start-ver=1.4
cd-journal=joma
no-vol=71
cd-vols=
no-issue=11
article-no=
start-page=938
end-page=943
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mechanical Subpulmonary Support in Fontan Circulation: A Juvenile Porcine Experimental Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mechanical cavopulmonary assist (CPA) remains challenging for failing Fontan circulation. This study aimed to evaluate the hemodynamic impact of partial CPA using a juvenile porcine model. Six pigs (30?kg) underwent the Fontan procedure using a handmade Y-shaped graft. Total CPA was established by assisting both superior vena cava (SVC) and inferior vena cava (IVC) flow to the pulmonary artery, whereas partial CPA assisted only IVC flow using a centrifugal pump. Cavopulmonary assist flow was set to 100%, 50%, or 25% of pre-Fontan cardiac output (CO). Hemodynamics at baseline, after total CPA, and after partial CPA were compared using paired t-tests. Total CPA with 100% CO support increased CO and reduced SVC and IVC pressures compared to baseline (CO, 1.03 vs. 2.36?L/min; SVC pressure, 16.3 vs. 9.5?mm Hg; IVC pressure, 17.3 vs. 9.3?mm Hg, p < 0.05 for all). Partial CPA with 25% CO support increased CO and decreased IVC pressure, though SVC pressure increased (CO, 1.03 vs. 1.52?L/min; SVC pressure, 16.3 vs. 20.5?mm Hg; IVC pressure, 17.3 vs. 11.5?mm Hg, p < 0.05 for all). Although total CPA achieved optimal hemodynamics, partial CPA with 25% CO flow was effective, suggesting a feasible, noninvasive solution for patients with failing Fontan physiology.
en-copyright=
kn-copyright=
en-aut-name=SakodaNaoya
en-aut-sei=Sakoda
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EdakiDaichi
en-aut-sei=Edaki
en-aut-mei=Daichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KotaniYasuhiro
en-aut-sei=Kotani
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=From the Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=2
en-affil=From the Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=3
en-affil=From the Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=4
en-affil=From the Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=5
en-affil=From the Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=82
cd-vols=
no-issue=10
article-no=
start-page=1626
end-page=1637
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Redefining AT1 Receptor PET Imaging: Introducing the Radiotracer [18F]DR29
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=BACKGROUND: AT1R (angiotensin II type 1 receptors) are central to the renin-angiotensin system and are involved in regulating blood pressure and renal physiology. This study introduces [18F]DR29, a fluorine-18-labeled radiotracer for positron emission tomography imaging, to enable noninvasive visualization of AT1R expression. Its potential applications in understanding AT1R-associated renal processes are explored in healthy and hypertensive rat models.
METHODS: Radiolabeling was established, and biodistribution studies were conducted on healthy Wistar rats with and without the AT1R antagonist candesartan and transporter inhibitors. Dynamic positron emission tomography imaging assessed tracer specificity, and feasibility for renal AT1R quantification was explored using a hypertensive rat model.
RESULTS: [18F]DR29 was radiolabeled with a yield of 36}6%. High kidney uptake was observed, significantly reduced by candesartan (kidney-to-blood ratio, 0.43}0.01 versus 4.54}1.59 in vehicle, where vehicle refers to saline without any treatment). Transporter inhibition protocols targeting organic anion transporting polypeptides (liver) and organic anion transporters (kidneys) successfully reduced radiotracer clearance, increasing the specific accumulation of [18F]DR29 in the kidneys and improving renal imaging contrast. Positron emission tomography imaging revealed rapid kidney uptake and stable retention over 2 hours. In hypertensive rats, kidney uptake was higher, aligning with AT1R expression levels.
CONCLUSIONS: These results support [18F]DR29 as a promising tool for the noninvasive evaluation of renal AT1R expression in healthy and diseased states. The findings lay the groundwork for clinical translation, offering potential applications in diagnosing and managing kidney-related diseases, including hypertension and other conditions involving AT1R dysregulation.
en-copyright=
kn-copyright=
en-aut-name=ChenXinyu
en-aut-sei=Chen
en-aut-mei=Xinyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraHiroyuki
en-aut-sei=Kimura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KlimekKonrad
en-aut-sei=Klimek
en-aut-mei=Konrad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=M?hligSaskia
en-aut-sei=M?hlig
en-aut-mei=Saskia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Arias-LozaAnahi Paula
en-aut-sei=Arias-Loza
en-aut-mei=Anahi Paula
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NoseNaoko
en-aut-sei=Nose
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YagiYusuke
en-aut-sei=Yagi
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=RoweSteven P
en-aut-sei=Rowe
en-aut-mei=Steven P
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LapaConstantin
en-aut-sei=Lapa
en-aut-mei=Constantin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WernerRudolf A.
