den BurgHarrold A. en-aut-sei=van den Burg en-aut-mei=Harrold A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=96 ORCID= en-aut-name=Van der VlugtRen? A.A. en-aut-sei=Van der Vlugt en-aut-mei=Ren? A.A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=97 ORCID= en-aut-name=VarsaniArvind en-aut-sei=Varsani en-aut-mei=Arvind kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=98 ORCID= en-aut-name=VerhageAdriaan en-aut-sei=Verhage en-aut-mei=Adriaan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=99 ORCID= en-aut-name=VillamorDan en-aut-sei=Villamor en-aut-mei=Dan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=100 ORCID= en-aut-name=von BargenSusanne en-aut-sei=von Bargen en-aut-mei=Susanne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=101 ORCID= en-aut-name=WalkerPeter J. en-aut-sei=Walker en-aut-mei=Peter J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=102 ORCID= en-aut-name=WetzelThierry en-aut-sei=Wetzel en-aut-mei=Thierry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=103 ORCID= en-aut-name=WhitfieldAnna E. en-aut-sei=Whitfield en-aut-mei=Anna E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=104 ORCID= en-aut-name=WylieStephen J. en-aut-sei=Wylie en-aut-mei=Stephen J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=105 ORCID= en-aut-name=YangCaixia en-aut-sei=Yang en-aut-mei=Caixia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=106 ORCID= en-aut-name=ZerbiniF. Murilo en-aut-sei=Zerbini en-aut-mei=F. Murilo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=107 ORCID= en-aut-name=ZhangSong en-aut-sei=Zhang en-aut-mei=Song kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=108 ORCID= affil-num=1 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=2 en-affil=USDA-ARS, BARC, National Germplasm Resources Laboratory kn-affil= affil-num=3 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=4 en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC kn-affil= affil-num=5 en-affil=Department of Molecular and Structural Biochemistry, North Carolina State University kn-affil= affil-num=6 en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET kn-affil= affil-num=7 en-affil=Plant Protection Department kn-affil= affil-num=8 en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE kn-affil= affil-num=9 en-affil=Margarita Salas Center for Biological Research (CIB-CSIC) Spanish Council for Scientific Research (CSIC) kn-affil= affil-num=10 en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University kn-affil= affil-num=11 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=12 en-affil=Agriculture and Life Sciences Research Institute, Kangwon National University kn-affil= affil-num=13 en-affil=Agriculture Victoria Research, Department of Energy, Environment and Climate Action and School of Applied Systems Biology, La Trobe University kn-affil= affil-num=14 en-affil=University of Delhi South Campu kn-affil= affil-num=15 en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET kn-affil= affil-num=16 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=17 en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari kn-affil= affil-num=18 en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC kn-affil= affil-num=19 en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari kn-affil= affil-num=20 en-affil=Virus South Data kn-affil= affil-num=21 en-affil=Queensland Department of Primary Industries kn-affil= affil-num=22 en-affil=Max Planck Institute for Marine Microbiology kn-affil= affil-num=23 en-affil=Plant Protection Department kn-affil= affil-num=24 en-affil=Fera Science Ltd (Fera), York Biotech Campus kn-affil= affil-num=25 en-affil=Embrapa Cassava and Fruits, Brazilian Agricultural Research Corporation kn-affil= affil-num=26 en-affil=Plant Pathology, Cornell University kn-affil= affil-num=27 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=28 en-affil=Department of Biology, University of Oxford kn-affil= affil-num=29 en-affil=Swedish University of Agriculture kn-affil= affil-num=30 en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit kn-affil= affil-num=31 en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory kn-affil= affil-num=32 en-affil=Institute of Plant Protection-NRI kn-affil= affil-num=33 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro kn-affil= affil-num=34 en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC kn-affil= affil-num=35 en-affil=Institut Fran?ais de la Vigne et du Vin kn-affil= affil-num=36 en-affil=Vali-e-Asr University of Rafsanjan, Department of Plant Protection kn-affil= affil-num=37 en-affil=Retired from John Innes Centre kn-affil= affil-num=38 en-affil=Embrapa Hortali?as kn-affil= affil-num=39 en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit kn-affil= affil-num=40 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=41 en-affil=International Potato Center (CIP) kn-affil= affil-num=42 en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=43 en-affil=Institute for Plant Protection, NARO kn-affil= affil-num=44 en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health kn-affil= affil-num=45 en-affil=Department of Biological Sciences, University of Toledo kn-affil= affil-num=46 en-affil=CIRAD, UMR PVBMT kn-affil= affil-num=47 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=48 en-affil=State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University kn-affil= affil-num=49 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=50 en-affil=Instituto de Patolog?a Vegetal (IPAVE), INTA, Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET kn-affil= affil-num=51 en-affil=Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB) kn-affil= affil-num=52 en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE kn-affil= affil-num=53 en-affil=Department of Agricultural Sciences, University of Helsinki kn-affil= affil-num=54 en-affil=Institute of Infectious Disease and Molecular Medicine, University of Cape Town kn-affil= affil-num=55 en-affil=Plant Pathology Laboratory, TERRA Gembloux Agro-Bio Tech, University of Liege kn-affil= affil-num=56 en-affil=Department of Plant Pathology, Entomology and Microbiology, Iowa State University kn-affil= affil-num=57 en-affil=Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources kn-affil= affil-num=58 en-affil=USDA-APHIS, Plant Protection and Quarantine kn-affil= affil-num=59 en-affil=CIRAD, AGAP Institut; AGAP Institut, University of Montpellier; CIRAD, INRAE kn-affil= affil-num=60 en-affil=Instituto de Ci?ncias Biol?gicas, Universidade de Bras?lia kn-affil= affil-num=61 en-affil=Instituto de Hortofruticultura Subtropical y Mediterr?nea gLa Mayorah (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Cient?ficas kn-affil= affil-num=62 en-affil=Utsunomiya University kn-affil= affil-num=63 en-affil=Oklahoma State University, Institute for Biosecurity & Microbial Forensics kn-affil= affil-num=64 en-affil=Saga University kn-affil= affil-num=65 en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC kn-affil= affil-num=66 en-affil=Department of Plant Pathology, Washington State University kn-affil= affil-num=67 en-affil=Institute of Plant Molecular Biology kn-affil= affil-num=68 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD kn-affil= affil-num=69 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=70 en-affil=Applied Molecular Biology Laboratory, Instituto Biol?gico de S?o Paulo kn-affil= affil-num=71 en-affil=Embrapa Recursos Gen?ticos e Biotecnologia kn-affil= affil-num=72 en-affil=Julius K?hn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics kn-affil= affil-num=73 en-affil=CIRAD, UMR PHIM kn-affil= affil-num=74 en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory, Beltsville, MD, USA kn-affil= affil-num=75 en-affil=Department of Agricultural Science and Plant Protection, Mississippi State University kn-affil= affil-num=76 en-affil=Department of Cell Biology and Genetics, Faculty of Science, Palack? University Olomouc kn-affil= affil-num=77 