start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=153
end-page=165
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The d-Smith sets of direct products of dihedral groups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let G be a ?nite group and let V and W be real G-modules. We call V and W dim-equivalent if for each subgroup H of G, the H-?xed point sets of V and W have the same dimension. We call V and W are Smith equivalent if there is a smooth G-action on a homotopy sphere ƒ° with exactly two G-?xed points, say a and b, such that the tangential G-representations at a and b of ƒ° are respectively isomorphic to V and W . Moreover, We call V and W are d-Smith equivalent if they are dim-equivalent and Smith equivalent. The di?erences of d-Smith equivalent real G-modules make up a subset, called the d-Smith set, of the real representation ring RO(G). We call V and W P(G)-matched if they are isomorphic whenever the actions are restricted to subgroups with prime power order of G. Let N be a normal subgroup. For a subset F of G, we say that a real G-module is F-free if the H-?xed point set of the G-module is trivial for all elements H of F. We study the d-Smith set by means of the submodule of RO(G) consisting of the di?erences of dim-equivalent, P(G)-matched, {N}-free real G-modules. In particular, we give a rank formula for the submodule in order to see how the d-Smith set is large.
en-copyright=
kn-copyright=
en-aut-name=SeitaKohei
en-aut-sei=Seita
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Real G-module
kn-keyword=Real G-module
en-keyword=Smith equivalence
kn-keyword=Smith equivalence
en-keyword=representation ring
kn-keyword=representation ring
en-keyword=Oliver group
kn-keyword=Oliver group
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=201
end-page=217
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Linear stability of radially symmetric equilibrium solutions to the singular limit problem of three-component activator-inhibitor model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We show linear stability or instability for radially symmet-ric equilibrium solutions to the system of interface equation and two parabolic equations arising in the singular limit of three-component activator-inhibitor models.
en-copyright=
kn-copyright=
en-aut-name=KojimaTakuya
en-aut-sei=Kojima
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OshitaYoshihito
en-aut-sei=Oshita
en-aut-mei=Yoshihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate school of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Okayama University
kn-affil=
en-keyword=singular limit problem
kn-keyword=singular limit problem
en-keyword=equilibrium solutions
kn-keyword=equilibrium solutions
en-keyword=linear stability
kn-keyword=linear stability
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=183
end-page=199
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On H-epimorphisms and co-H-sequences in two-sided Harada rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In [8] M. Harada studied a left artinian ring R such that every non-small left R-module contains a non-zero injective submodule. And in [13] K. Oshiro called the ring a left Harada ring (abbreviated left H-ring). We can see many results on left Harada rings in [6] and many equivalent conditions in [4, Theorem B]. In this paper, to characterize two-sided Harada rings, we intruduce new concepts gco-H-sequenceh and gH-epimorphismh and study them.
en-copyright=
kn-copyright=
en-aut-name=BabaYoshitomo
en-aut-sei=Baba
en-aut-mei=Yoshitomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Education Osaka Kyoiku University
kn-affil=
en-keyword=Harada ring
kn-keyword=Harada ring
en-keyword=Artinian ring
kn-keyword=Artinian ring
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=53
end-page=60
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Remark on a Paper by Izadi and Baghalaghdam about Cubes and Fifth Powers Sums
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= In this paper, we re?ne the method introduced by Izadi and Baghalaghdam to search integer solutions to the Diophantine equation. We show that the Diophantine equation has in?nitely many positive solutions.
en-copyright=
kn-copyright=
en-aut-name=IokibeGaku
en-aut-sei=Iokibe
en-aut-mei=Gaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, Graduate School of Science, Osaka University
kn-affil=
en-keyword=Diophantine equations
kn-keyword=Diophantine equations
en-keyword=Elliptic Curves
kn-keyword=Elliptic Curves
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=15
end-page=52
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Differential geometry of invariant surfaces in simply isotropic and pseudo-isotropic spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study invariant surfaces generated by one-parameter subgroups of simply and pseudo isotropic rigid motions. Basically, the simply and pseudo isotropic geometries are the study of a three-dimensional space equipped with a rank 2 metric of index zero and one, respectively. We show that the one-parameter subgroups of isotropic rigid motions lead to seven types of invariant surfaces, which then generalizes the study of revolution and helicoidal surfaces in Euclidean and Lorentzian spaces to the context of singular metrics. After computing the two fundamental forms of these surfaces and their Gaussian and mean curvatures, we solve the corresponding problem of prescribed curvature for invariant surfaces whose generating curves lie on a plane containing the degenerated direction.
