start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=1 article-no= start-page=65 end-page=73 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of Automatic Inspection Systems for WRS2020 Plant Disaster Prevention Challenge Using Image Processing en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this article, an approach used for the inspection tasks in the WRS2020 Plant Disaster Prevention Challenge is explained. The tasks were categorized into three categories: reading pressure gauges, inspecting rust on a tank, and inspecting cracks in a tank. For reading pressure gauges, the “you only look once” algorithm was used to focus on a specific pressure gauge and check the pressure gauge range strings on the gauge using optical character recognition algorithm. Finally, a previously learned classifier was used to read the values shown in the gauge. For rust inspection, image processes were used to focus on a target plate that may be rusted for rust detection. In particular, it was necessary to report the rust area and distribution type. Thus, the pixel ratio and grouping of rust were used to count the rust. The approach for crack inspection was similar to that for rust. The target plate was focused on first, and then the length of the crack was measured using image processing. Its width was not measured but was calculated using the crack area and length. For each system developed to approach each task, the results of the preliminary experiment and those of WRS2020 are shown. Finally, the approaches are summarized, and planned future work is discussed. en-copyright= kn-copyright= en-aut-name=ShimizuYuya en-aut-sei=Shimizu en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KamegawaTetsushi en-aut-sei=Kamegawa en-aut-mei=Tetsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangYongdong en-aut-sei=Wang en-aut-mei=Yongdong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TamuraHajime en-aut-sei=Tamura en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TeshimaTaiga en-aut-sei=Teshima en-aut-mei=Taiga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoSota en-aut-sei=Nakano en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TadaYuki en-aut-sei=Tada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakanoDaiki en-aut-sei=Nakano en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SasakiYuichi en-aut-sei=Sasaki en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SekitoTaiga en-aut-sei=Sekito en-aut-mei=Taiga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UtsumiKeisuke en-aut-sei=Utsumi en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NagaoRai en-aut-sei=Nagao en-aut-mei=Rai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SembaMizuki en-aut-sei=Semba en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=Okayama University kn-affil= affil-num=5 en-affil=Okayama University kn-affil= affil-num=6 en-affil=Okayama University kn-affil= affil-num=7 en-affil=Okayama University kn-affil= affil-num=8 en-affil=Okayama University kn-affil= affil-num=9 en-affil=Okayama University kn-affil= affil-num=10 en-affil=Okayama University kn-affil= affil-num=11 en-affil=Okayama University kn-affil= affil-num=12 en-affil=Okayama University kn-affil= affil-num=13 en-affil=Okayama University kn-affil= en-keyword=WRS2020 kn-keyword=WRS2020 en-keyword=image processing kn-keyword=image processing en-keyword=auto inspection kn-keyword=auto inspection en-keyword=YOLO kn-keyword=YOLO en-keyword=OCR kn-keyword=OCR END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=5 article-no= start-page=434 end-page=448 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Vibration Behavior in Low-Frequency Vibration Cutting on Surface Properties of Workpiece en-subtitle= kn-subtitle= en-abstract= kn-abstract= The objective of this study was to determine the effect of vibration behavior on workpiece surface properties in low-frequency vibration cutting. The effects of the parameters that determine vibration behavior on surface roughness were quantitatively evaluated through a comparison with other cutting conditions. Furthermore, by clarifying how the surface properties of the workpiece, such as roughness, roundness, and cross-sectional curves, change depending on the vibration behavior, a search for optimal conditions for low-frequency vibration cutting was conducted. The best surface properties were obtained under the condition of spindle rotation per vibration E=4.5. By using a value close to the minimum possible spindle rotation R=0.5 when the workpiece is retracted, it is expected to be effective in suppressing the variation in surface roughness at each phase angle; this variation is characteristic of low-frequency vibration cutting. Workpieces machined under low-frequency vibration conditions such as (E=2.5, R=1.0) and (E=3.5, R=1.0) were found to form characteristic surface patterns on the workpiece surface owing to a phenomenon in which the depth of the cut to the workpiece changes. en-copyright= kn-copyright= en-aut-name=KodamaHiroyuki en-aut-sei=Kodama en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsunoShota en-aut-sei=Matsuno en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShibataNaoyuki en-aut-sei=Shibata en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhashiKazuhito en-aut-sei=Ohashi en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=Okayama University kn-affil= en-keyword=low-frequency vibration cutting kn-keyword=low-frequency vibration cutting en-keyword=vibration behavior kn-keyword=vibration behavior en-keyword=surface roughness kn-keyword=surface roughness en-keyword=cross-sectional curve kn-keyword=cross-sectional curve END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=1 article-no= start-page=65 end-page=72 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=COVID-19 and Spanish Flu, the Representative Pandemics of the 21st and 20th Centuries en-subtitle= kn-subtitle= en-abstract= kn-abstract=We are still in the early stage of 21st century and the two pandemics Spanish flu and COVID-19 are the presentative pandemics in 20th and 21st centuries, respectively. The Spanish flu pandemic raged from 1918 to 1920, just after World War I. It was the first influenza pandemic worldwide; since then, humankind has experienced many such pandemics. Spanish flu is caused by a virus. However, since virology was not well established at that time, the new clinical system was needed to cope with “unknown pathogen”; during the pandemic, high infection rates were recorded, but our predecessors managed to somehow tackle the situation. With respect to the ongoing COVID-19 pandemic, both the virus and its genome were clarified quickly. Nonetheless, it has turned out to be quite an intriguing infectious disease, with the high rates in developed countries, such as the US and those in Europe, which have aging societies, and low rates in developing