start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=RP88822 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH. en-copyright= kn-copyright= en-aut-name=KatoYusuke en-aut-sei=Kato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaHiroshi en-aut-sei=Kuroda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OzawaShin-Ichiro en-aut-sei=Ozawa en-aut-mei=Shin-Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoKeisuke en-aut-sei=Saito en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DograVivek en-aut-sei=Dogra en-aut-mei=Vivek kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ScholzMartin en-aut-sei=Scholz en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangGuoxian en-aut-sei=Zhang en-aut-mei=Guoxian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=de VitryCatherine en-aut-sei=de Vitry en-aut-mei=Catherine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KimChanhong en-aut-sei=Kim en-aut-mei=Chanhong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HipplerMichael en-aut-sei=Hippler en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakahashiYuichiro en-aut-sei=Takahashi en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=5 en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Institute of Plant Biology and Biotechnology, University of M?nster kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=8 en-affil=Institut de Biologie Physico-Chimique, Unit? Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Universit? Pierre et Marie Curie kn-affil= affil-num=9 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=10 en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=13 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=post-translational modification kn-keyword=post-translational modification en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=protein degradation kn-keyword=protein degradation en-keyword=photosystem II kn-keyword=photosystem II en-keyword=photo-oxidative damage kn-keyword=photo-oxidative damage en-keyword=tryptophan oxidation kn-keyword=tryptophan oxidation en-keyword=Chlamydomonas reinhardtii kn-keyword=Chlamydomonas reinhardtii END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue= article-no= start-page=e58805 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Altered N-glycan composition impacts flagella-mediated adhesion in Chlamydomonas reinhardtii en-subtitle= kn-subtitle= en-abstract= kn-abstract=For the unicellular alga Chlamydomonas reinhardtii, the presence of N-glycosylated proteins on the surface of two flagella is crucial for both cell-cell interaction during mating and flagellar surface adhesion. However, it is not known whether only the presence or also the composition of N-glycans attached to respective proteins is important for these processes. To this end, we tested several C. reinhardtii insertional mutants and a CRISPR/Cas9 knockout mutant of xylosyltransferase 1A, all possessing altered N-glycan compositions. Taking advantage of atomic force microscopy and micropipette force measurements, our data revealed that reduction in N-glycan complexity impedes the adhesion force required for binding the flagella to surfaces. This results in impaired polystyrene bead binding and transport but not gliding of cells on solid surfaces. Notably, assembly, intraflagellar transport, and protein import into flagella are not affected by altered N-glycosylation. Thus, we conclude that proper N-glycosylation of flagellar proteins is crucial for adhering C. reinhardtii cells onto surfaces, indicating that N-glycans mediate surface adhesion via direct surface contact. en-copyright= kn-copyright= en-aut-name=XuNannan en-aut-sei=Xu en-aut-mei=Nannan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OltmannsAnne en-aut-sei=Oltmanns en-aut-mei=Anne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZhaoLongsheng en-aut-sei=Zhao en-aut-mei=Longsheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GirotAntoine en-aut-sei=Girot en-aut-mei=Antoine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KarimiMarzieh en-aut-sei=Karimi en-aut-mei=Marzieh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HoepfnerLara en-aut-sei=Hoepfner en-aut-mei=Lara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KelterbornSimon en-aut-sei=Kelterborn en-aut-mei=Simon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ScholzMartin en-aut-sei=Scholz en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=BeisselJulia en-aut-sei=Beissel en-aut-mei=Julia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HegemannPeter en-aut-sei=Hegemann en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=BaeumchenOliver en-aut-sei=Baeumchen en-aut-mei=Oliver kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=LiuLu-Ning en-aut-sei=Liu en-aut-mei=Lu-Ning kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HuangKaiyao en-aut-sei=Huang en-aut-mei=Kaiyao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HipplerMichael en-aut-sei=Hippler en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=Institute for Plant Biology and Biotechnology, University of M?nster kn-affil= affil-num=3 en-affil=Institute of Integrative Biology, University of Liverpool, Liverpool kn-affil= affil-num=4 en-affil=Max Planck Institute for Dynamics and Self-Organization (MPIDS) kn-affil= affil-num=5 en-affil=Max Planck Institute for Dynamics and Self-Organization (MPIDS) kn-affil= affil-num=6 