start-ver=1.4 cd-journal=joma no-vol=237 cd-vols= no-issue= article-no= start-page=113001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202512 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of different X-ray tube positions on actual dose measurements during CT examinations -An effect of patient physique- en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dose management of patients is very important during X-ray Computed Tomography (CT) examinations, but because the patient's surface dose is inhomogeneous, it is difficult to measure the most probable value using a small passive-type dosimeter, lent to the patient. To solve this problem, our research group developed a precise dose analysis procedure in which a systematic uncertainty related to the X-ray incident direction (θin) is reduced. θin information was analyzed from CT images. However, the applicability of our procedure to actual patients with various physiques has not been examined. This study aims to propose a dose analysis procedure that can be applied to patients with various physiques, and to show its impact on dose measurement. Clinical data of 198 patients with Body Mass Index (BMI) values between 15 and 40 kg/m2 (mean value: 23.1 ± 3.8 kg/m2) who underwent chest CT scans were analyzed after dividing them into three groups based on BMI values. The absorbed dose was measured with a small-type Optically Stimulated Luminescence (OSL) dosimeter. To derive correction factors related to θin, the dependence of the actually-measured dose values of various patients on θin was analyzed. The correction coefficients were determined independently for the three groups classified by BMI values. By correcting the effect of θin, the systematic uncertainty element could be reduced, resulting in 30 % reduction of the uncertainty. Furthermore, it was found that our analysis procedure makes it possible to visualize outliers. In comparison with the expected dose values based on Computed Tomography Dose Index (CTDI) values, most of the data fell within the range of ±1.34 mGy (=1σ). However, 7 % of the data showed large deviations larger than 2σ. In conclusion, our research group has developed a procedure for measuring patient surface doses that can be applied to patients having various physiques, in which the effects of X-ray incident direction were accurately corrected. The procedure could be one solution to the problems with actual dose measurements during CT examinations, and will be useful for dose management based on the small-type dosimeter. en-copyright= kn-copyright= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaTatsuya en-aut-sei=Maeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakegamiKazuki en-aut-sei=Takegami en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoSota en-aut-sei=Goto en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiDaiki en-aut-sei=Kobayashi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KanazawaYuki en-aut-sei=Kanazawa en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamashitaKazuta en-aut-sei=Yamashita en-aut-mei=Kazuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KonishiTakeshi en-aut-sei=Konishi en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MakiMotochika en-aut-sei=Maki en-aut-mei=Motochika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= affil-num=2 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=3 en-affil=Department of Radiological Technology, Yamaguchi University Hospital kn-affil= affil-num=4 en-affil=Faculty of Health Sciences, Kobe Tokiwa University kn-affil= affil-num=5 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=7 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=8 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=9 en-affil=Faculty of Life Science, Kumamoto University kn-affil= affil-num=10 en-affil=Department of Orthopedics, School of Medicine, Tokushima University kn-affil= affil-num=11 en-affil=MEDITEC JAPAN Co., Ltd. kn-affil= affil-num=12 en-affil=MEDITEC JAPAN Co., Ltd. kn-affil= en-keyword=Patient dosimetry kn-keyword=Patient dosimetry en-keyword=Medical diagnosis kn-keyword=Medical diagnosis en-keyword=OSL dosimeter kn-keyword=OSL dosimeter en-keyword=X-ray CT kn-keyword=X-ray CT en-keyword=Passive type radiation dosimeter kn-keyword=Passive type radiation dosimeter en-keyword=BMI kn-keyword=BMI END start-ver=1.4 cd-journal=joma no-vol=163 cd-vols= no-issue=19 article-no= start-page=191101 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Interplay of coil?globule transitions and aggregation in homopolymer aqueous solutions: Simulation and topological insights en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigate the structural and topological properties of hydrophobic homopolymer chains in aqueous solutions using molecular dynamics simulations and circuit topology (CT) analysis. By combining geometric observables, such as the radius of gyration and the degree of aggregation, with CT data, we capture the relationship between coil?globule and aggregation transitions, resolving the system’s structural changes with temperature. Our results reveal a temperature-driven collective transition from isolated coiled chains to globular aggregates. At a characteristic transition temperature Tc, each chain in multichain systems undergoes a rapid coil?globule collapse, coinciding with aggregation, in contrast to the gradual collapse observed in single-chain systems at infinite dilution. This collective transition is reflected in geometric descriptors and a reorganization of CT motifs, shifting from intrachain-dominated motifs at low temperatures to a diverse ensemble of multichain motifs at higher temperatures. CT motif enumeration provides contact statistics while offering a topologically detailed view of polymer organization. These findings highlight CT’s utility as a structural descriptor for polymer systems and suggest applications for biopolymer aggregation and folding. en-copyright= kn-copyright= en-aut-name=KomatsuJunichi en-aut-sei=Komatsu en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BerxJonas en-aut-sei=Berx en-aut-mei=Jonas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=3 en-affil=Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen kn-affil= END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=8226 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Persistent homology elucidates hierarchical structures responsible for mechanical properties in covalent amorphous solids en-subtitle= kn-subtitle= en-abstract= kn-abstract=Understanding how atomic-level structures govern the mechanical properties of amorphous materials remains a fundamental challenge in solid-state physics. Under mechanical loading, amorphous materials exhibit simple affine and spatially inhomogeneous nonaffine displacements that contribute to the elastic modulus through the Born (affine) and nonaffine terms, respectively. The differences between soft local structures characterized by small Born terms or large nonaffine displacements have yet to be elucidated. This challenge is particularly complex in covalent amorphous materials such as silicon, where the medium-range order (MRO) plays a crucial role in the network structure. To address these issues, we combined molecular dynamics simulations with persistent homology analysis. Our results reveal that local structures with small Born terms are governed by short-range characteristics, whereas those with large nonaffine displacements exhibit hierarchical structures in which short-range disorder is embedded within the MRO. These hierarchical structures are also strongly correlated with low-energy localized vibrational excitations. Our findings demonstrate that the mechanical responses and dynamic properties of covalent amorphous materials are intrinsically linked to the MRO, providing a framework for understanding and tailoring their properties. en-copyright= kn-copyright= en-aut-name=MinamitaniEmi en-aut-sei=Minamitani en-aut-mei=Emi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraTakenobu en-aut-sei=Nakamura en-aut-mei=Takenobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ObayashiIppei en-aut-sei=Obayashi en-aut-mei=Ippei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizunoHideyuki en-aut-sei=Mizuno en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=SANKEN, The University of Osaka kn-affil= affil-num=2 en-affil=Department of Materials and Chemistry Materials DX Research Center, National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=3 en-affil=Center for Artificial Intelligence and Mathematical Data Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Arts and Sciences, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=239 cd-vols= no-issue= article-no= start-page=113260 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Helical X-ray tube trajectory estimation via image noise analysis for enhanced CT dosimetry en-subtitle= kn-subtitle= en-abstract= kn-abstract=Information on the helical trajectory of the X-ray tube is necessary for accurate dose evaluation during computed tomography (CT). We aimed to propose a methodology for analyzing the trajectory of the X-ray tube. The novelty of this paper is that the incident direction of X-rays is estimated from the standard deviation (SD) distribution. The X-ray incident direction for each slice was analyzed using a distribution function of SD values, in which the analysis regions were placed in the air region. Then, the helical trajectory of the CT scan was estimated by fitting a three-dimensional helical function to the analyzed data. The robustness of our algorithm was verified through phantom studies: the analyzed X-ray incident directions were compared with instrumental log data, in which cylindrical polyoxymethylene resin phantoms and a whole-body phantom were scanned. Chest CT scanning was mimicked, in which the field of view (FOV) was set at the lung region. The procedure for analyzing the X-ray incident direction was applicable to cylindrical phantoms regardless of the phantom size. In contrast, in the case of the whole-body phantom, although it was possible to apply our procedure to the chest and abdomen regions, the shoulder slices were inappropriate to analyze. Therefore, the helical trajectory was determined based on chest and abdominal CT images. The accuracy in X-ray incident direction analysis was evaluated to be 7.5°. In conclusion, we have developed an algorithm to estimate a three-dimensional helical trajectory that can be used for dose measurements and simulations. en-copyright= kn-copyright= en-aut-name=MaedaTatsuya en-aut-sei=Maeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakegamiKazuki en-aut-sei=Takegami en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GotoSota en-aut-sei=Goto en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiDaiki en-aut-sei=Kobayashi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamashitaKazuta en-aut-sei=Yamashita en-aut-mei=Kazuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HigashinoKosaku en-aut-sei=Higashino en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MorimotoShinichi en-aut-sei=Morimoto en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KonishiTakeshi en-aut-sei=Konishi en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MakiMotochika en-aut-sei=Maki en-aut-mei=Motochika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Yamaguchi University Hospital kn-affil= affil-num=3 en-affil=Faculty of Health Sciences, Kobe Tokiwa University kn-affil= affil-num=4 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=6 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=7 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=8 en-affil=Department of Orthopedics, School of Medicine, Tokushima University kn-affil= affil-num=9 en-affil=Shikoku Medical Center for Children and Adults kn-affil= affil-num=10 en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld. kn-affil= affil-num=11 en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld. kn-affil= affil-num=12 en-affil=MEDITEC JAPAN Co., Ltd., Yamaguchi Kosan Bld. kn-affil= affil-num=13 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= en-keyword=X-ray medical diagnosis kn-keyword=X-ray medical diagnosis en-keyword=Helical CT scan kn-keyword=Helical CT scan en-keyword=CT image kn-keyword=CT image en-keyword=X-ray incident direction kn-keyword=X-ray incident direction en-keyword=Helical trajectory kn-keyword=Helical trajectory en-keyword=Radiation dose measurement kn-keyword=Radiation dose measurement END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=2 article-no= start-page=606 end-page=617 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Heat shock factor 1 (Hsf1), a hub protein in the stress response and cell fate decisions, senses the strength, type, and duration of stress to balance cell survival and death through an unknown mechanism. Recently, changes in the physical property of Hsf1 condensates due to persistent stress have been suggested to trigger apoptosis, highlighting the importance of biological phase separation and transition in cell fate decisions. In this study, the mechanism underlying Hsf1 droplet formation and oxidative response was investigated through 3D refractive index imaging of the internal architecture, corroborated by molecular dynamics simulations and biophysical/biochemical experiments. We found that, in response to oxidative conditions, Hsf1 formed liquid condensates that suppressed its internal mobility. Furthermore, these conditions triggered the hyper-oligomerization of Hsf1, mediated by disulfide bonds and secondary structure stabilization, leading to the formation of dense core particles in the Hsf1 droplet. Collectively, these data demonstrate how the physical property of Hsf1 condensates undergoes an oxidative transition by sensing redox conditions to potentially drive cell fate decisions. en-copyright= kn-copyright= en-aut-name=KawagoeSoichiro en-aut-sei=Kawagoe en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsusakiMotonori en-aut-sei=Matsusaki en-aut-mei=Motonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MabuchiTakuya en-aut-sei=Mabuchi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OgasawaraYuto en-aut-sei=Ogasawara en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeKazunori en-aut-sei=Watanabe en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshimoriKoichiro en-aut-sei=Ishimori en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaioTomohide en-aut-sei=Saio en-aut-mei=Tomohide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= affil-num=2 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= affil-num=3 en-affil=Frontier Research Institute for Interdisciplinary Sciences, Tohoku University kn-affil= affil-num=4 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Chemistry, Faculty of Science, Hokkaido University kn-affil= affil-num=7 en-affil=Institute of Advanced Medical Sciences, Tokushima University kn-affil= en-keyword=heat shock factor 1 kn-keyword=heat shock factor 1 en-keyword=oxidative hyper-oligomerization kn-keyword=oxidative hyper-oligomerization en-keyword=biological phase transition kn-keyword=biological phase transition en-keyword=stress response kn-keyword=stress response en-keyword=biophysics kn-keyword=biophysics END start-ver=1.4 cd-journal=joma no-vol=238 cd-vols= no-issue= article-no= start-page=113243 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bone-enhanced high contrast X-ray images derived from attenuation estimation related to ultra-low energy X-rays ? An application of an energy-resolving photon-counting detector (ERPCD) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: X-ray diagnosis in medicine is often used for bone diagnosis based on qualitative observation analysis. However, there are often cases where the contrast of bones is reduced because of the existence of soft-tissues, making it difficult to accurately diagnose the bone conditions. Although the algorithm for bone extraction images was proposed using an energy-resolving photon-counting detector (ERPCD), this algorithm can depict “one” bone material (such as hydroxyapatite under the assumption), and it is difficult to adequately depict other components. The purpose of this study is to develop an algorithm for bone-enhanced high-contrast images that can be virtually represented by the attenuation of extremely low-energy X-rays without making any special assumptions.
Methods: High-contrast images were virtually generated based on the attenuation rate of ultra-low energy X-rays. It was determined by fitting the mass attenuation coefficient (μ/ρ) curve to the X-ray attenuation values (μt values) measured at middle (30?40 keV) and high (40?60 keV) energy windows, and extrapolating the μt values to those for the low energy region (E = 5?20 keV). When performing the extrapolation, the effective atomic number (Zeff ) of the object was taken into consideration. The methodology was validated by simulating X-ray projections using a digital human body phantom. The frequency of correspondence between the pixel values in the high-contrast image and the Zeff image was analyzed for each pixel.
Results: We succeeded in creating virtual high-contrast X-ray images that reflect the image contrast of monochromatic X-rays of 5?20 keV. It was confirmed that the pixel values in the high-contrast image corresponding to an Zeff = 7.5 (soft-tissue) were completely separated from those corresponding to an Zeff = 9 (bone). The optimization of the energy related to the high contrast images was performed based on the contrast-to-noise ratio (CNR) analysis. The high contrast image with 10 keV showed a good CNR value.
Conclusions: Based on the analysis of the attenuation information of middle and high-energy X-rays measured by ERPCDs, we succeeded in creating a novel algorithm that can generate a virtual monochromatic image with high contrast. en-copyright= kn-copyright= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaTatsuya en-aut-sei=Maeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiDaiki en-aut-sei=Kobayashi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoSota en-aut-sei=Goto en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HabaTomonobu en-aut-sei=Haba en-aut-mei=Tomonobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanazawaYuki en-aut-sei=Kanazawa en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoShuichiro en-aut-sei=Yamamoto en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=2 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=3 en-affil=Faculty of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=5 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=6 en-affil=Faculty of Health Sciences, Kobe Tokiwa University kn-affil= affil-num=7 en-affil=Faculty of Radiological Technology, School of Medical Science, Fujita Health University kn-affil= affil-num=8 en-affil=Faculty of Life Science, Kumamoto University kn-affil= affil-num=9 en-affil=JOB CORPORATION kn-affil= affil-num=10 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= en-keyword=Medical X-ray diagnosis kn-keyword=Medical X-ray diagnosis en-keyword=Photon-counting detector kn-keyword=Photon-counting detector en-keyword=High contrast image kn-keyword=High contrast image en-keyword=Virtual monochromatic image kn-keyword=Virtual monochromatic image en-keyword=Effective atomic number kn-keyword=Effective atomic number en-keyword=Ultra-low energy image kn-keyword=Ultra-low energy image END start-ver=1.4 cd-journal=joma no-vol=239 cd-vols= no-issue= article-no= start-page=113237 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2026 dt-pub=202602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Counting-loss correction procedure of X-ray imaging detectors with consideration for the effective atomic number of biological objects en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is necessary to correct counting loss caused by the pulse pile-up effect and dead time when using energy-resolving photon-counting detectors (ERPCDs) under “high-counting-rate” conditions in medical and/or industrial settings. We aimed to develop a novel counting-loss correction procedure in which biological objects having effective atomic numbers (Zeff values) of 6.5?13.0 are measured with polychromatic X-rays. To correct for counting loss, such a procedure must theoretically estimate the count value of an ideal X-ray spectrum without counting loss. In this study, we estimated the ideal X-ray spectrum by focusing on the following two points: (1) the X-ray attenuation in an object (Zeff values of 6.5?13.0) and (2) the detector response. Virtual materials having intermediate atomic numbers between 6.5 and 13.0 were generated by using a mixture of polymethylmethacrylate (PMMA, Zeff = 6.5) and aluminum (Al, Zeff = 13.0). We then constructed an algorithm that can perform the counting-loss correction based on the object’s true Zeff value. To demonstrate the applicability of our procedure, we analyzed investigational objects consisting of PMMA and Al using a prototype ERPCD system. A fresh fish sample was also analyzed. The Zeff values agree with the theoretical values within an accuracy of Zeff ±1. In conclusion, we have developed a highly accurate procedure for correcting counting losses for the quantitative X-ray imaging of biological objects. en-copyright= kn-copyright= en-aut-name=KimotoNatsumi en-aut-sei=Kimoto en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishigamiRina en-aut-sei=Nishigami en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiDaiki en-aut-sei=Kobayashi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaTatsuya en-aut-sei=Maeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AsaharaTakashi en-aut-sei=Asahara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoSota en-aut-sei=Goto en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanazawaYuki en-aut-sei=Kanazawa en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatsumataAkitoshi en-aut-sei=Katsumata en-aut-mei=Akitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoShuichiro en-aut-sei=Yamamoto en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HayashiHiroaki en-aut-sei=Hayashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University kn-affil= affil-num=2 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=3 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=4 en-affil=Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=5 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Faculty of Health Science, Kobe Tokiwa University kn-affil= affil-num=7 en-affil=Faculty of Life Science, Kumamoto University kn-affil= affil-num=8 en-affil=Oral Radiology and Artificial Intelligence, Asahi University kn-affil= affil-num=9 en-affil=JOB CORPORATION kn-affil= affil-num=10 en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University kn-affil= en-keyword=Photon-counting detector kn-keyword=Photon-counting detector en-keyword=Pulse pile-up kn-keyword=Pulse pile-up en-keyword=Dead time kn-keyword=Dead time en-keyword=Counting-loss correction kn-keyword=Counting-loss correction en-keyword=Charge-sharing effect kn-keyword=Charge-sharing effect en-keyword=Effective atomic number kn-keyword=Effective atomic number END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrostatically‐Driven Collapse of Polyelectrolytes: The?Role of the Solvent's Dielectric Constant en-subtitle= kn-subtitle= en-abstract= kn-abstract=We experimentally confirm a longstanding theoretical prediction of counterion-induced polyelectrolyte collapse in low dielectric media. The scattering behavior of polystyrene sulfonate in different solvents with dielectric permittivities in the range of ε ? 12 ? 180 is investigated. For high and intermediate ε media, typical polyelectrolyte behavior is observed: the correlation length (ξ) scales with concentration (c) as ξ ? c?1?2, as predicted by various theories. When the dielectric constant of the solvent decreases below ? 22, a scaling of ξ ? c?1?3, characteristic of partially collapsed polyelectrolytes, is observed. For these solvents, the correlation peak disappears at high concentrations. Interestingly, polyelectrolyte collapse is observed under both solvophilic and solvophobic conditions, supporting the existence of attractive electrostatic interactions. These results are in qualitative agreement with theoretical predictions which expect chain collapse in low dielectric media due to the influence of condensed counterions, either via dipolar attraction and/or charge-correlation-induced attractions. en-copyright= kn-copyright= en-aut-name=GulatiAnish en-aut-sei=Gulati en-aut-mei=Anish kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MengLingzi en-aut-sei=Meng en-aut-mei=Lingzi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeTakaichi en-aut-sei=Watanabe en-aut-mei=Takaichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LopezCarlos G. en-aut-sei=Lopez en-aut-mei=Carlos G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute of Physical Chemistry, RWTH Aachen University kn-affil= affil-num=2 en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=4 en-affil=Materials Science and Engineering Department, The Pennsylvania State University, State College kn-affil= en-keyword=counterion kn-keyword=counterion en-keyword=dipole kn-keyword=dipole en-keyword=polyelectrolyte kn-keyword=polyelectrolyte en-keyword=SANS kn-keyword=SANS en-keyword=SAXS kn-keyword=SAXS en-keyword=scattering kn-keyword=scattering END start-ver=1.4 cd-journal=joma no-vol=129 cd-vols= no-issue=2 article-no= start-page=726 end-page=735 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hydronium Ions Are Less Excluded from Hydrophobic Polymer?Water Interfaces than Hydroxide Ions en-subtitle= kn-subtitle= en-abstract= kn-abstract=The cloud point temperatures of aqueous poly(N-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM. This ionic strength was reached by mixing the appropriate concentration of NaCl with either HCl or NaOH. The phase transition temperature of both polymers was nearly constant between pH 2.0 and 12.0. However, the introduction of 100 mM HCl (pH 1.0) led to an increase in the cloud point temperature, although this value was still lower than the cloud point temperature in the absence of salt. By contrast, the introduction of 100 mM NaOH (pH 13.0) caused a decrease in the cloud point temperature, both relative to adding 100 mM NaCl and adding no salt. Nuclear magnetic resonance (NMR) studies of these systems were performed below the cloud point temperature, and the chemical shifts closely tracked the corresponding changes in the phase transition temperature. Specifically, the introduction of 100 mM HCl caused the 1H chemical shift to move downfield for the CH resonances from both PNIPAM and PEO, while 100 mM NaOH caused the same resonances to move upfield. Virtually no change in the chemical shift was seen between pH 2.0 and 12.0. These results are consistent with the idea that a sufficient concentration of H3O+ led to polymer swelling compared to Na+, while substituting Cl? with OH? reduced swelling. Finally, classical all-atom molecular dynamics (MD) simulations were performed with a monomer and 5-mer corresponding to PNIPAM. The results correlated closely with the thermodynamic and spectroscopic data. The simulation showed that H3O+ ions more readily accumulated around the amide oxygen moiety on PNIPAM compared with Na+. On the other hand, OH? was more excluded from the polymer surface than Cl?. Taken together, the thermodynamic, spectroscopic, and MD simulation data revealed that H3O+ was less depleted from hydrophobic polymer/water interfaces than any of the monovalent Hofmeister metal cations or even Ca2+ and Mg2+. As such, it should be placed on the far-right side of the cationic Hofmeister series. On the other hand, OH? was excluded from the interface and could be positioned in the anionic Hofmeister series between H2PO4? and SO42?. en-copyright= kn-copyright= en-aut-name=MyersRyan L. en-aut-sei=Myers en-aut-mei=Ryan L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TairaAoi en-aut-sei=Taira en-aut-mei=Aoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanChuanyu en-aut-sei=Yan en-aut-mei=Chuanyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LeeSeung-Yi en-aut-sei=Lee en-aut-mei=Seung-Yi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WelshLauren K. en-aut-sei=Welsh en-aut-mei=Lauren K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IaniroPatrick R. en-aut-sei=Ianiro en-aut-mei=Patrick R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YangTinglu en-aut-sei=Yang en-aut-mei=Tinglu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=CremerPaul S. en-aut-sei=Cremer en-aut-mei=Paul S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= affil-num=4 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= affil-num=5 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= affil-num=6 en-affil=Department of Chemistry, University of Pittsburgh at Bradford kn-affil= affil-num=7 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= affil-num=8 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=9 en-affil=Department of Chemistry, The Pennsylvania State University, University Park kn-affil= END start-ver=1.4 cd-journal=joma no-vol=126 cd-vols= no-issue=1 article-no= start-page=012901 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dynamic domain motion enhancing electro-optic performance in ferroelectric films en-subtitle= kn-subtitle= en-abstract= kn-abstract=With the rapid advancement of information technology, there is a pressing need to develop ultracompact and energy-efficient thin-film-based electro-optic (EO) devices. A high EO coefficient in ferroelectric materials is crucial. However, substrate clamping can positively or negatively influence various physical properties, including the EO response of these films, thus complicating the development of next-generation thin-film-based devices. This study demonstrates that reversible dynamic domain motion, achieved through substrate clamping, significantly enhances the EO coefficient in epitaxial ferroelectric rhombohedral Pb(Zr, Ti)O3 thin films, where the (111) and (? 