start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=1 article-no= start-page=187 end-page=190 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Symbolic powers of monomial ideals en-subtitle= kn-subtitle= en-abstract= kn-abstract=Let K be a field and consider the standard grading on A = K[X1, ... ,Xd]. Let I, J be monomial ideals in A. Let In(J) = (In : J) be the nth symbolic power of I with respect to J. It is easy to see that the function fI J (n) = e0(In(J)/In) is of quasi-polynomial type, say of period g and degree c. For n ≫ 0 say

fIJ (n) = ac(n)nc + ac−1(n)nc−1 + lower terms,

Let R be a ring and S a u.p.-monoid. Assume that there is a monoid homomorphism α : S → Aut (R). Suppose that α is weakly　rigid and lR(Ra) is pure as a left ideal of R for every element a ∈ R. Then the skew monoid ring R*S induced by α has the same triangulating dimension as R. Furthermore, if R is a PWP ring, then so is R*S.

en-copyright= kn-copyright= en-aut-name=ZhongkuiLiu en-aut-sei=Zhongkui en-aut-mei=Liu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=XiaoyanYang en-aut-sei=Xiaoyan en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Northwest Normal University affil-num=2 en-affil= kn-affil=Department of Mathematics, Northwest Normal University en-keyword=generalized triangular matrix representation kn-keyword=generalized triangular matrix representation en-keyword=quasi-Baer ring kn-keyword=quasi-Baer ring en-keyword=PWP ring kn-keyword=PWP ring en-keyword=triangulating dimension kn-keyword=triangulating dimension END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=65 end-page=75 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON FUCHSIAN GROUPS WITH THE SAME SET OF FIXED POINTS OF PARABOLIC ELEMENTS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

There is an open question whether Fuchsian groups having the same set of the axes of hyperbolic elements are commensurable or not. In this note, we consider an analogous question where the axes are replaced with the fixed points of parabolic elements.

en-copyright= kn-copyright= en-aut-name=MaedaTae en-aut-sei=Maeda en-aut-mei=Tae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Institute of Mathematics and Computer Science, Tsuda College en-keyword=Fuchsian group kn-keyword=Fuchsian group en-keyword=arithmetic kn-keyword=arithmetic en-keyword=commensurable kn-keyword=commensurable END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=123 end-page=131 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SOME PROPERTIES OF EF-EXTENDING RINGS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In [16], Thuyet and Wisbauer considered the extending property for the class of (essentially) finitely generated submodules. A module M is called ef-extending if every closed submodule which contains essentially a finitely generated submodule is a direct summand of M. A ring R is called right ef-extending if RR is an ef-extending module. We show that a ring R is right ef-extending and the R-dual of every simple left R-module is simple if and only if R is semiperfect right continuous with Sl = Sl ≤e RR. We also prove that a ring R is a QF-ring if and only if R is left Kasch and RR(ω) is ef-extending if and only if R is right AGP-injective satisfying DCC on right (or left) annihilators and (R ⊕ R)R is ef-extending.

en-copyright= kn-copyright= en-aut-name=QuynhTruong Cong en-aut-sei=Quynh en-aut-mei=Truong Cong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ThuyetLe Van en-aut-sei=Thuyet en-aut-mei=Le Van kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Danang University affil-num=2 en-affil= kn-affil=Department of Mathematics, Hue University en-keyword=ef-extending rings kn-keyword=ef-extending rings en-keyword=extending (or CS) rings kn-keyword=extending (or CS) rings en-keyword=PF rings kn-keyword=PF rings en-keyword=QF rings kn-keyword=QF rings END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=77 end-page=87 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SERIALLY COALESCENT CLASSES OF LIE ALGEBRAS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We introduce the concept of serially coalescent classes of Lie algebras corresponding to those of coalescent classes and ascendantly coalescent classes. We show that the class of finite-dimensional and nilpotent, the class of finite-dimensional and the class of finite-dimensional and soluble Lie algebras, are serially coalescent classes for locally finite Lie algebras over any field of characteristic zero. We also introduce the concept of locally serially coalescent classes of Lie algebras and find some locally serially coalescent classes for locally finite Lie algebras.

en-copyright= kn-copyright= en-aut-name=HondaMasanobu en-aut-sei=Honda en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakamotoTakanori en-aut-sei=Sakamoto en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Faculty of Pharmaceutidal Sciences, Niigata University of Pharmacy and Applied Life Sciences affil-num=2 en-affil= kn-affil=Department of Mathematics, Fukuoka University of Education en-keyword=Lie algebra kn-keyword=Lie algebra en-keyword=serial subalgebra kn-keyword=serial subalgebra en-keyword=coalescent class kn-keyword=coalescent class END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=147 end-page=158 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SOME APPLICATIONS OF DIFFERENTIAL SUBORDINATION FOR A GENERAL CLASS OF MULTIVALENTLY ANALYTIC FUNCTIONS INVOLVING A CONVOLUTION STRUCTURE en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In the present paper we investigate a class of multivalently analytic functions which essentially involves a Hadamard product of two multivalent functions. We apply the techniques of differential subordination and derive some useful characteristics of this function class. The applications to generalized hypergeometric functions and various consequences of the main results exhibiting also relevant connections with some of the known (and new) results (including also an improved version of a known result) are also pointed out.

