start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220711 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Potential inhibitory effects of low-dose thoron inhalation and ascorbic acid administration on alcohol-induced hepatopathy in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although thoron inhalation exerts antioxidative effects in several organs, there are no reports on whether it inhibits oxidative stress-induced damage. In this study, we examined the combined effects of thoron inhalation and ascorbic acid (AA) administration on alcohol-induced liver damage. Mice were subjected to thoron inhalation at 500 or 2000 Bq/m(3) and were administered 50% ethanol (alcohol) and 300 mg/kg AA. Results showed that although alcohol administration increased the levels of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) in the serum, the combination of thoron inhalation (500 Bq/m(3)) and AA administration 24 h after alcohol administration effectively inhibited alcohol-induced liver damage. The combination of thoron inhalation (500 Bq/m(3)) and AA administration 24 h after alcohol administration increased catalase (CAT) activity. Alcohol administration significantly decreased glutathione (GSH) levels in the liver. The GSH content in the liver after 2000 Bq/m(3) thoron inhalation was lower than that after 500 Bq/m(3) thoron inhalation. These findings suggest that the combination of thoron inhalation at 500 Bq/m(3) and AA administration has positive effects on the recovery from alcohol-induced liver damage. The results also suggested that thoron inhalation at 500 Bq/m(3) was more effective than that at 2000 Bq/m(3), possibly because of the decrease in GSH content in the liver. In conclusion, the combination of thoron inhalation at 500 Bq/m(3) and AA administration promoted an early recovery from alcohol-induced liver damage. en-copyright= kn-copyright= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshidaTsuyoshi en-aut-sei=Ishida en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaoeShota en-aut-sei=Naoe en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanzakiNorie en-aut-sei=Kanzaki en-aut-mei=Norie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakodaAkihiro en-aut-sei=Sakoda en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaHiroshi en-aut-sei=Tanaka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MitsunobuFumihiro en-aut-sei=Mitsunobu en-aut-mei=Fumihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=5 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=6 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=7 en-affil=Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=alcohol-induced liver damage kn-keyword=alcohol-induced liver damage en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=antioxidative function kn-keyword=antioxidative function en-keyword=ascorbic acid (AA) kn-keyword=ascorbic acid (AA) en-keyword=thoron kn-keyword=thoron END