en-copyright=
kn-copyright=
en-aut-name=da SilvaLuiz C. B.
en-aut-sei=da Silva
en-aut-mei=Luiz C. B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Physics of Complex Systems, Weizmann Institute of Science
kn-affil=
en-keyword=Simply isotropic space
kn-keyword=Simply isotropic space
en-keyword=pseudo-isotropic space
kn-keyword=pseudo-isotropic space
en-keyword=singular metric
kn-keyword=singular metric
en-keyword=invariant surface
kn-keyword=invariant surface
en-keyword=prescribed Gaussian curvature
kn-keyword=prescribed Gaussian curvature
en-keyword=prescribed mean curvature
kn-keyword=prescribed mean curvature
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=123
end-page=131
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Differential operators on modular forms associated to Jacobi forms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Given Jacobi forms, we determine associated Jacobi-like forms, whose coe?cients are quasimodular forms. We then use these quasimodular forms to construct di?erential operators on modular forms, which are expressed in terms of the Fourier coe?cients of the given Jacobi forms.
en-copyright=
kn-copyright=
en-aut-name=LeeMin Ho
en-aut-sei=Lee
en-aut-mei=Min Ho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, University of Northern Iowa
kn-affil=
en-keyword=Jacobi forms
kn-keyword=Jacobi forms
en-keyword=Jacobi-like forms
kn-keyword=Jacobi-like forms
en-keyword=modular forms
kn-keyword=modular forms
en-keyword=quasimodular forms
kn-keyword=quasimodular forms
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=167
end-page=173
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On pg-ideals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let (A, m) be an excellent normal domain of dimension two. We de?ne an m-primary ideal I to be a pg -ideal if the Rees algebra A[It] is a Cohen-Macaulay normal domain. If A has in?nite residue ?eld then it follows from a result of Rees that the product of two pg ideals is pg . When A contains an algebraically closed ?eld k ?= A/m then Okuma, Watanabe and Yoshida proved that A has pg -ideals and furthermore product of two pg -ideals is a pg ideal. In this article we show that if A is an excellent normal domain of dimension two containing a ?eld k ?= A/m of characteristic zero then also A has pg -ideals.
en-copyright=
kn-copyright=
en-aut-name=PuthenpurakalTony J.
en-aut-sei=Puthenpurakal
en-aut-mei=Tony J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, IIT Bombay
kn-affil=
en-keyword=pg -ideal
kn-keyword=pg -ideal
en-keyword=normal Rees rings
kn-keyword=normal Rees rings
en-keyword=Cohen-Macaulay rings
kn-keyword=Cohen-Macaulay rings
en-keyword=stable ideals
kn-keyword=stable ideals
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=87
end-page=105
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A weak Euler formula for l-adic Galois double zeta values
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The fact that the double zeta values Ā(n, m) can be written in terms of zeta values, whenever n+m is odd is attributed to Euler. We shall show the weak version of this result for the l-adic Galois realization.
en-copyright=
kn-copyright=
en-aut-name=Zdzis?awWojtkowiak
en-aut-sei=Zdzis?aw
en-aut-mei=Wojtkowiak
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Universit? de Nice-Sophia Antipolis, D?artement de Math ?matiques Laboratoire Jean Alexandre Dieudonn?
kn-affil=
en-keyword=multiple zeta values
kn-keyword=multiple zeta values
en-keyword=Galois groups
kn-keyword=Galois groups
en-keyword=fundamental groups
kn-keyword=fundamental groups
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=133
end-page=151
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rectangular Hall-Littlewood symmetric functions and a specific spin character
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We derive the Schur function identities coming from the tensor products of the spin representations of the symmetric group Sn. We deal with the tensor products of the basic spin representation V (n) and any spin representation V ƒÉ (ƒÉ ¸ SP (n)). The characteristic map
of the tensor product Ān ? Āă is described by Stembridge[4] for the case of odd n. We consider the case n is even.