111?) domains coexist with distinct optical axes. In principle, this approach can be applied to different film-substrate systems, thereby contributing to the advancement of sophisticated EO devices based on ferroelectrics. en-copyright= kn-copyright= en-aut-name=KondoShinya en-aut-sei=Kondo en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamotoKazuki en-aut-sei=Okamoto en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakataOsami en-aut-sei=Sakata en-aut-mei=Osami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TeranishiTakashi en-aut-sei=Teranishi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KishimotoAkira en-aut-sei=Kishimoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagasakiTakanori en-aut-sei=Nagasaki en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamadaTomoaki en-aut-sei=Yamada en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Energy Engineering, Nagoya University kn-affil= affil-num=3 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Energy Engineering, Nagoya University kn-affil= affil-num=7 en-affil=Department of Energy Engineering, Nagoya University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=159 cd-vols= no-issue=19 article-no= start-page=194504 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficiency and energy balance for substitution of CH4 in clathrate hydrates with CO2 under multiple-phase coexisting conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Many experimental and theoretical studies on CH4?CO2 hydrates have been performed aiming at the extraction of CH4 as a relatively clean energy resource and concurrent sequestration of CO2. However, vague or insufficient characterization of the environmental conditions prevents us from a comprehensive understanding of even equilibrium properties of CH4?CO2 hydrates for this substitution. We propose possible reaction schemes for the substitution, paying special attention to the coexisting phases, the aqueous and/or the fluid, where CO2 is supplied from and CH4 is transferred to. We address the two schemes for the substitution operating in three-phase and two-phase coexistence. Advantages and efficiencies of extracting CH4 in the individual scheme are estimated from the chemical potentials of all the components in all the phases involved in the substitution on the basis of a statistical mechanical theory developed recently. It is found that although substitution is feasible in the three-phase coexistence, its working window in temperature?pressure space is much narrower compared to the two-phase coexistence condition. Despite that the substitution normally generates only a small amount of heat, a large endothermic substitution is suggested in the medium pressure range, caused by the vaporization of liquid CO2 due to mixing with a small amount of the released CH4. This study provides the first theoretical framework toward the practical use of hydrates replacing CH4 with CO2 and serves as a basis for quantitative planning. en-copyright= kn-copyright= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=161 cd-vols= no-issue=21 article-no= start-page=214501 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The nature of the hydrophobic interaction varies as the solute size increases from methane’s to C60’s en-subtitle= kn-subtitle= en-abstract= kn-abstract=The hydrophobic interaction, often combined with the hydrophilic or ionic interactions, makes the behavior of aqueous solutions very rich and plays an important role in biological systems. Theoretical and computer simulation studies have shown that the water-mediated force depends strongly on the size and other chemical properties of the solute, but how it changes with these factors remains unclear. We report here a computer simulation study that illustrates how the hydrophobic pair interaction and the entropic and enthalpic terms change with the solute size when the solute?solvent weak attractive interaction is unchanged with the solute size. The nature of the hydrophobic interaction changes qualitatively as the solute size increases from that of methane to that of fullerene. The potential of mean force between small solutes has several well-defined extrema, including the third minimum, whereas the potential of mean force between large solutes has the deep contact minimum and the large free-energy barrier between the contact and the water-bilayer separated configurations. The difference in the potential of mean force is related to the differences in the water density, energy, and hydrogen bond number distributions in the vicinity of the pairs of hydrophobic solutes. en-copyright= kn-copyright= en-aut-name=NaitoHidefumi en-aut-sei=Naito en-aut-mei=Hidefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=1 article-no= start-page=46 end-page=60 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Terpolymerization reactions of epoxides, CO2, and the third monomers toward sustainable CO2-based polymers with controllable chemical and physical properties en-subtitle= kn-subtitle= en-abstract= kn-abstract=Carbon dioxide (CO2) serves as a cheap, abundant, and renewable C1 building block for the synthesis of organic compounds and polymers. Selective and efficient CO2 fixation processes are still challenging because of the kinetic and thermodynamic stability of CO2. Among various CO2 fixation processes, the ring-opening copolymerization (ROCOP) of epoxides and CO2 gives aliphatic polycarbonates with high atom economy, although the chemical and physical properties of the resulting polycarbonates are not necessarily satisfactory. Introducing the third monomers into this ROCOP system provides new terpolymers, and the thermal, optical, mechanical or degradation properties can be added or tuned by incorporating new polymer backbones derived from the third monomers at the expense of the CO2 content. Here we review the terpolymerization reactions of epoxides, CO2, and the third monomers such as cyclic anhydrides, lactones, lactides, heteroallenes, and olefins. The development of catalysts and the control of the polymer structures are described together with the chemical and physical properties of the resulting polymers. en-copyright= kn-copyright= en-aut-name=NakaokaKoichi en-aut-sei=Nakaoka en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=70 article-no= start-page=e202402690 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=MoSe2-Sensitized Water Splitting Assisted by C60-Dendrons on the Basal Surface en-subtitle= kn-subtitle= en-abstract= kn-abstract=To facilitate water splitting using MoSe2 as a light absorber, we fabricated water-dispersible MoSe2/C60-dendron nanohybrids via physical modification of the basal plane of MoSe2. Upon photoirradiation, the mixed-dimension MoSe2/C60 (2D/0D) heterojunction generates a charge-separated state (MoSe2?+/C60??) through electron extraction from the exciton in MoSe2 to C60. This process is followed by the hydrogen evolution reaction (HER) from water in the presence of a sacrificial donor (1-benzyl-1,4-dihydronicotinamide) and co-catalyst (Pt-PVP). The apparent quantum yields of the HER were estimated to be 0.06?% and 0.27?% upon photoexcitation at the A- and B-exciton absorption peaks (λmax=800 and 700?nm), respectively. en-copyright= kn-copyright= en-aut-name=TajimaTomoyuki en-aut-sei=Tajima en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuuraTomoki en-aut-sei=Matsuura en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EfendiArif en-aut-sei=Efendi en-aut-mei=Arif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YukimotoMariko en-aut-sei=Yukimoto en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaguchiYutaka en-aut-sei=Takaguchi en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Materials Design and Engineering, University of Toyama kn-affil= affil-num=4 en-affil=Department of Materials Design and Engineering, University of Toyama kn-affil= affil-num=5 en-affil=Department of Materials Design and Engineering, University of Toyama kn-affil= en-keyword=Water splitting kn-keyword=Water splitting en-keyword=Transition metal dichalcogenide kn-keyword=Transition metal dichalcogenide en-keyword=Hydrogen evolution kn-keyword=Hydrogen evolution en-keyword=Photocatalyst kn-keyword=Photocatalyst en-keyword=Fullerene kn-keyword=Fullerene END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=43 article-no= start-page=22614 end-page=22626 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241017 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nanoscale Structures of Tough Microparticle-Based Films Investigated by Synchrotron X-Ray Scattering and All-Atom Molecular-Dynamics Simulation en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, the nanoscale structures of microparticle-based films are revealed by synchrotron small-angle X-ray scattering (SAXS) and all-atom molecular-dynamics (AA-MD) simulations. The microparticle-based films consisting of the simplest acrylate polymer microparticles are applied as a model because the films are formed without additives and organic solvents and exhibit high toughness properties. The characteristic interfacial thickness (tinter) obtained from the SAXS analysis reflects the mixing degree of polymer chains on the microparticle surface in the film. The cross-linking density of inner microparticles is found to be strongly correlated to not only several properties of individual microparticles, such as swelling ratio and radius of gyration, but also the tinter and toughness of the corresponding films. Therefore, the tinter and toughness values follow a linear relationship because the cross-linking restricts the mixing of polymer chains between their surfaces in the film, which is a unique feature of microparticle-based films. This characteristic also affects their deformation behavior observed by in situ SAXS during tensile testing and their density profiles calculated by AA-MD simulations. This work provides a general strategy for material design to control the physical properties and structures of their films for advanced applications, including volatile organic compound-free sustainable coatings and adhesives. en-copyright= kn-copyright= en-aut-name=NambaKeita en-aut-sei=Namba en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiYuma en-aut-sei=Sasaki en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawamuraYuto en-aut-sei=Kawamura en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaShotaro en-aut-sei=Yoshida en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiedaYoshiki en-aut-sei=Hieda en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujimotoKazushi en-aut-sei=Fujimoto en-aut-mei=Kazushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeNatsuki en-aut-sei=Watanabe en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishizawaYuichiro en-aut-sei=Nishizawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UchihashiTakayuki en-aut-sei=Uchihashi en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KurehaTakuma en-aut-sei=Kureha en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Textile Science &Technology, Shinshu University kn-affil= affil-num=4 en-affil=Department of Materials Chemistry, Nagoya University kn-affil= affil-num=5 en-affil=Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University kn-affil= affil-num=6 en-affil=Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University kn-affil= affil-num=7 en-affil=Department of Physics, Nagoya University kn-affil= affil-num=8 en-affil=Department of Physics, Nagoya University kn-affil= affil-num=9 en-affil=Department of Physics, Nagoya University kn-affil= affil-num=10 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=32 article-no= start-page=23177 end-page=23183 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240723 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lead-free iron-doped Cs3Bi2Br9 perovskite with tunable properties en-subtitle= kn-subtitle= en-abstract= kn-abstract=Perovskite based on cesium bismuth bromide offers a compelling, non-toxic alternative to lead-containing counterparts in optoelectronic applications. However, its widespread usage is hindered by its wide bandgap. This study investigates a significant bandgap tunability achieved by introducing Fe doping into the inorganic, lead-free, non-toxic, and stable Cs3Bi2Br9 perovskite at varying concentrations. The materials were synthesized using a facile method, with the aim of tuning the optoelectronic properties of the perovskite materials. Characterization through techniques such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, energy dispersive spectroscopy (EDS), and UV-vis spectroscopy was conducted to elucidate the transformation mechanism of the doping materials. The substitution process results in a significant change in the bandgap energy, transforming from the pristine Cs3Bi2Br9 with a bandgap of 2.54 eV to 1.78 eV upon 70% Fe doping. The addition of 50% Fe in Cs3Bi2Br9 leads to the formation of the orthorhombic structure in Cs2(Bi,Fe)Br5 perovskite, while complete Fe alloying at 100% results in the phase formation of CsFeBr4 perovskite. Our findings on regulation of bandgap energy and crystal structure through B site substitution hold significant promise for applications in optoelectronics. en-copyright= kn-copyright= en-aut-name=HtunThiri en-aut-sei=Htun en-aut-mei=Thiri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ElattarAmr en-aut-sei=Elattar en-aut-mei=Amr kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ElbohyHytham en-aut-sei=Elbohy en-aut-mei=Hytham kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsutsumiKosei en-aut-sei=Tsutsumi en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoriganeKazumasa en-aut-sei=Horigane en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoChiyu en-aut-sei=Nakano en-aut-mei=Chiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GuXiaoyu en-aut-sei=Gu en-aut-mei=Xiaoyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzukiHiroo en-aut-sei=Suzuki en-aut-mei=Hiroo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishikawaTakeshi en-aut-sei=Nishikawa en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KyawAung Ko Ko en-aut-sei=Kyaw en-aut-mei=Aung Ko Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Ain Shams University kn-affil= affil-num=3 en-affil=Physics Department, Faculty of Science, Damietta University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=7 en-affil=Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting and Department of Electronic & Electrical Engineering, Southern University of Science and Technology kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting and Department of Electronic & Electrical Engineering, Southern University of Science and Technology kn-affil= affil-num=11 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=128 cd-vols= no-issue=27 article-no= start-page=6509 end-page=6517 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins en-subtitle= kn-subtitle= en-abstract= kn-abstract=Proton (H+) motive force (PMF) serves as the energy source for the flagellar motor rotation, crucial for microbial motility. Here, to control PMF using light, we introduced light-driven inward and outward proton pump rhodopsins, RmXeR and AR3, into Escherichia coli. The motility of E. coli cells expressing RmXeR and AR3 significantly decreased and increased upon illumination, respectively. Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with RmXeR, while it increased to 1170 pN nm with AR3. These alterations in PMF correspond to +146 mV (RmXeR) and ?140 mV (AR3), respectively. Thus, bidirectional optical control of PMF in E. coli was successfully achieved by using proton pump rhodopsins. This system holds a potential for enhancing our understanding of the roles of PMF in various biological functions. en-copyright= kn-copyright= en-aut-name=NakanishiKotaro en-aut-sei=Nakanishi en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SowaYoshiyuki en-aut-sei=Sowa en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=19 article-no= start-page=21287 end-page=21297 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Superstructure of Fe5?xGeTe2 Determined by Te K-Edge Extended X-ray Absorption Fine Structure and Te Kα X-ray Fluorescence Holography en-subtitle= kn-subtitle= en-abstract= kn-abstract=The local structure of the two-dimensional van der Waals material, Fe5?xGeTe2, which exhibits unique structural/magnetic phase transitions, was investigated by Te K-edge extended X-ray absorption fine structure (EXAFS) and Te Kα X-ray fluorescence holography (XFH) over a wide temperature range. The formation of a trimer of Te atoms at low temperatures has been fully explored using these methods. An increase in the Te?Fe distance at approximately 150 K was suggested by EXAFS and presumably indicates the formation of a Te trimer. Moreover, XFH displayed clear atomic images of Te atoms. Additionally, the distance between the Te atoms shortened, as confirmed from the atomic images reconstructed from XFH, indicating the formation of a trimer of Te atoms, i.e., a charge-ordered (3??√×3??√)?30? superstructure. Furthermore, Te Kα XFH provided unambiguous atomic images of Fe atoms occupying the Fe1 site; the images were not clearly observed in the Ge Kα XFH that was previously reported because of the low occupancy of Fe and Ge atoms. In this study, EXAFS and XFH clearly showed the local structure around the Te atom; in particular, the formation of Te trimers caused by charge-ordered phase transitions was clearly confirmed. The charge-ordered phase transition is fully discussed based on the structural variation at low temperatures, as established from EXAFS and XFH. en-copyright= kn-copyright= en-aut-name=EguchiRitsuko en-aut-sei=Eguchi en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SekharHalubai en-aut-sei=Sekhar en-aut-mei=Halubai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimuraKoji en-aut-sei=Kimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasaiHirokazu en-aut-sei=Masai en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HappoNaohisa en-aut-sei=Happo en-aut-mei=Naohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkedaMitsuki en-aut-sei=Ikeda en-aut-mei=Mitsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoYuki en-aut-sei=Yamamoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UtsumiMasaki en-aut-sei=Utsumi en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakabayashiYasuhiro en-aut-sei=Takabayashi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TajiriHiroo en-aut-sei=Tajiri en-aut-mei=Hiroo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HayashiKoichi en-aut-sei=Hayashi en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Physical Science and Technology, Nagoya Institute of Technology kn-affil= affil-num=3 en-affil=Department of Physical Science and Technology, Nagoya Institute of Technology kn-affil= affil-num=4 en-affil=Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=5 en-affil=Graduate School of Information Sciences, Hiroshima City University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=10 en-affil=Department of Physical Science and Technology, Nagoya Institute of Technology kn-affil= affil-num=11 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=12 en-affil=Department of Physical Science and Technology, Nagoya Institute of Technology kn-affil= affil-num=13 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=25 article-no= start-page=12295 end-page=12303 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230620 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Li-Ion Transport and Solution Structure in Sulfolane-Based Localized High-Concentration Electrolytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Localized high-concentration electrolytes (LHCEs), which are mixtures of highly concentrated electrolytes (HCEs) and non-coordinating diluents, have attracted significant interest as promising liquid electrolytes for next-generation Li secondary batteries, owing to their various beneficial properties both in the bulk and at the electrode/electrolyte interface. We previously reported that the large Li+-ion transference number in sulfolane (SL)-based HCEs, attributed to the unique exchange/hopping-like Li+-ion conduction, decreased upon dilution with the non-coordinating hydrofluoroether (HFE) despite the retention of the local Li+-ion coordination structure. Therefore, in this study, we investigated the effects of HFE dilution on the Li+ transference number and the solution structure of SL-based LHCEs via the analysis of dynamic ion correlations and molecular dynamics simulations. The addition of HFE caused nano-segregation in the SL-based LHCEs to afford polar and nonpolar domains and fragmentation of the polar ion-conducting pathway into smaller clusters with increasing HFE content. Analysis of the dynamic ion correlations revealed that the anti-correlated Li+?Li+ motions were more pronounced upon HFE addition, suggesting that the Li+ exchange/hopping conduction is obstructed by the non-ion-conducting HFE-rich domains. Thus, the HFE addition affects the entire solution structure and ion transport without significantly affecting the local Li+-ion coordination structure. Further studies on ion transport in LHCEs would help obtain a design principle for liquid electrolytes with high ionic conductivity and large Li+-ion transference numbers. en-copyright= kn-copyright= en-aut-name=SudohTaku en-aut-sei=Sudoh en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaShuhei en-aut-sei=Ikeda en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShigenobuKeisuke en-aut-sei=Shigenobu en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsuzukiSeiji en-aut-sei=Tsuzuki en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DokkoKaoru en-aut-sei=Dokko en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanabeMasayoshi en-aut-sei=Watanabe en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShinodaWataru en-aut-sei=Shinoda en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UenoKazuhide en-aut-sei=Ueno en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Taku Sudoh Department of Chemistry and Life Science, Yokohama National University kn-affil= affil-num=2 en-affil=Department of Materials Chemistry, Nagoya University kn-affil= affil-num=3 en-affil=Department of Chemistry and Life Science, Yokohama National University kn-affil= affil-num=4 en-affil=Advanced Chemical Energy Research Centre (ACERC), Institute of Advanced Sciences, Yokohama National University kn-affil= affil-num=5 en-affil=Department of Chemistry and Life Science, Yokohama National University kn-affil= affil-num=6 en-affil=Advanced Chemical Energy Research Centre (ACERC), Institute of Advanced Sciences, Yokohama National University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science and Department of Chemistry, Okayama University kn-affil= affil-num=8 en-affil=Department of Chemistry and Life Science, Yokohama National University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=59 cd-vols= no-issue=17 article-no= start-page=2425 end-page=2428 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Non-enzymatic detection of glucose levels in human blood plasma by a graphene oxide-modified organic transistor sensor en-subtitle= kn-subtitle= en-abstract= kn-abstract=We herein report an organic transistor functionalized with a phenylboronic acid derivative and graphene oxide for the quantification of plasma glucose levels, which has been achieved by the minimization of interferent effects derived from physical protein adsorption on the detection electrode. en-copyright= kn-copyright= en-aut-name=FanHaonan en-aut-sei=Fan en-aut-mei=Haonan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiYui en-aut-sei=Sasaki en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZhouQi en-aut-sei=Zhou en-aut-mei=Qi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TangWei en-aut-sei=Tang en-aut-mei=Wei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MinamiTsuyoshi en-aut-sei=Minami en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=2 en-affil=Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=3 en-affil=Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=4 en-affil=Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=5 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= affil-num=6 en-affil=Institute of Industrial Science, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=37 article-no= start-page=4338 end-page=4343 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Catalytic synthesis and physical properties of CO2-based cross-linked poly(cyclohexene carbonate)s en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bifunctional aluminum porphyrins (0.001 mol%) catalyzed the terpolymerization of cyclohexene oxide (CHO), bis(CHO), and CO2 to give cross-linked polycarbonates (CLPs) under solvent-free conditions. A small amount of bis(CHO) acted as a cross-linking agent, and the use of only 0.1 mol% bis(CHO) to CHO produced polymers of quite large sizes. The thermal and mechanical properties of CLPs could be altered by changing the structure and amount of bis(CHO), and the CLPs showed improved thermal stability and tensile strength as compared to linear poly(cyclohexene carbonate)s (PCHCs). The degradation of the CLPs was also investigated, and the selective cleavage of the cross-links was achieved by UV light irradiation to give linear PCHCs. The present study disclosed the potentials of cross-linking terpolymerization for the preparation of various CLPs with a constant CO2 content (31 wt%). en-copyright= kn-copyright= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawabataKenta en-aut-sei=Kawabata en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NikiKaito en-aut-sei=Niki en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakoYuma en-aut-sei=Sako en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=45 article-no= start-page=31107 end-page=31117 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Solvation free energies of alcohols in water: temperature and pressure dependences en-subtitle= kn-subtitle= en-abstract= kn-abstract=Solvation free energies μ* of amphiphilic species, methanol and 1,2-hexanediol, are obtained as a function of temperature or pressure based on molecular dynamics simulations combined with efficient free-energy calculation methods. In general, μ* of an amphiphile can be divided into Image ID:d3cp03799a-t1.gif and Image ID:d3cp03799a-t2.gif, the nonpolar and electrostatic contributions, and the former is further divided into Image ID:d3cp03799a-t3.gif and Image ID:d3cp03799a-t4.gif which are the work of cavity formation process and the free energy change due to weak, attractive interactions between the solute molecule and surrounding solvent molecules. We demonstrate that μ* of the two amphiphilic solutes can be obtained accurately using a perturbation combining method, which relies on the exact expressions for Image ID:d3cp03799a-t5.gif and Image ID:d3cp03799a-t6.gif and requires no simulations of intermediate systems between the solute with strong, repulsive interactions and the solute with the van der Waals and electrostatic interactions. The decomposition of μ* gives us several physical insights including that μ* is an increasing function of T due to Image ID:d3cp03799a-t7.gif, that the contributions of hydrophilic groups to the temperature dependence of μ* are additive, and that the contribution of the van der Waals attraction to the solvation volume is greater than that of the electrostatic interactions. en-copyright= kn-copyright= en-aut-name=TairaAoi en-aut-sei=Taira en-aut-mei=Aoi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamotoRyuichi en-aut-sei=Okamoto en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Information Science, University of Hyogo kn-affil= affil-num=3 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=37 article-no= start-page=20035 end-page=20047 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of the rigid and sterically bulky structure of non-fused nonfullerene acceptors on transient photon-to-current dynamics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Non-fused electron-accepting π-conjugated compounds have been investigated recently for application to nonfullerene acceptors (NFAs) in organic solar cells (OSCs). However, the establishment of rational molecular design for non-fused NFAs is still lagging because the influence of flexible non-fused structures on the dynamics of electron?hole pairs in OSCs is not entirely understood. In this study, we utilized cyclopentene-annelated thiophene with spiro-substituted 2,7-bis(2-ethylhexyl)fluorene (FT) as a rigid and sterically bulky linker unit and developed a non-fused NFA (TT?FT?DCI) containing FT units. Photophysical measurements indicated that the introduction of the FT unit leads to the formation of rigid molecular structure. OSCs based on donor polymer (PBDB-T) and TT?FT?DCI showed an improved power conversion efficiency of 7.13% due to the increase in the short-circuit current density and fill factor. Time-resolved optical and microwave spectroscopies showed that the FT unit contributes to the long lifetimes of excited state and charge-separated state in the PBDBT:TT?FT?DCI blend films. Time-resolved electron paramagnetic resonance measurements showed that the distant charge-separated states of the face-to-face PBDB-T:TT?FT?DCI structure, which is derived by avoiding over-crystallization by the steric bulkiness of TT?FT?DCI, can interact with the cathodes for preferential electron injection following charge generations. This study highlights that by using the rigid π-conjugated framework and suppressed self-aggregation of the non-fused acceptor, effective molecular design for the appropriate dynamics of photocurrent generation is possible. en-copyright= kn-copyright= en-aut-name=JinnaiSeihou en-aut-sei=Jinnai en-aut-mei=Seihou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurayamaKasumi en-aut-sei=Murayama en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaiKeisuke en-aut-sei=Nagai en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MineshitaMegumi en-aut-sei=Mineshita en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoKosaku en-aut-sei=Kato en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MuraokaAzusa en-aut-sei=Muraoka en-aut-mei=Azusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SaekiAkinori en-aut-sei=Saeki en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KoboriYasuhiro en-aut-sei=Kobori en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IeYutaka en-aut-sei=Ie en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=The Institute of Scientific and Industrial Research (SANKEN), Osaka University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=3 en-affil=The Institute of Scientific and Industrial Research (SANKEN), Osaka University kn-affil= affil-num=4 en-affil=Department of Mathematics, Physics and Computer Science, Japan Women's University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Mathematics, Physics and Computer Science, Japan Women's University kn-affil= affil-num=7 en-affil=Graduate School of Natural Science & Technology, Okayama University kn-affil= affil-num=8 en-affil=Department of Applied Chemistry, Graduate School of Engineering, Osaka University kn-affil= affil-num=9 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=10 en-affil=The Institute of Scientific and Industrial Research (SANKEN), Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=28 article-no= start-page=13837 end-page=13845 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lithium-Ion Dynamics in Sulfolane-Based Highly Concentrated Electrolytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Here, we report the use of molecular dynamics simulations with a polarizable force field to investigate Li-ion dynamics in sulfolane (SL)-based electrolytes. In SL-based highly concentrated electrolytes (HCEs) (e.g., SL/Li = 2:1), Li displays faster translational motion than other components, which should be related to the structural and dynamical properties of SL. In HCEs, a transient conduction network that penetrated the simulation system was always observed. Rapid (<1 ns) Li-ion hopping between adjacent coordination sites was observed throughout the network. Additionally, SLs rotated in the same timeframe without disrupting the conduction network. This rotation is believed to promote the hopping diffusion in the network. This was followed by a rotational relaxation of the SL dipole axis around the non-polar cyclohydrocarbon segment of SL (?3.3 ns), which involves a reorganization of the network structure and an enhancement of the translational motion of the coordinating Li ions. The observed lifetime of Li?SL coordination was longer (>11 ns). Hence, it was concluded that the faster Li translational motion was obtained due to the faster rotational relaxation time of SL rather than the lifetime of Li?SL binding. The faster rotation of SL is related to its amphiphilic molecular structure with compact non-polar segments. Transport properties, such as the Onsager transport coefficients, ionic conductivity, and transference number under anion-blocking conditions, were also analyzed to characterize the features of the SL-based electrolyte. en-copyright= kn-copyright= en-aut-name=IkedaShuhei en-aut-sei=Ikeda en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsuzukiSeiji en-aut-sei=Tsuzuki en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SudohTaku en-aut-sei=Sudoh en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShigenobuKeisuke en-aut-sei=Shigenobu en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UenoKazuhide en-aut-sei=Ueno en-aut-mei=Kazuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DokkoKaoru en-aut-sei=Dokko en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeMasayoshi en-aut-sei=Watanabe en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinodaWataru en-aut-sei=Shinoda en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Materials Chemistry, Nagoya University kn-affil= affil-num=2 en-affil=Advanced Chemical Energy Research Centre (ACERC), Institute of Advanced Sciences, Yokohama National University kn-affil= affil-num=3 en-affil=Department of Chemistry and Life Science, Yokohama National University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Advanced Chemical Energy Research Centre (ACERC), Institute of Advanced Sciences, Yokohama National University kn-affil= affil-num=6 en-affil=Advanced Chemical Energy Research Centre (ACERC), Institute of Advanced Sciences, Yokohama National University kn-affil= affil-num=7 en-affil=Advanced Chemical Energy Research Centre (ACERC), Institute of Advanced Sciences, Yokohama National University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University, kn-affil= END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=3 article-no= start-page=19 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sound velocity and elastic properties of Fe?Ni?S?Si liquid: the effects of pressure and multiple light elements en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fe?Ni?S?Si alloy is considered to be one of the plausible candidates of Mercury core material. Elastic properties of Fe?Ni?S?Si liquid are important to reveal the density profile of the Mercury core. In this study, we measured the P-wave velocity (VP) of Fe?Ni?S?Si (Fe73Ni10S10Si7, Fe72Ni10S5Si13, and Fe67Ni10S10Si13) liquids up to 17 GPa and 2000 K to study the effects of pressure, temperature, and multiple light elements (S and Si) on the VP and elastic properties.