en-copyright= kn-copyright= en-aut-name=PrajapatJ. K. en-aut-sei=Prajapat en-aut-mei=J. K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RainaR. K. en-aut-sei=Raina en-aut-mei=R. K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Central University of Rajasthan affil-num=2 en-affil= kn-affil= en-keyword=Multivalently analytic functions kn-keyword=Multivalently analytic functions en-keyword=Hadamard product (or convolution) kn-keyword=Hadamard product (or convolution) en-keyword=Differential subordination kn-keyword=Differential subordination en-keyword=Hypergeometric functions kn-keyword=Hypergeometric functions en-keyword=Linear operators kn-keyword=Linear operators en-keyword=Wright’s generalized hypergeometric function kn-keyword=Wright’s generalized hypergeometric function END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=199 end-page=200 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=CORRECTION: RESULTS ON PRIME NEAR-RINGS WITH (σ,τ)-DERIVATION en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=GölbaşiÖznur en-aut-sei=Gölbaşi en-aut-mei=Öznur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AydinNeşet en-aut-sei=Aydin en-aut-mei=Neşet kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Cumhuriyet University affil-num=2 en-affil= kn-affil=Çanakkale 18 Mart University en-keyword=Prime Near-Ring kn-keyword=Prime Near-Ring en-keyword=Derivation kn-keyword=Derivation en-keyword=(σ,τ)-Derivation kn-keyword=(σ,τ)-Derivation END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=1 end-page=28 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ARITHMETIC ELLIPTIC CURVES IN GENERAL POSITION en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We combine various well-known techniques from the theory of heights, the theory of “noncritical Belyi maps”, and classical analytic number theory to conclude that the “ABC Conjecture”, or, equivalently, the so-called “Effective Mordell Conjecture”, holds for arbitrary rational points of the projective line minus three points if and only if it holds for rational points which are in “sufficiently general position” in the sense that the following properties are satisfied: (a) the rational point under consideration is bounded away from the three points at infinity at a given finite set of primes; (b) the Galois action on the l-power torsion points of the corresponding elliptic curve determines a surjection onto GL2(Zl), for some prime number l which is roughly of the order of the sum of the height of the elliptic curve and the logarithm of the discriminant of the minimal field of definition of the elliptic curve, but does not divide the conductor of the elliptic curve, the rational primes that are absolutely ramified in the minimal field of definition of the elliptic curve, or the local heights [i.e., the orders of the q-parameter at primes of [bad] multiplicative reduction] of the elliptic curve.

en-copyright= kn-copyright= en-aut-name=MochizukiShinichi en-aut-sei=Mochizuki en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Research Institute for Mathematical Sciences Kyoto University en-keyword=elliptic curve kn-keyword=elliptic curve en-keyword=number field kn-keyword=number field en-keyword=Belyi map kn-keyword=Belyi map en-keyword=ABC Conjecture kn-keyword=ABC Conjecture en-keyword=Mordell Conjecture kn-keyword=Mordell Conjecture en-keyword=Vojta Conjecture kn-keyword=Vojta Conjecture END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=143 end-page=146 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON SELF MAPS OF HPn FOR n = 4 AND 5 en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We determine the cardinality of the set of the homotopy classes of self maps of HP4 with degree 0. And we shall determine the nilpotency of HP5.

en-copyright= kn-copyright= en-aut-name=KatōgiKazuyoshi en-aut-sei=Katōgi en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=29 end-page=43 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=TRADING DEGREE FOR DIMENSION IN THE SECTION CONJECTURE: THE NON-ABELIAN SHAPIRO LEMMA en-subtitle= kn-subtitle= en-abstract= kn-abstract=

This note aims at providing evidence for the section conjecture of anabelian geometry by establishing its behaviour under Weil restriction of scalars. In particular, the étale fundamental group of the Weil restriction is determined by means of a Shapiro Lemma for nonabelian group cohomology.

en-copyright= kn-copyright= en-aut-name=StixJakob en-aut-sei=Stix en-aut-mei=Jakob kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Mathematisches Institut, Universität Heidelberg en-keyword=Section Conjecture kn-keyword=Section Conjecture en-keyword=Rational points kn-keyword=Rational points en-keyword=Anabelian Geometry kn-keyword=Anabelian Geometry en-keyword=Non-abelian Shapiro Lemma kn-keyword=Non-abelian Shapiro Lemma END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=111 end-page=122 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON GENERALIZED EPI-PROJECTIVE MODULES en-subtitle= kn-subtitle= en-abstract= kn-abstract=

A module M is said to be generalized N-projective (or N-dual ojective) if, for any epimorphism g : N → X and any homomorphism f : M → X, there exist decompositions M = M1 ⊕ M2, N = N1 ⊕ N2, a homomorphism h1 : M1 → N1 and an epimorphism h2 : N2 → M2 such that g ◦ h1 = f|M1 and f ◦ h2 = g|N2 . This relative projectivity is very useful for the study on direct sums of lifting modules (cf. [5], [7]). In the definition, it should be noted that we may often consider the case when f to be an epimorphism. By this reason, in this paper we define relative (strongly) generalized epi-projective modules and show several results on this generalized epi-projectivity. We apply our results to the known problem when finite direct sums M1⊕· · ·⊕Mn of lifting modules Mi (i = 1, · · · , n) is lifting.

en-copyright= kn-copyright= en-aut-name=TütüncüDerya Keskin en-aut-sei=Tütüncü en-aut-mei=Derya Keskin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuratomiYosuke en-aut-sei=Kuratomi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Hacettepe University affil-num=2 en-affil= kn-affil=Kitakyushu National College of Technology en-keyword=(strongly) generalized epi-projective module kn-keyword=(strongly) generalized epi-projective module en-keyword=lifting module kn-keyword=lifting module END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=179 end-page=198 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=INFINITE MATRICES ASSOCIATED WITH POWER SERIES AND APPLICATION TO OPTIMIZATION AND MATRIX TRANSFORMATIONS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this paper we first recall some properties of triangle Toeplitz matrices of the Banach algebra Sr associated with power series. Then for boolean Toeplitz matrices M we explicitly calculate the product MN that gives the number of ways with N arcs associated with M. We compute the matrix BN (i, j), where B (i, j) is an infinite matrix whose the nonzero entries are on the diagonals m − n = i or m − n = j. Next among other things we consider the infinite boolean matrix B+ that have infinitely many diagonals with nonzero entries and we explicitly calculate (B+)N. Finally we give necessary and sufficient conditions for an infinite matrix M to map c (BN (i, 0)) to c.

en-copyright= kn-copyright= en-aut-name=MalafosseBruno de en-aut-sei=Malafosse en-aut-mei=Bruno de kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YassineAdnan en-aut-sei=Yassine en-aut-mei=Adnan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil= kn-affil=LMAH Université du Havre en-keyword=Matrix transformations kn-keyword=Matrix transformations en-keyword=Banach algebra kn-keyword=Banach algebra en-keyword=boolean infinite matrix kn-keyword=boolean infinite matrix en-keyword=optimization kn-keyword=optimization END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=45 end-page=60 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=THE BELYI FUNCTIONS AND DESSIN D’ENFANTS CORRESPONDING TO THE NON-NORMAL INCLUSIONS OF TRIANGLE GROUPS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We present the Belyi functions, dessin d’enfants, and monodromy permutations corresponding to the non-normal inclusions of triangle groups.