en-copyright=
kn-copyright=
en-aut-name=AokageKazuya
en-aut-sei=Aokage
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, National Institute of Technology, Ariake College
kn-affil=
en-keyword=symmetric group
kn-keyword=symmetric group
en-keyword=symmetric function
kn-keyword=symmetric function
en-keyword=projective representation
kn-keyword=projective representation
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=61
end-page=86
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Defining relations of 3-dimensional quadratic AS-regular algebras
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Classi?cation of AS-regular algebras is one of the main interests in non-commutative algebraic geometry. Recently, a complete list of superpotentials (de?ning relations) of all 3-dimensional AS-regular algebras which are Calabi-Yau was given by Mori-Smith (the quadratic case) and Mori-Ueyama (the cubic case), however, no complete list of de?ning relations of all 3-dimensional AS-regular algebras has not appeared in the literature. In this paper, we give all possible de?ning relations of 3-dimensional quadratic AS-regular algebras. Moreover, we classify them up to isomorphism and up to graded Morita equivalence in terms of their de?ning relations in the case that their point schemes are not elliptic curves. In the case that their point schemes are elliptic curves, we give conditions for isomorphism and graded Morita equivalence in terms of geometric data.
en-copyright=
kn-copyright=
en-aut-name=ItabaAyako
en-aut-sei=Itaba
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsunoMasaki
en-aut-sei=Matsuno
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, faculty of Science, Tokyo University of Science
kn-affil=
affil-num=2
en-affil=Graduate School of Science and Technology, Shizuoka University
kn-affil=
en-keyword=AS-regular algebras
kn-keyword=AS-regular algebras
en-keyword=geometric algebras
kn-keyword=geometric algebras
en-keyword=quadratic algebras
kn-keyword=quadratic algebras
en-keyword=nodal cubic curves
kn-keyword=nodal cubic curves
en-keyword=elliptic curves
kn-keyword=elliptic curves
en-keyword=Hesse form
kn-keyword=Hesse form
en-keyword=Sklyanin algebras
kn-keyword=Sklyanin algebras
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=107
end-page=122
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A note on products in stable homotopy groups of spheres via the classical Adams spectral sequence
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In recent years, Liu and his collaborators found many non-trivial products of generators in the homotopy groups of the sphere spectrum. In this paper, we show a result which not only implies most of their results, but also extends a result of theirs.
en-copyright=
kn-copyright=
en-aut-name=KatoRyo
en-aut-sei=Kato
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Shimomurakatsumi
en-aut-sei=Shimomura
en-aut-mei=katsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Fundamental Science, National Institute of Technology, Niihama College
kn-affil=
affil-num=2
en-affil=Department of Mathematics, faculty of Science and Technology, Kochi University
kn-affil=
en-keyword=Stable homotopy of spheres
kn-keyword=Stable homotopy of spheres
en-keyword=Adams spectral sequence
kn-keyword=Adams spectral sequence
en-keyword=May spectral sequence
kn-keyword=May spectral sequence
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=175
end-page=182
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On some families of invariant polynomials divisible by three and their zeta functions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this note, we establish an analog of the Mallows-Sloane bound for Type III formal weight enumerators. This completes the bounds for all types (Types I through IV) in synthesis of our previous results. Next we show by using the binomial moments that there exists a family of polynomials divisible by three, which are not related to linear codes but are invariant under the MacWilliams transform for the value 3/2. We also discuss some properties of the zeta functions for such polynomials.
en-copyright=
kn-copyright=
en-aut-name=ChinenKoji
en-aut-sei=Chinen
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, School of Science and Engineering, Kindai University
kn-affil=
en-keyword=Binomial moment
kn-keyword=Binomial moment
en-keyword=Divisible code
kn-keyword=Divisible code
en-keyword=Invariant polynomial ring
kn-keyword=Invariant polynomial ring
en-keyword=Zeta function for codes
kn-keyword=Zeta function for codes
en-keyword=Riemann hypothesis
kn-keyword=Riemann hypothesis
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=14
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202101
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the stability, boundedness, and square integrability of solutions of third order neutral delay differential equations
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, su?cient conditions are established for the stability, boundedness and square integrability of solutions for some non-linear neutral delay di?erential equations of third order. Lyapunovfs direct method is used to obtain the results.