The VP of Fe?Ni?S?Si liquids are less sensitive to temperature. The effect of pressure on the VP are close to that of liquid Fe and smaller than those of Fe?Ni?S and Fe?Ni?Si liquids. Obtained elastic properties are KS0?=?99.1(9.4) GPa, KS’?=?3.8(0.1) and ρ0 =6.48 g/cm3 for S-rich Fe73Ni10S10Si7 liquid and KS0?=?112.1(1.5) GPa, KS’?=?4.0(0.1) and ρ0=6.64 g/cm3 for Si-rich Fe72Ni10S5Si13 liquid. The VP of Fe?Ni?S?Si liquids locate in between those of Fe?Ni?S and Fe?Ni?Si liquids. This suggests that the effect of multiple light element (S and Si) on the VP is suppressed and cancel out the effects of single light elements (S and Si) on the VP. The effect of composition on the EOS in the Fe?Ni?S?Si system is indispensable to estimate the core composition combined with the geodesy data of upcoming Mercury mission. en-copyright= kn-copyright= en-aut-name=YamadaIori en-aut-sei=Yamada en-aut-mei=Iori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TerasakiHidenori en-aut-sei=Terasaki en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UrakawaSatoru en-aut-sei=Urakawa en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoTadashi en-aut-sei=Kondo en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MachidaAkihiko en-aut-sei=Machida en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TangeYoshinori en-aut-sei=Tange en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HigoYuji en-aut-sei=Higo en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Earth and Space Science, Osaka University kn-affil= affil-num=2 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Earth and Space Science, Osaka University kn-affil= affil-num=5 en-affil=Synchrotron Radiation Research Center, National Institutes for Quantum Science and Technology (QST) kn-affil= affil-num=6 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=7 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= en-keyword=Fe alloy kn-keyword=Fe alloy en-keyword=Sound velocity kn-keyword=Sound velocity en-keyword=Liquid kn-keyword=Liquid en-keyword=Core kn-keyword=Core en-keyword=Mercury kn-keyword=Mercury en-keyword=Light element kn-keyword=Light element END start-ver=1.4 cd-journal=joma no-vol=107 cd-vols= no-issue=4 article-no= start-page=043114 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230413 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Measurement of Doppler effects in a cryogenic buffer-gas cell en-subtitle= kn-subtitle= en-abstract= kn-abstract=Buffer-gas cooling is a universal cooling technique for molecules and used for various purposes. One of its ap- plications is using molecules inside a buffer-gas cell for low-temperature spectroscopy. Although a high-intensity signal is expected in the cell, complex molecular dynamics is a drawback for precise spectroscopy. In this study, we performed high-resolution absorption spectroscopy of low -J transitions in the òΠ(0, 0, 0)-?X²Σ+(0, 0, 0) band of calcium monohydroxide (CaOH). CaOH molecules were produced by laser ablation in a copper cell and cooled to ?5 K using helium buffer gas. We probed the Doppler effects in a buffer-gas cell by injecting counterpropagating lasers inside the cell. The time evolutions of the Doppler width and shift were simulated using a dedicated Monte Carlo simulation and compared with data. en-copyright= kn-copyright= en-aut-name=HiramotoAyami en-aut-sei=Hiramoto en-aut-mei=Ayami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BabaMasaaki en-aut-sei=Baba en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EnomotoKatsunari en-aut-sei=Enomoto en-aut-mei=Katsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwakuniKana en-aut-sei=Iwakuni en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KumaSusumu en-aut-sei=Kuma en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiYuiki en-aut-sei=Takahashi en-aut-mei=Yuiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TobaruReo en-aut-sei=Tobaru en-aut-mei=Reo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyamotoYuki en-aut-sei=Miyamoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Science, Kyoto University kn-affil= affil-num=3 en-affil=Department of Physics, University of Toyama kn-affil= affil-num=4 en-affil=Institute for Laser Science, University of Electro-Communications kn-affil= affil-num=5 en-affil=Atomic, Molecular and Optical Physics Laboratory, RIKEN kn-affil= affil-num=6 en-affil=Division of Physics, Mathematics, and Astronomy, California Institute of Technology kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=15 article-no= start-page=2745 end-page=2754 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230323 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Toughening of poly(ionic liquid)-based ion gels with cellulose nanofibers as a sacrificial network en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ion gels have the potential to be used in a broad range of applications, such as in carbon dioxide separation membranes and soft electronics. However, their low mechanical strength limits their practical applications. In this study, we developed double-network (DN) ion gels composed of TEMPO-oxidized cellulose nanofibers with hydrophobic groups (TOCNF) and cross-linked poly[1-ethyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide] (PC2im-TFSI) networks. The mechanical strength of the gel increased as the amount of TOCNF in the gels increased up to 6 wt%. Moreover, the fracture energy of the DN ion gels with 6 wt% TOCNF was found to be 19 times higher than that of the PC2im-TFSI single network (SN) ion gels. Cyclic stress-strain measurements of the DN gels showed that the loading energy on the gels dissipates owing to the destruction of the physically cross-linked TOCNF network in the gels. The DN ion gels also exhibited a high decomposition temperature of approximately 400 degrees C because of the thermal stability of all components. Additionally, the fracture energy of the TOCNF/poly(ionic liquid) (PIL) DN ion gel was two times higher than that of the silica nanoparticles/PIL DN ion gel developed in our previous study [Watanabe et al., Soft Matter, 2020, 16, 1572-1581]. This suggests that fiber-shaped nanomaterials are more effective than spherical nanomaterials in enhancing the mechanical properties of ion gels. These results show that TOCNF can be used to toughen PIL-based ion gels and hence broaden their applications. en-copyright= kn-copyright= en-aut-name=WatanabeTakaichi en-aut-sei=Watanabe en-aut-mei=Takaichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OeEmiho en-aut-sei=Oe en-aut-mei=Emiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizutaniYuna en-aut-sei=Mizutani en-aut-mei=Yuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoTsutomu en-aut-sei=Ono en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Graduate School of Natural Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Graduate School of Natural Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Graduate School of Natural Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Applied Chemistry, Graduate School of Natural Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=2183710 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrochemical control of bone microstructure on electroactive surfaces for modulation of stem cells and bone tissue engineering en-subtitle= kn-subtitle= en-abstract= kn-abstract=Controlling stem cell behavior at the material interface is crucial for the development of novel technologies in stem cell biology and regenerative medicine. The composition and presentation of bio-factors on a surface strongly influence the activity of stem cells. Herein, we designed an electroactive surface that mimics the initial process of trabecular bone formation, by immobilizing chondrocyte-derived plasma membrane nanofragments (PMNFs) on its surface for rapid mineralization within 2 days. Moreover, the electroactive surface was based on the conducting polymer polypyrrole (PPy), which enabled dynamic control of the presentation of PMNFs on the surface via electrochemical redox switching, further resulting in the formation of bone minerals with different morphologies. Furthermore, bone minerals with contrasting surface morphologies had differential effects on the differentiation of human bone marrow-derived stem cells (hBMSCs) cultured on the surface. Together, this electroactive surface showed multifunctional characteristics, not only allowing dynamic control of PMNF presentation but also promoting the formation of bone minerals with different morphologies within 2 days. This electroactive substrate could be valuable for more precise control of stem cell growth and differentiation, and further development of more suitable microenvironments containing bone apatite for housing a bone marrow stem cell niche, such as biochips/bone-on-chips. en-copyright= kn-copyright= en-aut-name=CaoDanfeng en-aut-sei=Cao en-aut-mei=Danfeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MartinezJose G. en-aut-sei=Martinez en-aut-mei=Jose G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnadaRisa en-aut-sei=Anada en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaraEmilio Satoshi en-aut-sei=Hara en-aut-mei=Emilio Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KamiokaHiroshi en-aut-sei=Kamioka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JagerEdwin W. H. en-aut-sei=Jager en-aut-mei=Edwin W. H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Link?ping University kn-affil= affil-num=2 en-affil=Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Link?ping University kn-affil= affil-num=3 en-affil=Advanced Research Center for Oral and Craniofacial Sciences Dental School, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Advanced Research Center for Oral and Craniofacial Sciences Dental School, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Link?ping University kn-affil= en-keyword=Polypyrrole kn-keyword=Polypyrrole en-keyword=plasma membrane kn-keyword=plasma membrane en-keyword=redox switching kn-keyword=redox switching en-keyword=bone kn-keyword=bone en-keyword=chip kn-keyword=chip en-keyword=organ-on-chip kn-keyword=organ-on-chip END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=5 article-no= start-page=2223 end-page=2230 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Uniform Formation of a Characteristic Nanocomposite Structure of Biogenous Iron Oxide for High Rate Performance as the Anode of Lithium-Ion Batteries en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, Fe2O3 has been considered as an alternative anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity (approximately 1000 mA h g-1), low cost, and nontoxicity. However, its rate performance remains poor relative to that of the conventional graphite anode. In this study, Fe2O3-based anodes were prepared through the annealing of biogenous Fe2O3 (L-BIOX) samples produced by an aquatic Fe-oxidizing bacterium. The effect of the annealing temperature on the performance of the synthesized Fe2O3-based material as the anode of an LIB was investigated. Electrochemical measurements revealed that the annealed L-BIOX samples at 300-700 degrees C exhibited higher rate performances than the unannealed material. Particularly, the sample annealed at 700 degrees C exhibited the highest capacity among the synthesized materials and showed a higher performance than the previously reported Fe2O3-based anodes. It exhibited a capacity of 923 mA h g-1 even at a high current density of 2 A g-1. After annealing at 700 degrees C and discharging, the synthesized biogenous material had a uniform nanocomposite structure composed of alpha-Fe2O3 nanoparticles dispersed in an amorphous matrix of Li-Si-P oxide. To form this uniform nanostructure, the solid-state diffusion resistance of the Li+ ions in the active material was reduced, which consequently improved the rate performance of the electrode. Therefore, this study provides substantial insights into the development and improvement of the performance of novel Fe2O3-based nanomaterials as the anode of LIBs. en-copyright= kn-copyright= en-aut-name=TakahashiMasakuni en-aut-sei=Takahashi en-aut-mei=Masakuni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakumaRyo en-aut-sei=Sakuma en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HashimotoHideki en-aut-sei=Hashimoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiiTatsuo en-aut-sei=Fujii en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakadaJun en-aut-sei=Takada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=161 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221129 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-resolution spectroscopy of buffer-gas-cooled phthalocyanine en-subtitle= kn-subtitle= en-abstract= kn-abstract=For over five decades, studies in the field of chemical physics and physical chemistry have primarily aimed to understand the quantum properties of molecules. However, high-resolution rovibronic spectroscopy has been limited to relatively small and simple systems because translationally and rotationally cold samples have not been prepared in sufficiently large quantities for large and complex systems. In this study, we present high-resolution rovibronic spectroscopy results for large gas-phase molecules, namely, free-base phthalocya-nine (FBPc). The findings suggest that buffer-gas cooling may be effective for large molecules introduced via laser ablation. High-resolution electronic spectroscopy, combined with other experimental and theoretical studies, will be useful in understanding the quantum properties of molecules. These findings also serve as a guide for quantum chemical calculations of large molecules. en-copyright= kn-copyright= en-aut-name=MiyamotoYuki en-aut-sei=Miyamoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TobaruReo en-aut-sei=Tobaru en-aut-mei=Reo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiYuiki en-aut-sei=Takahashi en-aut-mei=Yuiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiramotoAyami en-aut-sei=Hiramoto en-aut-mei=Ayami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwakuniKana en-aut-sei=Iwakuni en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KumaSusumu en-aut-sei=Kuma en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EnomotoKatsunari en-aut-sei=Enomoto en-aut-mei=Katsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=BabaMasaaki en-aut-sei=Baba en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Division of Physics, Mathematics, and Astronomy, California Institute of Technology kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Institute for Laser Science, University of Electro-Communications kn-affil= affil-num=6 en-affil=Atomic, Molecular and Optical Physics Laboratory, RIKEN kn-affil= affil-num=7 en-affil=5Department of Physics, University of Toyama kn-affil= affil-num=8 en-affil=Molecular Photoscience Research Center, Kobe University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=126 cd-vols= no-issue=38 article-no= start-page=7212 end-page=7228 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of the Flexible Primary Coordination Sphere of the Mn4CaOx Cluster: What Are the Immediate Decay Products of the S-3 State? en-subtitle= kn-subtitle= en-abstract= kn-abstract=The primary coordination sphere of the multinuclear cofactor (Mn4CaOx) in the oxygen-evolving complex (OEC) of photosystem II is absolutely conserved to maintain its structure and function. Recent time-resolved serial femtosecond crystallography identified large reorganization of the primary coordination sphere in the S-2 to S-3 transition, which elicits a cascade of events involving Mn oxidation and water molecule binding to a putative catalytic Mn site. We examined how the crystallographic fields, created by transient conformational states of the OEC at various time points, affect the thermodynamics of various isomers of the Mn cluster using DFT calculations, with an aim of comprehending the functional roles of the flexible primary coordination sphere in the S-2 to S-3 transition and in the recovery of the S-2 state. The results show that the relative movements of surrounding residues change the size and shape of the cavity of the cluster and thereby affect the thermodynamics of various catalytic intermediates as well as the ability to capture a new water molecule at a coordinatively unsaturated site. The implication of these findings is that the protein dynamics may serve to gate the catalytic reaction efficiently by controlling the sequence of Mn oxidation/reduction and water binding/release. This interpretation is consistent with EPR experiments; g similar to 5 and g similar to 3 signals obtained after near-infrared (NIR) excitation of the S-3 state at 4 K and a g similar to 5 only signal produced after prolonged incubation of the S-3 state at 77 K can be best explained as originating from water-bound S-2 clusters (S-total = 7/2) under a S-3 ligand field, i.e., the immediate one-electron reduction products of the oxyl-oxo (S-total = 6) and hydroxo-oxo (S-total = 3) species in the S-3 state. en-copyright= kn-copyright= en-aut-name=IsobeHiroshi en-aut-sei=Isobe en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShojiMitsuo en-aut-sei=Shoji en-aut-mei=Mitsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiTakayoshi en-aut-sei=Suzuki en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaguchiKizashi en-aut-sei=Yamaguchi en-aut-mei=Kizashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Center for Computational Science, University of Tsukuba, kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Institute for NanoScience Design, Osaka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=5 article-no= start-page=535 end-page=540 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Psychological Stress Induced by Prone Positioning among Adults with Severe Cerebral Palsy en-subtitle= kn-subtitle= en-abstract= kn-abstract=The purpose of this study was to investigate the psychological impact of various positionings in subjects with cerebral palsy (CP). The participants were 17 individuals with severe motor and intellectual disability due to CP. They began in a sitting position in their wheelchair, and were placed consecutively in prone or supine positions, with no intervals between placements. Physiological observations were made in each position, and included salivary α-amylase activity, pulse, percutaneous oxygen saturation, respiratory rate, learance or not of airway secretions, and occurrence or not of adverse events. Salivary α-amylase activity values were higher in the prone position than in the baseline and supine positions (p<0.05). Clearance of airway secretions was significantly more prevalent in the prone position than in the baseline and supine positions (p <0.05). The participants’ pulse was significantly lower in the supine and prone positions than in the baseline position (p<0.05). Greater prevalence of airway secretion clearance and significantly higher stress levels as indicated by saliva amylase were observed in the prone position than in the other two positions. Therefore, when such patients are placed in a prone position, close attention to airway management and the potential for psychological stress may be necessary. en-copyright= kn-copyright= en-aut-name=MatsudaTadashi en-aut-sei=Matsuda en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkezakiYoshiteru en-aut-sei=Akezaki en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsujiYoko en-aut-sei=Tsuji en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HamadaKazunori en-aut-sei=Hamada en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OokuraMitsuhiro en-aut-sei=Ookura en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Rehabilitation, Suita Municipal Disability Support Center I-Hope Suita kn-affil= affil-num=2 en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation kn-affil= affil-num=3 en-affil=Division of Occupational Therapy, Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences kn-affil= affil-num=4 en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation kn-affil= affil-num=5 en-affil=Division of Physical Therapy, Kochi Professional University of Rehabilitation kn-affil= en-keyword=alpha-amylase kn-keyword=alpha-amylase en-keyword=stress kn-keyword=stress en-keyword=positioning kn-keyword=positioning en-keyword= cerebral palsy kn-keyword= cerebral palsy en-keyword=severe motor and intellectual disability kn-keyword=severe motor and intellectual disability END start-ver=1.4 cd-journal=joma no-vol=936 cd-vols= no-issue=2 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202291 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Low-J Transitions in A?2Π(0,0,0)?X?2Σ+(0,0,0) Band of Buffer-gas-cooled CaOH en-subtitle= kn-subtitle= en-abstract= kn-abstract=Calcium monohydroxide radical (CaOH) is receiving an increasing amount of attention from the astrophysics community as it is expected to be present in the atmospheres of hot rocky super-Earth exoplanets as well as interstellar and circumstellar environments. Here, we report the high-resolution laboratory absorption spectroscopy on low-J transitions in A ? 2 Π ( 0 , 0 , 0 ) ? X ? 2 Σ + ( 0 , 0 , 0 ) band of buffer-gas-cooled CaOH. In total, 40 transitions out of the low-J states were assigned, including 27 transitions that have not been reported in previous literature. The determined rotational constants for both ground and excited states are in excellent agreement with previous literature, and the measurement uncertainty for the absolute transition frequencies was improved by more than a factor of 3. This will aid future interstellar, circumstellar, and atmospheric identifications of CaOH. The buffer-gas-cooling method employed here is a particularly powerful method to probe low-J transitions and is easily applicable to other astrophysical molecules. en-copyright= kn-copyright= en-aut-name=TakahashiYuiki en-aut-sei=Takahashi en-aut-mei=Yuiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BabaMasaaki en-aut-sei=Baba en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EnomotoKatsunari en-aut-sei=Enomoto en-aut-mei=Katsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiramotoAyami en-aut-sei=Hiramoto en-aut-mei=Ayami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwakuniKana en-aut-sei=Iwakuni en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KumaSusumu en-aut-sei=Kuma en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TobaruReo en-aut-sei=Tobaru en-aut-mei=Reo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyamotoYuki en-aut-sei=Miyamoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Division of Physics, Mathematics, and Astronomy, California Institute of Technology kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Science, Kyoto University kn-affil= affil-num=3 en-affil=Department of Physics, University of Toyama kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Institute for Laser Science, University of Electro-Communications kn-affil= affil-num=6 en-affil=Atomic, Molecular and Optical Physics Laboratory, RIKEN kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=156 cd-vols= no-issue=22 article-no= start-page=221104 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220614 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Osmotic second virial coefficients for hydrophobic interactions as a function of solute size en-subtitle= kn-subtitle= en-abstract= kn-abstract=To gain quantitative insight into how the overall strength of the hydrophobic interaction varies with the molecular size, we calculate osmotic second virial coefficients B for hydrophobic spherical molecules of different diameters σ in water based on molecular simulation with corrections to the finite-size and finite-concentration effects. It is shown that B?(<0) changes by two orders of magnitude greater as σ increases twofold and its solute-size dependence is best fit by a power law B ∝ σ α with the exponent α ? 6, which contrasts with the cubic power law that the second virial coefficients of gases obey. It is also found that values of B for the solutes in a nonpolar solvent are positive but they obey the same power law as in water. A thermodynamic identity for B derived earlier [K. Koga, V. Holten, and B. Widom, J. Phys. Chem. B 119, 13391 (2015)] indicates that if B is asymptotically proportional to a power of σ, the exponent α must be equal to or greater than 6. en-copyright= kn-copyright= en-aut-name=NaitoHidefumi en-aut-sei=Naito en-aut-mei=Hidefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamotoRyuichi en-aut-sei=Okamoto en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=126 cd-vols= no-issue=22 article-no= start-page=9257 end-page=9263 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220525 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of Oxygen Vacancy in the Photocarrier Dynamics of WO3 Photocatalysts: The Case of Recombination Centers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Defects in powder photocatalysts determine the photocatalytic activity. The addition of defects sometimes enhances the activity, but sometimes decreases it. However, the factors determining the difference between these cases have not been fully elucidated yet. Herein, we investigated the effects of oxygen vacancies on photocarrier dynamics in WO3 powder using broadband transient absorption spectroscopy. It was found that the decay of deeply trapped electrons was accelerated when the number of oxygen vacancies was increased by H-2 reduction. This result suggests that oxygen vacancies in WO3 mainly act as recombination centers. This is in contrast to many other photocatalysts such as TiO2 and SrTiO3, where the carrier lifetime increases with increasing oxygen vacancy concentration. These differences can be attributed to the difference in the distance between oxygen vacancies. When defects are dispersed, trapped electrons need to travel over long distances by repeatedly hopping and tunneling between defects to combine with holes, resulting in decelerated recombination. In contrast, when the defects are connected or located close together, the trapped electrons can readily migrate among defects, leading to enhanced recombination. Control of the distance between defects is thus important for enhancing photocatalytic activity. en-copyright= kn-copyright= en-aut-name=KatoKosaku en-aut-sei=Kato en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UemuraYohei en-aut-sei=Uemura en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsakuraKiyotaka en-aut-sei=Asakura en-aut-mei=Kiyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Institute for Molecular Science kn-affil= affil-num=3 en-affil=Institute for Catalysis, Hokkaido University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=105 cd-vols= no-issue=4 article-no= start-page=045316 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022425 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lattice Boltzmann model for capillary interactions between particles at a liquid-vapor interface under gravity en-subtitle= kn-subtitle= en-abstract= kn-abstract=A computational technique based on the lattice Boltzmann method (LBM) is developed to simulate the wettable particles adsorbed to a liquid-vapor interface under gravity. The proposed technique combines the improved smoothed-profile LBM for the treatment of moving solid particles in a fluid and the free-energy LBM for the description of a liquid-vapor system. Five benchmark two-dimensional problems are examined: (A) a stationary liquid drop in the vapor phase; a wettable particle adsorbed to a liquid-vapor interface in (B) the absence and (C) the presence of gravity; (D) two freely moving particles at a liquid-vapor interface in the presence of gravity (i.e., capillary flotation forces); and (E) two vertically constrained particles at a liquid-vapor interface (i.e., capillary immersion forces). The simulation results are in good quantitative agreement with theoretical estimations, demonstrating that the proposed technique can reproduce the capillary interactions between wettable particles at a liquid-vapor interface under gravity. en-copyright= kn-copyright= en-aut-name=MinoYasushi en-aut-sei=Mino en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaHazuki en-aut-sei=Tanaka en-aut-mei=Hazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakasoKoichi en-aut-sei=Nakaso en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotohKuniaki en-aut-sei=Gotoh en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShintoHiroyuki en-aut-sei=Shinto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Chemical Engineering, Fukuoka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=125 cd-vols= no-issue=46 article-no= start-page=12820 end-page=12831 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Theory of Gas Solubility and Hydrophobic Interaction in Aqueous Electrolyte Solutions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ion-specific effects on the solubility of nonpolar solutes and on the solute?solute hydrophobic interaction in aqueous electrolyte solutions are studied on the basis of a continuum theory that incorporates the excluded volume of the molecules using the four-component (water, cations, anions, and solutes) Boubl??k?Mansoori?Carnahan?Starling?Leland model and ion hydration (electrostriction) using the Born model. We examine how the ordering of ions in the salt effect on the solubility as measured by the Sechenov coefficient KS changes with varying sizes of ions and solutes. Our calculation reproduces the general trend of experimentally measured KS and also provides insight into the irregular behavior of KS for lithium ion. The correlation between KS and the salt effect on the hydrophobic interaction that has been pointed out earlier is accounted for by an explicit connection between KS and the salt-enhanced-association coefficient CI in the expansion of the second osmotic virial coefficient B(ns) = B(0) ? CIns + ??? in powers of the salt density ns at fixed pressure and temperature. The quadratic relation is derived for ions and solutes that are not very large. en-copyright= kn-copyright= en-aut-name=OkamotoRyuichi en-aut-sei=Okamoto en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=162 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20223 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Valence control of charge and orbital