en-aut-sei=Werner
en-aut-mei=Rudolf A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg
kn-affil=
affil-num=2
en-affil=Agency for Health, Safety and Environment, Kyoto University
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Goethe University Frankfurt, University Hospital, Clinic for Radiology and Nuclear Medicine, Department of Nuclear Medicine
kn-affil=
affil-num=5
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (DZHI), University Hospital W?rzburg
kn-affil=
affil-num=6
en-affil=Department of Nuclear Medicine and Comprehensive Heart Failure Center (DZHI), University Hospital W?rzburg
kn-affil=
affil-num=7
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Molecular Imaging and Therapeutics, Department of Radiology, School of Medicine, University of North Carolina, Chapel Hill
kn-affil=
affil-num=10
en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg
kn-affil=
affil-num=11
en-affil=Department of Nuclear Medicine, LMU Hospital, Ludwig-Maximilians-University of Munich
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=angiotensin II type 1 receptor
kn-keyword=angiotensin II type 1 receptor
en-keyword=organic anion transporters
kn-keyword=organic anion transporters
en-keyword=organic anion transporting polypeptides
kn-keyword=organic anion transporting polypeptides
en-keyword=renal imaging
kn-keyword=renal imaging
en-keyword=renin-angiotensin system
kn-keyword=renin-angiotensin system
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=5
article-no=
start-page=e200293
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Vanishing White Matter Disease With EIF2B2 c.254T >A Variant
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives
Typical MRI findings of vanishing white matter disease (VWM) include diffuse white matter lesions with cystic degeneration. However, mild cases may lack these typical features, posing diagnostic challenges.
Methods
We describe 2 of 3 individuals carrying the homozygous c.254T >A variant in EIF2B2 identified at our hospital, excluding 1 previously reported case.1 Genetic analyses were performed using whole-genome sequence or whole-exome sequence analysis, and detected variants were confirmed by direct nucleotide sequence analysis. Brain MRI findings and clinical features were reviewed for the 2 individuals along with other cases in the literature with the same variant.
Results
A 69-year-old woman presented with recurrent transient dizziness and secondary amenorrhea. MRI of the brain revealed small T2-hyperintense lesions confined to the subcortical white matter with hyperintensities on diffusion-weighted images and mildly elevated apparent diffusion coefficient values. A 28-year-old woman presented with transient dizziness and secondary amenorrhea. MRI of the brain showed mild T2-hyperintense lesions in the cerebral white matter with frontal predominance.
Discussion
This report highlights the clinically mild cases of VWM with subtle abnormalities on brain MRI who had the homozygous c.254T >A in EIF2B2, further expanding the clinical spectrum of VWM and underscoring the importance of genetic assessments in the diagnosis of individuals with mild clinical and MRI findings.
en-copyright=
kn-copyright=
en-aut-name=KakumotoToshiyuki
en-aut-sei=Kakumoto
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaTakashi
en-aut-sei=Matsukawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TokimuraRyo
en-aut-sei=Tokimura
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsuboyamaYoko
en-aut-sei=Tsuboyama
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HayashiYasufumi
en-aut-sei=Hayashi
en-aut-mei=Yasufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MitsutakeAkihiko
en-aut-sei=Mitsutake
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IwataAtsushi
en-aut-sei=Iwata
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaedaMeiko Hashimoto
en-aut-sei=Maeda
en-aut-mei=Meiko Hashimoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimizuJun
en-aut-sei=Shimizu
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GonoiWataru
en-aut-sei=Gonoi
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MitsuiJun
en-aut-sei=Mitsui
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TsujiShoji
en-aut-sei=Tsuji
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TodaTatsushi
en-aut-sei=Toda
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Radiology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=13
en-affil=Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=6
article-no=
start-page=732
end-page=740
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Causal Approaches to Disease Progression Analyses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Epidemiologic analyses that aim to quantify exposure effects on disease progression are not uncommon. Understanding the implications of these studies, however, is complicated, in part because different causal estimands could, at least in theory, be the target of such analyses. Here, to facilitate interpretation of these studies, we describe different settings in which causal questions related to disease progression can be asked, and consider possible estimands. For clarity, our discussion is structured around settings defined based on two factors: whether the disease occurrence is manipulable or not, and the type of outcome. We describe relevant causal structures and sets of response types, which consist of joint potential outcomes of disease occurrence and disease progression, and argue that settings where interventions to manipulate disease occurrence are not plausible are more common, and that, in this case, principal stratification might be an appropriate framework to conceptualize the analysis. Further, we suggest that the precise definition of the outcome of interest, in particular of what constitutes its permissible levels, might determine whether potential outcomes linked to disease progression are definable in different strata of the population. Our hope is that this paper will encourage additional methodological work on causal analysis of disease progression, as well as serve as a resource for future applied studies.