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=78 en-affil=Summerland Research and Development Centre, Agriculture and Agri-Food Canada kn-affil= affil-num=79 en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology kn-affil= affil-num=80 en-affil=Strategic Planning Headquarters, NARO kn-affil= affil-num=81 en-affil=Department of Plant Pathology, Ecology and Evolution, Oklahoma State University kn-affil= affil-num=82 en-affil=Molecular Plant Pathology, University of Amsterdam kn-affil= affil-num=83 en-affil=Natural Resources Institute, University of Greenwich kn-affil= affil-num=84 en-affil=Kochi Agricultural Research Center kn-affil= affil-num=85 en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology kn-affil= affil-num=86 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=87 en-affil=Currently unaffiliated kn-affil= affil-num=88 en-affil=CIRAD, UMR PVBMT & UMR PVBMT, Universit? de la R?union kn-affil= affil-num=89 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=90 en-affil=Plant Health and Environment Laboratory kn-affil= affil-num=91 en-affil=Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification kn-affil= affil-num=92 en-affil=Institute for Plant Protection, NARO kn-affil= affil-num=93 en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System kn-affil= affil-num=94 en-affil=INRAE, UR ASTRO kn-affil= affil-num=95 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro kn-affil= affil-num=96 en-affil=Molecular Plant Pathology, University of Amsterdam kn-affil= affil-num=97 en-affil=Wageningen University and Research kn-affil= affil-num=98 en-affil=The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University kn-affil= affil-num=99 en-affil=Rijk Zwaan Breeding B.V. kn-affil= affil-num=100 en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System kn-affil= affil-num=101 en-affil=Humboldt-Universit?t zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences kn-affil= affil-num=102 en-affil=The University of Queensland kn-affil= affil-num=103 en-affil=Dienstleistungszentrum L?ndlicher Raum Rheinpfalz kn-affil= affil-num=104 en-affil=North Carolina State University kn-affil= affil-num=105 en-affil=Food Futures Institute, Murdoch University kn-affil= affil-num=106 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=107 en-affil=Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Vi?osa kn-affil= affil-num=108 en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=e70040 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250514 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Avoidant/restrictive food intake disorder prognosis and its relation with autism spectrum disorder in Japanese children en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: There is a lack of reported clinical factors associated with the outcomes of children and adolescents with avoidant/restrictive food intake disorder (ARFID) in Japan. This study aimed to identify these clinical factors and explore the relationship between ARFID and autism spectrum disorder (ASD).
Methods: This retrospective study analyzed data from 48 Japanese children and adolescents with ARFID who visited Okayama University Hospital between January 2011 and March 2022. Clinical characteristics were assessed using medical records and natural history questionnaires. The study compared patients with good and poor prognosis groups and used multiple logistic regression analysis to determine factors influencing prognosis.
Results: The study included 33 patients with good prognoses and 15 with poor prognoses. Comorbid ASD was more prevalent in the poor prognosis group (60%) compared to the good prognosis group (21%). Additionally, more than half of the ARFID patients with comorbid ASD were initially undiagnosed. Multivariate analysis revealed that older age at first visit (p?=?0.022) and comorbid ASD (p?=?0.022) were statistically significant factors associated with poor prognosis in ARFID patients. There were no significant differences in body mass index standard deviation score and maximal weight loss between the two groups.
Conclusions: The poor prognosis group had a higher prevalence of comorbid ASD diagnoses. Therefore, it is crucial to evaluate patient's developmental characteristics early in treatment and consider these characteristics throughout the course of care. en-copyright= kn-copyright= en-aut-name=TanakaChie en-aut-sei=Tanaka en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaAyumi en-aut-sei=Okada en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HanzawaMana en-aut-sei=Hanzawa en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiChikako en-aut-sei=Fujii en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShigeyasuYoshie en-aut-sei=Shigeyasu en-aut-mei=Yoshie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugiharaAkiko en-aut-sei=Sugihara en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HoriuchiMakiko en-aut-sei=Horiuchi en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Clinical Psychology Section, Department of Medical Support, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=autism spectrum disorder kn-keyword=autism spectrum disorder en-keyword=avoidant/restrictive food intake disorder kn-keyword=avoidant/restrictive food intake disorder en-keyword=children kn-keyword=children en-keyword=feeding and eating disorders kn-keyword=feeding and eating disorders en-keyword=outcome kn-keyword=outcome END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=15 article-no= start-page=7275 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Acquired Radioresistance Through Adaptive Evolution with Gamma Radiation as Selection Pressure: Increased Expression and Induction of Anti-Stress Genes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Elucidating the mechanisms of radioresistance in highly radiotolerant organisms can provide valuable insights into the adaptation and evolution of organisms. However, research has been limited on many naturally occurring radioresistant organisms due to a lack of information regarding their genetic and biochemical characteristics and the difficulty of handling them experimentally. To address this, we conducted an experiment on adaptive evolution using gamma radiation as the selection pressure to generate evolved Escherichia coli with gamma radiation resistance approximately one order of magnitude greater than that of wild-type E. coli. Gene expressions in all wild-type and evolved radioresistant E. coli in the presence or absence of gamma irradiation were analyzed and compared using RNA sequencing. Under steady-state conditions, the genes involved in survival, cell recovery, DNA repair, and response following stress exposure were upregulated in evolved E. coli compared with those in wild-type E. coli. Furthermore, the evolved E. coli induced these genes more efficiently following gamma irradiation and greater DNA repair activity than that in the wild-type E. coli. Our results indicate that an increased steady-state expression of various anti-stress genes, including DNA repair-related genes, and their highly efficient induction under irradiation are responsible for the remarkable radioresistance of evolved E. coli. en-copyright= kn-copyright= en-aut-name=SaitoTakeshi en-aut-sei=Saito en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TeratoHiroaki en-aut-sei=Terato en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=2 en-affil=Department of Radiation Research, Advanced Science Research Center, Okayama University kn-affil= en-keyword=radioresistant bacteria kn-keyword=radioresistant bacteria en-keyword=Escherichia coli kn-keyword=Escherichia coli en-keyword=adaptive evolution kn-keyword=adaptive evolution en-keyword=gene expression changes kn-keyword=gene expression changes en-keyword=anti-stress genes kn-keyword=anti-stress genes en-keyword=DNA repair kn-keyword=DNA repair en-keyword=cell recovery kn-keyword=cell recovery END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=5 