frustrated system YbFe2O4 with electrochemical Li+ intercalation en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report an attempt valence control of the mixed valence iron triangular oxide YbFe2O4 to develop an effective technique controling the frustration of charges in strongly correlated electron systems. The electrochemical doping of Li + into YbFe2O4 was examined on a cell-type sample similar to the Li-ion secondary battery cell. Systematic changes in the lattice constant and Fe ? Fe and Fe?Yb distance were observed with Li doping. Maximum value of the doping was over 300 mAh/g. An EXAFS experiment indicated that Li positioned between Yb octahedron layer (U-layer) and Fe-bipyramidal layer (W-layer). However, detailed change of iron valence state of YbFe2O4was not clearly observed because of the superimpose of the signal from iron metal nano particles in XANES observation. We discuss that the uncertainty might arise from the inhomogeneous distribution of the sample particle size, which might prevent the homogeneous doping of Li because the doping occurs on the surface of each nano-particles. en-copyright= kn-copyright= en-aut-name=MuraseS. en-aut-sei=Murase en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshikawaY. en-aut-sei=Yoshikawa en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraK. en-aut-sei=Fujiwara en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukadaY. en-aut-sei=Fukada en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TeranishiT. en-aut-sei=Teranishi en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanoJ. en-aut-sei=Kano en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiiT. en-aut-sei=Fujii en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InadaY. en-aut-sei=Inada en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatayamaM. en-aut-sei=Katayama en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshiiK. en-aut-sei=Yoshii en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TsujiT. en-aut-sei=Tsuji en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsumuraD. en-aut-sei=Matsumura en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IkedaN. en-aut-sei=Ikeda en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=College of Life Sciences, Ritsumeikan University kn-affil= affil-num=9 en-affil=College of Life Sciences, Ritsumeikan University kn-affil= affil-num=10 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=11 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=12 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=13 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=RFe2O4 kn-keyword=RFe2O4 en-keyword=YbFe2O4 kn-keyword=YbFe2O4 en-keyword=Triangular lattice kn-keyword=Triangular lattice en-keyword=Charge frustration kn-keyword=Charge frustration en-keyword=Spin frustration kn-keyword=Spin frustration en-keyword=Orbital frustration kn-keyword=Orbital frustration en-keyword=Frustration control kn-keyword=Frustration control en-keyword=Li doping kn-keyword=Li doping END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210807 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Single domain growth and charge ordering of epitaxial YbFe2O4 films en-subtitle= kn-subtitle= en-abstract= kn-abstract=YbFe2O4 is a charge-ordered ferroelectric that exhibits coupling between magnetization and electric polarization near room temperature and crystallizes in a rhombohedral structure (R3?m). This study presents an attempt to fabricate stoichiometric and epitaxial YbFe2O4-δ films with a nearly single-domain structure using an RF magnetron sputtering method. The (0001)-oriented epitaxial films of YbFe2O4-δ on YSZ (111) substrates via reactive sputtering method exhibited clear three-fold symmetry normal to the substrate without the formation of twin domains rotated by 60°. The oxygen stoichiometry of the epitaxial YbFe2O4-δ was improved by controlling an oxygen partial pressure (PO2) during the deposition. The films showed a sharp ferrimagnetic transition, and the transition temperature (TN) increased linearly to approximately 245 K with decreasing PO2. The magnitude of magnetization of the obtained films was comparable to that of bulk single crystals. Further, the electron diffraction pattern of the stoichiometric films confirmed the presence of three-dimensional charge order, which is consistent with the behavior of the bulk crystals as well. en-copyright= kn-copyright= en-aut-name=SakagamiTakumi en-aut-sei=Sakagami en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaReika en-aut-sei=Ota en-aut-mei=Reika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanoJun en-aut-sei=Kano en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IkedaNaoshi en-aut-sei=Ikeda en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiiTatsuo en-aut-sei=Fujii en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Department of Applied Chemistry, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=125 cd-vols= no-issue=23 article-no= start-page=6296 end-page=6305 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202168 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ion Size Dependences of the Salting-Out Effect: Reversed Order of Sodium and Lithium Ions en-subtitle= kn-subtitle= en-abstract= kn-abstract=A general trend of the salting-out effect on hydrophobic solutes in aqueous solution is that the smaller the size of a dissolved ion, the larger the effect of reducing the solubility of a hydrophobe. An exception is that Li+, the smallest in alkali metal ions, has a notably weaker effect than Na+. To understand the reversed order in the cation series, we performed molecular dynamics simulations of aqueous solutions of salt ions and calculated the Setschenow coefficient of methane with the ionic radius of either a cation or an anion varied in a wide range. It is confirmed that the Setschenow coefficient is correlated with the packing fraction of salt solution, as observed in earlier studies, and also correlated with the partial molar volume of an ion. Analyses of correlation function integrals, packing fractions of solvation spheres, and orientations of water molecules surrounding an ion reveal the key differences in microscopic properties between the cation and anion series, which give rise to the reversed order in the cation series of the partial molar volumes of ions and ultimately that of the Setschenow coefficients. en-copyright= kn-copyright= en-aut-name=KatsutoHiroyuki en-aut-sei=Katsuto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamotoRyuichi en-aut-sei=Okamoto en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hole doping and chemical pressure effects on the strong coupling superconductor PdTe en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chemical doping of known superconductors is a probate strategy to test and enhance our understanding of which parameters control the critical temperature T-c and the critical magnetic fields. The transition metal chalcogenide PdTe is considered a conventional type II superconductor but its resilience to magnetic Fe doping is noteworthy. Isoelectronic Ni doping has been performed, but the effects of doping charges into PdTe have been so far unexplored. We follow two strategies to introduce holes into PdTe and to exert chemical pressure on it: by pnictogen doping on the chalcogen site PdTe1-xSbx and by systematically introducing a Pd deficiency in Pd1-yTe. We find that the superconducting T-c is very sensitive to both kinds of doping. We employ density functional theory to rationalize the observations. We conclude that in PdTe, the effects of charge doping take the lead but we can also identify a structural parameter that correlates with T-c. en-copyright= kn-copyright= en-aut-name=ChenLi en-aut-sei=Chen en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IdeAndo en-aut-sei=Ide en-aut-mei=Ando kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JeschkeHarald O. en-aut-sei=Jeschke en-aut-mei=Harald O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiKaya en-aut-sei=Kobayashi en-aut-mei=Kaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Science and Technology kn-affil= affil-num=2 en-affil=Graduate School of Science and Technology kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Science and Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=10 article-no= start-page=5760 end-page=5772 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210323 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Two different regimes in alcohol-induced coil?helix transition: effects of 2,2,2-trifluoroethanol on proteins being either independent of or enhanced by solvent structural fluctuations en-subtitle= kn-subtitle= en-abstract= kn-abstract= Inhomogeneous distribution of constituent molecules in a mixed solvent has been known to give remarkable effects on the solute, e.g., conformational changes of biomolecules in an alcohol-water mixture. We investigated the general effects of 2,2,2-trifiuoroethanoE (TFE) on proteins/peptides in a mixture of water and TFE using melittin as a model protein. Fluctuations and Kirkwood-Buff integrals (KBIs) in the TFE-H2O mixture, quantitative descriptions of inhomogeneity, were determined by smallangle X-ray scattering investigation and compared with those in the aqueous solutions of other alcohols. The concentration fluctuation for the mixtures ranks as methanol < ethanol << TFE < tert-butanol < 1-propanol, indicating that the inhomogeneity of molecular distribution in the TFE-H2O mixture is unexpectedly comparable to those in the series of mono-ok. On the basis of the concentration dependence of KBIs between the TFE molecules, it was found that a strong attraction between the TFE molecules is not necessarily important to induce helix conformation, which is inconsistent with the previously proposed mechanism. To address this issue, by combining the KBIs and the helix contents reported by the experimental spectroscopic studies, we quantitatively evaluated the change in the preferential binding parameter of TFE to melittin attributed to the coil-helix transition. As a result, we found two different regimes on TFE-induced helix formation. In the dilute concentration region of TFE below similar to 2 M, where the TFE molecules are not aggregated among themselves, the excess preferential binding of TFE to the helix occurs due to the direct interaction between them, namely independent of the solvent fluctuation. In the higher concentration region above similar to 2 M, in addition to the former effect, the excess preferential binding is significantly enhanced by the solvent fluctuation. This scheme should be held as general cosoEvent effects of TFE on proteins/peptides. en-copyright= kn-copyright= en-aut-name=OhgiHiroyo en-aut-sei=Ohgi en-aut-mei=Hiroyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ImamuraHiroshi en-aut-sei=Imamura en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishikawaKeiko en-aut-sei=Nishikawa en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KogaYoshikata en-aut-sei=Koga en-aut-mei=Yoshikata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WesthPeter en-aut-sei=Westh en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoritaTakeshi en-aut-sei=Morita en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Science, Chiba University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Science, Chiba University kn-affil= affil-num=5 en-affil=Department of Chemistry, The University of British Columbia kn-affil= affil-num=6 en-affil=Department of Biotechnology and Biomedicine, Technical University of Denmark kn-affil= affil-num=7 en-affil=Department of Chemistry, Graduate School of Science, Chiba University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=154 cd-vols= no-issue=9 article-no= start-page=094502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Formation of hot ice caused by carbon nanobrushes. II. Dependency on the radius of nanotubes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Stable crystalline structures of confined water can be different from bulk ice. In Paper I [T. Yagasaki et al., J. Chem. Phys. 151, 064702 (2019)] of this study, it was shown, using molecular dynamics (MD) simulations, that a zeolite-like ice structure forms in nanobrushes consisting of (6,6) carbon nanotubes (CNTs) when the CNTs are located in a triangle arrangement. The melting temperature of the zeolite-like ice structure is much higher than the melting temperature of ice Ih when the distance between the surfaces of CNTs is ?0.94 nm, which is the best spacing for the bilayer structure of water. In this paper, we perform MD simulations of nanobrushes of CNTs that are different from (6,6) CNTs in radius. Several new porous ice structures form spontaneously in the MD simulations. A stable porous ice forms when the radius of its cavities matches the radius of the CNTs well. All cylindrical porous ice structures found in this study can be decomposed into a small number of structural blocks. We provide a new protocol to classify cylindrical porous ice crystals on the basis of this decomposition. en-copyright= kn-copyright= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=45 article-no= start-page=26686 end-page=26692 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A new protocol for the preparation of superconducting KBi2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=A superconducting KBi2 sample was successfully prepared using a liquid ammonia (NH3) technique. The temperature dependence of the magnetic susceptibility (M/H) showed a superconducting transition temperature (Tc) as high as 3.6 K. In addition, the shielding fraction at 2.0 K was evaluated to be 87%, i.e., a bulk superconductor was realized using the above method. The Tc value was the same as that reported for the KBi2 sample prepared using a high-temperature annealing method. An X-ray diffraction pattern measured based on the synchrotron X-ray radiation was analyzed using the Rietveld method, with a lattice constant, a, of 9.5010(1) ? under the space group of Fd[3 with combining macron]m (face-centered cubic, no. 227). The lattice constant and space group found for the KBi2 sample using a liquid NH3 technique were the same as those reported for KBi2 through a high-temperature annealing method. Thus, the superconducting behavior and crystal structure of the KBi2 sample obtained in this study are almost the same as those for the KBi2 sample reported previously. Strictly speaking, the magnetic behavior of the superconductivity was different from that of a KBi2 sample reported previously, i.e., the KBi2 sample prepared using a liquid NH3 technique was a type-II like superconductor, contrary to that prepared using a high-temperature annealing method, the reason for which is fully discussed. These results indicate that the liquid NH3 technique is effective and simple for the preparation of a superconducting KBi2. In addition, the topological nature of the superconductivity for KBi2 was not confirmed. en-copyright= kn-copyright= en-aut-name=LiHuan en-aut-sei=Li en-aut-mei=Huan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangYanan en-aut-sei=Wang en-aut-mei=Yanan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiyamaSaki en-aut-sei=Nishiyama en-aut-mei=Saki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YangXiaofan en-aut-sei=Yang en-aut-mei=Xiaofan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TaguchiTomoya en-aut-sei=Taguchi en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiuraAkari en-aut-sei=Miura en-aut-mei=Akari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzukiAi en-aut-sei=Suzuki en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhiLei en-aut-sei=Zhi en-aut-mei=Lei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=EguchiRitsuko en-aut-sei=Eguchi en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KambeTakashi en-aut-sei=Kambe en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=LiaoYen-Fa en-aut-sei=Liao en-aut-mei=Yen-Fa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshiiHirofumi en-aut-sei=Ishii en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Okayama University kn-affil= affil-num=12 en-affil=National Synchrotron Radiation Research Center kn-affil= affil-num=13 en-affil=National Synchrotron Radiation Research Center kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=3 article-no= start-page=602 end-page=611 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190722 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Initial Evaluation of AF78: a Rationally Designed Fluorine-18-Labelled PET Radiotracer Targeting Norepinephrine Transporter en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose
Taking full advantage of positron emission tomography (PET) technology, fluorine-18-labelled radiotracers targeting norepinephrine transporter (NET) have potential applications in the diagnosis and assessment of cardiac sympathetic nerve conditions as well as the delineation of neuroendocrine tumours. However, to date, none have been used clinically. Drawbacks of currently reported radiotracers include suboptimal kinetics and challenging radiolabelling procedures.
Procedures
We developed a novel fluorine-18-labelled radiotracer targeting NET, AF78, with efficient one-step radiolabelling based on the phenethylguanidine structure. Radiosynthesis of AF78 was undertaken, followed by validation in cell uptake studies, autoradiography, and in vivo imaging in rats.
Results
[18F]AF78 was successfully synthesized with 27.9?±?3.1 % radiochemical yield, >?97 % radiochemical purity and >?53.8 GBq/mmol molar activity. Cell uptake studies demonstrated essentially identical affinity for NET as norepinephrine and meta-iodobenzylgaunidine. Both ex vivo autoradiography and in vivo imaging in rats showed homogeneous and specific cardiac uptake.
Conclusions
The new PET radiotracer [18F]AF78 demonstrated high affinity for NET and favourable biodistribution in rats. A structure-activity relationship between radiotracer structures and affinity for NET was revealed, which may serve as the basis for the further design of NET targeting radiotracers with favourable features. en-copyright= kn-copyright= en-aut-name=ChenXinyu en-aut-sei=Chen en-aut-mei=Xinyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FritzAlexander en-aut-sei=Fritz en-aut-mei=Alexander kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WernerRudolf A. en-aut-sei=Werner en-aut-mei=Rudolf A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NoseNaoko en-aut-sei=Nose en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YagiYusuke en-aut-sei=Yagi en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KimuraHiroyuki en-aut-sei=Kimura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=RoweSteven P. en-aut-sei=Rowe en-aut-mei=Steven P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KoshinoKazuhiro en-aut-sei=Koshino en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DeckerMichael en-aut-sei=Decker en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HiguchiTakahiro en-aut-sei=Higuchi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Nuclear Medicine, University Hospital of W?rzburg kn-affil= affil-num=2 en-affil=Institute of Pharmacy and Food Chemistry, University of W?rzburg kn-affil= affil-num=3 en-affil=Department of Nuclear Medicine, University Hospital of W?rzburg kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University kn-affil= affil-num=6 en-affil=Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University kn-affil= affil-num=7 en-affil=Division of Nuclear Medicine and Molecular Imaging, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine kn-affil= affil-num=8 en-affil=Department of Systems and Informatics, Hokkaido Information University kn-affil= affil-num=9 en-affil=Institute of Pharmacy and Food Chemistry, University of W?rzburg kn-affil= affil-num=10 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Norepinephrine transporter kn-keyword=Norepinephrine transporter en-keyword=Positron emission tomography kn-keyword=Positron emission tomography en-keyword=Phenethylguanidine kn-keyword=Phenethylguanidine en-keyword=[18F]AF78 kn-keyword=[18F]AF78 END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=12 article-no= start-page=e05743 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Antioxidative attributes of rice bran extracts in ameliorative effects of atherosclerosis-associated risk factors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oxidative stress, chronic inflammation, dyslipidemia, hyperglycemia, and shear stress (physical effect) are risk factors associated with the pathogenesis of atherosclerosis. Rice bran, a by-product of rice milling process, is known to house polyphenols and vitamins which exhibit potent antioxidant and anti-inflammatory properties. Through recent emerging knowledge of rice bran in health and wellness, the present study was aimed to assess the ameliorative effects of rice bran extracts (RBE) derived from Japanese colored rice varieties in modulating risk factors of atherosclerosis via in vitro and in vivo study models. Pre-treatment of lipopolysaccharide (LPS)-stimulated murine J774A.1 macrophage-like cells with RBE alleviated nitric oxide (NO) overproduction and downregulated gene expressions of pro-inflammatory modulators: tumor necrosis factor-α (TNF-α), interleukin (IL)-α (IL-1α), IL-1β, IL-6, and inducible nitric oxide synthase (iNOS). In addition, RBE also significantly attenuated LPS-stimulated protein expressions of iNOS, TNF-α, IL-1α, and IL-6 in J774A.1 macrophage-like cells as compared to non-treated LPS control group. In in vivo, 12 weeks of RBE dietary supplementations significantly reduced (p < 0.05) total cholesterol, triglycerides, and pro-atherogenic oxidized LDL/β2-glycoprotein I (oxLDL/β2GPI) complexes at plasma levels, in high fat diet (HFD) induced low density lipoprotein receptor knockout (Ldlr?/-) mice. En face pathological assessments of murine aortas also revealed significant reductions by 38% (p < 0.05) in plaque sizes of RBE-supplemented HFD mice groups as compared to non RBE-supplemented HFD control mice group. Moreover, gene expressions of aortic (iNOS, TNF-α, IL-1β) and hepatic (TNF-α, IL-1α, IL-1β) pro-inflammatory modulators were also downregulated in RBE-supplemented mice groups. Present study has revealed the potent health attributes and application of RBE as a dietary supplement to attenuate risks of inadvertent oxidative damage and chronic inflammation underlying the pathogenesis of atherosclerosis. Intrinsically, present preliminary findings may provide global health prospects for future dietary implementation of RBE in management of atherosclerosis. en-copyright= kn-copyright= en-aut-name=XianWen Tan en-aut-sei=Xian en-aut-mei=Wen Tan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiKazuko en-aut-sei=Kobayashi en-aut-mei=Kazuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LianhuaShen en-aut-sei=Lianhua en-aut-mei=Shen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InagakiJunko en-aut-sei=Inagaki en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IdeMasahiro en-aut-sei=Ide en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HwangSiaw San en-aut-sei=Hwang en-aut-mei=Siaw San kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuuraEiji en-aut-sei=Matsuura en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathophysiology, Zunyi Medical University kn-affil= affil-num=4 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus kn-affil= affil-num=7 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Food science kn-keyword=Food science en-keyword=Food analysis kn-keyword=Food analysis en-keyword=Rice bran extract (RBE) kn-keyword=Rice bran extract (RBE) en-keyword=Functional food kn-keyword=Functional food en-keyword=Phytochemicals kn-keyword=Phytochemicals en-keyword=Atherosclerosis kn-keyword=Atherosclerosis en-keyword=Oxidative stress kn-keyword=Oxidative stress en-keyword=Inflammation kn-keyword=Inflammation en-keyword=Antioxidant kn-keyword=Antioxidant en-keyword=Anti-inflammation kn-keyword=Anti-inflammation en-keyword=Oxidized lipoprotein (oxLDL) kn-keyword=Oxidized lipoprotein (oxLDL) END start-ver=1.4 cd-journal=joma no-vol=153 cd-vols= no-issue=11 article-no= start-page=114501 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200916 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and phase behavior of high-density ice from molecular-dynamics simulations with the ReaxFF potential en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a molecular dynamics simulation study of dense ice modeled by the reactive force field (ReaxFF) potential, focusing on the possibility of phase changes between crystalline and plastic phases as observed in earlier simulation studies with rigid water models. It is demonstrated that the present model system exhibits phase transitions, or crossovers, among ice VII and two plastic ices with face-centered cubic (fcc) and body-centered cubic (bcc) lattice structures. The phase diagram derived from the ReaxFF potential is different from those of the rigid water models in that the bcc plastic phase lies on the high-pressure side of ice VII and does the fcc plastic phase on the low-pressure side of ice VII. The phase boundary between the fcc and bcc plastic phases on the pressure, temperature plane extends to the high-temperature region from the triple point of ice VII, fcc plastic, and bcc plastic phases. Proton hopping, i.e., delocalization of a proton, along between two neighboring oxygen atoms in dense ice is observed for the ReaxFF potential but only at pressures and temperatures both much higher than those at which ice VII?plastic ice transitions are observed. en-copyright= kn-copyright= en-aut-name=AdachiYuji en-aut-sei=Adachi en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Natural Sciences, Okayama University kn-affil= affil-num=2 en-affil=2Department of Chemistry, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=117 cd-vols= no-issue=10 article-no= start-page=101103 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200909 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Super-chiral vibrational spectroscopy with metasurfaces for high-sensitive identification of alanine enantiomers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chiral nature of an enantiomer can be characterized by circular dichroism (CD) spectroscopy, but such a technique usually suffers from weak signal even with a sophisticated optical instrument. Recent demonstrations of plasmonic metasurfaces showed that chiroptical interaction of molecules can be engineered, thereby greatly simplifying a measurement system with high sensing capability. Here, by exploiting super-chiral field in a metasurface, we experimentally demonstrate high-sensitive vibrational CD spectroscopy of alanine enantiomers, the smallest chiral amino acid. Under linearly polarized excitation, the metasurface consisting of an array of staggered Au nano-rods selectively produces the left- and right-handed super-chiral fields at 1600?cm?1, which spectrally overlaps with the functional group vibrations of alanine. In the Fourier-transform infrared spectrometer measurements, the mirror symmetric CD spectra of D- and L-alanine are clearly observed depending on the handedness of the metasurface, realizing the reliable identification of small chiral molecules. The corresponding numerical simulations reveal the underlying resonant chiroptical interaction of plasmonic modes of the metasurface and vibrational modes of alanine. Our approach demonstrates a high-sensitive vibrational CD spectroscopic technique, opening up a reliable chiral sensing platform for advanced infrared inspection technologies. en-copyright= kn-copyright= en-aut-name=IidaTakumi en-aut-sei=Iida en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaAtsushi en-aut-sei=Ishikawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTakuo en-aut-sei=Tanaka en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MuranakaAtsuya en-aut-sei=Muranaka en-aut-mei=Atsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UchiyamaMasanobu en-aut-sei=Uchiyama en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsurutaKenji en-aut-sei=Tsuruta en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=3 en-affil=Metamaterials Laboratory, RIKEN Cluster for Pioneering Research kn-affil= affil-num=4 en-affil=Advanced Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research kn-affil= affil-num=5 en-affil=Advanced Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research kn-affil= affil-num=6 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=7 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=1861 cd-vols= no-issue=7 article-no= start-page=148191 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spectral tuning of light-harvesting complex II in the siphonous alga Bryopsis corticulans and its effect on energy transfer dynamics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms ? absorbing at around 650 nm and 658 nm ? and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting. en-copyright= kn-copyright= en-aut-name=AkhtarParveen en-aut-sei=Akhtar en-aut-mei=Parveen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NowakowskiPawe? J. en-aut-sei=Nowakowski en-aut-mei=Pawe? J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DoThanh Nhut en-aut-sei=Do en-aut-mei=Thanh Nhut kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZhaoSonghao en-aut-sei=Zhao en-aut-mei=Songhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SiligardiGiuliano en-aut-sei=Siligardi en-aut-mei=Giuliano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GarabGy?z? en-aut-sei=Garab en-aut-mei=Gy?z? kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanHowe-Siang en-aut-sei=Tan en-aut-mei=Howe-Siang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LambrevPetar H. en-aut-sei=Lambrev en-aut-mei=Petar H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Biological Research Centre kn-affil= affil-num=2 en-affil=ivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University kn-affil= affil-num=3 en-affil=Photosynthesis Research Centre, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University kn-affil= affil-num=5 en-affil=Photosynthesis Research Centre, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Diamond Light Source Ltd., Harwell Science and Innovation Campus kn-affil= affil-num=7 