start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230123 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enzyme-Cleaved Bone Marrow Transplantation Improves the Engraftment of Bone Marrow Mesenchymal Stem Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mesenchymal stem cell (MSC) therapy is a promising approach to curing bone diseases and disorders. In treating genetic bone dis-orders, MSC therapy is local or systemic transplantation of isolated and in vitro proliferated MSC rather than bone marrow transplan-tation. Recent evidence showed that bone marrow MSC engraftment to bone regeneration has been controversial in animal and human studies. Here, our modified bone marrow transplantation (BMT) method solved this problem. Like routine BMT, our modified method involves three steps: (i) isolation of bone marrow cells from the donor, (ii) whole-body lethal irradiation to the recipient, and (iii) injection of isolated bone marrow cells into irradiated recipient mice via the tail vein. The significant modification is imported at the bone marrow isolation step. While the bone marrow cells are flushed out from the bone marrow with the medium in routine BMT, we applied the enzymes' (collagenase type 4 and dispase) integrated medium to wash out the bone marrow cells. Then, cells were incubated in enzyme integrated solution at 37 degrees C for 10 minutes. This modification designated BMT as collagenase-integrated BMT (c-BMT). Notably, successful engraftment of bone marrow MSC to the new bone formation, such as osteoblasts and chondrocytes, occurs in c-BMT mice, whereas routine BMT mice do not recruit bone marrow MSC. Indeed, flow cytometry data showed that c-BMT includes a higher proportion of LepR(+), CD51(+), or RUNX2(+) non-hematopoietic cells than BMT. These findings suggested that c-BMT is a time-efficient and more reliable technique that ensures the disaggregation and collection of bone marrow stem cells and engraftment of bone marrow MSC to the recipient. Hence, we proposed that c-BMT might be a promising approach to curing genetic bone disorders. (c) 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. en-copyright= kn-copyright= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TosaIkue en-aut-sei=Tosa en-aut-mei=Ikue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SanouSho en-aut-sei=Sanou en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FushimiShigeko en-aut-sei=Fushimi en-aut-mei=Shigeko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeshiTakarada en-aut-sei=Takeshi en-aut-mei=Takarada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=BONE FORMATION kn-keyword=BONE FORMATION en-keyword=BONE MARROW MESENCHYMAL STEM CELLS kn-keyword=BONE MARROW MESENCHYMAL STEM CELLS en-keyword=BONE MARROW TRANSPLANTATION MODEL kn-keyword=BONE MARROW TRANSPLANTATION MODEL en-keyword=OSTEOBLASTS kn-keyword=OSTEOBLASTS en-keyword=SYSTEM BIOLOGY-BONE INTERACTOR kn-keyword=SYSTEM BIOLOGY-BONE INTERACTOR END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=2 article-no= start-page=e05378 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fulminant myocarditis after the second dose of COVID-19 mRNA vaccination en-subtitle= kn-subtitle= en-abstract= kn-abstract=Myocarditis is an adverse event associated with coronavirus disease 2019 (COVID-19) mRNA vaccination. A 50-year-old man presented with dyspnea and resting chest pain after receiving the second dose of the COVID-19 mRNA vaccine and developed cardiogenic shock. Fulminant myocarditis was diagnosed by endomyocardial biopsy and treated with intravenous corticosteroids. en-copyright= kn-copyright= en-aut-name=OkaAkihiro en-aut-sei=Oka en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SudoYuya en-aut-sei=Sudo en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OzakiMasatomo en-aut-sei=Ozaki en-aut-mei=Masatomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KimuraYuta en-aut-sei=Kimura en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakagiWataru en-aut-sei=Takagi en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UgawaSatoko en-aut-sei=Ugawa en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkadaTomoaki en-aut-sei=Okada en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NosakaKazumasa en-aut-sei=Nosaka en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=DoiMasayuki en-aut-sei=Doi en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=2 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=5 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=6 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=9 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=10 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= en-keyword=COVID-19 mRNA vaccination kn-keyword=COVID-19 mRNA vaccination en-keyword=fulminant myocarditis kn-keyword=fulminant myocarditis en-keyword=steroid pulse therapy kn-keyword=steroid pulse therapy END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=4 article-no= start-page=e05725 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220418 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis of subgingival microbiota in monozygotic twins with different severity and progression risk of periodontitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The study aims to reveal the composition of subgingival bacteria in monozygotic twins with discordant in severity and progression risk of periodontitis. Microbiome analysis indicated that most bacteria were heritable but differed in their abundance and immune response. The dysbiotic bacteria can be considered as risk markers for periodontitis progression. en-copyright= kn-copyright= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TaniguchiMakoto en-aut-sei=Taniguchi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsunagaKazuyuki en-aut-sei=Matsunaga en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawataYusuke en-aut-sei=Kawata en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamuraMari en-aut-sei=Kawamura en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkuboKeisuke en-aut-sei=Okubo en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamashiroKeisuke en-aut-sei=Yamashiro en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Oral Microbiome Center, Taniguchi Dental Clinic, Takamatsu, Japan 3 Department of Neurology, Brain Attack Center Ota Memorial Hospital kn-affil= affil-num=3 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=disease progression kn-keyword=disease progression en-keyword=dysbiosis kn-keyword=dysbiosis en-keyword=environmental factors kn-keyword=environmental factors en-keyword=microbiome