article-no= start-page=686 end-page=689 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=L or M1?Critical Challenges in Mediation Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Methods for causal mediation analysis have developed dramatically over the past few decades.1?7 In the causal mediation literature, several causal quantities?or estimands?have been proposed, including natural direct and indirect effects, interventional direct and indirect effects, and separable direct and indirect effects. As another possible causal estimand, Chen and Lin8 proposed separable path-specific effects, which is an extension of the separable effects framework to cases that involve multiple ordered mediators. In this commentary, I briefly discuss the newly proposed method from a broader perspective on causal mediation analysis. For readers less familiar with common causal mediation approaches, please see related literature.1?3,9?11 en-copyright= kn-copyright= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=104 cd-vols= no-issue=3 article-no= start-page=104810 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An ultra-simplified protocol for PCR template preparation from both unsporulated and sporulated Eimeria oocysts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Molecular biological techniques have enabled the accurate identification of the avian Eimeria parasite, however, the preparation of PCR template remains a bottleneck due to contaminants from feces and the robust oocyst's wall resistant to chemical and mechanical force. Generally, the preparation of PCR template involves three main steps: (1) pretreatment of oocysts; (2) disruption of oocysts; and (3) purification of genomic DNA. We prepared PCR templates from both unsporulated and sporulated E. tenella oocysts using various protocols, followed by species-specific PCR to define the limit of detection. Our data revealed that whereas neither pretreatment of oocysts with sodium hypochlorite nor purification of genomic DNA with commercial kits improved the limit of detection of PCR, disruption of oocysts was a critical step in the preparation of PCR templates. The most sensitive PCR assay was achieved with the template prepared by disrupting oocysts suspended in distilled water, followed by bead-beating and heating at 99‹C for 5 min, which detected 0.16 oocysts per PCR. This ultra-simplified protocol for preparation of PCR template, which does not require expensive reagents or equipment, will significantly enhance the sensitive and efficient molecular identification of Eimeria. It will improve our understanding of the prevalence of this parasite at the species level and contribute to the development of techniques for the control in the field. en-copyright= kn-copyright= en-aut-name=TakanoAruto en-aut-sei=Takano en-aut-mei=Aruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmaliDennis V. en-aut-sei=Umali en-aut-mei=Dennis V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WardhanaApril H. en-aut-sei=Wardhana en-aut-mei=April H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SawitriDyah H. en-aut-sei=Sawitri en-aut-mei=Dyah H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TeramotoIsao en-aut-sei=Teramoto en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HatabuToshimitsu en-aut-sei=Hatabu en-aut-mei=Toshimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KidoYasutoshi en-aut-sei=Kido en-aut-mei=Yasutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanekoAkira en-aut-sei=Kaneko en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SasaiKazumi en-aut-sei=Sasai en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatohHiromitsu en-aut-sei=Katoh en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsubayashiMakoto en-aut-sei=Matsubayashi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= affil-num=2 en-affil=Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of the Philippines Los Ba?os, College kn-affil= affil-num=3 en-affil=Research Center for Veterinary Science, National Research and Innovation Agency kn-affil= affil-num=4 en-affil=Research Center for Veterinary Science, National Research and Innovation Agency kn-affil= affil-num=5 en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University kn-affil= affil-num=6 en-affil=Laboratory of Animal Physiology, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University kn-affil= affil-num=8 en-affil=Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University kn-affil= affil-num=9 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= affil-num=10 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= affil-num=11 en-affil=Departments of Veterinary Immunology, Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University kn-affil= en-keyword=Coccidian parasite kn-keyword=Coccidian parasite en-keyword=Eimeria tenella kn-keyword=Eimeria tenella en-keyword=Extraction kn-keyword=Extraction en-keyword=Molecular identification kn-keyword=Molecular identification en-keyword=Oocyst kn-keyword=Oocyst END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=10 article-no= start-page=2401783 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine en-subtitle= kn-subtitle= en-abstract= kn-abstract=Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene. en-copyright= kn-copyright= en-aut-name=NicolussiPaola en-aut-sei=Nicolussi en-aut-mei=Paola kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PiloGiovannantonio en-aut-sei=Pilo en-aut-mei=Giovannantonio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=CanceddaMaria Giovanna en-aut-sei=Cancedda en-aut-mei=Maria Giovanna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PengGuotao en-aut-sei=Peng en-aut-mei=Guotao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ChauNgoc Do Quyen en-aut-sei=Chau en-aut-mei=Ngoc Do Quyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=De la CadenaAlejandro en-aut-sei=De la Cadena en-aut-mei=Alejandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=VannaRenzo en-aut-sei=Vanna en-aut-mei=Renzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SamadYarjan Abdul en-aut-sei=Samad en-aut-mei=Yarjan Abdul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AhmedTanweer en-aut-sei=Ahmed en-aut-mei=Tanweer kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MarcellinoJeremia en-aut-sei=Marcellino en-aut-mei=Jeremia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TeddeGiuseppe en-aut-sei=Tedde en-aut-mei=Giuseppe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=GiroLinda en-aut-sei=Giro en-aut-mei=Linda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YlmazerAcelya en-aut-sei=Ylmazer en-aut-mei=Acelya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=LoiFederica en-aut-sei=Loi en-aut-mei=Federica kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=CartaGavina en-aut-sei=Carta en-aut-mei=Gavina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SecchiLoredana en-aut-sei=Secchi en-aut-mei=Loredana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Dei GiudiciSilvia en-aut-sei=Dei Giudici en-aut-mei=Silvia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MacciocuSimona en-aut-sei=Macciocu en-aut-mei=Simona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=PolliDario en-aut-sei=Polli en-aut-mei=Dario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=LigiosCiriaco en-aut-sei=Ligios en-aut-mei=Ciriaco kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=CerulloGiulio en-aut-sei=Cerullo en-aut-mei=Giulio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FerrariAndrea en-aut-sei=Ferrari en-aut-mei=Andrea kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=BiancoAlberto en-aut-sei=Bianco en-aut-mei=Alberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=FadeelBengt en-aut-sei=Fadeel en-aut-mei=Bengt kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=FranzoniGiulia en-aut-sei=Franzoni en-aut-mei=Giulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=DeloguLucia Gemma en-aut-sei=Delogu