en-affil=Biological Research Centre kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University kn-affil= affil-num=10 en-affil=Biological Research Centre kn-affil= en-keyword=Circular dichroism kn-keyword=Circular dichroism en-keyword=Light-harvesting complexes kn-keyword=Light-harvesting complexes en-keyword=Marine algae kn-keyword=Marine algae en-keyword=Photosynthesis kn-keyword=Photosynthesis en-keyword=Time-resolved spectroscopy kn-keyword=Time-resolved spectroscopy en-keyword=Two-dimensional spectroscopy kn-keyword=Two-dimensional spectroscopy END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=6 end-page=21 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200119 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tree of motility : A proposed history of motility systems in the tree of life en-subtitle= kn-subtitle= en-abstract= kn-abstract=Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement‐producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility. en-copyright= kn-copyright= en-aut-name=MiyataMakoto en-aut-sei=Miyata en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UyedaTaro Q. P. en-aut-sei=Uyeda en-aut-mei=Taro Q. P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukumoriYoshihiro en-aut-sei=Fukumori en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukushimaShun‐ichi en-aut-sei=Fukushima en-aut-mei=Shun‐ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HarutaShin en-aut-sei=Haruta en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HommaMichio en-aut-sei=Homma en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InabaKazuo en-aut-sei=Inaba en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoMasahiro en-aut-sei=Ito en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KatoKentaro en-aut-sei=Kato en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KenriTsuyoshi en-aut-sei=Kenri en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KinositaYoshiaki en-aut-sei=Kinosita en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KojimaSeiji en-aut-sei=Kojima en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MinaminoTohru en-aut-sei=Minamino en-aut-mei=Tohru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MoriHiroyuki en-aut-sei=Mori en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NakamuraShuichi en-aut-sei=Nakamura en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakaneDaisuke en-aut-sei=Nakane en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NakayamaKoji en-aut-sei=Nakayama en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NishiyamaMasayoshi en-aut-sei=Nishiyama en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=ShibataSatoshi en-aut-sei=Shibata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShimabukuroKatsuya en-aut-sei=Shimabukuro en-aut-mei=Katsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=TamakoshiMasatada en-aut-sei=Tamakoshi en-aut-mei=Masatada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TaokaAzuma en-aut-sei=Taoka en-aut-mei=Azuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=TashiroYosuke en-aut-sei=Tashiro en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=TulumIsil en-aut-sei=Tulum en-aut-mei=Isil kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=WadaHirofumi en-aut-sei=Wada en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=WakabayashiKen‐ichi en-aut-sei=Wakabayashi en-aut-mei=Ken‐ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= affil-num=1 en-affil=Department of Biology, Graduate School of Science, Osaka City University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Faculty of Science and Technology, Waseda University kn-affil= affil-num=4 en-affil=Faculty of Natural System, Institute of Science and Engineering, Kanazawa University kn-affil= affil-num=5 en-affil=Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University kn-affil= affil-num=6 en-affil=Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University kn-affil= affil-num=7 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=8 en-affil=Shimoda Marine Research Center, University of Tsukuba kn-affil= affil-num=9 en-affil=Graduate School of Life Sciences, Toyo University kn-affil= affil-num=10 en-affil=Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=12 en-affil=Laboratory of Mycoplasmas and Haemophilus, Department of Bacteriology II, National Institute of Infectious Diseases kn-affil= affil-num=13 en-affil=Department of Physics, Oxford University kn-affil= affil-num=14 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=15 en-affil=Graduate School of Frontier Biosciences, Osaka University kn-affil= affil-num=16 en-affil=Institute for Frontier Life and Medical Sciences, Kyoto University kn-affil= affil-num=17 en-affil=Department of Applied Physics, Graduate School of Engineering, Tohoku University kn-affil= affil-num=18 en-affil=Department of Physics, Gakushuin University kn-affil= affil-num=19 en-affil=Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=20 en-affil=Department of Physics, Faculty of Science and Engineering, Kindai University kn-affil= affil-num=21 en-affil=Molecular Cryo‐Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University kn-affil= affil-num=22 en-affil=Department of Chemical and Biological Engineering, National Institute of Technology, Ube College kn-affil= affil-num=23 en-affil=Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences kn-affil= affil-num=24 en-affil=Faculty of Natural System, Institute of Science and Engineering, Kanazawa University kn-affil= affil-num=25 en-affil=Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University kn-affil= affil-num=26 en-affil=Department of Botany, Faculty of Science, Istanbul University kn-affil= affil-num=27 en-affil=Department of Physics, Graduate School of Science and Engineering, Ritsumeikan University kn-affil= affil-num=28 en-affil=Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology kn-affil= en-keyword=appendage kn-keyword=appendage en-keyword=cytoskeleton kn-keyword=cytoskeleton en-keyword=flagella kn-keyword=flagella en-keyword=membrane remodeling kn-keyword=membrane remodeling en-keyword=Mollicutes kn-keyword=Mollicutes en-keyword=motor protein kn-keyword=motor protein en-keyword=peptidoglycan kn-keyword=peptidoglycan en-keyword=three domains kn-keyword=three domains END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue=3 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Solid-state nuclear magnetic resonance study of setting mechanism of beta-tricalcium phosphate-inositol phosphate composite cements en-subtitle= kn-subtitle= en-abstract= kn-abstract=Solid-state nuclear magnetic resonance (NMR) spectroscopy is a technique, which can be used to provide insight into the chemical structure of non-crystalline and crystalline materials. Hence, the present study aimed to elucidate the setting mechanism of CPC, which was fabricated using beta -tricalcium phosphate (beta -TCP)-inositol phosphate (IP6) composite powder using NMR In addition, the effect of IP6 on the local chemical structure of the beta -TCP-IP6 composite powder and its hardened cement would also be investigated. The H-1 -> P-31 heteronuclear correlation NMR spectrum revealed that an amorphous hydrated layer, along with small amount of hydroxyapatite (HA) was formed on the surface of beta -TCP during the ball-milling process. Results demonstrated that the IP6 in the hydrated layer on the surface of beta -TCP inhibited the formation of HA. Moreover, the setting reaction of the cement was mainly triggered by the dissolution of the amorphous hydrated layer on beta -TCP surface, and subsequent precipitation, followed by the inter-entanglement between the HA crystals on the beta -TCP. en-copyright= kn-copyright= en-aut-name=KonishiToshiisa en-aut-sei=Konishi en-aut-mei=Toshiisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamashitaKohei en-aut-sei=Yamashita en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagataKohei en-aut-sei=Nagata en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LimPoon Nian en-aut-sei=Lim en-aut-mei=Poon Nian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ThianEng San en-aut-sei=Thian en-aut-mei=Eng San kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AizawaMamoru en-aut-sei=Aizawa en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University kn-affil= affil-num=4 en-affil=Department of Mechanical Engineering, National University of Singapore kn-affil= affil-num=5 en-affil=Department of Mechanical Engineering, National University of Singapore kn-affil= affil-num=6 en-affil=Department of Applied Chemistry, School of Science and Technology, Meiji University kn-affil= en-keyword=beta-tricalcium phosphate kn-keyword=beta-tricalcium phosphate en-keyword=calcium-phosphate cement kn-keyword=calcium-phosphate cement en-keyword=inositol phosphate kn-keyword=inositol phosphate en-keyword=solid-state NMR kn-keyword=solid-state NMR en-keyword=setting mechanism kn-keyword=setting mechanism END start-ver=1.4 cd-journal=joma no-vol=220 cd-vols= no-issue=9 article-no= start-page=1900021 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rapid Synthesis of Poly(methyl methacrylate) Particles with High Molecular Weight by Soap‐Free Emulsion Polymerization Using Water‐in‐Oil Slug Flow en-subtitle= kn-subtitle= en-abstract= kn-abstract= flow process for the production of poly(methyl methacrylate) (PMMA) particles is proposed by soap‐free emulsion polymerization using a water‐in‐oil (W/O) slug flow in a microreactor. Thin oil films generated around the dispersed aqueous phase of the W/O slug prevent the prepared particles from adhesion to the microchannel wall, enabling the continuous production of PMMA particles without clogging. The effects of the linear flow rate of the slug flow and the addition of ethanol in the dispersed aqueous phase on the polymerization are evaluated. It is found that increasing the linear flow rate of the slug flow or the addition of ethanol in the dispersed aqueous phase results in PMMA particles with high molecular weight (?1500 kg mol?1) in 20 min reaction time. It is believed that this process would be a promising way to prepare polymer particles with high molecular weight in a short reaction time. en-copyright= kn-copyright= en-aut-name=WatanabeTakaichi en-aut-sei=Watanabe en-aut-mei=Takaichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KaritaKengo en-aut-sei=Karita en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TawaraKoki en-aut-sei=Tawara en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SogaTakuya en-aut-sei=Soga en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OnoTsutomu en-aut-sei=Ono en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=heterogeneous polymerization kn-keyword=heterogeneous polymerization en-keyword=internal circulation kn-keyword=internal circulation en-keyword=microreactors kn-keyword=microreactors en-keyword=microspheres kn-keyword=microspheres END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=22 article-no= start-page=7422 end-page=7435 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200418 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Synthesis of [7]phenacene incorporating tetradecyl chains in the axis positions and its application in field-effect transistors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Field-effect transistors (FETs) were fabricated using a new type of phenacene molecule, 3,12-ditetradecyl[7]phenacene ((C14H29)2-[7]phenacene), and solid gate dielectrics or an electric double layer (EDL) capacitor with an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate (bmim[PF6])). The new molecule, (C14H29)2-[7]phenacene, was efficiently synthesized via the Mallory photoreaction. Its crystal structure and electronic properties were determined, using X-ray diffraction, scanning tunneling microscopy/spectroscopy (STM and STS), absorption spectroscopy, and photoelectron yield spectroscopy, which showed a monoclinic crystal lattice (space group P21 (no. 4)) and an energy gap of ?3.0 eV. The STM image clearly showed the molecular structure of (C14H29)2-[7]phenacene, as well as the closed molecular stacking, indicative of a strong fastener effect between alkyl chains. The X-ray diffraction pattern of thin films of (C14H29)2-[7]phenacene formed on a SiO2/Si substrate suggested that the molecule stood on the surface with an inclined angle of 30° with respect to the normal axis of the surface. The FET properties were recorded in two-terminal measurement mode, showing p-channel normally-off characteristics. The averaged values of field-effect mobility, μ, were 1.6(3) cm2 V?1 s?1 for a (C14H29)2-[7]phenacene thin-film FET with a SiO2 gate dielectric and 6(4) × 10?1 cm2 V?1 s?1 for a (C14H29)2-[7]phenacene thin-film EDL FET with bmim[PF6]. Thus, higher FET performance was obtained with an FET using a thin film of (C14H29)2-[7]phenacene compared to parent [7]phenacene. This study could pioneer an avenue for the realization of high-performance FETs through the addition of alkyl chains to phenacene molecules. en-copyright= kn-copyright= en-aut-name=OkamotoHideki en-aut-sei=Okamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HamaoShino en-aut-sei=Hamao en-aut-mei=Shino kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KozasaKeiko en-aut-sei=Kozasa en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangYanan en-aut-sei=Wang en-aut-mei=Yanan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PanYong-He en-aut-sei=Pan en-aut-mei=Yong-He kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YenYu-Hsiang en-aut-sei=Yen en-aut-mei=Yu-Hsiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HoffmannGermar en-aut-sei=Hoffmann en-aut-mei=Germar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaniFumito en-aut-sei=Tani en-aut-mei=Fumito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GotoKenta en-aut-sei=Goto en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Department of Physics & Center for Quantum Technology, National Tsing Hua University kn-affil= affil-num=7 en-affil=Department of Physics & Center for Quantum Technology, National Tsing Hua University kn-affil= affil-num=8 en-affil=Department of Physics & Center for Quantum Technology, National Tsing Hua University kn-affil= affil-num=9 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=10 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=11 article-no= start-page=4536 end-page=4541 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200522 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Application of First-Principles-Based Artificial Neural Network Potentials to Multiscale-Shock Dynamics Simulations on Solid Materials en-subtitle= kn-subtitle= en-abstract= kn-abstract=The use of artificial neural network (ANN) potentials trained with first-principles calculations has emerged as a promising approach for molecular dynamics (MD) simulations encompassing large space and time scales while retaining first-principles accuracy. To date, however, the application of ANN-MD has been limited to near-equilibrium processes. Here we combine first-principles-trained ANN-MD with multiscale shock theory (MSST) to successfully describe far-from-equilibrium shock phenomena. Our ANN-MSST-MD approach describes shock-wave propagation in solids with first-principles accuracy but a 5000 times shorter computing time. Accordingly, ANN-MD-MSST was able to resolve fine, long-time elastic deformation at low shock speed, which was impossible with first-principles MD because of the high computational cost. This work thus lays a foundation of ANN-MD simulation to study a wide range of far-from-equilibrium processes. en-copyright= kn-copyright= en-aut-name=MisawaMasaaki en-aut-sei=Misawa en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukushimaShogo en-aut-sei=Fukushima en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KouraAkihide en-aut-sei=Koura en-aut-mei=Akihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimamuraKohei en-aut-sei=Shimamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimojoFuyuki en-aut-sei=Shimojo en-aut-mei=Fuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TiwariSubodh en-aut-sei=Tiwari en-aut-mei=Subodh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NomuraKen-ichi en-aut-sei=Nomura en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KaliaRajiv K. en-aut-sei=Kalia en-aut-mei=Rajiv K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakanoAiichiro en-aut-sei=Nakano en-aut-mei=Aiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=VashishtaPriya en-aut-sei=Vashishta en-aut-mei=Priya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Kumamoto University kn-affil= affil-num=3 en-affil=Department of Physics, Kumamoto University kn-affil= affil-num=4 en-affil=Department of Physics, Kumamoto University kn-affil= affil-num=5 en-affil=Department of Physics, Kumamoto University kn-affil= affil-num=6 en-affil=Collaboratory for Advanced Computing and Simulations, University of Southern California kn-affil= affil-num=7 en-affil=Collaboratory for Advanced Computing and Simulations, University of Southern California kn-affil= affil-num=8 en-affil=Collaboratory for Advanced Computing and Simulations, University of Southern California kn-affil= affil-num=9 en-affil=Collaboratory for Advanced Computing and Simulations, University of Southern California kn-affil= affil-num=10 en-affil=Collaboratory for Advanced Computing and Simulations, University of Southern California kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=5 article-no= start-page=1144 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Systematic Investigations of Annealing and Functionalization of Carbon Nanotube Yarns en-subtitle= kn-subtitle= en-abstract= kn-abstract=Carbon nanotube yarns (CNY) are a novel carbonaceous material and have received a great deal of interest since the beginning of the 21st century. CNY are of particular interest due to their useful heat conducting, electrical conducting, and mechanical properties. The electrical conductivity of carbon nanotube yarns can also be influenced by functionalization and annealing. A systematical study of this post synthetic treatment will assist in understanding what factors influences the conductivity of these materials. In this investigation, it is shown that the electrical conductivity can be increased by a factor of 2 and 5.5 through functionalization with acids and high temperature annealing respectively. The scale of the enhancement is dependent on the reducing of intertube space in case of functionalization. For annealing, not only is the highly graphitic structure of the carbon nanotubes (CNT) important, but it is also shown to influence the residual amorphous carbon in the structure. The promising results of this study can help to utilize CNY as a replacement for common materials in the field of electrical wiring. en-copyright= kn-copyright= en-aut-name=ScholzMaik en-aut-sei=Scholz en-aut-mei=Maik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EckertVictoria en-aut-sei=Eckert en-aut-mei=Victoria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KhavrusVyacheslav en-aut-sei=Khavrus en-aut-mei=Vyacheslav kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeonhardtAlbrecht en-aut-sei=Leonhardt en-aut-mei=Albrecht kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=B?chnerBernd en-aut-sei=B?chner en-aut-mei=Bernd kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MertigMichael en-aut-sei=Mertig en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HampelSilke en-aut-sei=Hampel en-aut-mei=Silke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Leibniz Institute for Solid State and Material Research Dresden, Helmholtzstr. 20 kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Leibniz Institute for Solid State and Material Research Dresden, Helmholtzstr. 20 kn-affil= affil-num=4 en-affil=Leibniz Institute for Solid State and Material Research Dresden, Helmholtzstr. 20 kn-affil= affil-num=5 en-affil=Leibniz Institute for Solid State and Material Research Dresden, Helmholtzstr. 20 kn-affil= affil-num=6 en-affil=Leibniz Institute for Solid State and Material Research Dresden, Helmholtzstr. 20 kn-affil= affil-num=7 en-affil=Institute for Physical Chemistry, Technische Universit?t Dresden kn-affil= affil-num=8 en-affil=Leibniz Institute for Solid State and Material Research Dresden, Helmholtzstr. 20 kn-affil= en-keyword=carbon nanotube yarns kn-keyword=carbon nanotube yarns en-keyword=carbon nanotube kn-keyword=carbon nanotube en-keyword=functionalization kn-keyword=functionalization en-keyword=electrical conductivity kn-keyword=electrical conductivity en-keyword=annealing kn-keyword=annealing en-keyword=acid treatment kn-keyword=acid treatment END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue=3 article-no= start-page=033304 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200313 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lattice Boltzmann method for simulation of wettable particles at a fluid-fluid interface under gravity en-subtitle= kn-subtitle= en-abstract= kn-abstract= A computational technique was developed to simulate wettable particles trapped at a fluid-fluid interface under gravity. The proposed technique combines the improved smoothed profile-lattice Boltzmann method (iSP-LBM) for the treatment of moving solid-fluid boundaries and the free-energy LBM for the description of isodensity immiscible two-phase flows. We considered five benchmark problems in two-dimensional systems, including a stationary drop, a wettable particle trapped at a fluid-fluid interface in the absence or presence of gravity, two freely moving particles at a fluid-fluid interface in the presence of gravity (i.e., capillary floatation forces), and two vertically constrained particles at a fluid-fluid interface (i.e., capillary immersion forces). The simulation results agreed well with theoretical estimations, demonstrating the efficacy of the proposed technique. en-copyright= kn-copyright= en-aut-name=MinoYasushi en-aut-sei=Mino en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShintoHiroyuki en-aut-sei=Shinto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemical Engineering, Fukuoka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=4 article-no= start-page=043309 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170425 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of internal mass in the lattice Boltzmann simulation of moving solid bodies by the smoothed-profile method en-subtitle= kn-subtitle= en-abstract= kn-abstract= A computational method for the simulation of particulate flows that can efficiently treat the particle-fluid boundary in systems containing many particles was developed based on the smoothed-profile lattice Boltzmann method (SPLBM). In our proposed method, which we call the improved SPLBM (iSPLBM), for an accurate and stable simulation of particulate flows, the hydrodynamic force on a moving solid particle is exactly formulated with consideration of the effect of internal fluid mass. To validate the accuracy and stability of iSPLBM, we conducted numerical simulations of several particulate flow systems and compared our results with those of other simulations and some experiments. In addition, we performed simulations on flotation of many lightweight particles with a wide range of particle size distribution, the results of which demonstrated the effectiveness of iSPLBM. Our proposed model is a promising method to accurately and stably simulate extensive particulate flows. en-copyright= kn-copyright= en-aut-name=MinoYasushi en-aut-sei=Mino en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShintoHiroyuki en-aut-sei=Shinto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakaiShohei en-aut-sei=Sakai en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuyamaHideto en-aut-sei=Matsuyama en-aut-mei=Hideto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemical Engineering, Fukuoka University kn-affil= affil-num=3 en-affil=Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University kn-affil= affil-num=4 en-affil=Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue= article-no= start-page=4009 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201938 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Synthesis of the extended phenacene molecules, [10]phenacene and [11]phenacene, and their performance in a field-effect transistor en-subtitle= kn-subtitle= en-abstract= kn-abstract= The [10]phenacene and [11]phenacene molecules have been synthesized using a simple repetition of Wittig reactions followed by photocyclization. Sufficient amounts of [10]phenacene and [11]phenacene were obtained, and thin-film FETs using these molecules have been fabricated with SiO2 and ionic liquid gate dielectrics. These FETs operated in p-channel. The averaged measurements of field-effect mobility, <μ>, were 3.1(7)?×?10-2 and 1.11(4)?×?10-1?cm2 V-1 s-1, respectively, for [10]phenacene and [11]phenacene thin-film FETs with SiO2 gate dielectrics. Furthermore, [10]phenacene and [11]phenacene thin-film electric-double-layer (EDL) FETs with ionic liquid showed low-voltage p-channel FET properties, with <μ> values of 3(1) and 1(1)?cm2 V-1 s-1, respectively. This study also discusses the future utility of the extremely extended π-network molecules [10]phenacene and [11]phenacene as the active layer of FET devices, based on the experimental results obtained. en-copyright= kn-copyright= en-aut-name=OkamotoHideki en-aut-sei=Okamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HamaoShino en-aut-sei=Hamao en-aut-mei=Shino kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EguchiRitsuko en-aut-sei=Eguchi en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoHidenori en-aut-sei=Goto en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakabayashiYasuhiro en-aut-sei=Takabayashi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YenPaul Yu-Hsiang en-aut-sei=Yen en-aut-mei=Paul Yu-Hsiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LiangLuo Uei en-aut-sei=Liang en-aut-mei=Luo Uei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ChouChia-Wei en-aut-sei=Chou en-aut-mei=Chia-Wei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HoffmannGermar en-aut-sei=Hoffmann en-aut-mei=Germar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GohdaShin en-aut-sei=Gohda en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SuginoHisako en-aut-sei=Sugino en-aut-mei=Hisako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=LiaosYen-Fa en-aut-sei=Liaos en-aut-mei=Yen-Fa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshiiHirofumi en-aut-sei=Ishii en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil= Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil= Department of Chemistry, Okayama University kn-affil= affil-num=6 en-affil=Department of Physics, National Tsing Hua University kn-affil= affil-num=7 en-affil=Department of Physics, National Tsing Hua University kn-affil= affil-num=8 en-affil=Department of Physics, National Tsing Hua University kn-affil= affil-num=9 en-affil=Department of Physics, National Tsing Hua University kn-affil= affil-num=10 en-affil=NARD Co Ltd kn-affil= affil-num=11 en-affil=NARD Co Ltd kn-affil= affil-num=12 en-affil=National Synchrotron Radiation Center kn-affil= affil-num=13 en-affil=National Synchrotron Radiation Center kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=11 article-no= start-page=2821 end-page=2824 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170518 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Synthesis of 3-Benzo[b]thienyl 3-Thienyl Ether via an Addition-Elimination Reaction and Its Transformation to an Oxygen-Fused Dithiophene Skeleton: Synthesis and Properties of Benzodithienofuran and Its π-Extended Derivatives en-subtitle= kn-subtitle= en-abstract= kn-abstract= The synthesis of 3-benzo[b]thienyl 3-thienyl ether and its dehydrogenative cyclization leading to benzodithienofuran (BDTF; [1]benzothieno[3,2-b]thieno[2,3-d]furan) are described for the first time. Further transformation of BDTF to more π-extended BDTF derivatives and their fundamental physical properties are also studied. en-copyright= kn-copyright= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurimotoYuji en-aut-sei=Kurimoto en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MandaiHiroki en-aut-sei=Mandai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue=16 article-no= start-page=164701 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190424 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Three-phase equilibria in density-functional theory: Interfacial tensions en-subtitle= kn-subtitle= en-abstract= kn-abstract= A mean-field density-functional model for three-phase equilibria in fluids (or other soft condensed matter) with two spatially varying densities is analyzed analytically and numerically. The interfacial tension between any two out of three thermodynamically coexisting phases is found to be captured by a surprisingly simple analytic expression that has a geometric interpretation in the space of the two densities. The analytic expression is based on arguments involving symmetries and invariances. It is supported by numerical computations of high precision, and it agrees with earlier conjectures obtained for special cases in the same model. An application is presented to three-phase equilibria in the vicinity of a tricritical point. Using the interfacial tension expression and employing the field variables compatible with tricritical point scaling, the expected mean-field critical exponent is derived for the vanishing of the critical interfacial tension as a function of the deviation of the noncritical interfacial tension from its limiting value, upon approach to a critical endpoint in the phase diagram. The analytic results are again confirmed by numerical computations of high precision. en-copyright= kn-copyright= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IndekeuJoseph O. en-aut-sei=Indekeu en-aut-mei=Joseph O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Institute for Theoretical Physics, KU Leuven kn-affil= END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=4 article-no= start-page=202 end-page=217 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20171108 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Application of reference-modified density functional theory: Temperature and pressure dependences of solvation free energy en-subtitle= kn-subtitle= en-abstract= kn-abstract= Recently, we proposed a reference‐modified density functional theory (RMDFT) to calculate solvation free energy (SFE), in which a hard‐sphere fluid was introduced as the reference system instead of an ideal molecular gas. Through the RMDFT, using an optimal diameter for the hard‐sphere reference system, the values of the SFE calculated at room temperature and normal pressure were in good agreement with those for more than 500 small organic molecules in water as determined by experiments. In this study, we present an application of the RMDFT for calculating the temperature and pressure dependences of the SFE for solute molecules in water. We demonstrate that the RMDFT has high predictive ability for the temperature and pressure dependences of the SFE for small solute molecules in water when the optimal reference hard‐sphere diameter determined for each thermodynamic condition is used. We also apply the RMDFT to investigate the temperature and pressure dependences of the thermodynamic stability of an artificial small protein, chignolin, and discuss the mechanism of high‐temperature and high‐pressure unfolding of the protein. ? 