en-copyright= kn-copyright= en-aut-name=HoshinoKenji en-aut-sei=Hoshino en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Faculty of Science, Okayama University END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=133 end-page=142 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=EXPONENTIAL GENERALIZED DISTRIBUTIONS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this paper we generalize the Fourier transform from the space of tempered distributions to a bigger space called exponential generalized distributions. For that purpose we replace the Schwartz space S by a smaller space X0 of smooth functions such that, among other properties, decay at infinity faster than any exponential. The construction of X0 is such that this space of test functions is closed for derivatives, for Fourier transform and for translations. We equip X0 with an appropriate locally convex topology and we study it’s dual X'0; we call X′0 the space of exponential generalized distributions. The space X′0 contains all the Schwartz tempered distributions, is closed for derivatives, and both, translations and Fourier transform, are vector and topological automorphisms in X′0. As non trivial examples of elements in X′0, we show that some multipole series appearing in physics are convergent in this space.

en-copyright= kn-copyright= en-aut-name=GordonM. en-aut-sei=Gordon en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LouraL. en-aut-sei=Loura en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Departamento de Matemática e Engenharias, Universidade da Madeira affil-num=2 en-affil= kn-affil=Departamento de Engenharia Electrotécnica e Automação Secção de Matemática en-keyword=Distribution kn-keyword=Distribution en-keyword=Ultradistribution kn-keyword=Ultradistribution en-keyword=Multipole series kn-keyword=Multipole series en-keyword=Fourier transform kn-keyword=Fourier transform END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=61 end-page=63 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=BELYI FUNCTION ON X0(49) OF DEGREE 7 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HoshinoKenji en-aut-sei=Hoshino en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraHiroaki en-aut-sei=Nakamura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Mathematics, Faculty of Science, Okayama University END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=133 end-page=142 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A GENERAL INEQUALITY FOR DOUBLY WARPED PRODUCT SUBMANIFOLDS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this paper, we consider doubly warped product manifolds and we establish a general inequality for doubly warped products isometrically immersed in arbitrary Riemannian manifolds. Some aplications are derived.

en-copyright= kn-copyright= en-aut-name=OlteanuAndreea en-aut-sei=Olteanu en-aut-mei=Andreea kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Faculty of Mathematics and Computer Science, University of Bucharest en-keyword=Doubly warped product kn-keyword=Doubly warped product en-keyword=Laplacian kn-keyword=Laplacian en-keyword=mean curvature kn-keyword=mean curvature en-keyword=generalized Sasakian space form kn-keyword=generalized Sasakian space form en-keyword=Sasakian space form kn-keyword=Sasakian space form en-keyword=C-totally real submanifold kn-keyword=C-totally real submanifold END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=89 end-page=95 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A NOTE ON QUASI-ARMENDARIZ RINGS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

A ring R is called a quasi-Armendariz ring if whenever elements α = a0+a1x+a2x2+· · ·+anxn, β = b0+b1x+b2x2+· · ·+bmxm ∈ R[x] satisfy αR[x]β = 0, then aiRbj = 0 for each i, j. In this note we consider quasi-Armendariz property of a special subring of the infinite upper triangular matrix ring over a ring R.

en-copyright= kn-copyright= en-aut-name=ZhongkuiLiu en-aut-sei=Zhongkui en-aut-mei=Liu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WenhuiZhang en-aut-sei=Wenhui en-aut-mei=Zhang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Northwest Normal University affil-num=2 en-affil= kn-affil=Department of Mathematics, Northwest Normal University en-keyword=Armendariz ring kn-keyword=Armendariz ring en-keyword=quasi-Armendariz ring kn-keyword=quasi-Armendariz ring en-keyword=left APP-ring kn-keyword=left APP-ring END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=101 end-page=109 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A NOTE ON ALMOST INJECTIVE MODULES en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We give some new properties of almost injective modules and their endomorphism rings, and also provide conditions as to when a direct sum of almost injective (or CS) modules is again almost injective (or CS) in some special cases..

The spaces BS, BS(t), CSp, CSbp, CSr and BV of double sequences have recently been studied by Altay and Ba¸sar [J. Math. Anal. Appl. 309(1)(2005), 70–90]. In this work, following Altay and Ba¸sar [1], we introduce the Banach space Lq of double sequences corresponding to the well-known space ℓq of single sequences and examine some properties of the space Lq. Furthermore, we determine the β(υ)-dual of the space and establish that the α- and γ-duals of the space Lq coincide with the β(υ)-dual; where 1 ≤ q < ∞ and υ 2 {p, bp, r}.

en-copyright= kn-copyright= en-aut-name=BasarFeyzi en-aut-sei=Basar en-aut-mei=Feyzi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SeverYurdal en-aut-sei=Sever en-aut-mei=Yurdal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Fatih Üniversitesi, Fen- Edebiyat Fakültesi, Matematik Bölümü affil-num=2 en-affil= kn-affil=Fen Lisesi Matematik Ögretmeni END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=121 end-page=131 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SOME IDENTITIES RELATING MOCK THETA FUNCTIONS WHICH ARE DERIVED FROM DENOMINATOR IDENTITY en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We show that there exists a new connection between identities satisfied by mock theta functions and special case of denominator identities for affine Lie superalgebras.