en-aut-mei=Lucia Gemma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= affil-num=1 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=2 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=3 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=4 en-affil=Institute of Environmental Medicine, Karolinska Institutet kn-affil= affil-num=5 en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry kn-affil= affil-num=6 en-affil=Dipartimento di Fisica, Politecnico di Milano kn-affil= affil-num=7 en-affil=Istituto di Fotonica e Nanotecnologie ? CNR kn-affil= affil-num=8 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=9 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=10 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=11 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=12 en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences kn-affil= affil-num=13 en-affil=Department of Biomedical Engineering, Ankara University kn-affil= affil-num=14 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=15 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=16 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=17 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=18 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=19 en-affil=Dipartimento di Fisica, Politecnico di Milano kn-affil= affil-num=20 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=21 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=22 en-affil=Dipartimento di Fisica, Politecnico di Milano kn-affil= affil-num=23 en-affil=Cambridge Graphene Centre, University of Cambridge kn-affil= affil-num=24 en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry kn-affil= affil-num=25 en-affil=Institute of Environmental Medicine, Karolinska Institutet kn-affil= affil-num=26 en-affil=Istituto Zooprofilattico Sperimentale della Sardegna kn-affil= affil-num=27 en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences kn-affil= en-keyword=2D materials kn-keyword=2D materials en-keyword=biocompatibility kn-keyword=biocompatibility en-keyword=immune system kn-keyword=immune system en-keyword=porcine model kn-keyword=porcine model en-keyword=toxicity kn-keyword=toxicity END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=4 article-no= start-page=263 end-page=272 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240607 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering en-subtitle= kn-subtitle= en-abstract= kn-abstract=While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings. en-copyright= kn-copyright= en-aut-name=FerrerasAndrea en-aut-sei=Ferreras en-aut-mei=Andrea kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatesanzAna en-aut-sei=Matesanz en-aut-mei=Ana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MendizabalJabier en-aut-sei=Mendizabal en-aut-mei=Jabier kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArtolaKoldo en-aut-sei=Artola en-aut-mei=Koldo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AcedoPablo en-aut-sei=Acedo en-aut-mei=Pablo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=JorcanoJos? L. en-aut-sei=Jorcano en-aut-mei=Jos? L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RuizAmalia en-aut-sei=Ruiz en-aut-mei=Amalia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ReinaGiacomo en-aut-sei=Reina en-aut-mei=Giacomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=Mart?nCristina en-aut-sei=Mart?n en-aut-mei=Cristina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Bioengineering, Universidad Carlos III de Madrid kn-affil= affil-num=2 en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid kn-affil= affil-num=3 en-affil=Domotek ingenier?a prototipado y formaci?n S.L. kn-affil= affil-num=4 en-affil=Domotek ingenier?a prototipado y formaci?n S.L. kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid kn-affil= affil-num=7 en-affil=Department of Bioengineering, Universidad Carlos III de Madrid kn-affil= affil-num=8 en-affil=Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford kn-affil= affil-num=9 en-affil=Empa Swiss Federal Laboratories for Materials Science and Technology kn-affil= affil-num=10 en-affil=Department of Bioengineering, Universidad Carlos III de Madrid kn-affil= en-keyword=photothermal therapy kn-keyword=photothermal therapy en-keyword=graphene derivatives kn-keyword=graphene derivatives en-keyword=4D bioprinting kn-keyword=4D bioprinting en-keyword=alginate kn-keyword=alginate en-keyword=tissue engineering kn-keyword=tissue engineering END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=12 article-no= start-page=4932 end-page=4951 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack. en-copyright= kn-copyright= en-aut-name=GotoYukihisa en-aut-sei=Goto en-aut-mei=Yukihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KadotaYasuhiro en-aut-sei=Kadota en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MbengueMalick en-aut-sei=Mbengue en-aut-mei=Malick kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LewisJennifer D en-aut-sei=Lewis en-aut-mei=Jennifer D kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MakiNoriko en-aut-sei=Maki en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NgouBruno Pok Man en-aut-sei=Ngou en-aut-mei=Bruno Pok Man kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SklenarJan en-aut-sei=Sklenar en-aut-mei=Jan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DerbyshirePaul en-aut-sei=Derbyshire en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShibataArisa en-aut-sei=Shibata en-aut-mei=Arisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchihashiYasunori en-aut-sei=Ichihashi en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=GuttmanDavid S en-aut-sei=Guttman en-aut-mei=David S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakagamiHirofumi en-aut-sei=Nakagami en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SuzukiTakamasa en-aut-sei=Suzuki en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MenkeFrank L H en-aut-sei=Menke en-aut-mei=Frank L H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=RobatzekSilke en-aut-sei=Robatzek en-aut-mei=Silke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=DesveauxDarrell en-aut-sei=Desveaux en-aut-mei=Darrell kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ZipfelCyril en-aut-sei=Zipfel en-aut-mei=Cyril kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ShirasuKen en-aut-sei=Shirasu en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=2 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=3 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=4 en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=7 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=8 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=9 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=10 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=11 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=12 en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto kn-affil= affil-num=13 en-affil=Plant Proteomics Research Unit, RIKEN CSRS kn-affil= affil-num=14 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=15 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=16 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=17 en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto kn-affil= affil-num=18 en-affil=Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich kn-affil= affil-num=19 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrochemical Generation of Sulfonamidyl Radicals via Anodic Oxidation of Hydrogen Bonding Complexes: Applications to Electrosynthesis of Benzosultams en-subtitle= kn-subtitle= en-abstract= kn-abstract=Amidyl radicals and sulfonamidyl radicals are widely used in the field of organic synthesis. In particular, the electrochemical oxidation of amides in the presence of bases is one of the most practical methods for generating amidyl radicals. However, it is often difficult to observe the gtrueh radical precursor, such as an amide anion