2017 Wiley Periodicals, Inc. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaruyamaYutaka en-aut-sei=Maruyama en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsutakeAyori en-aut-sei=Mitsutake en-aut-mei=Ayori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Mochizuki Kenji en-aut-sei=Mochizuki en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= Division of Superconducting and Functional Materials, Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Co-Design Team, FLAGSHIP 2020 Project, RIKEN Advanced Institute for Computational Science kn-affil= affil-num=3 en-affil= Department of Physics, Keio University kn-affil= affil-num=4 en-affil= Division of Superconducting and Functional Materials, Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil= Division of Superconducting and Functional Materials, Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=3D-RISM theory kn-keyword=3D-RISM theory en-keyword=chignolin kn-keyword=chignolin en-keyword=classical density functional theory kn-keyword=classical density functional theory en-keyword=high-pressure unfolding kn-keyword=high-pressure unfolding en-keyword=hydrophobic solute kn-keyword=hydrophobic solute en-keyword=protein kn-keyword=protein en-keyword=temperature and pressure dependences of solvation free energy kn-keyword=temperature and pressure dependences of solvation free energy en-keyword=thermal denaturation kn-keyword=thermal denaturation END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=18 article-no= start-page=1359 end-page=1369 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150531 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A solvation-free-energy functional: A reference-modified density functional formulation en-subtitle= kn-subtitle= en-abstract= kn-abstract= The three-dimensional reference interaction site model (3D-RISM) theory, which is one of the most applicable integral equation theories for molecular liquids, overestimates the absolute values of solvation-free-energy (SFE) for large solute molecules in water. To improve the free-energy density functional for the SFE of solute molecules, we propose a reference-modified density functional theory (RMDFT) that is a general theoretical approach to construct the free-energy density functional systematically. In the RMDFT formulation, hard-sphere (HS) fluids are introduced as the reference system instead of an ideal polyatomic molecular gas, which has been regarded as the appropriate reference system of the interaction-site-model density functional theory for polyatomic molecular fluids. We show that using RMDFT with a reference HS system can significantly improve the absolute values of the SFE for a set of neutral amino acid side-chain analogues as well as for 504 small organic molecules. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsutakeAyori en-aut-sei=Mitsutake en-aut-mei=Ayori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaruyamaYutaka en-aut-sei=Maruyama en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University, kn-affil= affil-num=2 en-affil=Department of Physics, Keio University, kn-affil= affil-num=3 en-affil=Department of Physics, Keio University, kn-affil= en-keyword=salvation-free-energy kn-keyword=salvation-free-energy en-keyword=classical density functional theory kn-keyword=classical density functional theory en-keyword=3D-RISM theory kn-keyword=3D-RISM theory en-keyword= water kn-keyword= water en-keyword=amino acid side-chain kn-keyword=amino acid side-chain en-keyword=chignolin kn-keyword=chignolin END start-ver=1.4 cd-journal=joma no-vol=144 cd-vols= no-issue=22 article-no= start-page=224104 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160610 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A reference-modified density functional theory: An application to solvation free-energy calculations for a Lennard-Jones solution en-subtitle= kn-subtitle= en-abstract= kn-abstract= In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaruyamaYutaka en-aut-sei=Maruyama en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsutakeAyori en-aut-sei=Mitsutake en-aut-mei=Ayori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Co-Design Team, Exascale Computing Project, RIKEN Advanced Institute for Computational Science kn-affil= affil-num=3 en-affil=Co-Design Team, Exascale Computing Project, RIKEN Advanced Institute for Computational Science kn-affil= affil-num=4 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=46 article-no= start-page=25492 end-page=25497 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20141017 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Model-potential-free analysis of small angle scattering of proteins in solution: insights into solvent effects on protein-protein interaction en-subtitle= kn-subtitle= en-abstract= kn-abstract= To extract protein-protein interaction from experimental small-angle scattering of proteins in solutions using liquid state theory, a model potential consisting of a hard-sphere repulsive potential and the excess interaction potential has been introduced. In the present study, we propose a model-potential-free integral equation method that extracts the excess interaction potential by using the experimental small-angle scattering data without specific model potential such as the Derjaguin-Landau-Verwey-Overbeek (DLVO)-type model. Our analysis of experimental small-angle X-ray scattering data for lysozyme solution shows both the stabilization of contact configurations of protein molecules and a large activation barrier against the formation of the contact configurations in addition to the screened Coulomb repulsion. These characteristic features, which are not well-described by the DLVO-type model, are interpreted as solvent effects. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ImamuraHiroshi en-aut-sei=Imamura en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaTakeshi en-aut-sei=Morita en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IsogaiYasuhiro en-aut-sei=Isogai en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishikawaKeiko en-aut-sei=Nishikawa en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Advanced Integration Science, Chiba University kn-affil= affil-num=3 en-affil=Graduate School of Advanced Integration Science, Chiba University kn-affil= affil-num=4 en-affil=Department of Biotechnology, Toyama Prefectural University kn-affil= affil-num=5 en-affil=Graduate School of Advanced Integration Science, Chiba University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=4-1 article-no= start-page=042410 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20171019 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes en-subtitle= kn-subtitle= en-abstract= kn-abstract= A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkumotoAtsushi en-aut-sei=Okumoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GotoHitoshi en-aut-sei=Goto en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SekinoHideo en-aut-sei=Sekino en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil= Department of Computer Science and Engineering, Graduate School of Engineering, Toyohashi University of Technology kn-affil= affil-num=3 en-affil= Department of Computer Science and Engineering, Graduate School of Engineering, Toyohashi University of Technology kn-affil= affil-num=4 en-affil= Department of Computer Science and Engineering, Graduate School of Engineering, Toyohashi University of Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=26 article-no= start-page=2009 end-page=2011 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Erratum: "A solvation-free-energy functional: A reference-modified density functional formulation" [J. Comput. Chem. 2015, 36, 1359-1369]. en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Mitsutake Ayori en-aut-sei=Mitsutake en-aut-mei= Ayori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Maruyama Yutaka en-aut-sei=Maruyama en-aut-mei= Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Keio University kn-affil= affil-num=3 en-affil=Department of Physics, Keio University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue=4 article-no= start-page=041102 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190123 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phase diagram of ice polymorphs under negative pressure considering the limits of mechanical stability en-subtitle= kn-subtitle= en-abstract= kn-abstract= Thermodynamic and mechanical stabilities of various ultralow-density ices are examined using computer simulations to construct the phase diagram of ice under negative pressure. Some ultralow-density ices, which were predicted to be thermodynamically metastable under negative pressures on the basis of the quasi-harmonic approximation, can exist only in a narrow pressure range at very low temperatures because they are mechanically fragile due to the large distortion in the hydrogen bonding network. By contrast, relatively dense ices such as ice Ih and ice XVI withstand large negative pressure. Consequently, various ices appear one after another in the phase diagram. The phase diagram of ice under negative pressure exhibits a different complexity from that of positive pressure because of the mechanical instability. en-copyright= kn-copyright= en-aut-name=MatsuiTakahiro en-aut-sei=Matsui en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue=21 article-no= start-page=214506 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Liquid-liquid separation of aqueous solutions: A molecular dynamics study en-subtitle= kn-subtitle= en-abstract= kn-abstract= In the liquid-liquid phase transition scenario, supercooled water separates into the high density liquid (HDL) and low density liquid (LDL) phases at temperatures lower than the second critical point. We investigate the effects of hydrophilic and hydrophobic solutes on the liquid-liquid phase transition using molecular dynamics simulations. It is found that a supercooled aqueous NaCl solution separates into solute-rich HDL and solute-poor LDL parts at low pressures. By contrast, a supercooled aqueous Ne solution separates into solute-rich LDL and solute-poor HDL parts at high pressures. Both the solutes increase the high temperature limit of the liquid-liquid separation. The degree of separation is quantified using the local density of solute particles to determine the liquid-liquid coexistence region in the pressure-temperature phase diagram. The effects of NaCl and Ne on the phase diagram of supercooled water are explained in terms of preferential solvation of ions in HDL and that of small hydrophobic particles in LDL, respectively. en-copyright= kn-copyright= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=151 cd-vols= no-issue=6 article-no= start-page=064702 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190808 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Formation of Hot Ice Caused by Carbon Nanobrushes en-subtitle= kn-subtitle= en-abstract= kn-abstract= Confinement in nanoscaled porous materials changes properties of water significantly. We perform molecular dynamics simulations of water in a model of a nanobrush made of carbon nanotubes. Water crystallizes into a novel structure called dtc in the nanobrush when (6,6) nanotubes are located in a triangular arrangement, and there is a space that can accommodate two layers of water molecules between the tubes. The mechanism of the solidification is analogous to formation of gas hydrates: hydrophobic molecules promote crystallization when their arrangement matches ordered structures of water. This is supported by a statistical mechanical calculation, which bears resemblance to the theory on the clathrate hydrate stability. en-copyright= kn-copyright= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamasakiMasaru en-aut-sei=Yamasaki en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=150 cd-vols= no-issue=21 article-no= start-page=214504 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190605 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Bayesian approach for identification of ice Ih, ice Ic, high density, and low density liquid water with a torsional order parameter en-subtitle= kn-subtitle= en-abstract= kn-abstract= An order parameter is proposed to classify the local structures of liquid and solid water. The order parameter, which is calculated from the O?O?O?O dihedral angles, can distinguish ice Ih, ice Ic, high density, and low density liquid water. Three coloring schemes are proposed to visualize each of the coexisting phases in a system using the order parameter on the basis of Bayesian decision theory. The schemes are applied to a molecular dynamics trajectory in which ice nucleation occurs following spontaneous liquid-liquid separation in the deeply supercooled region as a demonstration. en-copyright= kn-copyright= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=111 cd-vols= no-issue=18 article-no= start-page=183102 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20171030 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials en-subtitle= kn-subtitle= en-abstract= kn-abstract= A technique of selective electroless plating onto PLA-ABS (Polylactic Acid-Acrylonitrile Butadiene Styrene) composite structures fabricated by three-dimensional (3D) printing is demonstrated to construct 3D microwave metamaterials. The reducing activity of the PLA surface is selectively enhanced by the chemical modification involving Sn2+ in a simple wet process, thereby forming a highly conductive Ag-plated membrane only onto the PLA surface. The fabricated metamaterial composed of Ag-plated PLA and non-plated ABS parts is characterized experimentally and numerically to demonstrate the important bi-anisotropic microwave responses arising from the 3D nature of metallodielectric structures. Our approach based on a simple wet chemical process allows for the creation of highly complex 3D metal-insulator structures, thus paving the way toward the sophisticated microwave applications of the 3D printing technology. Published by AIP Publishing. en-copyright= kn-copyright= en-aut-name=IshikawaAtsushi en-aut-sei=Ishikawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoTaiki en-aut-sei=Kato en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeyasuNobuyuki en-aut-sei=Takeyasu en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujimoriKazuhiro en-aut-sei=Fujimori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsurutaKenji en-aut-sei=Tsuruta en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=2 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=4 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= affil-num=5 en-affil=Department of Electrical and Electronic Engineering, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=91 cd-vols= no-issue=1 article-no= start-page=016302 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150123 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reply to “Comment on ‘Spontaneous liquid-liquid phase separation of water’?” en-subtitle= kn-subtitle= en-abstract= kn-abstract= Two different scenarios have been proposed on the phase separation occurring in the deeply supercooled liquid water. We discuss what we can derive from our simulation results for the two scenarios and propose a way for future investigation. We also demonstrate that the phase separation in the supercooled liquid water looks like the separation of liquid water and vapor just below the conventional critical point. en-copyright= kn-copyright= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Matsumoto Masakazu en-aut-sei=Matsumoto en-aut-mei= Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=115 cd-vols= no-issue=19 article-no= start-page=197801 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20151106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chiral Ordering in Supercooled Liquid Water and Amorphous Ice en-subtitle= kn-subtitle= en-abstract= kn-abstract=The emergence of homochiral domains in supercooled liquid water is presented using molecular dynamics simulations. An individual water molecule possesses neither a chiral center nor a twisted conformation that can cause spontaneous chiral resolution. However, an aggregation of water molecules will naturally give rise to a collective chirality. Such homochiral domains possess obvious topological and geometrical orders and are energetically more stable than the average. However, homochiral domains cannot grow into macroscopic homogeneous structures due to geometrical frustrations arising from their icosahedral local order. Homochiral domains are the major constituent of supercooled liquid water and the origin of heterogeneity in that substance, and are expected to be enhanced in low-density amorphous ice at lower temperatures. en-copyright= kn-copyright= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=68 cd-vols= no-issue=2 article-no= start-page=63 end-page=78 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular Simulation Analysis of the Structure Complex of C2 Domains of DKK Family Members and β-propeller Domains of LRP5/6:Explaining Why DKK3 Does Not Bind to LRP5/6 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dickkopf (DKK) proteins interact with low-density lipoprotein receptor-related protein 5/6 (LRP5/6) to modulate WNT signaling. The interaction is mediated by a cysteine-rich domain (C2) in the DKK protein and β-propeller domains (PD) of LRP5/6. However, the third member of the DKK family (DKK3) does not bind to LRP5/6. To determine why DKK3 does not bind to the receptor domains, we performed a molecular modeling simulation study including homology modeling, protein-protein docking and molecular dynamics (MD). The computed affinities (ΔGbinding) between the C2 and PD models were consistent with the previously reported experimental results. The C2 model of DKK3 showed the lowest affinity for PD models. Multiple sequence alignment of C2 domains revealed that the DKK3 genes have a unique 7-amino-acid insertion (L249-E255 in human DKK3) and P258 in a finger loop 1 (FL1). Interestingly, the insertion sequence is evolutionally conserved. MD simulations of high-affinity complex models of C2 and PD showed that FL1 directly interacts with the PD models and stabilizes the complex models. We also built a 7-amino-acid-deletion/P258G mutant model of DKK3C2 and estimated its affinities for the PD models. The affinity for human LRP5PD2 was increased by the substitution (ΔGbinding=−48.9kcal/mol) and the affinity was compatible with that of high-affinity ligands. The results suggested that the lack of affinity between human DKK3 and human LRP5/6 results from: i) insertion of the 7 amino acids, and ii) P258 in human DKK3. The sequence differences thus suggest an explanation for this unique property of DKK3. en-copyright= kn-copyright= en-aut-name=FujiiYasuyuki en-aut-sei=Fujii en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HoshinoTyuji en-aut-sei=Hoshino en-aut-mei=Tyuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KumonHiromi en-aut-sei=Kumon en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University Graduate School of Medicine affil-num=2 en-affil= kn-affil=Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University affil-num=3 en-affil= kn-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University Graduate School of Medicine en-keyword=DKK3 kn-keyword=DKK3 en-keyword=molecular modeling kn-keyword=molecular modeling en-keyword=protein-protein docking kn-keyword=protein-protein docking en-keyword=LRP5/6 kn-keyword=LRP5/6 END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=5 article-no= start-page=582 end-page=584 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoemission study of electronic structure evolution across the metal-insulator transition of heavily B-doped diamond en-subtitle= kn-subtitle= en-abstract= kn-abstract=We studied the electronic structure evolution of heavily B-doped diamond films across the metal-insulator transition (MIT) using ultraviolet photoemission spectroscopy (UPS). From high-temperature UPS, through which electronic states near the Fermi level (E(F)) up to similar to 5k(B)T can be observed (k(B) is the Boltzmann constant and T the temperature), we observed the carrier concentration dependence of spectral shapes near E(F). Using another carrier concentration dependent UPS, we found that the change in energy position of sp-band of the diamond valence band, which corresponds to the shift of E(F), can be explained by the degenerate semiconductor model, indicating that the diamond valence band is responsible for the metallic states for samples with concentrations above MIT. We discuss a possible electronic structure evolution across MIT. en-copyright= kn-copyright= en-aut-name=OkazakiH. en-aut-sei=Okazaki en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ArakaneT. en-aut-sei=Arakane en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugawaraK. en-aut-sei=Sugawara en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoT. en-aut-sei=Sato en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiT. en-aut-sei=Takahashi en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiraiM. en-aut-sei=Hirai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakanoY. en-aut-sei=Takano en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshiiS. en-aut-sei=Ishii en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IriyamaS. en-aut-sei=Iriyama en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaradaH. en-aut-sei=Kawarada en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Department of Physics, Tohoku University affil-num=3 en-affil= kn-affil=WPI Research Center, Advanced Institute for Materials Research, Tohoku University affil-num=4 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=5 en-affil= kn-affil=Department of Physics, Tohoku University affil-num=6 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=9 en-affil= kn-affil=National Institute for Materials Science affil-num=10 en-affil= kn-affil=National Institute for Materials Science affil-num=11 en-affil= kn-affil=School of Science and Engineering, Waseda University affil-num=12 en-affil= kn-affil=School of Science and Engineering, Waseda University affil-num=13 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=5 article-no= start-page=580 end-page=581 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ultrahigh-resolution laser photoemission study of URu2Si2 across the hidden-order transition en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have studied the electronic structures of URu2Si2 employing ultrahigh-resolutionlaser angle-resolved photoemission spectroscopy. The change of photoemission spectra is investigated across the hidden-ordertransition, and the emergence of a narrow band is clearly observed near the Fermi level for both (π,0) and (π,π) directions. In addition, it is shown that tuning of light's polarization allows the signal of a hole-like dispersive feature to enhance. These observations prove that laser angle-resolved photoemission spectroscopy is an effective tool for studying the evolution of electronic structures across the hidden-ordertransition in URu2Si2. en-copyright= kn-copyright= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraYoshiaki en-aut-sei=Nakamura en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuiMasaki en-aut-sei=Fukui en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HagaYoshinori en-aut-sei=Haga en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoEtsuji en-aut-sei=Yamamoto en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=?nukiYoshichika en-aut-sei=?nuki en-aut-mei=Yoshichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkawaMario en-aut-sei=Okawa en-aut-mei=Mario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinShik en-aut-sei=Shin en-aut-mei=Shik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=5 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=6 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=7 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=8 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=9 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=10 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=11 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University en-keyword=Electronic structure kn-keyword=Electronic structure en-keyword=Laser angle-resolved photoemission spectroscopy kn-keyword=Laser angle-resolved photoemission spectroscopy en-keyword=URu2Si2 kn-keyword=URu2Si2 en-keyword=Hidden order kn-keyword=Hidden order END start-ver=1.4 cd-journal=joma no-vol=285 cd-vols= no-issue=38 article-no= start-page=29191 end-page=29199 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100917 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Binding and Functional Properties of Five Extrinsic Proteins in Oxygen-evolving Photosystem II from a Marine Centric Diatom, Chaetoceros gracilis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oxygen-evolving photosystem II (PSII) isolated from a marine centric diatom, Chaetoceros gracilis, contains a novel extrinsic protein (Psb31) in addition to four red algal type extrinsic proteins of PsbO, PsbQ′, PsbV, and PsbU. In this study, the five extrinsic proteins were purified from alkaline Tris extracts of the diatom PSII by anion and cation exchange chromatographic columns at different pH values. Reconstitution experiments in various combinations with the purified extrinsic proteins showed that PsbO, PsbQ′, and Psb31 rebound directly to PSII in the absence of other extrinsic proteins, indicating that these extrinsic proteins have their own binding sites in PSII intrinsic proteins. On the other hand, PsbV and PsbU scarcely rebound to PSII alone, and their effective bindings required the presence of all of the other extrinsic proteins. Interestingly, PSII reconstituted with Psb31 alone considerably restored the oxygen evolving activity in the absence of PsbO, indicating that Psb31 serves as a substitute in part for PsbO in supporting oxygen evolution. A significant difference found between PSIIs reconstituted with Psb31 and with PsbO is that the oxygen evolving activity of the former is scarcely stimulated by Cl? and Ca2+ ions but that of the latter is largely stimulated by these ions, although rebinding of PsbV and PsbU activated oxygen evolution in the absence of Cl? and Ca2+ ions in both the former and latter PSIIs. Based on these results, we proposed a model for the association of the five extrinsic proteins with intrinsic proteins in diatom PSII and compared it with those in PSIIs from the other organisms. en-copyright= kn-copyright= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriguchiAkira en-aut-sei=Moriguchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomoTatsuya en-aut-sei=Tomo en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NiikuraAyako en-aut-sei=Niikura en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakajimaSaori en-aut-sei=Nakajima en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkumuraAkinori en-aut-sei=Okumura en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwaiMasako en-aut-sei=Iwai en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IkeuchiMasahiko en-aut-sei=Ikeuchi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EnamiIsao en-aut-sei=Enami en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo affil-num=2 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science affil-num=3 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science affil-num=4 en-affil= kn-affil=Division of Biosciences, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science affil-num=6 en-affil= kn-affil=Biomolecular Characterization Team, Discovery Research Institute, RIKEN affil-num=7 en-affil= kn-affil=Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University affil-num=8 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo affil-num=9 en-affil= kn-affil=Division of Biosciences, Graduate School of Natural Science and Technology, Okayama University affil-num=10 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo affil-num=11 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science END start-ver=1.4 cd-journal=joma no-vol=104 cd-vols= no-issue=22-24 article-no= start-page=3469 end-page=3477 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=20061001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Line adsorption in a mean-field density functional model en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Recent ideas about the analog for a three-phase contact line of the Gibbs adsorption equation for interfaces are illustrated in a mean-field density-functional model. With $d?tau$ the infinitesimal change in the line tension $?tau$ that accompanies the infinitesimal changes $d?mu_i$ in the thermodynamic field variables $?mu_i$ and with $?Lambda_i$ the line adsorptions, the sum $d?tau + ?Sigma ?Lambda_i d?mu_i$, unlike its surface analog, is not 0. An equivalent of this sum in the model system is evaluated numerically and analytically. A general line adsorption equation, which the model results illustrate, is derived.