en-copyright=
kn-copyright=
en-aut-name=Gon?alvesBronner P.
en-aut-sei=Gon?alves
en-aut-mei=Bronner P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Health and Medical Sciences, University of Surrey
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=disease progression
kn-keyword=disease progression
en-keyword=causal inference
kn-keyword=causal inference
en-keyword=principal stratification
kn-keyword=principal stratification
en-keyword=controlled direct effects
kn-keyword=controlled direct effects
en-keyword=potential outcomes
kn-keyword=potential outcomes
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250922
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Applicability of Effective Atomic Number (Z eff) Image Analysis of Coronary Plaques Measured With Photon- Counting Computed Tomography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Coronary computed tomography (CT) allows the assessment of cardiovascular risk by imaging calcified plaques in coronary arteries. Because photon-counting CT (PC-CT) can analyze the effective atomic number (Zeff) of the subject, it is expected to be applied to the analysis of plaque components. The purpose of this study was to investigate the applicability of plaque analysis based on Zeff images with continuous gradation.
Methods: Zeff images were generated from virtual monoenergetic images (VMIs) obtained by PC-CT. Zeff values were derived from the difference between linear attenuation coefficients (ƒÊ) at low and high energies using an in-house program. Coronary CT images of 64 plaques in 10 patients were analyzed. The Zeff score, calculated as the sum of Zeff values within the plaque region, was calculated and compared with the conventional Agatston score and mean coronary artery calcium (CAC) score.
Results: The systematic uncertainty of Zeff images was estimated to be }0.08. The Zeff score of actual patient data showed strong positive correlations with the conventional Agatston and mean CAC scores. The Zeff score uses all voxel data in the plaque area, whereas conventional scores consider only data from voxels with a CT value >130. We found that the conventional scores excluded 39% of the plaque area, and the Zeff score permitted the analysis of low- and high-density plaques.
Conclusions: Zeff imaging was shown to be applicable to plaque analysis that reflects the entire plaque volume. This study demonstrated its technical feasibility as a compositional analysis method using the Zeff image.
en-copyright=
kn-copyright=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitaniMana
en-aut-sei=Mitani
en-aut-mei=Mana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakegamiKazuki
en-aut-sei=Takegami
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorimitsuYusuke
en-aut-sei=Morimitsu
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AkagiNoriaki
en-aut-sei=Akagi
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KanazawaYuki
en-aut-sei=Kanazawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IguchiToshihiro
en-aut-sei=Iguchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=4
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Yamaguchi University Hospital
kn-affil=
affil-num=6
en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Medical Support Department, Division of Radiology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Faculty of Life Science, Kumamoto University
kn-affil=
affil-num=10
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=effective atomic number image
kn-keyword=effective atomic number image
en-keyword=photon-counting computed tomography
kn-keyword=photon-counting computed tomography
en-keyword=virtual monoenergetic images
kn-keyword=virtual monoenergetic images
en-keyword=coronary CT
kn-keyword=coronary CT
en-keyword=coronary plaques
kn-keyword=coronary plaques
en-keyword=Agatston score
kn-keyword=Agatston score
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Double-blind randomized noninferiority study of the effect of pharyngeal lidocaine anesthesia on EUS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and objectives: EUS is typically performed under sedation, often with concomitant analgesics to reduce pain. Traditionally used pharyngeal anesthesia, commonly with lidocaine, may cause pharyngeal discomfort and allergic reactions. This study investigated whether lidocaine-based pharyngeal anesthesia is necessary for EUS under sedation with analgesics.
Methods: A double-blind, randomized, noninferiority study was conducted on EUS cases that met the selection criteria. Patients were randomly assigned to receive either 5 sprays of 8% lidocaine (lidocaine group: LG) or saline spray (placebo group: PG) as endoscopy pretreatment. The primary outcome was EUS tolerability, analyzed separately for endoscopists and patients, with a noninferiority margin set at 15%. Secondary outcomes included endoscopist and patient satisfaction, midazolam/pethidine doses, number of gag events, number of esophageal insertion attempts, use of sedative/analgesic antagonists, interruptions due to body movements, throat symptoms after endoscopy, and sedation-related adverse events.