and/or a hydrogen bonding complex with an amide and a base. We found that a sulfonamide and Bu4NOAc form a 1:1 hydrogen bonding complex by spectroscopic experiments. Cyclic voltammetry suggested that 1:1 hydrogen bonding complexes should be oxidized predominantly under the optimized conditions to afford a sulfonamidyl radical via the proton-coupled electron transfer (PCET) process by the oxidation of the complex. Thus-generated sulfonamidyl radicals could be used in the electrochemical synthesis of a variety of benzosultams. en-copyright= kn-copyright= en-aut-name=OkumuraYasuyuki en-aut-sei=Okumura en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoEisuke en-aut-sei=Sato en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=electrochemical generation kn-keyword=electrochemical generation en-keyword=sulfonamidyl radicals kn-keyword=sulfonamidyl radicals en-keyword=hydrogen bonding complexes kn-keyword=hydrogen bonding complexes en-keyword=anodic oxidation kn-keyword=anodic oxidation en-keyword=proton-coupled electron transfer kn-keyword=proton-coupled electron transfer en-keyword=electrosynthesis kn-keyword=electrosynthesis en-keyword=benzosultams kn-keyword=benzosultams en-keyword=cyclization kn-keyword=cyclization END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=11 article-no= start-page=uhae248 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A low-cost dpMIG-seq method for elucidating complex inheritance in polysomic crops: a case study in tetraploid blueberry en-subtitle= kn-subtitle= en-abstract= kn-abstract=Next-generation sequencing (NGS) library construction often requires high-quality DNA extraction, precise adjustment of DNA concentration, and restriction enzyme digestion to reduce genome complexity, which results in increased time and cost in sample preparation and processing. To address these challenges, a PCR-based method for rapid NGS library preparation, named dpMIG-seq, has been developed and proven effective for high-throughput genotyping. However, the application of dpMIG-seq has been limited to diploid and polyploid species with disomic inheritance. In this study, we obtained genome-wide single nucleotide polymorphism (SNP) markers for tetraploid blueberry to evaluate genotyping and downstream analysis outcomes. Comparison of genotyping qualities inferred across samples with different DNA concentrations and multiple bioinformatics approaches revealed high accuracy and reproducibility of dpMIG-seq-based genotyping, with Pearson's correlation coefficients between replicates in the range of 0.91 to 0.98. Furthermore, we demonstrated that dpMIG-seq enables accurate genotyping of samples with low DNA concentrations. Subsequently, we applied dpMIG-seq to a tetraploid F1 population to examine the inheritance probability of parental alleles. Pairing configuration analysis supported the random meiotic pairing of homologous chromosomes on a genome-wide level. On the other hand, preferential pairing was observed on chr-11, suggesting that there may be an exception to the random pairing. Genotypic data suggested quadrivalent formation within the population, although the frequency of quadrivalent formation varied by chromosome and cultivar. Collectively, the results confirmed applicability of dpMIG-seq for allele dosage genotyping and are expected to catalyze the adoption of this cost-effective and rapid genotyping technology in polyploid studies. en-copyright= kn-copyright= en-aut-name=NagasakaKyoka en-aut-sei=Nagasaka en-aut-mei=Kyoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraKazusa en-aut-sei=Nishimura en-aut-mei=Kazusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotokiKo en-aut-sei=Motoki en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamagataKeigo en-aut-sei=Yamagata en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishiyamaSoichiro en-aut-sei=Nishiyama en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamaneHisayo en-aut-sei=Yamane en-aut-mei=Hisayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TaoRyutaro en-aut-sei=Tao en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakanoRyohei en-aut-sei=Nakano en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakazakiTetsuya en-aut-sei=Nakazaki en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=6 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=9 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=6 article-no= start-page=271 end-page=285 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Sediment Microbial Fuel Cells on CH4 and CO2 Emissions from Straw Amended Paddy Soil en-subtitle= kn-subtitle= en-abstract= kn-abstract=Straw returning into paddy soil enhances soil organic matter which usually promotes the emission of greenhouse gases to the atmosphere. The application of sediment microbial fuel cells (SMFCs) to paddy soil activates power-generating microorganisms and enhances organic matter biodegradation. In the present study, rice straw addition in SMFCs was examined to determine its effect on CH4 and CO2 emissions. Columns (height, 25?cm; inner diameter, 9?cm) with four treatments: soil without and with rice straw under SMFC and without SMFC conditions were incubated at 25‹C for 70 days. Anodic potential values at 7?cm depth sediment were kept higher by SMFCs than those without SMFCs. Cumulative CH4 emission was significantly reduced by SMFC with straw amendment (p < 0.05) with no significant effect on CO2 emission. 16S rRNA gene analysis results showed that Firmicutes at the phylum, Closteridiales and Acidobacteriales at order level were dominant on the anode of straw-added SMFC, whereas Methanomicrobiales were in the treatment without SMFC, indicating that a certain group of methanogens were suppressed by SMFC. Our results suggest that the anodic redox environment together with the enrichment of straw-degrading bacteria contributed to a competitive advantage of electrogenesis over methanogenesis in straw-added SMFC system. en-copyright= kn-copyright= en-aut-name=BekeleAdhena Tesfau en-aut-sei=Bekele en-aut-mei=Adhena Tesfau kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaMorihiro en-aut-sei=Maeda en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkaoSatoshi en-aut-sei=Akao en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoChiyu en-aut-sei=Nakano en-aut-mei=Chiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Science and Engineering, Doshisha University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Organization for Research Strategy and Development, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=straw kn-keyword=straw en-keyword=methane mitigation kn-keyword=methane mitigation en-keyword=SMFC kn-keyword=SMFC en-keyword=microorganisms kn-keyword=microorganisms en-keyword=current generation kn-keyword=current generation END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=34 article-no= start-page=36114 end-page=36121 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Engineering Zeolitic-Imidazolate-Framework-Derived Mo-Doped Cobalt Phosphide for Efficient OER Catalysts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Designing a cheap, competent, and durable catalyst for the oxygen evolution reaction (OER) is exceedingly necessary for generating oxygen through a water-splitting reaction. In this project, we have designed a ZIF-67-originated molybdenum-doped cobalt phosphide (CoP) using a simplistic dissolution?regrowth method using Na2MoO4 and a subsequent phosphidation process. This leads to the formation of an exceptional hollow nanocage morphology that is useful for enhanced catalytic activity. Metal?organic frameworks, especially ZIF-67, can be used both as a template and as a metal (cobalt) precursor. Molybdenum-doped CoP was fabricated through a two-step synthesis process, and the fabricated Mo-doped CoP showed excellent catalytic activity during the OER with a lower value of overpotential. Furthermore, the effect of the Mo amount on the catalytic activity has been