en-copyright= kn-copyright= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WidomBenjamin en-aut-sei=Widom en-aut-mei=Benjamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Cornell University en-keyword=line tension kn-keyword=line tension en-keyword=line adsorption kn-keyword=line adsorption en-keyword=adsorption equation kn-keyword=adsorption equation en-keyword=three-phase equilibria kn-keyword=three-phase equilibria en-keyword=partial wetting kn-keyword=partial wetting END start-ver=1.4 cd-journal=joma no-vol=123 cd-vols= no-issue=9 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Formation of ice nanotube with hydrophobic guests inside carbon nanotube en-subtitle= kn-subtitle= en-abstract= kn-abstract=A composite ice nanotube inside a carbon nanotube has been explored by molecular dynamics and grandcanonical Monte Carlo simulations. It is made from an octagonal ice nanotube whose hollow space contains hydrophobic guest molecules such as neon, argon, and methane. It is shown that the attractive interaction of the guest molecules stabilizes the ice nanotube. The guest occupancy of the hollow space is calculated by the same method as applied to clathrate hydrates. en-copyright= kn-copyright= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=ice nanotubes kn-keyword=ice nanotubes en-keyword=carbon nanotubes kn-keyword=carbon nanotubes END start-ver=1.4 cd-journal=joma no-vol=69 cd-vols= no-issue=1 article-no= start-page=147 end-page=152 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Observation of micropores in hard-carbon using Xe-129 NMR porosimetry en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The existence of micropores and the change of surface structure in pitch-based hard-carbon in xenon atmosphere were demonstrated using Xe-129 NMR. For high-pressure (4.0 MPa) Xe-129 NMR measurements, the hard-carbon samples in Xe gas showed three peaks at 27, 34 and 210 ppm. The last was attributed to the xenon in micropores (<1 nm) in hard-carbon particles. The NMR spectrum of a sample evacuated at 773 K and exposed to 0.1 MPa Xe gas at 773 K for 24 h showed two peaks at 29 and 128 ppm, which were attributed, respectively, to the xenon atoms adsorbed in the large pores (probably mesopores) and micropores of hard-carbon. With increasing annealing time in Xe gas at 773 K, both peaks shifted and merged into one peak at 50 ppm. The diffusion of adsorbed xenon atoms is very slow, probably because the transfer of molecules or atoms among micropores in hard-carbon does not occur readily. Many micropores are isolated from the outer surface. For that reason, xenon atoms are thought to be adsorbed only by micropores near the surface, which are easily accessible from the surrounding space.

en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UedaTakahiro en-aut-sei=Ueda en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmiHironori en-aut-sei=Omi en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EguchiTaro en-aut-sei=Eguchi en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaedaMariko en-aut-sei=Maeda en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyaharaMichihisa en-aut-sei=Miyahara en-aut-mei=Michihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AisakuNagai en-aut-sei=Aisaku en-aut-mei=Nagai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=The Museum of Osaka University affil-num=3 en-affil= kn-affil=The Museum of Osaka University affil-num=4 en-affil= kn-affil=The Museum of Osaka University affil-num=5 en-affil= kn-affil=Research Center, Kureha Corporation affil-num=6 en-affil= kn-affil=Research Center, Kureha Corporation affil-num=7 en-affil= kn-affil=Research Center, Kureha Corporation affil-num=8 en-affil= kn-affil=Okayama University en-keyword=amorphous materials kn-keyword=amorphous materials en-keyword=microporous materials kn-keyword=microporous materials en-keyword=nuclear magnetic resonance (NMR) kn-keyword=nuclear magnetic resonance (NMR) END start-ver=1.4 cd-journal=joma no-vol=413 cd-vols= no-issue=4-6 article-no= start-page=379 end-page=383 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050926 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fabrication of a logic gate circuit based on ambipolar field-effect transistors with thin films of C60 and pentacene en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Ambipolar field-effect transistor (FET) devices were fabricated with a heterostructure of C60 and pentacene, and their p- and n-channel field-effect mobilities were studied as a function of thickness of pentacene thin-films. The observed dependences of the μ values were interpreted in terms of the morphology of the thin films and the band structure of C60/pentacene heterostructure. A complementary metal-oxide-semiconductor (CMOS) circuit was fabricated by integration of two ambipolar FETs, aiming at realization of a new CMOS inverter circuit composed of FETs with the same device structure. The gain of 4, the threshold voltage of 85 V, and the complex output characteristics were explained on the basis of the properties of the component FET devices.

en-copyright= kn-copyright= en-aut-name=KuwaharaEiji en-aut-sei=Kuwahara en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KusaiHaruka en-aut-sei=Kusai en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaganoTakayuki en-aut-sei=Nagano en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakayanagiToshio en-aut-sei=Takayanagi en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=4 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=5 en-affil= kn-affil=Department of Chemistry, Okayama University en-keyword=Band structure kn-keyword=Band structure en-keyword=Carbon kn-keyword=Carbon en-keyword=CMOS integrated circuits kn-keyword=CMOS integrated circuits en-keyword=Field effect transistors kn-keyword=Field effect transistors en-keyword=Logic gates kn-keyword=Logic gates en-keyword=Thin films kn-keyword=Thin films en-keyword=Threshold voltage kn-keyword=Threshold voltage en-keyword=Band structures kn-keyword=Band structures en-keyword=Logic gate circuits kn-keyword=Logic gate circuits en-keyword=N-channel field-effective mobilities kn-keyword=N-channel field-effective mobilities en-keyword=Pentacene kn-keyword=Pentacene en-keyword=Logic circuits kn-keyword=Logic circuits END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=6 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070814 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Line and boundary tensions on approach to the wetting transition en-subtitle= kn-subtitle= en-abstract= kn-abstract=A mean-field density-functional model often used in the past in the study of line and boundary tensions at wetting and prewetting transitions is reanalyzed by extensive numerical calculations, approaching the wetting transition much more closely than had previously been possible. The results are what are now believed to be definitive for the model. They include strong numerical evidence for the presence of the logarithmic factors predicted by theory both in the mode of approach of the prewetting line to the triple-point line at the point of the first-order wetting transition and in the line tension itself on approach to that point. It is also demonstrated with convincing numerical precision that the boundary tension on the prewetting line and the line tension on the triple-point line have a common limiting value at the wetting transition, again as predicted by theory. As a by product of the calculations, in the model's symmetric three-phase state, far from wetting, it is found that certain properties of the model's line tension and densities are almost surely given by simple numbers arising from the symmetries, but proving that these are exact for the model remains a challenge to analytical theory. en-copyright= kn-copyright= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WidomB. en-aut-sei=Widom en-aut-mei=B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Baker Laboratory, Cornell University en-keyword=SURFACE PHASES kn-keyword=SURFACE PHASES en-keyword=FLUID PHASES kn-keyword=FLUID PHASES en-keyword=SUBSTRATE kn-keyword=SUBSTRATE en-keyword=ADSORPTION kn-keyword=ADSORPTION en-keyword=INTERFACE kn-keyword=INTERFACE en-keyword=CONTACT kn-keyword=CONTACT en-keyword=MODEL kn-keyword=MODEL en-keyword=ICE kn-keyword=ICE END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=22 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20056 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metallic phase in the metal-intercalated higher fullerene Rb8.8(7)C84 en-subtitle= kn-subtitle= en-abstract= kn-abstract=

A new material of higher fullerene, RbxC84, was synthesized by intercalating Rb metal into C-84 crystals. The RbxC(84) crystals showed a simple cubic (sc) structure with lattice constant, a, of 16.82 (2) angstrom at 6.5 K, and 16.87 (2) angstrom at 295 K. The Rietveld refinements were achieved with the space group, Pa (3) over bar, based on a model that the C-2 axis of D2d-C84 aligned along [111]. The sample composition was determined to be Rb-8.8(7) C-84. The ESR spectrum at 303 K was composed of a broad peak with peak-to-peak linewidth Delta H-pp of 220 G, and a narrow peak with Delta H-pp of 24 G. Temperature dependence of the broad peak clearly showed a metallic behavior. The metallic behavior was discussed based on a theoretical calculation. This finding of new metallic phase in a higher fullerene is the first step for a development of new types of fullerene materials with novel physical properties such as superconductivity.

en-copyright= kn-copyright= en-aut-name=RikiishiYoshie en-aut-sei=Rikiishi en-aut-mei=Yoshie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KashinoYoko en-aut-sei=Kashino en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KusaiHaruka en-aut-sei=Kusai en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakabayashiYasuhiro en-aut-sei=Takabayashi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuwaharaEiji en-aut-sei=Kuwahara en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KambeTakashi en-aut-sei=Kambe en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakenobuTaishi en-aut-sei=Takenobu en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwasaYoshihiro en-aut-sei=Iwasa en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MizorogiNaomi en-aut-sei=Mizorogi en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagaseShigeru en-aut-sei=Nagase en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OkadaSusumu en-aut-sei=Okada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=4 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=5 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=6 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=7 en-affil= kn-affil=Department of Physics, Okayama University affil-num=8 en-affil= kn-affil=CREST, Japan Science and Technology Agency affil-num=9 en-affil= kn-affil=CREST, Japan Science and Technology Agency affil-num=10 en-affil= kn-affil=Institute for Molecular Science affil-num=11 en-affil= kn-affil=Institute for Molecular Science affil-num=12 en-affil= kn-affil=Institute of Physics and Center for Computational Science, University of Tsukuba END start-ver=1.4 cd-journal=joma no-vol=124 cd-vols= no-issue=13 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=20060407 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Close-packed structures and phase diagram of soft spheres in cylindrical pores en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is shown for a model system consisting of spherical particles confined in cylindrical pores that the first ten close-packed phases are in one-to-one correspondence with the first ten ways of folding a triangular lattice, each being characterized by a roll-up vector like the single-walled carbon nanotube. Phase diagrams in pressure-diameter and temperature-diameter planes are obtained by inherent-structure calculation and molecular dynamics simulation. The phase boundaries dividing two adjacent phases are infinitely sharp in the low-temperature limit but are blurred as temperature is increased. Existence of such phase boundaries explains rich, diameter-sensitive phase behavior unique for cylindrically confined systems. en-copyright= kn-copyright= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=WALLED CARBON NANOTUBES kn-keyword=WALLED CARBON NANOTUBES en-keyword=NANOCAPILLARITY kn-keyword=NANOCAPILLARITY en-keyword=MICROTUBULES kn-keyword=MICROTUBULES en-keyword=CAPILLARITY kn-keyword=CAPILLARITY en-keyword=CRYSTALS kn-keyword=CRYSTALS END start-ver=1.4 cd-journal=joma no-vol=59 cd-vols= no-issue=23 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1999 dt-pub=19996 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metal-insulator transition at 50 K in Na2C60 en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Temperature dependence of electron spin resonance in Na2C60 was studied in a temperature range from 2 to 350 K. It was shown that Na2C60 was metallic above 50 K and had a metal-insulator transition at 50 K. The center frequency for the Hg(2) Raman mode in Na2C60 at 298 K was close to those in the metallic Rb3C60, K3C60, and Cs3C60, while the linewidth was close to that in the metallic but nonsuperconducting Cs3C60. The Hg(2) mode showed a large blueshift and narrowing at 50 K. The center frequency and the linewidth in the low-temperature region from 50 K were almost the same as those in the insulating C-60 and Rb6C60, which showed the metal-insulator transition at 50 K in Na2C60. The origin of this metal-insulator transition was discussed in terms of the electron-phonon interaction (Jahn-Teller effect) and the electron-electron interaction (Mott-Hubbard picture). [S0163-1829(99)04123-5].

en-copyright= kn-copyright= en-aut-name=KubozonoY. en-aut-sei=Kubozono en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakabayashiY. en-aut-sei=Takabayashi en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujikiS. en-aut-sei=Fujiki en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KashinoS. en-aut-sei=Kashino en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KambeT. en-aut-sei=Kambe en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwasaY. en-aut-sei=Iwasa en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EmuraS. en-aut-sei=Emura en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=4 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=5 en-affil= kn-affil=Department of Physics, Okayama University affil-num=6 en-affil= kn-affil=Japan Advanced Institute of Science and Technology affil-num=7 en-affil= kn-affil=ISIR, Osaka University END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=4 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2001 dt-pub=20011 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and physical properties of Na4C60 under ambient and high pressures en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The structure and physical properties of two-dimensional polymeric Na4C60 (body-centered monoclinic, space group I2/m) are studied in a wide temperature region from 12 to 300 K at 1 bar, and in a pressure region up to 53 kbar at 300 K. The temperature dependence of lattice constants suggests a structural anomaly below 100 K where the variation of spin susceptibility is observed from electron spin resonance. The thermal expansion of the unit-cell volume V is smaller than that of monomeric Rb3C60 and K3C60. The compressibility of c is larger than that of a and b, which can be well explained by the repulsion between Na ions. The compressibility of the center-to-center distance in the (10(1) over bar) plane is similar to1/3 times smaller that that in the (101) plane, which can be well explained by the formation of the polymer chains. Further, a possibility of a three-dimensional polymerization is discussed on the basis of the pressure dependence of C-60. . .C-60 distances.

en-copyright= kn-copyright= en-aut-name=KubozonoY. en-aut-sei=Kubozono en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakabayashiY. en-aut-sei=Takabayashi en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KambeT. en-aut-sei=Kambe en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujikiS. en-aut-sei=Fujiki en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KashinoS. en-aut-sei=Kashino en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EmuraS. en-aut-sei=Emura en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=3 en-affil= kn-affil=Department of Physics, Okayama University affil-num=4 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=5 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=6 en-affil= kn-affil=ISIR, Osaka University END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=23 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2002 dt-pub=20026 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and physical properties of Cs3+alpha C60 (alpha=0.0-1.0) under ambient and high pressures en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The intermediate phases Cs3+alphaC60 (alpha=0.0-1.0), have been prepared, and their structure and physical properties are studied by x-ray powder diffraction, Raman, ESR, electric conductivity, and ac susceptibility measurements under ambient and high pressures. The x-ray powder diffraction pattern of Cs3+alphaC60 (alpha=0.0-1.0) can be indexed as a mixture of the body-centered-orthorhombic (bco) and cubic (A15) phases. The A15 phase diminishes above 30 kbar. The broad ESR peak due to the conduction electron (c-ESR) is observed only for the phases around alpha=0.0 in Cs3+alphaC60. The resistivity of the Cs3+alphaC60 (alphanot equal0) sample follows the granular metal theory and/or Sheng model even in the sample exhibiting a broad ESR peak. No superconducting transition is observed up to 10.6 kbar in Cs3+alphaC60 (alphanot equal0). These results present that bco phase of Cs3+alphaC60 (alpha=0) is a final candidate for a pressure-induced superconductor.

en-copyright= kn-copyright= en-aut-name=FujikiS. en-aut-sei=Fujiki en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubozonoY. en-aut-sei=Kubozono en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiM. en-aut-sei=Kobayashi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KambeT. en-aut-sei=Kambe en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RikiishiY. en-aut-sei=Rikiishi en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KashinoS. en-aut-sei=Kashino en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshiiK. en-aut-sei=Ishii en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuematsuH. en-aut-sei=Suematsu en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraA. en-aut-sei=Fujiwara en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=2 en-affil= kn-affil=Department of Vacuum UV Photoscience, Institute for Molecular Science affil-num=3 en-affil= kn-affil=Department of Materials Science, Himeji Institute of Technology affil-num=4 en-affil= kn-affil=Department of Physics, Okayama University affil-num=5 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=6 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=7 en-affil= kn-affil=Department of Physics, The University of Tokyo affil-num=8 en-affil= kn-affil=Department of Physics, The University of Tokyo affil-num=9 en-affil= kn-affil=Japan Advanced Institute of Science and Technology END start-ver=1.4 cd-journal=joma no-vol=122 cd-vols= no-issue=10 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phase diagram of water between hydrophobic surfaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=Molecular dynamics simulations demonstrate that there are at least two classes of quasi-two-dimensional solid water into which liquid water confined between hydrophobic surfaces freezes spontaneously and whose hydrogen-bond networks are as fully connected as those of bulk ice. One of them is the monolayer ice and the other is the bilayer solid which takes either a crystalline or an amorphous form. Here we present the phase transformations among liquid, bilayer amorphous (or crystalline) ice, and monolayer ice phases at various thermodynamic conditions, then determine curves of melting, freezing, and solid-solid structural change on the isostress planes where temperature and intersurface distance are variable, and finally we propose a phase diagram of the confined water in the temperature-pressure-distance space. en-copyright= kn-copyright= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Okayama University en-keyword=MOLECULAR-DYNAMICS SIMULATION kn-keyword=MOLECULAR-DYNAMICS SIMULATION en-keyword=CONFINED WATER kn-keyword=CONFINED WATER en-keyword=LIQUID WATER kn-keyword=LIQUID WATER en-keyword=SOLVATION FORCES; CARBON NANOTUBES kn-keyword=SOLVATION FORCES; CARBON NANOTUBES en-keyword=BILAYER ICE kn-keyword=BILAYER ICE en-keyword=EQUILIBRIA kn-keyword=EQUILIBRIA en-keyword=TRANSITION kn-keyword=TRANSITION en-keyword=WALLS kn-keyword=WALLS en-keyword=INTERFACE kn-keyword=INTERFACE END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=8 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070828 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phase equilibria and interfacial tension of fluids confined in narrow pores en-subtitle= kn-subtitle= en-abstract= kn-abstract=Correlation between phase behaviors of a Lennard-Jones fluid in and outside a pore is examined over wide thermodynamic conditions by grand canonical Monte Carlo simulations. A pressure tensor component of the confined fluid, a variable controllable in simulation but usually uncontrollable in experiment, is related with the pressure of a bulk homogeneous system in equilibrium with the confined system. Effects of the pore dimensionality, size, and attractive potential on the correlations between thermodynamic properties of the confined and bulk systems are clarified. A fluid-wall interfacial tension defined as an excess grand potential is evaluated as a function of the pore size. It is found that the tension decreases linearly with the inverse of the pore diameter or width. en-copyright= kn-copyright= en-aut-name=HamadaYoshinobu en-aut-sei=Hamada en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=MONTE-CARLO-SIMULATION kn-keyword=MONTE-CARLO-SIMULATION en-keyword=CARBON NANOTUBES kn-keyword=CARBON NANOTUBES en-keyword=WATER kn-keyword=WATER en-keyword=TRANSITION kn-keyword=TRANSITION en-keyword=NANOSPACES kn-keyword=NANOSPACES en-keyword=ADSORPTION kn-keyword=ADSORPTION en-keyword=NANOPORES kn-keyword=NANOPORES en-keyword=SURFACE kn-keyword=SURFACE en-keyword=LIQUID kn-keyword=LIQUID en-keyword=WALLS kn-keyword=WALLS END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=15 article-no= start-page=7304 end-page=7312 dt-received= dt-revised= dt-accepted= dt-pub-year=2004 dt-pub=20041015 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hydrophobic effect in the pressure-temperature plane en-subtitle= kn-subtitle= en-abstract= kn-abstract=The free energy of the hydrophobic hydration and the strength of the solvent-mediated attraction between hydrophobic solute molecules are calculated in the pressure-temperature plane. This is done in the framework of an exactly soluble model that is an extension of the lattice model proposed by Kolomeisky and Widom [A. B. Kolomeisky and B. Widom, Faraday Discuss. 112, 81 (1999)]. The model takes into account both the mechanism of the hydrophobic effect dominant at low temperatures and the opposite mechanism of solvation appearing at high temperatures and has the pressure as a second thermodynamic variable. With this model, two boundaries are identified in the pressure-temperature plane: the first one within which the solubility, or the Ostwald absorption coefficient, decreases with increasing temperature at fixed pressure and the second one within which the strength of solvent-mediated attraction increases with increasing temperature. The two are nearly linear and parallel to each other, and the second boundary lies in the low-temperature and low-pressure side of the first boundary. It is found that a single, near-linear relation between the hydration free energy and the strength of the hydrophobic attraction holds over the entire area within the second boundary in the pressure-temperature plane. (C) 2004 American Institute of Physics. en-copyright= kn-copyright= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=FREE-ENERGY kn-keyword=FREE-ENERGY en-keyword=AQUEOUS ARGON kn-keyword=AQUEOUS ARGON en-keyword=DEPENDENCE kn-keyword=DEPENDENCE en-keyword=WATER kn-keyword=WATER en-keyword=HYDRATION kn-keyword=HYDRATION en-keyword=ENTROPY kn-keyword=ENTROPY en-keyword=MODEL kn-keyword=MODEL en-keyword=DENATURATION kn-keyword=DENATURATION en-keyword=SIMULATIONS kn-keyword=SIMULATIONS en-keyword=ATTRACTION kn-keyword=ATTRACTION END start-ver=1.4 cd-journal=joma no-vol=409 cd-vols= no-issue=4-6 article-no= start-page=187 end-page=191 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fabrication and characterization of field-effect transistor device with C2v isomer of Pr@C82 en-subtitle= kn-subtitle= en-abstract= kn-abstract=

A field-effect transistor (FET) device was fabricated with thin films of C2v isomer of Pr@C82. This device apparently showed n-channel normally-on type FET properties, where non-zero current was observed at gate-source voltage of 0 VGS, of 0V. Normally off FET properties were observed by subtraction of the non-zero current from the drain current.Thus the normally on properties are ascribed to the high bulk current caused by the small energy gap ?0.3 eV. The field-effect mobility for this FET was 1.5 x 10-4 cm2 V-1 s-1 at 320 K, being comparable to those of other endohedral metallofullerene FET devices.

