このエントリーをはてなブックマークに追加
ID 61124
FullText URL
fulltext.pdf 1.24 MB
Author
Wiggenhauser, Matthias Univ. Grenoble Alpes
Aucour, Anne-Marie Université de Lyon
Bureau, Sarah Univ. Grenoble Alpes
Campillo, Sylvain Univ. Grenoble Alpes
Telouk, Philippe Université de Lyon
Romani, Marco Centro Ricerche sul Riso, Ente Nazionale Risi, Strada per Ceretto
Ma, Jian Feng nstitute of Plant Science and Resources, Okayama University ORCID Kaken ID publons researchmap
Landrot, Gautier Synchrotron SOLEIL, L’Ormes des Merisiers
Sarret, Géraldine Univ. Grenoble Alpes
Abstract
Initial Cadmium (Cd) isotope fractionation studies in cereals ascribed the retention of Cd and its light isotopes to the binding of Cd to sulfur (S). To better understand the relation of Cd binding to S and Cd isotope fractionation in soils and plants, we combined isotope and XAS speciation analyses in soil-rice systems that were rich in Cd and S. The systems included distinct water management (flooded vs. non-flooded) and rice accessions with (excluder) and without (non-excluder) functional membrane transporter OsHMA3 that transports Cd into root vacuoles. Initially, 13% of Cd in the soil was bound to S. Through soil flooding, the proportion of Cd bound to S increased to 100%. Soil flooding enriched the rice plants towards heavy isotopes (δ114/110Cd = −0.37 to −0.39%) compared to the plants that grew on non-flooded soils (δ114/110Cd = −0.45 to −0.56%) suggesting that preferentially light Cd isotopes precipitated into Cd sulfides. Isotope compositions in CaCl2 root extracts indicated that the root surface contributed to the isotope shift between soil and plant during soil flooding. In rice roots, Cd was fully bound to S in all treatments. The roots in the excluder rice strongly retained Cd and its lights isotopes while heavy isotopes were transported to the shoots (Δ114/110Cdshoot-root 0.16–0.19‰). The non-excluder rice accumulated Cd in shoots and the apparent difference in isotope composition between roots and shoots was smaller than that of the excluder rice (Δ114/110Cdshoot-root −0.02 to 0.08‰). We ascribe the retention of light Cd isotopes in the roots of the excluder rice to the membrane transport of Cd by OsHMA3 and/or chelating Cd–S complexes in the vacuole. Cd–S was the major binding form in flooded soils and rice roots and partly contributed to the immobilization of Cd and its light isotopes in soil-rice systems.
Keywords
Cadmium
Rice
Isotopes
Speciation
Membrane transporter
Vacuole
Sulfur
Redox
Published Date
2020-11-09
Publication Title
Environmental Pollution
Volume
volume269
Publisher
Elsevier
Start Page
115934
ISSN
0269-7491
NCID
AA10664567
Content Type
Journal Article
language
English
OAI-PMH Set
岡山大学
Copyright Holders
© 2020 The Author(s).
File Version
publisher
DOI
Related Url
isVersionOf https://doi.org/10.1016/j.envpol.2020.115934
License
http://creativecommons.org/licenses/by-nc-nd/4.0/