Results: Favorable tolerance was 85% in LG and 88% for PG among endoscopists (percent difference: 3.0 [95% confidence interval, ?6.6 to 12.6]) and 90% in LG and 91% in PG among patients (percent difference, 0.94 [95% confidence interval, ?7.5 to 9.4]). Both groups exceeded the noninferiority margin (P = 0.0002 for endoscopists and patients). Patient satisfaction was significantly higher in PG (P = 0.0080), but no intergroup differences were found in other secondary outcomes.
Conclusions: PG was noninferior to LG for pharyngeal anesthesia during EUS with sedation and analgesics. These results suggest that pharyngeal anesthesia with lidocaine can be omitted when performing EUS under sedation with concomitant analgesics. Omitting pharyngeal anesthesia with lidocaine may prevent discomfort and complications caused by pharyngeal anesthesia, shorten examination times, and reduce medical costs.
en-copyright=
kn-copyright=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HaradaKei
en-aut-sei=Harada
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HattoriNao
en-aut-sei=Hattori
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoRyosuke
en-aut-sei=Sato
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ObataTaisuke
en-aut-sei=Obata
en-aut-mei=Taisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumiAkihiro
en-aut-sei=Matsumi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyamotoKazuya
en-aut-sei=Miyamoto
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UchidaDaisuke
en-aut-sei=Uchida
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=EUS
kn-keyword=EUS
en-keyword=Lidocaine
kn-keyword=Lidocaine
en-keyword=Tolerance
kn-keyword=Tolerance
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=5
article-no=
start-page=686
end-page=689
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=L or M1?Critical Challenges in Mediation Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Methods for causal mediation analysis have developed dramatically over the past few decades.1?7 In the causal mediation literature, several causal quantities?or estimands?have been proposed, including natural direct and indirect effects, interventional direct and indirect effects, and separable direct and indirect effects. As another possible causal estimand, Chen and Lin8 proposed separable path-specific effects, which is an extension of the separable effects framework to cases that involve multiple ordered mediators. In this commentary, I briefly discuss the newly proposed method from a broader perspective on causal mediation analysis. For readers less familiar with common causal mediation approaches, please see related literature.1?3,9?11
en-copyright=
kn-copyright=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=3
article-no=
start-page=374
end-page=380
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect Modification in Settings with gTruncation by Deathh
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Epidemiologic studies recruiting individuals with higher-than-population-average mortality can be affected by gtruncation by death,h whereby the outcome of interest (e.g., quality of life) is considered not to be defined for individuals who die before the end of follow-up. Here, we use the potential outcomes framework and principal stratification to derive conditions under which the survivor average causal effect, an estimand defined for the galways-survivorsh stratum, is modified by a variable that represents a possible common cause of survival and the outcome of interest and by a variable that only affects survival. Further, we show that this principal effect can be expressed as a weighted average of this treatment effect for individuals with each level of these variables, and that these weights depend not only on the relative frequencies of the levels in the total population but also on the galways-survivorsh principal stratum. We also discuss the implications of this work for the transportability of the survivor average causal effect.
en-copyright=
kn-copyright=
en-aut-name=Gon?alvesBronner P.
en-aut-sei=Gon?alves
en-aut-mei=Bronner P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Comparative Biomedical Sciences, Faculty of Health and Medical Sciences, University of Surrey
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Causal inference
kn-keyword=Causal inference
en-keyword=Effect modification
kn-keyword=Effect modification
en-keyword=Principal stratification
kn-keyword=Principal stratification
en-keyword=Transportability
kn-keyword=Transportability
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=6
article-no=
start-page=801
end-page=804
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Preventable Fraction in the Context of Disease Progression
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The relevance of the epidemiologic concept of preventable fraction to the study of the population-level impact of preventive exposures is unequivocal. Here, we discuss how the preventable fraction can be usefully understood for the class of outcomes that relate to disease progression (e.g., clinical severity given diagnosis), and, under the principal stratification framework, derive an expression for this quantity for this type of outcome. In particular, we show that, in the context of disease progression, the preventable fraction is a function of the effect on the postdiagnosis outcome in the principal stratum in the unexposed group who would have disease regardless of exposure status. This work will facilitate an understanding of the contribution of principal effects to the impact of preventive exposures at the population level.
en-copyright=
kn-copyright=
en-aut-name=Gon?alvesBronner P.