en-copyright= kn-copyright= en-aut-name=NaganoTakayuki en-aut-sei=Nagano en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuwaharaEiji en-aut-sei=Kuwahara en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakayanagiToshio en-aut-sei=Takayanagi en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraAkihiko en-aut-sei=Fujiwara en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=4 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=5 en-affil= kn-affil=CREST, Japan Science and Technology Agency en-keyword=Field effect transistors kn-keyword=Field effect transistors END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=4 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On the thermodynamic stability of hydrogen clathrate hydrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=The cage occupancy of hydrogen clathrate hydrate has been examined by grand canonical Monte Carlo (GCMC) simulations for wide ranges of temperature and pressure. The simulations are carried out with a fixed number of water molecules and a fixed chemical potential of the guest species so that hydrogen molecules can be created or annihilated in the clathrate. Two types of the GCMC simulations are performed; in one the volume of the clathrate is fixed and in the other it is allowed to adjust itself under a preset pressure so as to take account of compression by a hydrostatic pressure and expansion due to multiple cage occupancy. It is found that the smaller cage in structure II is practically incapable of accommodating more than a single guest molecule even at pressures as high as 500 MPa, which agrees with the recent experimental investigations. The larger cage is found to encapsulate at most 4 hydrogen molecules, but its occupancy is dependent significantly on the pressure of hydrogen. en-copyright= kn-copyright= en-aut-name=KatsumasaKeisuke en-aut-sei=Katsumasa en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=OCCUPANCY kn-keyword=OCCUPANCY en-keyword=CLUSTERS kn-keyword=CLUSTERS en-keyword=STORAGE kn-keyword=STORAGE en-keyword=CAGES kn-keyword=CAGES en-keyword=WATER kn-keyword=WATER END start-ver=1.4 cd-journal=joma no-vol=122 cd-vols= no-issue=7 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On the thermodynamic stability and structural transition of clathrate hydrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Gas mixtures of methane and ethane form structure II clathrate hydrates despite the fact that each of pure methane and pure ethane gases forms the structure I hydrate. Optimization of the interaction potential parameters for methane and ethane is attempted so as to reproduce the dissociation pressures of each simple hydrate containing either methane or ethane alone. An account for the structural transitions between type I and type II hydrates upon changing the mole fraction of the gas mixture is given on the basis of the van der Waals and Platteeuw theory with these optimized potentials. Cage occupancies of the two kinds of hydrates are also calculated as functions of the mole fraction at the dissociation pressure and at a fixed pressure well above the dissociation pressure. en-copyright= kn-copyright= en-aut-name=KoyamaYuji en-aut-sei=Koyama en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=STRUCTURE-II kn-keyword=STRUCTURE-II en-keyword=POTENTIAL FUNCTIONS kn-keyword=POTENTIAL FUNCTIONS en-keyword=ETHANE kn-keyword=ETHANE en-keyword=METHANE kn-keyword=METHANE en-keyword=GAS kn-keyword=GAS en-keyword=MOLECULES kn-keyword=MOLECULES en-keyword=MIXTURES kn-keyword=MIXTURES en-keyword=PROPANE kn-keyword=PROPANE en-keyword=WATER kn-keyword=WATER END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=11 article-no= start-page=5488 end-page=5493 dt-received= dt-revised= dt-accepted= dt-pub-year=2004 dt-pub=20040915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On the thermodynamic stability of clathrate hydrates IV: Double occupancy of cages en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have extended the van der Waals and Platteeuw theory to treat multiple occupancy of a single cage of clathrate hydrates, which has not been taken into account in the original theory but has been experimentally confirmed as a real entity. We propose a simple way to calculate the free energy of multiple cage occupancy and apply it to argon clathrate structure II in which a larger cage can be occupied by two argon atoms. The chemical potential of argon is calculated treating it as an imperfect gas, which is crucial to predict accurate pressure dependence of double occupancy expected at high pressure. It is found that double occupancy dominates over single occupancy when the guest pressure in equilibrium with the clathrate hydrate exceeds 270 MPa. (C) 2004 American Institute of Physics. en-copyright= kn-copyright= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakatsukaTakeharu en-aut-sei=Nakatsuka en-aut-mei=Takeharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KogaKenichiro en-aut-sei=Koga en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=RAMAN-SCATTERING kn-keyword=RAMAN-SCATTERING en-keyword=HIGH-PRESSURES kn-keyword=HIGH-PRESSURES en-keyword=LIQUID WATER kn-keyword=LIQUID WATER en-keyword=AR HYDRATE kn-keyword=AR HYDRATE en-keyword=MOLECULES kn-keyword=MOLECULES END start-ver=1.4 cd-journal=joma no-vol=581 cd-vols= no-issue=2 article-no= start-page=214 end-page=220 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070109 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Functionalization of chitosan with 3,4-dihydroxybenzoic acid for the adsorption/collection of uranium in water samples and its determination by inductively coupled plasma-mass spectrometry en-subtitle= kn-subtitle= en-abstract= kn-abstract=A chitosan resin derivatized with 3,4-dihydroxybenzoic acid moiety (CCTS-DHBA resin) was newly synthesized for the collection/concentration of trace uranium by using cross-linked chitosan (CCTS) as base material, and the adsorption behavior of uranium as well as 60 elements on the resin was examined by passing the sample solutions through a mini-column packed with the resin. After the elution of the collected elements on the resin with 1M HNO3, the eluates were measured by inductively coupled plasma-mass spectrometry (ICP-MS). The CCTS-DHBA resin can adsorb several metal cations and several oxoanionic elements at appropriate pH. Among these metal ions, uranium shows an excellent adsorption behavior on this resin. Uranium as UO22+ species can be adsorbed on the resin by chelating mechanism with adsorption capacity of 330 mg g(-1) resin. Through the column treatment, the complete removal of large amounts of alkali and alkaline earth matrices without any loss of adsorption efficiency over prolonged usage were achieved with this resin. The CCTS-DHBA resin was applied to the adsorption/collection of uranium in tap water, river water and seawater samples with satisfactory results. The validation of the proposed method was carried out by analyzing uranium in the standard reference materials of SLRS-4, CASS-4, and NASS-5 after passing through the CCTS-DHBA resin, and the results showed good agreement with the certified values. en-copyright= kn-copyright= en-aut-name=SabarudinAkhmad en-aut-sei=Sabarudin en-aut-mei=Akhmad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OshimaMitsuko en-aut-sei=Oshima en-aut-mei=Mitsuko kn-aut-name=大島光子 kn-aut-sei=大島 kn-aut-mei=光子 aut-affil-num=2 ORCID= en-aut-name=TakayanagiToshio en-aut-sei=Takayanagi en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HakimLukman en-aut-sei=Hakim en-aut-mei=Lukman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OshitaKoji en-aut-sei=Oshita en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GaoYun Hua en-aut-sei=Gao en-aut-mei=Yun Hua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MotomizuShoji en-aut-sei=Motomizu en-aut-mei=Shoji kn-aut-name=本水昌二 kn-aut-sei=本水 kn-aut-mei=昌二 aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=4 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=5 en-affil= kn-affil=Department of International Conservation Studies, Faculty of International and Industrial Studies, Kibi International University affil-num=6 en-affil= kn-affil=Technical Institute of Physics and Chemistry, Chinese Academy of Sciences affil-num=7 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=Chitosan resin kn-keyword=Chitosan resin en-keyword=3,4-dihydroxybenzoic acid kn-keyword=3,4-dihydroxybenzoic acid en-keyword=Uranium kn-keyword=Uranium en-keyword=Adsorption kn-keyword=Adsorption en-keyword=Water kn-keyword=Water en-keyword=Inductively coupled plasma-mass spectrometry kn-keyword=Inductively coupled plasma-mass spectrometry END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=5 article-no= start-page=1609 end-page=1617 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sequential-injection on-line preconcentration using chitosan resin functionalized with 2-amino-5-hydroxy benzoic acid for the determination of trace elements in environmental water samples by inductively coupled plasma-atomic emission spectrometry en-subtitle= kn-subtitle= en-abstract= kn-abstract=

A new chelating resin using chitosan as a base material was synthesized. Functional moiety of 2-amino-5-hydroxy benzoic acid (AHBA) was chemically bonded to the amino group of cross-linked chitosan (CCTS) through the arm of chloromethyloxirane (CCTS-AHBA resin). Several elements, such as Ag, Be, Cd, Co, Cu, Ni, Ph, U, V, and rare earth elements (REEs), could be adsorbed on the resin. To use the resin for on-line pretreatment, the resin was packed in a mini-column and installed into a sequential-injection/automated pretreatment system (Auto-Pret System) coupled with inductively coupled plasma-atomic emission spectrometry (ICP-AES). The sequential-injection/automated pretreatment system was a laboratory-assembled, and the program was written using Visual Basic software. This system can provide easy operation procedures, less reagent consumption, as well as less waste production. Experimental variables considered as effective factors in the improvement sensitivity, such as an eluent concentration, a sample and an eluent flow rate, pH of samples, and air-sandwiched eluent were carefully optimized. The proposed system provides excellent on-line collection efficiency, as well as high concentration factors of analytes in water samples, which results in highly sensitive detection of ultra-trace and trace analysis. Under the optimal conditions, the detection limits of 24 elements examined are in the range from ppt to sub-ppb levels. The proposed method was validated by using the standard reference material of a river water, SLRS-4, and the applicability was further demonstrated to the on-line collection/concentration of trace elements, such as Ag, Be, Cd, Co, Cu, Ni, Ph, U, V, and REEs in water samples.

en-copyright= kn-copyright= en-aut-name=SabarudinAkhmad en-aut-sei=Sabarudin en-aut-mei=Akhmad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LenghorNarong en-aut-sei=Lenghor en-aut-mei=Narong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OshimaMitsuko en-aut-sei=Oshima en-aut-mei=Mitsuko kn-aut-name=大島光子 kn-aut-sei=大島 kn-aut-mei=光子 aut-affil-num=3 ORCID= en-aut-name=HakimLukman en-aut-sei=Hakim en-aut-mei=Lukman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakayanagiToshio en-aut-sei=Takayanagi en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GaoYun-Hua en-aut-sei=Gao en-aut-mei=Yun-Hua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MotomizuShoji en-aut-sei=Motomizu en-aut-mei=Shoji kn-aut-name=本水昌二 kn-aut-sei=本水 kn-aut-mei=昌二 aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=4 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=5 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University affil-num=6 en-affil= kn-affil=Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS) affil-num=7 en-affil= kn-affil=Department of Chemistry, Faculty of Science, Okayama University en-keyword=sequential-injection kn-keyword=sequential-injection en-keyword=on-line preconcentration kn-keyword=on-line preconcentration en-keyword=trace elements kn-keyword=trace elements en-keyword=ICP-AES kn-keyword=ICP-AES en-keyword=chitosan resin kn-keyword=chitosan resin END start-ver=1.4 cd-journal=joma no-vol=104 cd-vols= no-issue=3 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080813 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Preparation and characterization of epitaxial Fe2-xTixO3 films with various Ti concentrations (0.5 < x < 1.0) en-subtitle= kn-subtitle= en-abstract= kn-abstract=

An ilmenite-hematite solid solution ( Fe2-xTixO3 ) is one of the candidates for practical magnetic semiconductors with a high Curie temperature. We have prepared well-crystallized epitaxial Fe2-xTixO3 films with a wide range of Ti concentrations - x=0.50, 0.60, 0.65, 0.76, 0.87, and 0.94 - on α-Al2O3(001) substrates. The films are prepared by a reactive helicon plasma sputtering technique to evaporate Fe and TiO targets simultaneously under optimized oxygen pressure conditions. The structural characterizations of the films reveal that all films have a single phase of the ordered structure with R3 symmetry, where Ti-rich and Fe-rich layers are stacked alternately along the c axis. All films have large ferrimagnetic moments at low temperature, and room temperature magnetization is clearly observed at x<0.7. The inverse temperature dependence of the resistivities of the films indicates their semiconducting behavior. The film resistivities decrease with decreasing Ti concentration.

en-copyright= kn-copyright= en-aut-name=TakadaY. en-aut-sei=Takada en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakanishiM. en-aut-sei=Nakanishi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiT. en-aut-sei=Fujii en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakadaJ. en-aut-sei=Takada en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Department of Physics, Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=10 article-no= start-page=1121 end-page=1125 dt-received= dt-revised= dt-accepted= dt-pub-year=2002 dt-pub=20021010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Adsorption Behavior of Mercury and Precious Metals on Cross- Linked Chitosan and the Removal of Ultratrace Amounts of Mercury in Concentrated Hydrochloric Acid by a Column Treatment with Cross-Linked Chitosan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cross-linked chitosan was synthesized with chitosan and ethylene glycol diglycidyl ether. The adsorption behavior of trace amounts of metal ions on the cross-linked chitosan was systematically examined by packing it in a mini-column, passing a metal solution through it and measuring metal ions in the effluent by ICP-MS. The cross-linked chitosan adsorbed mercury and precious metals (Pd, Pt, and Au) at pH values from acidic to neutral. Especially, mercury in concentrated hydrochloric acids could be adsorbed on cross-linked chitosan quantitatively by an anion-exchange mechanism in the form of a stable chloride complex. This method was applied to the removal of mercury from commercially available hydrochloric acid; more than 97% of mercury was removed, and the residual mercury in the hydrochloric acid (Grade: for trace analysis) was found to be 0.15 ppb. Mercury adsorbed on the cross-linked chitosan could be easily desorbed with an eluent containing 1 M hydrochloric acid and 0.05 M thiourea. The thus-refreshed crosslinked chitosan could be repeatedly used for the removal of mercury in hydrochloric acid. en-copyright= kn-copyright= en-aut-name=OshitaKoji en-aut-sei=Oshita en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OshimaMitsuko en-aut-sei=Oshima en-aut-mei=Mitsuko kn-aut-name=大島光子 kn-aut-sei=大島 kn-aut-mei=光子 aut-affil-num=2 ORCID= en-aut-name=GaoYun-hua en-aut-sei=Gao en-aut-mei=Yun-hua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LeeKyue-Hyung en-aut-sei=Lee en-aut-mei=Kyue-Hyung kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MotomizuShoji en-aut-sei=Motomizu en-aut-mei=Shoji kn-aut-name=本水昌二 kn-aut-sei=本水 kn-aut-mei=昌二 aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=Technical Institute of Physics and Chemistry, Chinese Academy of Sciences affil-num=5 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=55 end-page=59 dt-received= dt-revised= dt-accepted= dt-pub-year=1970 dt-pub=19700901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biologically Active Compounds. IV. The Synthesis of α-Arylamino-γ-aryl-(α,β)- and α-Arylidene-γ-aryl-(β,γ)-butenolides. en-subtitle= kn-subtitle= en-abstract= kn-abstract=The importance of the presence of butenolide groupings in biologically active substances has been recognized increasingly. (1) In our search for new pesticides we have prepared 26 α-arylamino-γ-aryl-(α,β)-butenolides (1-26) and 9 α-arylidene-γ-aryl-(α,β)-butenolides (27-35) which seemed to us of interest as test materials for the screening. α-Arylamino-γ-aryl-(α,β)-butenolides were prepared by the reaction of sodium or potassium arylidenepyruvate with arylamines in the medium of glacial acetic acid as is reported by Meyer and Vaughan(2) (Scheme I, see also Experimental Section). α-Arylidene-γ-aryl-(β,γ)-butenolides were prepared by the condensation of aromatic aldehydes with β-aroylpropionic acids in the presence of anhydrous sodium acetate. The analogous procedure for this purpose has been reported by several authors(3) (Scheme II). The physical properties, yields, and analytical data of these compounds have been summarized in Table I (1-26) and Table II (27-35). en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=TakedaAkira kn-aut-sei=Takeda kn-aut-mei=Akira aut-affil-num=1 ORCID= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=WadaSatosi kn-aut-sei=Wada kn-aut-mei=Satosi aut-affil-num=2 ORCID= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=UnoTakaaki kn-aut-sei=Uno kn-aut-mei=Takaaki aut-affil-num=3 ORCID= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=FujitaHaruki kn-aut-sei=Fujita kn-aut-mei=Haruki aut-affil-num=4 ORCID= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=OkamotoTuneyuki kn-aut-sei=Okamoto kn-aut-mei=Tuneyuki aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Department of Synthetics Chemistry affil-num=2 en-affil= kn-affil=Department of Synthetics Chemistry affil-num=3 en-affil= kn-affil=Department of Synthetics Chemistry affil-num=4 en-affil= kn-affil=Mitsubisisekiyu Co., Kurasiki. affil-num=5 en-affil= kn-affil=Taiyogomu Co., Okayama. END start-ver=1.4 cd-journal=joma no-vol=103 cd-vols= no-issue=4 article-no= start-page=327 end-page=335 dt-received= dt-revised= dt-accepted= dt-pub-year=1991 dt-pub=1991 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The metabolism of methyl isobtyl ketone and its biological monitoring Part 2. Qualitative and quantitative study of 4-methyl-2-pentanol excreted in the urine of workers exposed to methyl isobutyl ketone kn-title=Methyl isobutyl ketone の代謝と生物学的モニタリング 第2編 Methyl isobutyl ketone 暴露作業者の尿中代謝産物 en-subtitle= kn-subtitle= en-abstract= kn-abstract=A field study on the metabolites of methyl isobutyl ketone (MIBK) in the urine of 20 workers who were exposed to mixed solvents containing MIBK, and in that of a subject exposed to pure MIBK with 3 separate control subjects were observed. One of the urinary metabolites, 4-methyl-2-pentanol (4M2P) was identified by gas chromatography-mass spectrometry only in the urine of workers exposed to MIBK. Time-weighted average concentration of the mixed solvents for 8 hours were as follows ; MIBK 21.9±15.1 ppm (m±SD), toluene 18.3±8.9 ppm, ethyl benzene 9.6±4.6 ppm, xylene (total) 18.9±12.5 ppm. The regression equation between MIBK concentration X (ppm) in air and 4M2P concentration Y (mg/g creatinine) in the urine was : Y=25X-10.25. Its correlation coefficient was 0.63. Thus the urinary concentration of 4M2P corresponding TLV (Threshould Limit Values : 50ppm) of MIBK was 2.61 (mg/g creatinine). In a subject exposed to pure MIBK, the time-weighted average concentration of MIBK for 6 hours was 42.3ppm and 4M2P concentration in the urine was 0.42 (mg/g creatinine). en-copyright= kn-copyright= en-aut-name=HirotaNaomasa en-aut-sei=Hirota en-aut-mei=Naomasa kn-aut-name=廣田直敷 kn-aut-sei=廣田 kn-aut-mei=直敷 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学医学部公衆衛生学講座 en-keyword=MIBK kn-keyword=MIBK en-keyword=ヒトの尿中代謝産物 kn-keyword=ヒトの尿中代謝産物 en-keyword=4-メチル-2-ペンタノール kn-keyword=4-メチル-2-ペンタノール en-keyword=マスクロマトグラフィー kn-keyword=マスクロマトグラフィー en-keyword=メチルイソブチルケトン kn-keyword=メチルイソブチルケトン END start-ver=1.4 cd-journal=joma no-vol=103 cd-vols= no-issue=4 article-no= start-page=315 end-page=325 dt-received= dt-revised= dt-accepted= dt-pub-year=1991 dt-pub=1991 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The metabolism of methyl isobtyl ketone and its biological monitoring Part 1. Qualitative and quantitative studies of methyl isobtyl ketone exhaled from the lungs and excreted in the urine, and the metabolites in the urine of rats injected with methyl isobutyl ketone kn-title=Methyl isobutyl ketone の代謝と生物学的モニタリング 第1編 Methyl isobutyl ketone 腹腔内投与ラットの呼気・尿中 methyl isobutyl ketone の排泄及び尿中代謝産物 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rats were injected intraperitoneally with 100mg/kg, 200mg/kg and 300mg/kg of methyl isobutyl ketone (MIBK) in a single dose, and the amount of MIBK in the expired air and in the urine were studied. One of the metabolites was identified as 4-methyl-2-pentanol (4M2P) in the urine by gas chromatography-mass spectrometry. The concentration of MIBK in the exhaled air attainend its maximum within 0.5 hour. Thereafter it decreased with a half life of 0.6 hour, and 41.1±8.7 (m±SD) % of the total amount injected was exhaled within 24 hours. The concentration of MIBK in the urine attained its maximum within 3 hours after injection. Then it decreased with a half life of 1.8 hours and 0.19±0.11 (m±SD) % of the total amount administered was excreted in 18 hours. The concentration of 4M2P in the urine attained its maximum in 3-6 hour and decreased gradually thereafter. Its half life was 3.2 hours and 0.31±0.18 (m±SD) % of the total amount was excreted in 12 hours. en-copyright= kn-copyright= en-aut-name=HirotaNaomasa en-aut-sei=Hirota en-aut-mei=Naomasa kn-aut-name=廣田直敷 kn-aut-sei=廣田 kn-aut-mei=直敷 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学医学部公衆衛生学講座 en-keyword=MIBK kn-keyword=MIBK en-keyword=尿中代謝産物 kn-keyword=尿中代謝産物 en-keyword=4-メチル-2-ペンタノール kn-keyword=4-メチル-2-ペンタノール en-keyword=メチルイソブチルケトン kn-keyword=メチルイソブチルケトン en-keyword=ラット腹腔内投与 kn-keyword=ラット腹腔内投与 END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=1 article-no= start-page=33 end-page=38 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=20060325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=A Research on Concepts of Particle for Substance in High School Chemistry kn-title=高校化学における粒子概念の理解度に関する調査研究 en-subtitle= kn-subtitle= en-abstract=We have carried out a research on concepts of particle for substance in high school chemistry and junior high school natural science by questionair method with image schema. One of the purposes is the measurement of high school students' understanding depth on substance aas particles. The result shows that many students cannot distinguish pure substance, pure element, pure compound and so many students do not understand physical and chemical changes. Our conclusion is that there are some issues on chemistry culiculum and textbooks in the basic and fundamental level. kn-abstract=中学校理科、並びに高校化学における基礎概念の物質の粒子概念や原子・分子の粒子としての表現についてある普通科高校の高校生1年から3年までの全クラスの生徒997名対象に、イメージ図を用いて理解度を測定する目的で調査を行い、イメージとして物質の粒子概念が高校生にどうとらえられているかを明らかにした。この結果より全般的に基礎知識の理解とその応用について不十分であることがわかった。また、全学年で化学変化と物理変化の違いについてイメージができておらず、化学の本質の理解の点で問題点があることがわかった。 en-copyright= kn-copyright= en-aut-name=KitaMasakazu en-aut-sei=Kita en-aut-mei=Masakazu kn-aut-name=喜多雅一 kn-aut-sei=喜多 kn-aut-mei=雅一 aut-affil-num=1 ORCID= en-aut-name=WatanabeToshio en-aut-sei=Watanabe en-aut-mei=Toshio kn-aut-name=渡邊敏夫 kn-aut-sei=渡邊 kn-aut-mei=敏夫 aut-affil-num=2 ORCID= en-aut-name=GilbertOnwu en-aut-sei=Gilbert en-aut-mei=Onwu kn-aut-name=ギルバートオンウ kn-aut-sei=ギルバート kn-aut-mei=オンウ aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=岡山大学教育学部 affil-num=2 en-affil= kn-affil=徳島県立城南高校 affil-num=3 en-affil= kn-affil=南アフリカ共和国プレトリア大学教育学部 en-keyword=中学校理科(natural science in Junior high school level) kn-keyword=中学校理科(natural science in Junior high school level) en-keyword=高校化学(high school chemistry) kn-keyword=高校化学(high school chemistry) en-keyword=粒子概念(concept of particles) kn-keyword=粒子概念(concept of particles) en-keyword=純物質と混合物(pure substance and mixture) kn-keyword=純物質と混合物(pure substance and mixture) en-keyword=化学反応(chemical reaction) kn-keyword=化学反応(chemical reaction) END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=1 article-no= start-page=67 end-page=74 dt-received= dt-revised= dt-accepted= dt-pub-year=1968 dt-pub=1968 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Dispersion Characteristics of Soil in the Jukuka Process : Studies on Jukuka of Soil after Land Reclaimed to Paddy Fields[I] kn-title=熟化過程における土壤の分散特性 開田土壌の熟化機構に関する研究[I] en-subtitle= kn-subtitle= en-abstract= kn-abstract=The authors have studied the Jukuka process from the view-points of soil physics, soil mechanics and chemistry. It is important to recognize the grain size distribution as one of the physical indices. At first we investigated the deflocculating agents and, the initial water contents of samples which dispersed the soil particles best. We used four kinds of deflocculating agents, NaOH, (NaPO3)6, HCl and NH4OH, and the samples presented here were two kinds of volcanic ash sub-soil and two kinds of non-volcanic ash sub-soil. Each of them is composed of soils before land reclaimed to paddy fields, two years later, five years later and ten years later (in case of volcanic ash sub-soil eight years later). In this mechanical analysis, we used the Hydrometer method. Therefore the results obtained are as follows. In the volcanic ash ~oil the dispersion is affected by the initial water contents comparatively and the highest dispersed soil contains about 10-15% more clay than the lowest one, as shown in Fig 1, Fig 3. Concerning Kanto loam (volcanic ash soil), HCl showed the best dispersion before land reclaimed to paddy fields, but(NaPO3)6 Showed best later, as shown in Fig 1. On the other hand in the non-volcanic ash soil the dispersion efficiency does not differ with their initial water contents, and most particles are dispersed by (NaPO3)6 and NaOH, as shown in Fig 5. en-copyright= kn-copyright= en-aut-name=KobashiHideo en-aut-sei=Kobashi en-aut-mei=Hideo kn-aut-name=小橋英夫 kn-aut-sei=小橋 kn-aut-mei=英夫 aut-affil-num=1 ORCID= en-aut-name=NagahoriKinzo en-aut-sei=Nagahori en-aut-mei=Kinzo kn-aut-name=長堀金造 kn-aut-sei=長堀 kn-aut-mei=金造 aut-affil-num=2 ORCID= en-aut-name=TanemuraChikashi en-aut-sei=Tanemura en-aut-mei=Chikashi kn-aut-name=種村親志 kn-aut-sei=種村 kn-aut-mei=親志 aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 END