Author Oda, Susumu| Yoshida, Ken-ichi|
Published Date 1996-01
Publication Title Mathematical Journal of Okayama University
Volume volume38
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33092
Author Kiyohara, Kazuyoshi|
Published Date 2005-01
Publication Title Mathematical Journal of Okayama University
Volume volume47
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33595
FullText URL mjou_060_155_164.pdf
Author Shimizu, Kenichi|
Abstract We study a class of integers called SP numbers (Sum Prime numbers). An SP number is by de nition a positive integer d that gives rise to a prime number (a + b)=gcd(4; 1 + d) from every factorization d = ab. We also discuss properties of SP numbers in relations with arithmetic of imaginary quadratic elds (least split primes, exponents of ideal class groups). Further we point out that special cases of SP numbers provide the problems of distribution of prime numbers (twin primes, Sophi-Germain primes, quadratic progressions). Finally, we consider the problem whether there exist in nitely many SP numbers.
Keywords SP number prime number imaginary quadratic fi eld
Published Date 2018-01
Publication Title Mathematical Journal of Okayama University
Volume volume60
Issue issue1
Publisher Department of Mathematics, Faculty of Science, Okayama University
Start Page 155
End Page 164
ISSN 0030-1566
NCID AA00723502
Content Type Journal Article
Official Url http://www.math.okayama-u.ac.jp/mjou/|
language 英語
Copyright Holders Copyright©2018 by the Editorial Board of Mathematical Journal of Okayama University
Author Otsuki, Tominosuke|
Published Date 1955-10
Publication Title Mathematical Journal of Okayama University
Volume volume5
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33571
Author Kiuchi, Isao|
Published Date 1989-01
Publication Title Mathematical Journal of Okayama University
Volume volume31
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33245
Author Tamura, Hideo|
Published Date 2016-01
Publication Title Mathematical Journal of Okayama University
Volume volume58
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/53916
Author Masuda, Katsuhiko|
Published Date 1963-12
Publication Title Mathematical Journal of Okayama University
Volume volume12
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33515
Author Ikehata, Shûichi|
Published Date 1981-06
Publication Title Mathematical Journal of Okayama University
Volume volume23
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33870
Author Ikehata, Shûichi|
Published Date 1984-01
Publication Title Mathematical Journal of Okayama University
Volume volume26
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33341
Author Hoshino, Kenji| Nakamura, Hiroaki|
Published Date 2010-01
Publication Title Mathematical Journal of Okayama University
Volume volume52
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33500
Author Tomita, Minoru|
Published Date 1955-03
Publication Title Mathematical Journal of Okayama University
Volume volume4
Issue issue2
Content Type Journal Article
JaLCDOI 10.18926/mjou/33753
Author Koseki, Ken'iti|
Published Date 1960-10
Publication Title Mathematical Journal of Okayama University
Volume volume10
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33089
Author Komatsu, Toru|
Published Date 2005-01
Publication Title Mathematical Journal of Okayama University
Volume volume47
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33604
Author Koseki, Ken'iti|
Published Date 1960-03
Publication Title Mathematical Journal of Okayama University
Volume volume9
Issue issue2
Content Type Journal Article
JaLCDOI 10.18926/mjou/33392
FullText URL mjou_061_019_035.pdf
Author Cahen, Benjamin|
Abstract We introduce a Schr¨odinger model for the generic representations of a Heisenberg motion group and we construct adapted Weyl correspondences for these representations by adapting the method introduced in [ B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177-190].
Keywords Weyl correspondence Berezin quantization Heisenberg motion group Schr¨odinger representation Bargmann-Fock representation Segal-Bargmann transform unitary representation coadjoint orbit
Published Date 2019-01
Publication Title Mathematical Journal of Okayama University
Volume volume61
Issue issue1
Publisher Department of Mathematics, Faculty of Science, Okayama University
Start Page 19
End Page 35
ISSN 0030-1566
NCID AA00723502
Content Type Journal Article
language 英語
Copyright Holders Copyright©2019 by the Editorial Board of Mathematical Journal of Okayama University
Author Koseki, Ken'iti|
Published Date 1967-01
Publication Title Mathematical Journal of Okayama University
Volume volume13
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33471
Author Nakajima, Atsushi|
Published Date 1991-01
Publication Title Mathematical Journal of Okayama University
Volume volume33
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33709
Author Kakehi, Tomoyuki| Oshita, Yoshihito|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54723
Author Fujii, Michikazu|
Published Date 1988-01
Publication Title Mathematical Journal of Okayama University
Volume volume30
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33551
Author Sugata, Kei|
Published Date 2006-01
Publication Title Mathematical Journal of Okayama University
Volume volume48
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/33346