en-copyright= kn-copyright= en-aut-name=SanadaYukari en-aut-sei=Sanada en-aut-mei=Yukari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Tsuda College END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=179 end-page=192 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=COMMUTATIVE GROUP ALGEBRAS OF ABELIAN GROUPS WITH UNCOUNTABLE POWERS AND LENGTHS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Let F be a field of char(F) = p > 0 and G an abelian group with p-component Gp of cardinality at most ℵ1 and length at most ω1. The main affirmation on the Direct Factor Problem is that S(FG)/Gp is totally projective whenever F is perfect. This extends results due to May (Contemp. Math., 1989) and Hill-Ullery (Proc. Amer. Math. Soc., 1990). As applications to the Isomorphism Problem, suppose that for any group H the F-isomorphism FH ≅ FG holds. Then if Gp is totally projective, Hp ≅ Gp. This partially solves a problem posed by May (Proc. Amer. Math. Soc., 1988). In particular, H ≅ G provided G is p-mixed of torsion-free rank one so that Gp is totally projective. The same isomorphism H ≅ G is fulfilled when G is p-local algebraically compact too. Besides if Fp is the simple field with p-elements and Gp FpH is a coproduct of torsion complete groups, FpH ≅ FpG as Fp Fp-algebras implies Hp ≅ Gp. This expands the central theorem obtained by us in (Rend. Sem. Mat. Univ. Padova, 1999) and partly settles the generalized version of a question raised by May (Proc. Amer. Math. Soc.,1979) as well. As a consequence, when Gp is torsion complete and G is p-mixed of torsion-free rank one, H ≅ G. Moreover, if G is a coproduct of p-local algebraically compact groups then H ≅ G. The last attainment enlarges an assertion of Beers-Richman-Walker (Rend. Sem. Mat. Univ. Padova, 1983). Each of the reported achievements strengthens our statements in this direction (Southeast Asian Bull. Math., 2001-2002) and also continues own studies in this aspect (Hokkaido Math. J., 2000) and (Kyungpook Math. J., 2004).

en-copyright= kn-copyright= en-aut-name=DanchevPeter en-aut-sei=Danchev en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Mathematical Department, Plovdiv State University END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=83 end-page=100 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=NAKAYAMA ISOMORPHISMS FOR THE MAXIMAL QUOTIENT RING OF A LEFT HARADA RING en-subtitle= kn-subtitle= en-abstract= kn-abstract=

From several results of Kado and Oshiro, we see that if the maximal quotient ring of a given left Harada ring R of type (*) has a Nakayama automorphism, then R has a Nakayama isomorphism. This result poses a question whether if the maximal quotient ring of a given left Harada ring R has a Nakayama isomorphism, then R has a Nakayama isomorphism. In this paper, we shall show that a basic ring of the maximal quotient ring of a given Harada ring has a Nakayama isomorphism if and only if its Harada ring has a Nakayama isomorphism.

en-copyright= kn-copyright= en-aut-name=NonomuraKazuaki en-aut-sei=Nonomura en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of General Science Tsuruoka National College of Technology END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=1 end-page=26 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON THE FUNDAMENTAL GROUPS OF LOG CONFIGURATION SCHEMES en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In the present paper, we study the cuspidalization problem for the fundamental group of a curve by means of the log geometry of the log configuration scheme, which is a natural compactification of the usual configuration space of the curve. The goal of this paper is to show that the fundamental group of the configuration space is generated by the images from morphisms from a group extension of the fundamental groups of the configuration spaces of lower dimension, and that the fundamental group of the configuration space can be partially reconstructed from a collection of data concerning the fundamental groups of the configuration spaces of lower dimension.

en-copyright= kn-copyright= en-aut-name=HoshiYuichiro en-aut-sei=Hoshi en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Research Institute for Mathematical Sciences Kyoto University END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=27 end-page=46 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=RADIAL HEAT OPERATORS ON JACOBI-LIKE FORMS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We consider a differential operator DX λ associated to an integer λ acting on the space of formal power series, which may be regarded as the heat operator with respect to the radial coordinate in the 2λ-dimensional space for λ > 0. We show that DX λ carries Jacobilike forms of weight λ to ones of weight λ+2 and obtain the formula for the m-fold composite (DX λ )[m] of such operators. We then determine the corresponding operators on modular series and as well as on automorphic pseudodifferential operators.

en-copyright= kn-copyright= en-aut-name=LEEMin Ho en-aut-sei=LEE en-aut-mei=Min Ho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, University of Northern Iowa END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=133 end-page=148 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON THE JORDAN DECOMPOSITION OF TENSORED MATRICES OF JORDAN CANONICAL FORMS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Let κ be an algebraically closed field of characteristic p ≥ 0. We shall consider the problem of finding out a Jordan canonical form of J(α , s)⊗κJ(β , t), where J(α, s) means the Jordan block with eigenvalue α ∈ κ and size s.

en-copyright= kn-copyright= en-aut-name=IimaKei-ichiro en-aut-sei=Iima en-aut-mei=Kei-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwamatsuRyo en-aut-sei=Iwamatsu en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=47 end-page=69 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON ι-ADIC ITERATED INTEGRALS, IV -Ramification and generators of Galois actions on fundamental groups and torsors of paths en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We are studying Galois representations on fundamental groups and on torsors of paths of a projective line minus a finite number of points. We reprove by explicit calculations some known results about ramification properties of such representations. We calculate the number of generators in degree 1 of the images of these Galois representations. We show also that the number of linearly independent generators in degree greater than 1 is equal &franc12 φ(n) for the action of GQ(μ5) on the fundamental group of P1¯Q \ ({0,∞} ∪ μn). Finally we show that the graded Lie algebra associated with the action of GQ(μ5) on the fundamental group of P1¯Q \ ({0,∞} ∪ μ5) is not free.

en-copyright= kn-copyright= en-aut-name=WojtkowiakZdzislaw en-aut-sei=Wojtkowiak en-aut-mei=Zdzislaw kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Université des Sciences et Technologies de Lille END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=159 end-page=176 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LOCALLY AND COLOCALLY FACTORABLE BANACH SPACES en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We generalize the concept of locality (resp. colocality) to the concept of locally factorable (resp. colocally factorable) such that Theorem 2 of [2] and Theorems 1.7 and 1.16 of [11] are still valid for the new concepts. In addition we show that locally factorable and colocally factorable are inherited by complemented subspace, then we present some examples and establish relations between locally factorable and colocally factorable. We prove some relations between being finitely (resp. cofinitely) represented in a Banach space and being locally factorable (resp. colocally factorable) some family of finite dimensional Banach spaces.

en-copyright= kn-copyright= en-aut-name=JamjoomF. B.H. en-aut-sei=Jamjoom en-aut-mei=F. B.H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JebreenH. M. en-aut-sei=Jebreen en-aut-mei=H. M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Faculty of Science, King Saud University affil-num=2 en-affil= kn-affil=Department of Mathematics, Faculty of Science, King Saud University END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=71 end-page=81 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LINKAGE AND DUALITY OF MODULES en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Martsinkovsky and Strooker [13] recently introduced module theoretic linkage using syzygy and transpose. This generalization brings possibility of much application of linkage, especially, to homological theory of modules. In the present paper, we connect linkage of modules to certain duality of modules. We deal with Gorenstein dimension, Cohen-Macaulay modules over a Gorenstein local ring using linkage and generalize the results to non-commutative algebras.