en-affil=Institute for Plant Biology and Biotechnology, University of M?nsterative Biology, University of Liverpool, Liverpoolnster kn-affil= affil-num=7 en-affil=Institute of Biology, Experimental Biophysics, Humboldt University of Berlin kn-affil= affil-num=8 en-affil=Institute for Plant Biology and Biotechnology, University of M?nster kn-affil= affil-num=9 en-affil=Institute for Plant Biology and Biotechnology, University of M?nster kn-affil= affil-num=10 en-affil=Institute of Biology, Experimental Biophysics, Humboldt University of Berlin kn-affil= affil-num=11 en-affil=Max Planck Institute for Dynamics and Self-Organization (MPIDS) kn-affil= affil-num=12 en-affil=Institute of Integrative Biology, University of Liverpool, Liverpool kn-affil= affil-num=13 en-affil=Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences kn-affil= affil-num=14 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue= article-no= start-page=e54080 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201104 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genetic profiling of protein burden and nuclear export overload en-subtitle= kn-subtitle= en-abstract= kn-abstract=Overproduction (op) of proteins triggers cellular defects. One of the consequences of overproduction is the protein burden/cost, which is produced by an overloading of the protein synthesis process. However, the physiology of cells under a protein burden is not well characterized. We performed genetic profiling of protein burden by systematic analysis of genetic interactions between GFP-op, surveying both deletion and temperature-sensitive mutants in budding yeast. We also performed genetic profiling in cells with overproduction of triple-GFP (tGFP), and the nuclear export signal-containing tGFP (NES-tGFP). The mutants specifically interacted with GFP-op were suggestive of unexpected connections between actin-related processes like polarization and the protein burden, which was supported by morphological analysis. The tGFP-op interactions suggested that this protein probe overloads the proteasome, whereas those that interacted with NES-tGFP involved genes encoding components of the nuclear export process, providing a resource for further analysis of the protein burden and nuclear export overload. en-copyright= kn-copyright= en-aut-name=KintakaReiko en-aut-sei=Kintaka en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakanaeKoji en-aut-sei=Makanae en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NambaShotaro en-aut-sei=Namba en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatoHisaaki en-aut-sei=Kato en-aut-mei=Hisaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitoKeiji en-aut-sei=Kito en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhnukiShinsuke en-aut-sei=Ohnuki en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OhyaYoshikazu en-aut-sei=Ohya en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndrewsBrenda J. en-aut-sei=Andrews en-aut-mei=Brenda J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=BooneCharles en-aut-sei=Boone en-aut-mei=Charles kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MoriyaHisao en-aut-sei=Moriya en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Donnelly Center for Cellular and Biomolecular Research, Department of Medical Genetics, University of Toronto kn-affil= affil-num=2 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= affil-num=3 en-affil=Matching Program Course, Okayama University kn-affil= affil-num=4 en-affil=School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Life Sciences, School of Agriculture, Meiji University kn-affil= affil-num=6 en-affil=Graduate School of Frontier Sciences, University of Tokyo kn-affil= affil-num=7 en-affil=Graduate School of Frontier Sciences, University of Tokyo kn-affil= affil-num=8 en-affil=Donnelly Center for Cellular and Biomolecular Research, Department of Medical Genetics, University of Toronto kn-affil= affil-num=9 en-affil=Donnelly Center for Cellular and Biomolecular Research, Department of Medical Genetics, University of Toronto kn-affil= affil-num=10 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue= article-no= start-page=e35122 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180331 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metabolic co-dependence drives the evolutionarily ancient Hydra-Chlorella symbiosis en-subtitle= kn-subtitle= en-abstract= kn-abstract= Many multicellular organisms rely on symbiotic associations for support of metabolic activity, protection, or energy. Understanding the mechanisms involved in controlling such interactions remains a major challenge. In an unbiased approach we identified key players that control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and glutamine synthetase suggesting regulated nutrition supply between host and symbionts. Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of the otherwise obligate symbiotic Chlorella, indicating loss of autonomy and dependence on the host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to the host environment. Our observations portray ancient symbiotic interactions as a codependent partnership in which exchange of nutrients appears to be the primary driving force. en-copyright= kn-copyright= en-aut-name=HamadaMayuko en-aut-sei=Hamada en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Schr?derKatja en-aut-sei=Schr?der en-aut-mei=Katja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BathiaJay en-aut-sei=Bathia en-aut-mei=Jay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=K?rnUlrich en-aut-sei=K?rn en-aut-mei=Ulrich kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FrauneSebastian en-aut-sei=Fraune en-aut-mei=Sebastian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KhalturinaMariia en-aut-sei=Khalturina en-aut-mei=Mariia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KhalturinKonstantin en-aut-sei=Khalturin en-aut-mei=Konstantin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinzatoChuya en-aut-sei=Shinzato en-aut-mei=Chuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatohNori en-aut-sei=Satoh en-aut-mei=Nori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=BoschThomas CG en-aut-sei=Bosch en-aut-mei=Thomas CG kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Ushimado Marine Institute, Okayama University kn-affil= affil-num=2 en-affil= Interdisciplinary Research Center, Kiel Life Science, Kiel University kn-affil= affil-num=3 en-affil= Interdisciplinary Research Center, Kiel Life Science, Kiel University kn-affil= affil-num=4 en-affil= Interdisciplinary Research Center, Kiel Life Science, Kiel University kn-affil= affil-num=5 en-affil= Interdisciplinary Research Center, Kiel Life Science, Kiel University kn-affil= affil-num=6 en-affil=Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University kn-affil= affil-num=7 en-affil=Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University kn-affil= affil-num=8 en-affil=Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University kn-affil= affil-num=9 en-affil=Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University kn-affil= affil-num=10 en-affil= Interdisciplinary Research Center, Kiel Life Science, Kiel University kn-affil= en-keyword=Chlorella kn-keyword=Chlorella en-keyword=Hydra kn-keyword=Hydra en-keyword=evolutionary biology kn-keyword=evolutionary biology en-keyword=genome kn-keyword=genome en-keyword=nitrogen metabolism kn-keyword=nitrogen metabolism en-keyword=symbiosis kn-keyword=symbiosis END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue= article-no= start-page=e30246 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=201801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis en-subtitle= kn-subtitle= en-abstract= kn-abstract= Dynamin is a mechanochemical GTPase essential for membrane fission during clathrin-mediated endocytosis. Dynamin forms helical complexes at the neck of clathrin-coated pits and their structural changes coupled with GTP hydrolysis drive membrane fission. Dynamin and its binding protein amphiphysin cooperatively regulate membrane remodeling during the fission, but its precise mechanism remains elusive. In this study, we analyzed structural changes of dynamin-amphiphysin complexes during the membrane fission using electron microscopy (EM) and high-speed atomic force microscopy (HS-AFM). Interestingly, HS-AFM analyses show that the dynamin-amphiphysin helices are rearranged to form clusters upon GTP hydrolysis and membrane constriction occurs at protein-uncoated regions flanking the clusters. We also show a novel function of amphiphysin in size control of the clusters to enhance biogenesis of endocytic vesicles. Our approaches using combination of EM and HS-AFM clearly demonstrate new mechanistic insights into the dynamics of dynamin-amphiphysin complexes during membrane fission. en-copyright= kn-copyright= en-aut-name=TakedaTetsuya en-aut-sei=Takeda en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KozaiToshiya en-aut-sei=Kozai en-aut-mei=Toshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YangHuiran en-aut-sei=Yang en-aut-mei=Huiran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshikuroDaiki en-aut-sei=Ishikuro en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SeyamaKaho en-aut-sei=Seyama en-aut-mei=Kaho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KumagaiYusuke en-aut-sei=Kumagai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AbeTadashi en-aut-sei=Abe en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamadaHiroshi en-aut-sei=Yamada en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UchihashiTakayuki en-aut-sei=Uchihashi en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AndoToshio en-aut-sei=Ando en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeiKohji en-aut-sei=Takei en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, College of Science and Engineering, Kanazawa University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, College of Science and Engineering, Kanazawa University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Physics, College of Science and Engineering, Kanazawa University kn-affil= affil-num=7 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=CREST, JST kn-affil= affil-num=10 en-affil=CREST, JST kn-affil= affil-num=11 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=EM kn-keyword=EM en-keyword=HS-AFM kn-keyword=HS-AFM en-keyword=amphiphysin kn-keyword=amphiphysin en-keyword=biophysics kn-keyword=biophysics en-keyword=cell biology kn-keyword=cell biology en-keyword=dynamin kn-keyword=dynamin en-keyword=human kn-keyword=human en-keyword=in vitro reconstitution kn-keyword=in vitro reconstitution en-keyword=membrane remodeling kn-keyword=membrane remodeling en-keyword=structural biology kn-keyword=structural biology END