en-aut-sei=Gon?alves
en-aut-mei=Bronner P.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Comparative Biomedical Sciences, Faculty of Health and Medical Sciences, University of Surrey
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Counterfactual framework
kn-keyword=Counterfactual framework
en-keyword=Disease progression
kn-keyword=Disease progression
en-keyword=Disease severity
kn-keyword=Disease severity
en-keyword=Preventable fraction
kn-keyword=Preventable fraction
en-keyword=Principal stratification
kn-keyword=Principal stratification
END
start-ver=1.4
cd-journal=joma
no-vol=44
cd-vols=
no-issue=11
article-no=
start-page=1992
end-page=2000
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=INVESTIGATION OF THE PATHOPHYSIOLOGY OF EPIRETINAL MEMBRANE FOVEOSCHISIS: Analysis of Longitudinal Changes in Visual Functions, Retinal Structures, and Retinal Traction Force
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To analyze the pathophysiology of epiretinal membrane foveoschisis (FS) by evaluating the longitudinal changes in visual function and several optical coherence tomography parameters.
Methods: The medical records of 33 consecutive patients (35 eyes) with untreated epiretinal membrane foveoschisis were retrospectively reviewed. Best-corrected visual acuity, M-CHARTS score, and optical coherence tomography parameters including epiretinal membrane area, maximum depth of retinal folds, FS area, and FS circularity were evaluated.
Results: A wide range of FS area changes was observed at the final follow-up visit (59.68%?240.45% of the baseline FS area). In the FS enlargement group, best-corrected visual acuity and mean M-CHARTS scores significantly worsened and maximum depth of retinal folds significantly increased over time, whereas in the FS non-enlargement group, no significant change was observed in the best-corrected visual acuity, mean M-CHARTS scores, or maximum depth of retinal folds during the follow-up period. Multivariate logistic regression analyses revealed that maximum depth of retinal folds (odds ratio: 1.05, 95% confidence interval: 1.00?1.10, P = 0.048) and FS circularity (odds ratio: 0.91, 95% confidence interval: 0.83?1.00, P = 0.043) were significantly associated with FS enlargement.
Conclusion: Epiretinal membrane foveoschisis encompasses diverse pathophysiologies. Since visual functions do not worsen in some cases, monitoring the changes in visual functions and retinal morphology over time is recommended to determine surgical indications.
en-copyright=
kn-copyright=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanzakiYuki
en-aut-sei=Kanzaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasudaYuki
en-aut-sei=Masuda
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HosokawaMio M.
en-aut-sei=Hosokawa
en-aut-mei=Mio M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=en-face imaging
kn-keyword=en-face imaging
en-keyword=epiretinal membrane
kn-keyword=epiretinal membrane
en-keyword=epiretinal membrane foveoschisis
kn-keyword=epiretinal membrane foveoschisis
en-keyword=foveoschisis
kn-keyword=foveoschisis
en-keyword=lamellar macular hole
kn-keyword=lamellar macular hole
en-keyword=metamorphopsia
kn-keyword=metamorphopsia
en-keyword=optical coherence tomography
kn-keyword=optical coherence tomography
en-keyword=retinal fold
kn-keyword=retinal fold
en-keyword=retinal traction
kn-keyword=retinal traction
END
start-ver=1.4
cd-journal=joma
no-vol=44
cd-vols=
no-issue=10
article-no=
start-page=1785
end-page=1792
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=MIXED PATHOPHYSIOLOGIES OF LAMELLAR MACULAR HOLES AND RELATED DISEASES: A Multimodal Optical Coherence Tomography?Based Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To investigate the characteristics of mixed pathophysiologies in lamellar macular holes (LMHs) and related diseases using multimodal optical coherence tomography.
Methods: Overall, 126 eyes diagnosed with LMH, epiretinal membrane foveoschisis, or macular pseudohole using the horizontal B-scan image according to the definition proposed by Hubschman et al in 2020 were analyzed using multimodal optical coherence tomography imaging including horizontal and vertical 5-line B-scan, radial scan, and macular three-dimensional volume scan images. If at least two diagnostic criteria for LMH, epiretinal membrane foveoschisis, or macular pseudohole were satisfied in these scans, the patient was diagnosed as having a gmixed type.h Retinal traction force was quantitatively evaluated by measuring the maximum depth of the retinal folds using en-face images.
Results: Mixed types constituted 34.1% of the cases. The LMH-related mixed group demonstrated intermediate characteristics between the epiretinal membrane foveoschisis/macular pseudohole and true LMH groups in terms of retinal traction and LMH-specific features and had a significant positive correlation between the maximum depth of the retinal folds and mean M-CHARTS scores (P = 0.034).