en-copyright= kn-copyright= en-aut-name=NishidaKenji en-aut-sei=Nishida en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematical Sciences, Shinshu University END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=193 end-page=201 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A NOTE ON CERTAIN METRICS ON R4+ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OtsukiTominosuke en-aut-sei=Otsuki en-aut-mei=Tominosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=111 end-page=119 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON LIE IDEALS AND LEFT JORDAN σ-CENTRALIZERS OF 2-TORSION-FREE RINGS en-subtitle= kn-subtitle= en-abstract= kn-abstract=

B. Zalar proved that any left (resp. right) Jordan centralizer on a 2-torsion-free semiprime ring is a left (resp. right) centralizer. We prove this question changing the semiprimality condition on R. The main result of this paper is the following. Let R be a 2-torsionfree ring which has a commutator right (resp. left) nonzero divisor and let G: R → R be left (resp. right) Jordan σ-centralizer mapping of , where σ is an automorphism of R. Then G is a left (resp. right) -centralizer mapping of R.

en-copyright= kn-copyright= en-aut-name=CortesWagner en-aut-sei=Cortes en-aut-mei=Wagner kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaetingerClaus en-aut-sei=Haetinger en-aut-mei=Claus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=INSTITUTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL affil-num=2 en-affil= kn-affil=CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=161 end-page=176 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Fox Spaces and Jacobi Identities en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In 1945, R. Fox introduced the so-called Fox torus homo- topy groups in which the usual homotopy groups are embedded and their Whitehead products are expressed as commutators. A modern treatment of Fox torus homotopy groups and their generalization has been given and studied. In this note, we further explore these groups and their properties. We discuss co-multiplications on Fox spaces and Jacobi identities for the generalized Whitehead products and the T- Whitehead products.

en-copyright= kn-copyright= en-aut-name=GolasinskiMarek en-aut-sei=Golasinski en-aut-mei=Marek kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GonçalvesDaciberg Lima en-aut-sei=Gonçalves en-aut-mei=Daciberg Lima kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WongPeter en-aut-sei=Wong en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Nicolaus Copernicus University affil-num=2 en-affil= kn-affil=Departamento De Matemática affil-num=3 en-affil= kn-affil=Bates College en-keyword=Fox torus homotopy groups kn-keyword=Fox torus homotopy groups en-keyword=generalized Whitehead products kn-keyword=generalized Whitehead products en-keyword=Jacobi identity kn-keyword=Jacobi identity END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=85 end-page=99 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Imaginary Quadratic Fields whose Exponents are Less Than or Equal To Two en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We give a necessary condition for an imaginary quadratic field to have exponent less than or equal to two. Further we discuss relations of this condition with other necessary conditions studied by Möller and Mollin, and conjecture that these conditions are equivalent.

en-copyright= kn-copyright= en-aut-name=ShimizuKenichi en-aut-sei=Shimizu en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Senior High School en-keyword=imaginary quadratic field kn-keyword=imaginary quadratic field en-keyword=class number kn-keyword=class number en-keyword=exponent kn-keyword=exponent en-keyword=split prime kn-keyword=split prime END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=101 end-page=112 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Φ-recurrent N(k)-contact Metric Manifolds en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this paper we prove that a Φ-recurrent N(k)-contact metric manifold is an η-Einstein manifold with constant coefficients. Next, we prove that a 3-dimensional Φ-recurrent N(k)-contact metric manifold is of constant curvature. The existence of a Φ-recurrent N(k)-contact metric manifold is also proved.

en-copyright= kn-copyright= en-aut-name=DeUday Chand en-aut-sei=De en-aut-mei=Uday Chand kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GaziAboul Kalam en-aut-sei=Gazi en-aut-mei=Aboul Kalam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Mathematics University affil-num=2 en-affil= kn-affil=Mathematics University en-keyword=N(k)-contact metric manifolds kn-keyword=N(k)-contact metric manifolds en-keyword=eta-Einstein manifold kn-keyword=eta-Einstein manifold en-keyword=Phi-recurrent N(k)-contact metric manifolds kn-keyword=Phi-recurrent N(k)-contact metric manifolds END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=63 end-page=84 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Central Gap Numbers of Symmetric Groups en-subtitle= kn-subtitle= en-abstract= kn-abstract=

g(G) denotes the central gap number of a group G. We show that for n ≥ 8, g(Sn) ≥ n and g(An) ≥ n-2. We give exact values of g(Sn) and g(An) for small n's. In particular, g(S9) = 9 and g(A9) = 7. Therefore, for any positive integer n ≠ 1, 3, 5 there is a group G such that n = g(G). G can be finite or infinite.

en-copyright= kn-copyright= en-aut-name=KikyoHirotaka en-aut-sei=Kikyo en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Kobe University en-keyword=central gap number kn-keyword=central gap number en-keyword=symmetric group kn-keyword=symmetric group en-keyword=alternating group kn-keyword=alternating group END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=1 end-page=61 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A New Class of Quasicyclic Complex Vector Functional Equations en-subtitle= kn-subtitle= en-abstract= kn-abstract=

For the first time in the literature a quasicyclic complex vector functional equation is introduced in the present paper. By a matrix method the general quasicyclic complex vector functional equation is solved, as well as its particular case for n = 3. This case is completely solved in an explicit form, and for every step of the solution examples are provided. Using a simple spectral property of compound matrices, a necessary and sufficient condition for stability of the quasicyclic complex vector functional equation considered is proved.

en-copyright= kn-copyright= en-aut-name=RisteskiIce B. en-aut-sei=Risteski en-aut-mei=Ice B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= en-keyword=Quasicyclic complex vector functional equation kn-keyword=Quasicyclic complex vector functional equation END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=135 end-page=147 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Fine Spectra of the Cesàro Operator C 1 over the Sequence Space bvp, (1 ≤ p ∞) en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The sequence space bvp consisting of all sequences (xk) such that (xk - xk-1) in the sequence space lp has recently been introduced by Basar and Altay [Ukrainian Math. J. 55(1)(2003), 136-147]; where 1 ≤ p ≤ ∞. In the present paper, the norm of the Cesàro operator C1 acting on the sequence space bvp has been found and the fine spectrum of the Cesàro operator C1 over the sequence space bvp has been determined, where 1 ≤ p < ∞.