kn-keyword=microbiome en-keyword=monozygotic twins kn-keyword=monozygotic twins en-keyword=periodontitis kn-keyword=periodontitis END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=2 article-no= start-page=e8533 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Freezing or death feigning? Beetles selected for long death feigning showed different tactics against different predators en-subtitle= kn-subtitle= en-abstract= kn-abstract=Prey evolve antipredator strategies against multiple enemies in nature. We examined how a prey species adopts different predation avoidance tactics against pursuit or sit-and-wait predators. As prey, we used three strains of Tribolium beetles artificially selected for short (short strain) or long (long strain) duration of death feigning, and a stock culture (base population). Death feigning is known to be effective for evading a jumping spider in the case of the long strains, while the present study showed that the long-strain beetles used freezing against a sit-and-wait type predator, Amphibolus venator, in this study. The short- strain beetles were more easily oriented toward predators. The time to predation was also shorter in the short strains compared to the long strains. The results showed that, as prey, the short strains displayed the same behavior, escaping, against both types of predators. Traditionally, death feigning has been thought to be the last resort in a series of antipredator avoidance behaviors. However, our results showed that freezing and death feigning were not parts of a series of behaviors, but independent strategies against different predators, at least for long-strain beetles. We also examined the relationship between a predator's starvation level and its predatory behavior. In addition, the orientation behavior toward and predation rate on the prey were observed to determine how often the predatory insect attacked the beetles. en-copyright= kn-copyright= en-aut-name=AsakuraMasaya en-aut-sei=Asakura en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshiharaRyo en-aut-sei=Ishihara en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Agriculture, Kagawa University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=animal hypnosis kn-keyword=animal hypnosis en-keyword=death feigning kn-keyword=death feigning en-keyword=freezing kn-keyword=freezing en-keyword=predation kn-keyword=predation en-keyword=thanatosis kn-keyword=thanatosis en-keyword=tonic immobility kn-keyword=tonic immobility END start-ver=1.4 cd-journal=joma no-vol=2021 cd-vols= no-issue=00 article-no= start-page=1 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211129 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=PD-L1 expression is associated with the spontaneous regression of patients with methotrexate-associated lymphoproliferative disorders en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Most patients with methotrexate-associated lymphoproliferative disorder (MTX-LPD) show diffuse large B-cell lymphoma (DLBCL) or classic Hodgkin lymphoma (CHL) types. Patients with MTX-LPD often have spontaneous remission after MTX discontinuation, but chemotherapeutic intervention is frequently required in patients with CHL-type MTX-LPD. In this study, we examined whether programmed cell death-ligand 1 (PD-L1) expression levels were associated with the prognosis of MTX-LPD after MTX discontinuation.
Methods A total of 72 Japanese patients diagnosed with MTX-LPD were clinicopathologically analyzed, and immunohistochemical staining of PD-L1 was performed in 20 DLBCL-type and 24 CHL-type MTX-LPD cases to compare with the clinical course.
Results PD-L1 was expressed in 5.0% (1/20) of patients with DLBCL-type MTX-LPD, whereas it was expressed in 66.7% (16/24) of the patients with CHL-type MTX-LPD in more than 51% of tumor cells. Most CHL-type MTX-LPD patients with high PD-L1 expression required chemotherapy owing to exacerbations or relapses after MTX discontinuation. However, no significant differences in clinicopathologic findings at diagnosis were observed between PD-L1 high- and low-expression CHL-type MTX-LPD.
Conclusion PD-L1 expression was significantly higher in patients with CHL-type than DLBCL-type MTX-LPD, suggesting the need for chemotherapy in addition to MTX discontinuation in CHL-type MTX-LPD patients to achieve complete remission. No association was observed between PD-L1 expression levels and clinical findings at diagnosis, suggesting that PD-L1 expression in tumor cells influences the pathogenesis of CHL-type MTX-LPD after MTX discontinuation. en-copyright= kn-copyright= en-aut-name=GionYuka en-aut-sei=Gion en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DoiMisato en-aut-sei=Doi en-aut-mei=Misato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IkedaTomoka en-aut-sei=Ikeda en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakamotoMisa en-aut-sei=Sakamoto en-aut-mei=Misa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EgusaYuria en-aut-sei=Egusa en-aut-mei=Yuria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujitaAzusa en-aut-sei=Fujita en-aut-mei=Azusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwakiNoriko en-aut-sei=Iwaki en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamuraNaoya en-aut-sei=Nakamura en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Division of Pathophysiology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=2 en-affil=Division of Clinical Laboratory, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Division of Pathophysiology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=7 en-affil=Division of Pathophysiology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=Division of Pathophysiology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=9 en-affil=Division of Pathophysiology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=10 en-affil=Department of Hematology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University kn-affil= affil-num=11 en-affil=Department of Pathology, Tokai University School of Medicine kn-affil= affil-num=12 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Division of Pathophysiology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=classic Hodgkin lymphoma kn-keyword=classic Hodgkin lymphoma en-keyword=diffuse large B-cell lymphoma kn-keyword=diffuse large B-cell lymphoma en-keyword=methotrexate-associated lymphoproliferative disorder kn-keyword=methotrexate-associated lymphoproliferative disorder en-keyword=programmed cell death-ligand 1 kn-keyword=programmed cell death-ligand 1 en-keyword=rheumatoid arthritis kn-keyword=rheumatoid arthritis END