Conclusion: A thorough optical coherence tomography analysis is necessary to accurately diagnose LMH and related diseases. A significant positive correlation was observed between the maximum depth of the retinal folds and the degree of metamorphopsia in the LMH-related mixed group.
en-copyright=
kn-copyright=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanzakiYuki
en-aut-sei=Kanzaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasudaYuki
en-aut-sei=Masuda
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HosokawaMio M.
en-aut-sei=Hosokawa
en-aut-mei=Mio M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=en-face imaging
kn-keyword=en-face imaging
en-keyword=epiretinal membrane
kn-keyword=epiretinal membrane
en-keyword=epiretinal membrane foveoschisis
kn-keyword=epiretinal membrane foveoschisis
en-keyword=lamellar macular hole
kn-keyword=lamellar macular hole
en-keyword=metamorphopsia
kn-keyword=metamorphopsia
en-keyword=mixed type
kn-keyword=mixed type
en-keyword=optical coherence tomography
kn-keyword=optical coherence tomography
en-keyword=retinal fold
kn-keyword=retinal fold
en-keyword=retinal traction
kn-keyword=retinal traction
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=4
article-no=
start-page=294
end-page=301
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202307
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of lymphadenectomy during primary surgery for kidney cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose of review
Lymph node dissection (LND) during radical nephrectomy (RN) for renal cell carcinoma (RCC) is not considered as a standard. The emergence of robot-assisted surgery and effective immune checkpoint inhibitors (ICI) in recent years may change this and lymph node (LN) staging has become easier and has a clinical impact. In this review, we aimed to reconsider the role of LND today.
Recent findings
Although the extent of LND has still not been well established, removal of more LN seems to provide better oncologic outcomes for a select group of patients with high-risk factors such as clinical T3-4. Adjuvant therapy using pembrolizumab has been shown to improve disease free survival if complete resection of metastatic lesions as well as the primary site is obtained in combination. Robot assisted RN for localized RCC has been widespread and the studies regarding LND for RCC has been recently appeared.
Summary
The staging and surgical benefits and its extent of LND during RN for RCC remains unclear, but it is becoming increasingly important. Technologies that allow an easier LND and adjuvant ICI that improve survival in LN-positive patients are engaging the role of LND, a procedure that was needed, but almost never done, is now indicated sometimes. Now, the goal is to identify the clinical and molecular imaging tools that can help identify with sufficient accuracy who needs a LND and which LNs to remove in a targeted personalized approach.
en-copyright=
kn-copyright=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YanagisawaTakafumi
en-aut-sei=Yanagisawa
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KarakiewiczPierre I.
en-aut-sei=Karakiewicz
en-aut-mei=Pierre I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShariatShahrokh F.
en-aut-sei=Shariat
en-aut-mei=Shahrokh F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
affil-num=4
en-affil=Cancer Prognostic and Health Outcomes Unit, Division of Urology, University of Montreal Health Center
kn-affil=
affil-num=5
en-affil=Department of Urology, Comprehensive Cancer Center, Medical University of Vienna
kn-affil=
en-keyword=lymph node dissection
kn-keyword=lymph node dissection
en-keyword=lymph node metastasis
kn-keyword=lymph node metastasis
en-keyword=lymphadenectomy
kn-keyword=lymphadenectomy
en-keyword=lymphadenopathy
kn-keyword=lymphadenopathy
en-keyword=Renal cell carcinoma
kn-keyword=Renal cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=4
article-no=
start-page=469
end-page=472
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202407
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Errors in the Calculation of the Population Attributable Fraction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=One of the common errors in the calculation of the population attributable fraction (PAF) is the use of an adjusted risk ratio in the Levin formula. In this article, we discuss the errors visually using wireframes by varying the standardized mortality ratio (SMR) and associational risk ratio (aRR) when the prevalence of exposure is fixed. When SMR >1 and SMR > aRR, the absolute bias is positive, and its magnitude increases as the difference between SMR and aRR increases. By contrast, when aRR > SMR > 1, the absolute bias is negative and its magnitude is relatively small. Moreover, when SMR > aRR, the relative bias is larger than one, whereas when SMR < aRR, the relative bias is smaller than one. Although the target population of the PAF is the total population, the target of causation of the PAF is not the total population but the exposed group.