en-copyright= kn-copyright= en-aut-name=AkhmedovAli M. en-aut-sei=Akhmedov en-aut-mei=Ali M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BasarFeyzi en-aut-sei=Basar en-aut-mei=Feyzi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Baku State University affil-num=2 en-affil= kn-affil=Inonu University en-keyword=Spectrum of an operator kn-keyword=Spectrum of an operator en-keyword=Cesaro operator and the sequence space bvp kn-keyword=Cesaro operator and the sequence space bvp END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=201 end-page=203 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Lower Bound for the Rational LS-category of a Coformal Elliptic Space en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We give a lower bound for the rational LS-category of certain spaces, including the coformal elliptic ones, in terms of the dimension of its total rational cohomology.

en-copyright= kn-copyright= en-aut-name=YamaguchiToshihiro en-aut-sei=Yamaguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Kochi University en-keyword=rational LS-category kn-keyword=rational LS-category en-keyword=elliptic space kn-keyword=elliptic space en-keyword=coformal space kn-keyword=coformal space en-keyword=minimal model kn-keyword=minimal model en-keyword=Toomer invariant kn-keyword=Toomer invariant END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=127 end-page=133 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inverse Limits of Spaces with the Weak B-Property en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=BinZhao en-aut-sei=Bin en-aut-mei=Zhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Kashgar Teachers College en-keyword=inverse system kn-keyword=inverse system en-keyword=inverse limit space kn-keyword=inverse limit space en-keyword=weak B-property kn-keyword=weak B-property en-keyword=hereditarily weak B-property kn-keyword=hereditarily weak B-property END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=177 end-page=199 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=K-semimetrizabilities and C-stratifiabilities of Spaces en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YoshiokaIwao en-aut-sei=Yoshioka en-aut-mei=Iwao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=149 end-page=160 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Unit Groups of Completely Primary Finite Rings en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Let R be a commutative completely primary finite ring with the unique maximal ideal J such that J3 = (0) and J2 ≠ (0): Then R⁄J ≅ GF(pr) and the characteristic of R is pk, where 1 ≤ k ≤ 3, for some prime p and positive integers k, r. Let Ro = GR (pkr,pk) be a galois subring of R so that R = Ro ⊕ U ⊕ V ⊕ W, where U, V and W are finitely generated Ro-modules. Let non-negative integers s, t and be numbers of elements in the generating sets for U, V and W, respectively. In this work, we determine the structure of the subgroup 1+W of the unit group R* in general, and the structure of the unit group R* of R when s = 3, t = 1; ≥ 1 and characteristic of R is p. We then generalize the solution of the cases when s = 2, t = 1; t = s(s +1)⁄2 for a fixed s; for all the characteristics of R ; and when s = 2, t = 2, and characteristic of R is p to the case when the annihilator ann(J ) = J2 + W, so that ≥ 1. This complements the author's earlier solution of the problem in the case when the annihilator of the radical coincides with the square of the radical.

en-copyright= kn-copyright= en-aut-name=ChikunjiChiteng'a John en-aut-sei=Chikunji en-aut-mei=Chiteng'a John kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Botswana College en-keyword=unit groups kn-keyword=unit groups en-keyword=completely primary finite rings kn-keyword=completely primary finite rings en-keyword=galois rings kn-keyword=galois rings END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=113 end-page=125 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Strong Convergence Theorems for Nonexpansive Mappings by Viscosity Approximation Methods in Banach Spaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this paper, we introduce a modified Ishikawa iterative process for a pair of nonexpansive mappings and obtain a strong convergence theorem in the framework of uniformly Banach spaces. Our results improve and extend the recent ones announced by Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51-60], Xu [H.K. Xu, Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298 (2004) 279-291] and some others.

en-copyright= kn-copyright= en-aut-name=QinXiaolong en-aut-sei=Qin en-aut-mei=Xiaolong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuYongfu en-aut-sei=Su en-aut-mei=Yongfu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WuChangqun en-aut-sei=Wu en-aut-mei=Changqun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Tianjin Polytechnic University affil-num=2 en-affil= kn-affil=Tianjin Polytechnic University affil-num=3 en-affil= kn-affil=Henan University en-keyword=Nonexpansive map; Iteration scheme; Sunny and nonexpansive retraction; viscosity method kn-keyword=Nonexpansive map; Iteration scheme; Sunny and nonexpansive retraction; viscosity method END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=139 end-page=147 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Generalized Derivations with Commutativity and Anti-commutativity Conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Let R be a prime ring with 1, with char(R) ≠ 2; and let F : R → R be a generalized derivation. We determine when one of the following holds for all x,y ∈ R: (i) [F(x); F(y)] = 0; (ii) F(x)ΟF(y) = 0; (iii) F(x) Ο F(y) = x Ο y .

en-copyright= kn-copyright= en-aut-name=BellHoward E. en-aut-sei=Bell en-aut-mei=Howard E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RehmanNadeem-ur en-aut-sei=Rehman en-aut-mei=Nadeem-ur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Brock University affil-num=2 en-affil= kn-affil=Aligarh Muslim University END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=183 end-page=184 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elliptic Curves y²=x³-px of Rank Two en-subtitle= kn-subtitle= en-abstract= kn-abstract=

A class of prime numbers p is given for which the elliptic curve y² =x³-px has rank two. This extends a theorem of Kudo and Motose.