countries such as those in Africa, where the population is largely young. Here, I compared and discuss the two pandemics, COVID-19 and Spanish flu. en-copyright= kn-copyright= en-aut-name=ShinodaSumio en-aut-sei=Shinoda en-aut-mei=Sumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Collaborative Research Center for Infectious Diseases in India, Okayama University kn-affil= en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=SARS-CoV-2 kn-keyword=SARS-CoV-2 en-keyword=vaccine kn-keyword=vaccine en-keyword=Spanish flu kn-keyword=Spanish flu en-keyword=influenza kn-keyword=influenza END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue=2 article-no= start-page=373 end-page=381 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220420 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of a Spiral Shaped Soft Holding Actuator Using Extension Type Flexible Pneumatic Actuators en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, several pneumatic soft actuators have been applied to wearable and welfare devices to provide nursing care and physical support for the elderly and disabled. In this study, as a wearable soft actuator for holding body, a spiral shaped soft holding actuator that can wrap a user according to their body shape was proposed and tested. The construction and operating principle of the tested soft actuator with circumferential restraint mechanism using three extension type flexible pneumatic actuators (EFPAs) has been discussed. As a result, it was found that the tested actuator could hold elbows and knees when the joint is in motion. An analytical model of the spiral actuator was also proposed to achieve an optimal design. It can be confirmed that the proposed analytical model can predict the shape of the actuator when various EFPAs are pressurized. en-copyright= kn-copyright= en-aut-name=ShimookaSo en-aut-sei=Shimooka en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkagiTetsuya en-aut-sei=Akagi en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DohtaShujiro en-aut-sei=Dohta en-aut-mei=Shujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShinoharaTakashi en-aut-sei=Shinohara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiTakumi en-aut-sei=Kobayashi en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Intelligent Mechanical Engineering, Okayama University of Science kn-affil= affil-num=3 en-affil=Department of Intelligent Mechanical Engineering, Okayama University of Science kn-affil= affil-num=4 en-affil=Design and Manufacturing Center, Organization for Research Development and Outreach, Okayama University of Science kn-affil= affil-num=5 en-affil=Department of Intelligent Mechanical Engineering, Okayama University of Science kn-affil= en-keyword=spiral shaped soft holding actuator kn-keyword=spiral shaped soft holding actuator en-keyword=extension type flexible pneumatic actuator kn-keyword=extension type flexible pneumatic actuator en-keyword=circumference restraint mechanism kn-keyword=circumference restraint mechanism en-keyword=analytical model kn-keyword=analytical model END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=1 article-no= start-page=21 end-page=30 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Questionnaire Survey on COVID-19 Vaccination at Okayama University in Japan: Factors Promoting Vaccination Among Young Adults en-subtitle= kn-subtitle= en-abstract= kn-abstract=COVID-19 has been prevalent worldwide since 2019. Increasing COVID-19 vaccination coverage is an important measure to combat the disease. An online survey was conducted with university students and personnel who were vaccinated against COVID-19 at a mass vaccination event to examine the factors promoting vaccination among young adults. The online survey was conducted with persons vaccinated at Okayama University from June 5 to September 27, 2021. Although the number of those who had fever >37.5°C increased after the second vaccination compared to the first, the vaccinated persons got more satisfied after the second shot. en-copyright= kn-copyright= en-aut-name=HiguchiChigusa en-aut-sei=Higuchi en-aut-mei=Chigusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwasakiYoshiaki en-aut-sei=Iwasaki en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamazakiJunichiro en-aut-sei=Yamazaki en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NasuYasutomo en-aut-sei=Nasu en-aut-mei=Yasutomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MakinoHirofumi en-aut-sei=Makino en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Okayama University Health Service Center kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Okayama University Health Service Center kn-affil= affil-num=4 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Okayama University kn-affil= affil-num=6 en-affil=Okayama University kn-affil= affil-num=7 en-affil=Okayama University kn-affil= en-keyword=COVID-19 vaccine kn-keyword=COVID-19 vaccine en-keyword=vaccine hesitancy kn-keyword=vaccine hesitancy en-keyword=young adults kn-keyword=young adults en-keyword=information literacy kn-keyword=information literacy en-keyword=satisfaction kn-keyword=satisfaction END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=1 article-no= start-page=7 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of and Immune Responses to SARS-CoV-2 mRNA Vaccines and Their Mechanisms en-subtitle= kn-subtitle= en-abstract= kn-abstract=Following the online publication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome in January 2020, two lipid nanoparticle-encapsulated mRNA vaccines, BNT162b2 and mRNA-1273, were rapidly developed and are now being used worldwide to prevent coronavirus disease 2019 (COVID-19). The mRNA of both vaccines encodes the full-length spike protein of SARS-CoV-2, which binds to the host cell receptor angiotensin-converting enzyme 2 and is believed to mediate virus entry into cells. After intramuscular injection of the vaccine, the spike protein is produced in the cells. Both humoral and cellular immune responses to the spike protein are elicited for protection against COVID-19. The efficacy of the two mRNA vaccines against COVID-19 with wild-type SARS-CoV-2 is more than 90% and is slightly decreased with the Delta variant, which is currently the predominant variant in many countries. In this review, the effectiveness of and immune responses to COVID-19 mRNA vaccines and their mechanisms are summarized and discussed. Potential waning immunity and an additional dose of COVID-19 mRNA vaccines are also discussed. en-copyright= kn-copyright= en-aut-name=GohdaEiichi en-aut-sei=Gohda en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Okayama University kn-affil= en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=SARS-CoV-2 kn-keyword=SARS-CoV-2 en-keyword=mRNA vaccine kn-keyword=mRNA vaccine en-keyword=immune response kn-keyword=immune response END