en-copyright=
kn-copyright=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoEiji
en-aut-sei=Yamamoto
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Okayama University of Science
kn-affil=
en-keyword=Attributable fraction
kn-keyword=Attributable fraction
en-keyword=Bias
kn-keyword=Bias
en-keyword=Causality
kn-keyword=Causality
en-keyword=Counterfactual model
kn-keyword=Counterfactual model
en-keyword=Potential outcomes
kn-keyword=Potential outcomes
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=2
article-no=
start-page=182
end-page=194
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231208
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inhibition of Amino Acids Influx into Proximal Tubular Cells Improves Lysosome Function in Diabetes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Inhibition of glucose influx into proximal tubular cells (PTCs) by sodium?glucose cotransporter 2 inhibitors revealed prominent therapeutic effects on diabetic kidney disease. Collectrin (CLTRN) serves as a chaperone for the trafficking of neutral amino acid (AA) transporters in the apical membranes of PTCs. We investigated the beneficial effects of reduced influx of AAs into PTCs in diabetes and obesity model of Cltrn?/y mice.
Methods Cltrn+/y and Cltrn?/y mice at age 5 weeks were assigned to standard diet and streptozotocin and high-fat diet (STZ-HFD)?treated groups.
Results At age 22?23 weeks, body weight and HbA1c levels significantly increased in STZ-HFD-Cltrn+/y compared with standard diet-Cltrn+/y; however, they were not altered in STZ-HFD-Cltrn?/y compared with STZ-HFD-Cltrn+/y. At age 20 weeks, urinary albumin creatinine ratio was significantly reduced in STZ-HFD-Cltrn?/y compared with STZ-HFD-Cltrn+/y. Under the treatments with STZ and HFD, the Cltrn gene deficiency caused significant increase in urinary concentration of AAs such as Gln, His, Gly, Thr, Tyr, Val, Trp, Phe, Ile, Leu, and Pro. In PTCs in STZ-HFD-Cltrn+/y, the enlarged lysosomes with diameter of 10 ƒÊm or more were associated with reduced autolysosomes, and the formation of giant lysosomes was prominently suppressed in STZ-HFD-Cltrn?/y. Phospho-mTOR and inactive form of phospho-transcription factor EB were reduced in STZ-HFD-Cltrn?/y compared with STZ-HFD-Cltrn+/y.
Conclusions The reduction of AAs influx into PTCs inactivated mTOR, activated transcription factor EB, improved lysosome function, and ameliorated vacuolar formation of PTCs in STZ-HFD-Cltrn?/y mice.
en-copyright=
kn-copyright=
en-aut-name=KanoYuzuki
en-aut-sei=Kano
en-aut-mei=Yuzuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamaguchiSatoshi
en-aut-sei=Yamaguchi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiseKoki
en-aut-sei=Mise
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawakitaChieko
en-aut-sei=Kawakita
en-aut-mei=Chieko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KurookaNaoko
en-aut-sei=Kurooka
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SugawaraRyosuke
en-aut-sei=Sugawara
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AlbuayjanHaya Hamed Hassan
en-aut-sei=Albuayjan
en-aut-mei=Haya Hamed Hassan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakatsukaAtsuko
en-aut-sei=Nakatsuka
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EguchiJun
en-aut-sei=Eguchi
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=diabetes mellitus
kn-keyword=diabetes mellitus
en-keyword=diabetic nephropathy
kn-keyword=diabetic nephropathy
en-keyword=metabolism
kn-keyword=metabolism
en-keyword=obesity
kn-keyword=obesity
en-keyword=tubular epithelium
kn-keyword=tubular epithelium
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=4
article-no=
start-page=585
end-page=593
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=IMPACT OF MACULAR INTRARETINAL HEMORRHAGE AND MACULAR HOLE ON THE VISUAL PROGNOSIS OF SUBMACULAR HEMORRHAGE DUE TO RETINAL ARTERIAL MACROANEURYSM RUPTURE
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To compare the effects of macular intraretinal hemorrhage (IRH) and macular hole (MH) on best-corrected visual acuity (BCVA) after displacement of submacular hemorrhage (SMH) due to retinal arterial macroaneurysm (RAM) rupture.
Methods: This multicenter retrospective study included 48 eyes with SMH due to RAM rupture. Cases underwent vitrectomy to displace SMH and were followed up for 6 months. We classified cases according to the presence of IRH and MH and compared the postoperative BCVA among the groups.