en-copyright= kn-copyright= en-aut-name=SpearmanBlair K. en-aut-sei=Spearman en-aut-mei=Blair K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=University of British Columbia Okanagan en-keyword=Elliptic curve kn-keyword=Elliptic curve en-keyword=rank kn-keyword=rank END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=93 end-page=111 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of the Convolution Sums ∑ l+24m=n σ(l) σ(m) and ∑3l+8m=n σ(l) σ(m) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=AlacaAyse en-aut-sei=Alaca en-aut-mei=Ayse kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AlacaSaban en-aut-sei=Alaca en-aut-mei=Saban kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WilliamsKenneth S. en-aut-sei=Williams en-aut-mei=Kenneth S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Carleton University affil-num=2 en-affil= kn-affil=Carleton University affil-num=3 en-affil= kn-affil=Carleton University en-keyword=sum of divisors function kn-keyword=sum of divisors function en-keyword=convolution sums kn-keyword=convolution sums en-keyword=Eisenstein series kn-keyword=Eisenstein series END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=65 end-page=92 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cut Loci and Distance Functions en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ItohJin-ichi en-aut-sei=Itoh en-aut-mei=Jin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaiTakashi en-aut-sei=Sakai en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Kumamoto University affil-num=2 en-affil= kn-affil=Okayama University END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=113 end-page=138 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Galois Covers of Degree p and Semi-stable Reduction of Curves in Equal Characteristic p>0 en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this paper we study the semi-stable reduction of Galois covers of degree p above curves over a complete discrete valuation ring of equal characteristic p.

en-copyright= kn-copyright= en-aut-name=SaïdiMohamed en-aut-sei=Saïdi en-aut-mei=Mohamed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=University of Exeter END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=59 end-page=64 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Some Results on (σ,τ)-Lie Ideals en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this note we give some basic results on one sided(σ,τ)-Lie ideals of prime rings with characteristic not 2.

en-copyright= kn-copyright= en-aut-name=GüvenEvrim en-aut-sei=Güven en-aut-mei=Evrim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KayaKazim en-aut-sei=Kaya en-aut-mei=Kazim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SoytürkMuharrem en-aut-sei=Soytürk en-aut-mei=Muharrem kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Kocaeli University affil-num=2 en-affil= kn-affil=Çanakkale Onsekiz Mart University affil-num=3 en-affil= kn-affil=Kocaeli University en-keyword=Prime ring kn-keyword=Prime ring en-keyword= (sigma kn-keyword= (sigma en-keyword=tau)-LIe ideal kn-keyword=tau)-LIe ideal en-keyword= (sigma kn-keyword= (sigma en-keyword=tau)-derivation kn-keyword=tau)-derivation END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=53 end-page=58 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Ideals and Orthogonal Generalized Derivations of Semiprime Rings en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this paper, some results concerning orthogonal generalized derivations are generalized for a nonzero ideal of a semiprime ring. These results are a generalization of results of M. Brešar and J. Vukman in [3], which are related to a theorem of E. Posner for the product of derivations on a prime ring.

en-copyright= kn-copyright= en-aut-name=AlbasEmine en-aut-sei=Albas en-aut-mei=Emine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Ege University en-keyword=derivation kn-keyword=derivation en-keyword=generalized derivation kn-keyword=generalized derivation en-keyword=orthogonal generalized derivations kn-keyword=orthogonal generalized derivations en-keyword=semiprime ring kn-keyword=semiprime ring en-keyword=ideal kn-keyword=ideal END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=185 end-page=196 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Some Questions on the Ideal Class Group of Imaginary Abelian Fields en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Let k be an imaginary quadratic field. Assume that the class number of k is exactly an odd prime number p, and p splits into two distinct primes in k. Then it is known that a prime ideal lying above p is not principal. In the present paper, we shall consider a question whether a similar result holds when the class number of k is 2p. We also consider an analogous question for the case that k is an imaginary quartic abelian field.

en-copyright= kn-copyright= en-aut-name=ItohTsuyoshi en-aut-sei=Itoh en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Ritsumeikan University en-keyword=Ideal class group kn-keyword=Ideal class group END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=37 end-page=52 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sums and Partial Sums of Double Power Series associated with the Generalized Zeta Function and Their N-fractional CalculusSums and Partial Sums of Double Power Series associated with the Generalized Zeta Function and Their N-fractional Calculus en-subtitle= kn-subtitle= en-abstract= kn-abstract=

An attempt is made here to introduce and study a pair of double power series associated with the generalized zeta function due to Erdélyi Φ(x; z; a) together with related sums, integral representations, generating relations and N-fractional calculus. A number of (known and new) results shown to follow as special cases of our theorems.

en-copyright= kn-copyright= en-aut-name=Bin-SaadMaged G. en-aut-sei=Bin-Saad en-aut-mei=Maged G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Aden University END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=171 end-page=181 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Generalized Primitive Element Theorem en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We deal with the following variant of the primitive element theorem: any commutative strongly separable extension of a commutative ring can be embedded in another one having primitive element. This statement holds for connected strongly separable extension of commutative rings which are either local or connected semilocal. We show that it holds for a more general family of rings, that is, for connected commutative rings whose quotient ring by the corresponding Jacobson radical is von Neumann regular and locally uniform. Some properties of the (connected) separable closure of such rings are also given as an application of this result.

en-copyright= kn-copyright= en-aut-name=BagioDirceu en-aut-sei=Bagio en-aut-mei=Dirceu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PaquesAntonio en-aut-sei=Paques en-aut-mei=Antonio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Universidade Federal de Santa Maria affil-num=2 en-affil= kn-affil=Universidade Federal do Rio Grande do Sul en-keyword=primitive element kn-keyword=primitive element en-keyword=von Neumann regular ring kn-keyword=von Neumann regular ring en-keyword=locally uniform ring kn-keyword=locally uniform ring en-keyword=strongly separable extension kn-keyword=strongly separable extension en-keyword=separable closure kn-keyword=separable closure END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=149 end-page=161 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Higher Weights of Codes from Projective Planes and Biplanes en-subtitle= kn-subtitle= en-abstract= kn-abstract=

We study the higher weights of codes formed from planes and biplanes. We relate the higher weights of the Hull and the code of a plane and biplane. We determine all higher weight enumerators of planes and biplanes of order less or equal to 4.