explored. The best catalyst (CoMoP-2) showed an onset potential of around 1.49 V at 10 mA cm?2 to give rise to a Tafel slope of 62.1 mV dec?1. The improved catalytic activity can be attributed to the increased porosity and surface area of the resultant catalyst. en-copyright= kn-copyright= en-aut-name=RahmanMohammad Atiqur en-aut-sei=Rahman en-aut-mei=Mohammad Atiqur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=CaiZe en-aut-sei=Cai en-aut-mei=Ze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoushumyZannatul Mumtarin en-aut-sei=Moushumy en-aut-mei=Zannatul Mumtarin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TagawaRyuta en-aut-sei=Tagawa en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HidakaYoshiharu en-aut-sei=Hidaka en-aut-mei=Yoshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoChiyu en-aut-sei=Nakano en-aut-mei=Chiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IslamMd. Saidul en-aut-sei=Islam en-aut-mei=Md. Saidul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SekineYoshihiro en-aut-sei=Sekine en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IdaShintaro en-aut-sei=Ida en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayamiShinya en-aut-sei=Hayami en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=3 en-affil=Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=6 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=8 en-affil=Department of Chemistry, Graduate School of Science and Technology, Kumamoto University kn-affil= affil-num=9 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= affil-num=10 en-affil=Institute of Industrial Nanomaterials (IINa), Kumamoto University kn-affil= affil-num=11 en-affil=Institute of Industrial Nanomaterials (IINa), Kumamoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=238 cd-vols= no-issue= article-no= start-page=120296 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Grafting-through functionalization of graphene oxide with cationic polymers for enhanced adsorption of anionic dyes and viruses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Graphene oxide (GO) is a sheet-like carbon material with abundant oxygen-containing functional groups on its surface. GO has been extensively studied as an adsorbent for heavy metals and organic compounds. However, effective strategies for negatively charged materials have yet to be established. This study aimed to synthesize composites of GO and cationic polymers for the selective adsorption of negatively charged materials; a challenge in this approach is the strong electrostatic interactions between GO and cationic polymers, which can lead to aggregation. This study addresses this issue by employing the grafting-through method. GO was initially modified with allylamine to introduce a polymerizable site, followed by radical polymerization to covalently bond polymers to the GO surface, effectively preventing aggregation. Adsorption experiments demonstrated that the GO-polymer composite selectively adsorbs anionic dye, such as methyl orange. Virus adsorption tests showed significantly enhanced performance compared to pristine GO. These results emphasize the critical role of controlled surface modification and charge manipulation in optimizing the adsorption performance of GO. This study establishes a simple and effective approach for synthesizing GO-cationic polymer composites, contributing to the development of advanced materials for water purification applications. en-copyright= kn-copyright= en-aut-name=KimuraRyota en-aut-sei=Kimura en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Ferr?-PujolPilar en-aut-sei=Ferr?-Pujol en-aut-mei=Pilar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Graphene oxide kn-keyword=Graphene oxide en-keyword=Virus adsorption kn-keyword=Virus adsorption en-keyword=Dye adsorption kn-keyword=Dye adsorption en-keyword=Cationic polymer composites kn-keyword=Cationic polymer composites en-keyword=Adsorbent kn-keyword=Adsorbent en-keyword=Aggregation kn-keyword=Aggregation END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=76 article-no= start-page=10544 end-page=10547 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigating the radical properties of oxidized carbon materials under photo-irradiation: behavior of carbon radicals and their application in catalytic reactions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oxidized carbon materials have abundant surface functional groups and customizable properties, making them an excellent platform for generating radicals. Unlike reactive oxygen species such as hydroxide or superoxide radicals that have been reported previously, oxidized carbon also produces stable carbon radicals under photo-irradiation. This has been confirmed through electron spin resonance. Among the various oxidized carbon materials synthesized, graphene oxide shows the largest number of carbon radicals when exposed to blue LED light. The light absorption capacity, high surface area, and unique structural characteristics of oxidized carbon materials offer a unique function for radical-mediated oxidative reactions. en-copyright= kn-copyright= en-aut-name=AhmedMd Razu en-aut-sei=Ahmed en-aut-mei=Md Razu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AnayaIsrael Ortiz en-aut-sei=Anaya en-aut-mei=Israel Ortiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=213 end-page=231 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250314 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=RKPM: Restricted Kernel Page Mechanism to?Mitigate Privilege Escalation Attacks en-subtitle= kn-subtitle= en-abstract= kn-abstract=Kernel memory corruption attacks against operating systems exploit kernel vulnerabilities to overwrite kernel data. Kernel address space layout randomization makes it difficult to identify kernel data by randomizing their virtual address space. Control flow integrity (CFI) prevents unauthorized kernel code execution by verifying kernel function calls. However, these countermeasures do not prohibit writing to kernel data. If the virtual address of privileged information is specified and CFI is circumvented, the privileged information can be modified by a kernel memory corruption attack. In this paper, we propose a restricted kernel page mechanism (RKPM) to mitigate kernel memory corruption attacks by introducing restricted kernel pages to protect the kernel data specified in the kernel. The RKPM focuses on the fact that kernel memory corruption attacks attempt to read the virtual addresses around the privileged information. The RKPM adopts page table mapping handling and a memory protection key to control the read and write restrictions of the restricted kernel pages. This allows us to mitigate kernel memory corruption attacks by capturing reads to the restricted kernel page before the privileged information is overwritten. As an evaluation of the RKPM, we confirmed that it can mitigate privilege escalation attacks on the latest Linux kernel. We also measured that there was a certain overhead in the kernel performance. This study enhances kernel security by mitigating privilege escalation attacks through the use of software or hardware based restricted kernel pages. en-copyright= kn-copyright= en-aut-name=KuzunoHiroki en-aut-sei=Kuzuno en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Engineering, Kobe University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=66 end-page=73 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=kdMonitor: Kernel Data Monitor for Detecting Kernel Memory Corruption en-subtitle= kn-subtitle= en-abstract= kn-abstract=Privilege escalation attacks through memory corruption via kernel vulnerabilities pose significant threats to operating systems. Although the extended Berkley Packet Filter has been employed to trace kernel code execution by inserting interrupts before and after kernel code invocations, it does not track operations before and after kernel data writes, thus hindering