Results: We classified the eyes into IRH(+)MH(+) group (10 eyes), IRH(+)MH(?) group (23 eyes), and IRH(?)MH(?) group (15 eyes). The postoperative BCVA was significantly worse in the IRH(+)MH(+) and IRH(+)MH(?) groups than in the IRH(?)MH(?) group (0.91 } 0.41 in logarithm of the minimal angle of resolution units, Snellen equivalent 20/163, 0.87 } 0.45, 20/148, and 0.18 } 0.21, 20/30, respectively; P < 0.001). The postoperative central retinal thickness was significantly lower in the IRH(+) group (IRH(+)MH(+) and IRH(+)MH(?) groups combined) than in the IRH(?) group (IRH(?)MH(?) group) (121.4 } 70.1 ?m and 174.3 } 32.9 ?m, respectively, P = 0.008). The postoperative external limiting membrane and ellipsoid zone continuities were significantly discontinuous in the IRH(+) group (P < 0.001, P = 0.001, respectively). The multiple linear regression analysis showed that both IRH(+)MH(+) and IRH(+)MH(?) were associated with the postoperative BCVA (regression coefficient, 0.799 and 0.711, respectively; P < 0.001 for both).
Conclusion: Both IRH and MH were poor prognostic indicators in cases with SMH due to RAM rupture.
en-copyright=
kn-copyright=
en-aut-name=DoiShinichiro
en-aut-sei=Doi
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SaitoShoko
en-aut-sei=Saito
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InoueMakoto
en-aut-sei=Inoue
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakuraiToshiya
en-aut-sei=Sakurai
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KoboriAkira
en-aut-sei=Kobori
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HisatomiToshio
en-aut-sei=Hisatomi
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ImaiHisanori
en-aut-sei=Imai
en-aut-mei=Hisanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KuriyamaShoji
en-aut-sei=Kuriyama
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakasuIppei
en-aut-sei=Takasu
en-aut-mei=Ippei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HosokawaMio Morizane
en-aut-sei=Hosokawa
en-aut-mei=Mio Morizane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Kyorin Eye Center, Kyorin University School of Medicine
kn-affil=
affil-num=4
en-affil=Kyorin Eye Center, Kyorin University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Tane Memorial Eye Hospital
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Fukui Red Cross Hospital
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Chikushi Hospital, Fukuoka University
kn-affil=
affil-num=8
en-affil=Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Otowa Eye Center
kn-affil=
affil-num=10
en-affil=Takasu Eye Clinic
kn-affil=
affil-num=11
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Ophthalmology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=macular intraretinal hemorrhage
kn-keyword=macular intraretinal hemorrhage
en-keyword=macular hole
kn-keyword=macular hole
en-keyword=submacular hemorrhage
kn-keyword=submacular hemorrhage
en-keyword=retinal arterial macroaneurysm
kn-keyword=retinal arterial macroaneurysm
en-keyword=fluffy sign
kn-keyword=fluffy sign
en-keyword=tissue plasminogen activator
kn-keyword=tissue plasminogen activator
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=6
article-no=
start-page=838
end-page=845
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202111
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Marginal Sufficient Component Cause Model - An Emerging Causal Model With Merits?
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For decades, the sufficient cause model and the counterfactual model have shaped our understanding of causation in biomedical science, and the link between these two models has enabled us to obtain a deeper understanding of causality. Recently, a new causal model?the marginal sufficient component cause model?was proposed and applied in the context of interaction or mediation. The proponents of this model have emphasized its utility in visualizing the presence of gagonismh (a subtype of mechanistic interaction) in the counterfactual framework, claiming that the concept of agonism has not been clearly defined in causal inference and that agonistic interaction cannot be visualized by the conventional sufficient cause model. In this article, we illustrate that careful scrutiny based on the conventional sufficient cause model yields further insights into the concept of agonism in a more
biologic sense. We primarily focus on the following three points: a) gagonismh defined in the
counterfactual model can be visualized as sets of sufficient causes in the conventional sufficient cause model; b) although the so-called independent competing assumption or no redundancy assumption may seem irrelevant in the marginal sufficient component cause model, researchers do need to assume that potential completion times of relevant marginal sufficient causes differ; c) possibly differing potential completion times of marginal sufficient causes cannot be discerned until their hidden mechanistic paths are considered in the conventional sufficient cause model. In this rapidly progressing field of research, decades after its introduction, the sufficient cause model retains its worth.
en-copyright=
kn-copyright=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoEiji
en-aut-sei=Yamamoto
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Okayama University of Science
kn-affil=
en-keyword=Agonism
kn-keyword=Agonism
en-keyword=Causality
kn-keyword=Causality
en-keyword=Counterfactual model
kn-keyword=Counterfactual model
en-keyword=Mediation
kn-keyword=Mediation
en-keyword=Potential outcomes
kn-keyword=Potential outcomes
en-keyword=Sufficient cause model
kn-keyword=Sufficient cause model
END