en-copyright= kn-copyright= en-aut-name=DoughertySteven T. en-aut-sei=Dougherty en-aut-mei=Steven T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RamaduraiReshma en-aut-sei=Ramadurai en-aut-mei=Reshma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=University of Scranton affil-num=2 en-affil= kn-affil=University of Illinois at Chicago en-keyword=Projective plane kn-keyword=Projective plane en-keyword=biplane kn-keyword=biplane en-keyword=codes of designs kn-keyword=codes of designs en-keyword=higher weights kn-keyword=higher weights END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=1 end-page=36 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Character Values and Dade's Conjecture en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NarasakiRyo en-aut-sei=Narasaki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Osaka University END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=197 end-page=200 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Characterization of δ-quasi-Baer Rings en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Let δ be a derivation on R. A ring R is called δ-quasi-Baer (resp. quasi-Baer) if the right annihilator of every δ-ideal (resp. ideal) of R is generated by an idempotent of R. In this note first we give a positive answer to the question posed in Han et al. [7], then we show that R is δ-quasi-Baer iff the differential polynomial ring S = R[x; δ] is quasi-Baer iff S is δ‾-quasi-Baer for every extended derivation δ‾ on S of δ. This results is a generalization of Han et al. [7], to the case where R is not assumed to be δ-semiprime.

en-copyright= kn-copyright= en-aut-name=HashemiEbrahim en-aut-sei=Hashemi en-aut-mei=Ebrahim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Shahrood University of Thechnology END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=163 end-page=169 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Privalov Space on the Upper Half Plane en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this paper, we shall consider Privalov space Np 0 (D) (p > 1) which consists of holomorphic functions f on the upper half plane D := {z ∈ C|Imz > 0} such that (log+ |f(z)|)p has a harmonic majorant on D. We shall give some properties of Np 0 (D).

en-copyright= kn-copyright= en-aut-name=IidaYasuo en-aut-sei=Iida en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Iwate Medical University en-keyword=Privalov space kn-keyword=Privalov space en-keyword=Nevanlinna-type spaces kn-keyword=Nevanlinna-type spaces en-keyword=Hardy-Orlicz class kn-keyword=Hardy-Orlicz class END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=103 end-page=112 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Some Homotopy Groups of Homogeneous Spaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The symplectic group is embedded in the rotation group and the quotient set equipped with the identification topology is a homogeneous space. The purpose of this paper is to determine some homotopy groups of the homogeneous space. Exact sequences induced from fibrations are frequently used, and homotopy groups of Lie groups and other homogeneous spaces which are obtained by several authors are referred heavily.

en-copyright= kn-copyright= en-aut-name=InoueTomohisa en-aut-sei=Inoue en-aut-mei=Tomohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Shinsyu University en-keyword=homogeneous space kn-keyword=homogeneous space en-keyword=homotopy group kn-keyword=homotopy group END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=135 end-page=144 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multipliers and Cyclic Vectors on the Weighted Bloch Space en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YeShanli en-aut-sei=Ye en-aut-mei=Shanli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Fujian Normal University en-keyword=pointwise multipliers kn-keyword=pointwise multipliers en-keyword=cyclic vectors kn-keyword=cyclic vectors en-keyword=weighted Bloch space kn-keyword=weighted Bloch space END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=57 end-page=72 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Global Solvably Closed Anabelian Geometry en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this paper, we study the pro-Σ anabelian geometry of hyperbolic curves, where Σ is a nonempty set of prime numbers, over Galois groups of “solvably closed extensions” of number fields — i.e., infinite extensions of number fields which have no nontrivial abelian extensions. The main results of this paper are, in essence, immediate corollaries of the following three ingredients: (a) classical results concerning the structure of Galois groups of number fields; (b) an anabelian result of Uchida concerning Galois groups of solvably closed extensions of number fields; (c) a previous result of the author concerning the pro-Σ anabelian geometry of hyperbolic curves over nonarchimedean local fields.

en-copyright= kn-copyright= en-aut-name=MochizukiShinichi en-aut-sei=Mochizuki en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Kyoto University en-keyword=solvably closed kn-keyword=solvably closed en-keyword=number field kn-keyword=number field en-keyword=Galois group kn-keyword=Galois group en-keyword=anabelian geometry kn-keyword=anabelian geometry en-keyword=hyperbolic curve kn-keyword=hyperbolic curve END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=47 end-page=56 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Higher Syzygies of Projective Toric Varieties en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Let A be an ample line bundle on a projective toric variety X of dimension n (≥ 2). It is known that the d-th tensor power A⊗d embedds X as a projectively normal variety in Pr := P(H0(X,L⊗d)) if d ≥ n − 1. In this paper first we show that when dimX = 2 the line bundle A⊗d satisfies the property Np for p ≤ 3d − 3. Second we show that when dimX = n ≥ 3 the bundle A⊗d satisfies the property Np for p ≤ d − n + 2 and d ≥ n − 1.

en-copyright= kn-copyright= en-aut-name=OgataShoetsu en-aut-sei=Ogata en-aut-mei=Shoetsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Tohoku University en-keyword=toric variety kn-keyword=toric variety en-keyword=syzygy kn-keyword=syzygy END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=113 end-page=124 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bott's Theorem on Samelson Products en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SugataKei en-aut-sei=Sugata en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Okayama University END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=173 end-page=180 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A New Generalization of the Poisson Kernel en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The purpose of this paper is to give a new generalization of the Poisson Kernel in two dimensions and discuss an integral formula for this.

en-copyright= kn-copyright= en-aut-name=BulutSerap en-aut-sei=Bulut en-aut-mei=Serap kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Balikesir University en-keyword=Poisson Kernel kn-keyword=Poisson Kernel en-keyword=Integral Formula kn-keyword=Integral Formula END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=9 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stickelberger Ideals and Normal Bases of Rings of p-integers en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=IchimuraHumio en-aut-sei=Ichimura en-aut-mei=Humio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Ibaraki University END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=145 end-page=158 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Almost Periodic Solutions of C-well-posed Evolution Equations en-subtitle= kn-subtitle= en-abstract= kn-abstract=

This paper is concerned with the existence and uniqueness of almost periodic mild solutions of evolution equations of the form u(t) = Au(t) + ƒ(t) where A is the generator of a holomorphic Csemigroup on a Banach space and ƒ is an almost periodic function. A sufficient condition in terms of spectral properties of A and ƒ is obtained that extends a well known result in this subject.

en-copyright= kn-copyright= en-aut-name=MinhNguyen Van en-aut-sei=Minh en-aut-mei=Nguyen Van kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Mathematics University en-keyword=Holomorphic C-semigroup kn-keyword=Holomorphic C-semigroup en-keyword=almost periodic solution kn-keyword=almost periodic solution en-keyword=sums of commuting operators kn-keyword=sums of commuting operators END