effective kernel data monitoring. In this study, we introduce a kernel data monitor (kdMonitor), which is a novel security mechanism designed to detect unauthorized alterations in the monitored kernel data of a dedicated kernel page. The kdMonitor incorporates two distinct methods. The first is periodic monitoring which regularly outputs the monitored kernel data of the dedicated kernel pages. The second is dynamic monitoring, which restricts write access to a dedicated kernel page, supplements any write operations with page faults, and outputs the monitored kernel data of dedicated kernel pages. kdMonitor enables real-time tracking of specified kernel data of the dedicated kernel page residing in the kernel's virtual memory space from the separated machine. Using kdMonitor, we demonstrated its capability to pinpoint tampering with user process privileged information stemming from privilege escalation attacks on the kernel. Through an empirical evaluation, we validated the effectiveness of kdMonitor in detecting privilege escalation attacks by user processes on Linux. Performance assessments revealed that kdMonitor achieved an attack detection time of 0.83 seconds with an overhead of 0.726 %. en-copyright= kn-copyright= en-aut-name=KuzunoHiroki en-aut-sei=Kuzuno en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Engineering, Kobe University kn-affil= affil-num=2 en-affil=Okayama University,Faculty of Environmental, Life, Natural Science and Technology kn-affil= en-keyword=Vulnerability countermeasure kn-keyword=Vulnerability countermeasure en-keyword=Operating system security kn-keyword=Operating system security en-keyword=System security kn-keyword=System security END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=222 end-page=234 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=vkTracer: Vulnerable Kernel Code Tracing to?Generate Profile of?Kernel Vulnerability en-subtitle= kn-subtitle= en-abstract= kn-abstract=Vulnerable kernel codes are a threat to an operating system kernel. An adversaryfs user process can forcefully invoke a vulnerable kernel code to cause privilege escalation or denial of service (DoS). Although service providers or security operators have to determine the effect of kernel vulnerabilities on their environment to decide the kernel updating, the list of vulnerable kernel codes are not provided from the common vulnerabilities and exposures (CVE) report. It is difficult to identify the vulnerable kernel codes from the exploitation result of the kernel which indicates the account information or the kernel suspension. To identify the details of kernel vulnerabilities, this study proposes a vulnerable kernel code tracer (vkTracer), which employs an alternative viewpoint using proof-of-concept (PoC) code to create a profile of kernel vulnerability. vkTracer traces the user process of the PoC code and the running kernel to hook the invocation of the vulnerable kernel codes. Moreover, vkTracer extracts the whole kernel componentfs information using the running and static kernel image and debug section. The evaluation results indicated that vkTracer could trace PoC code executions (e.g., privilege escalation and DoS), identify vulnerable kernel codes, and generate kernel vulnerability profiles. Furthermore, the implementation of vkTracer revealed that the identification overhead ranged from 5.2683 s to 5.2728 s on the PoC codes and the acceptable system call latency was 3.7197 ƒÊs. en-copyright= kn-copyright= en-aut-name=KuzunoHiroki en-aut-sei=Kuzuno en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiToshihiro en-aut-sei=Yamauchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Engineering, Kobe University kn-affil= affil-num=2 en-affil=Faculty of Natural Science and Technology, Okayama University kn-affil= en-keyword=Kernel vulnerability kn-keyword=Kernel vulnerability en-keyword=Dynamic analysis kn-keyword=Dynamic analysis en-keyword=System security kn-keyword=System security END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=7 article-no= start-page=902 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250711 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of an Antimicrobial Coating Film for Denture Lining Materials en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Denture hygiene is essential for the prevention of oral candidiasis, a condition frequently associated with Candida albicans colonization on denture surfaces. Cetylpyridinium chloride (CPC)-loaded montmorillonite (CPC-Mont) has demonstrated antimicrobial efficacy in tissue conditioners and demonstrates potential for use in antimicrobial coatings. In this study, we aimed to develop and characterize CPC-Mont-containing coating films for dentures, focusing on their physicochemical behaviors and antifungal efficacies. Methods: CPC was intercalated into sodium-type montmorillonite to prepare CPC-Mont; thereafter, films containing CPC-Mont were fabricated using emulsions of different polymer types (nonionic, cationic, and anionic). CPC loading, release, and recharging behaviors were assessed at various temperatures, and activation energies were calculated using Arrhenius plots. Antimicrobial efficacy against Candida albicans was evaluated for each film using standard microbial assays. Results: X-ray diffraction analysis confirmed the expansion of montmorillonite interlayer spacing by approximately 3 nm upon CPC loading. CPC-Mont showed temperature-dependent release and recharging behavior, with higher temperatures enhancing its performance. The activation energy for CPC release was 38 kJ/mol, while that for recharging was 26 kJ/mol. Nonionic emulsions supported uniform CPC-Mont dispersion and successful film formation, while cationic and anionic emulsions did not. CPC-Mont-containing coatings maintained antimicrobial activity against Candida albicans on dentures. Conclusions: CPC-Mont can be effectively incorporated into nonionic emulsion-based films to create antimicrobial coatings for denture applications. The films exhibited temperature-responsive, reversible CPC release and recharging behaviors, while maintaining antifungal efficacy, findings which suggest the potential utility of CPC-Mont-containing films as a practical strategy to prevent denture-related candidiasis. en-copyright= kn-copyright= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KameyamaTakeru en-aut-sei=Kameyama en-aut-mei=Takeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruoYukinori en-aut-sei=Maruo en-aut-mei=Yukinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Van MeerbeekBart en-aut-sei=Van Meerbeek en-aut-mei=Bart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Dental School, Advanced Research Center for Oral and Craniofacial Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Prosthodontics, Okayama University kn-affil= affil-num=5 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=6 en-affil=BIOMAT, Department of Oral Health Sciences, KU Leuvem kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=antimicrobial kn-keyword=antimicrobial en-keyword=denture liner kn-keyword=denture liner en-keyword=cetylpyridiniumchloride kn-keyword=cetylpyridiniumchloride en-keyword=drug release kn-keyword=drug release en-keyword=drug recharge kn-keyword=drug recharge END start-ver=1.4 cd-journal=joma no-vol=637 cd-vols= no-issue=8046 article-no= start-page=744 end-page=748 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3)1,2. Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres3,4,5. Despite the high impact of ecentrophilicf retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism. Here we show that both Ty3 and Ty1 long terminal repeat retrotransposons rapidly turnover within the centromeric TRs of Arabidopsis species. We demonstrate that the Ty1/Copia element Tal1 (Transposon of Arabidopsis lyrata 1) integrates de novo into regions occupied by CENH3 in Arabidopsis thaliana, and that ectopic expansion of the CENH3 region results in spread of Tal1 integration regions. The integration spectra of chimeric TEs reveal the key structural variations responsible for contrasting chromatin-targeting specificities to centromeres versus gene-rich regions, which have recurrently converted during the evolution of these TEs. Our findings show the impact of centromeric chromatin on TE-mediated rapid centromere evolution, with relevance across eukaryotic genomes. en-copyright= kn-copyright= en-aut-name=TsukaharaSayuri en-aut-sei=Tsukahara en-aut-mei=Sayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BousiosAlexandros en-aut-sei=Bousios en-aut-mei=Alexandros kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Perez-RomanEstela en-aut-sei=Perez-Roman en-aut-mei=Estela kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaguchiSota en-aut-sei=Yamaguchi en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeduqueBasile en-aut-sei=Leduque en-aut-mei=Basile kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoAimi en-aut-sei=Nakano en-aut-mei=Aimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaishMatthew en-aut-sei=Naish en-aut-mei=Matthew kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OsakabeAkihisa en-aut-sei=Osakabe en-aut-mei=Akihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaAtsushi en-aut-sei=Toyoda en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHidetaka en-aut-sei=Ito en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EderaAlejandro en-aut-sei=Edera en-aut-mei=Alejandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TominagaSayaka en-aut-sei=Tominaga en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=Juliarni en-aut-sei=Juliarni en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KatoKae en-aut-sei=Kato en-aut-mei=Kae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OdaShoko en-aut-sei=Oda en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=InagakiSoichi en-aut-sei=Inagaki en-aut-mei=Soichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Lorkovi?Zdravko en-aut-sei=Lorkovi? en-aut-mei=Zdravko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NagakiKiyotaka en-aut-sei=Nagaki en-aut-mei=Kiyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=BergerFr?d?ric en-aut-sei=Berger en-aut-mei=Fr?d?ric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KawabeAkira en-aut-sei=Kawabe en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=QuadranaLeandro en-aut-sei=Quadrana en-aut-mei=Leandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HendersonIan en-aut-sei=Henderson en-aut-mei=Ian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KakutaniTetsuji en-aut-sei=Kakutani en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=2 en-affil=School of Life Sciences, University of Sussex kn-affil= affil-num=3 en-affil=School of Life Sciences, University of Sussex kn-affil= affil-num=4 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=5 en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris kn-affil= affil-num=6 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=8 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=9 en-affil=Center for Genetic Resource Information, National Institute of Genetics kn-affil= affil-num=10 en-affil=Faculty of Science, Hokkaido University kn-affil= affil-num=11 en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris kn-affil= affil-num=12 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=13 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=14 en-affil=Department of Integrated Genetics, National Institute of Genetics kn-affil= affil-num=15 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=16 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=17 en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) kn-affil= affil-num=18 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=19 en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) kn-affil= affil-num=20 en-affil=Faculty of Life Sciences, Kyoto Sangyo University kn-affil= affil-num=21 en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris kn-affil= affil-num=22 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=23 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=186 cd-vols= no-issue= article-no= start-page=118030 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=(+)-Terrein exerts anti-obesity and anti-diabetic effects by regulating the differentiation and thermogenesis of brown adipocytes in mice fed a high-fat diet en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: (+)-Terrein, a low-molecular-weight secondary metabolite from Aspergillus terreus, inhibits adipocyte differentiation in vitro. However, the precise mechanisms underlying the effects of (+)-terrein on adipocytes remain unclear. We hypothesized that (+)-terrein modulates adipogenesis and glucose homeostasis in obesity and diabetes via anti-inflammatory action and regulation of adipocyte differentiation. Hence, in this study, we aimed to investigate the in vivo anti-diabetic and anti-obesity effects of (+)-terrein.
Methods: Male C57BL/6?J mice were fed normal chow or high-fat (HF) diet and administered (+)-terrein (180?mg/kg) via intraperitoneal injection. Glucose and insulin tolerance tests, serum biochemical assays, and histological analyses were also performed. Rat brown preadipocytes, mouse brown preadipocytes (T37i cells), and inguinal white adipose tissue (ingWAT) preadipocytes were exposed to (+)-terrein during in vitro adipocyte differentiation. Molecular markers associated with thermogenesis and differentiation were quantified using real-time polymerase chain reaction and western blotting.
Results: (+)-Terrein-treated mice exhibited improved insulin sensitivity and reduced serum lipid and glucose levels, irrespective of the diet. Furthermore, (+)-terrein suppressed body weight gain and mitigated fat accumulation by activating brown adipose tissue in HF-fed mice. (+)-Terrein facilitated the in vitro differentiation of rat brown preadipocytes, T37i cells, and ingWAT preadipocytes by upregulating peroxisome proliferator-activated receptor-ƒÁ (PPARƒÁ). This effect was synergistic with that of a PPARƒÁ agonist.
Conclusion: This study demonstrated that (+)-terrein effectively induces PPARƒÁ expression and brown adipocyte differentiation, leading to reduced weight gain and improved glucose and lipid profiles in HF-fed mice. Thus, (+)-terrein is a potent novel agent with potential anti-obesity and anti-diabetic properties. en-copyright= kn-copyright= en-aut-name=Aoki-SaitoHaruka en-aut-sei=Aoki-Saito en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MandaiHiroki en-aut-sei=Mandai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakakuraTakashi en-aut-sei=Nakakura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SasakiTsutomu en-aut-sei=Sasaki en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitamuraTadahiro en-aut-sei=Kitamura en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HisadaTakeshi en-aut-sei=Hisada en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkadaShuichi en-aut-sei=Okada en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaMasanobu en-aut-sei=Yamada en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SaitoTsugumichi en-aut-sei=Saito en-aut-mei=Tsugumichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=3 en-affil=Department of Anatomy, Teikyo University School of Medicine kn-affil= affil-num=4 en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=6 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Gunma University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=Department of Diabetes, Soleiyu Asahi Clinic kn-affil= affil-num=9 en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=10 en-affil=Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University kn-affil= en-keyword=(+)-Terrein kn-keyword=(+)-Terrein en-keyword=Brown adipose tissue kn-keyword=Brown adipose tissue en-keyword=Thermogenesis kn-keyword=Thermogenesis en-keyword=Obesity kn-keyword=Obesity en-keyword=PPARƒÁ kn-keyword=PPARƒÁ END