en-copyright=
kn-copyright=
en-aut-name=GraefJohn R.
en-aut-sei=Graef
en-aut-mei=John R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BeldjerdDjamila
en-aut-sei=Beldjerd
en-aut-mei=Djamila
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RemiliMoussadek
en-aut-sei=Remili
en-aut-mei=Moussadek
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Mathematics, University of Tennessee at Chattanooga
kn-affil=
affil-num=2
en-affil=Oranfs High School of Electrical Engineering and Energetics
kn-affil=
affil-num=3
en-affil=Department of Mathematics, University of Oran 1 Ahmed Ben Bella
kn-affil=
en-keyword=boundedness
kn-keyword=boundedness
en-keyword=stability
kn-keyword=stability
en-keyword=square integrability
kn-keyword=square integrability
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=25
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A representation for algebraic K-theory of quasi-coherent modules over affine spectral schemes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= In this paper, we study K-theory of spectral schemes by using locally free sheaves. Let us regard the K-theory as a functor K on affine spectral schemes. Then, we prove that the group completion
?BG(BGGL) represents the sheafification of K with respect to Zariski (resp. Nisnevich) topology G, where BGGL is a classifying space of a colimit of affine spectral schemes GLn.
en-copyright=
kn-copyright=
en-aut-name=OharaMariko
en-aut-sei=Ohara
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematical Sciences Shinshu University
kn-affil=
en-keyword=Infinity category
kn-keyword=Infinity category
en-keyword=Derived algebraic geometry
kn-keyword=Derived algebraic geometry
en-keyword= K-theory
kn-keyword= K-theory
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=1
article-no=
start-page=87
end-page=178
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Crystal interpretation of a formula on the branching rule of types Bn, Cn, and Dn
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The branching coefficients of the tensor product of finite-dimensional irreducible Uq(g)-modules, where g is so(2n + 1, C) (Bn-type), sp(2n,C) (Cn-type), and so(2n,C) (Dn-type), are expressed in
terms of Littlewood-Richardson (LR) coefficients in the stable region. We give an interpretation of this relation by Kashiwarafs crystal theory by providing an explicit surjection from the LR crystal of type Cn to the disjoint union of Cartesian product of LR crystals of An?1-type and by proving that LR crystals of types Bn and Dn are identical to the corresponding LR crystal of type Cn in the stable region.
en-copyright=
kn-copyright=
en-aut-name=HiroshimaToya
en-aut-sei=Hiroshima
en-aut-mei=Toya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University
kn-affil=
en-keyword=Kashiwara crystals
kn-keyword=Kashiwara crystals
en-keyword=Littlewood-Richardson crystals
kn-keyword=Littlewood-Richardson crystals
en-keyword=Kashiwara-Nakashima tableaux
kn-keyword=Kashiwara-Nakashima tableaux
en-keyword=Branching rule
kn-keyword=Branching rule
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=1
article-no=
start-page=27
end-page=86
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unstable higher Toda brackets
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OshimaHideaki
en-aut-sei=Oshima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OshimaKatsumi
en-aut-sei=Oshima
en-aut-mei=Katsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Ibaraki University
kn-affil=
affil-num=2
en-affil=
kn-affil=
en-keyword=Toda bracket
kn-keyword=Toda bracket
en-keyword=Unstable higher Toda bracket
kn-keyword=Unstable higher Toda bracket
en-keyword=Higher composition
kn-keyword=Higher composition
en-keyword=Cofibration
kn-keyword=Cofibration
en-keyword=Coextension
kn-keyword=Coextension
en-keyword=Extension
kn-keyword=Extension
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=1
article-no=
start-page=197
end-page=210
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Existence and stability of stationary solutions to the Allen-Cahn equation discretized in space and time
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The existence and stability of the Allen?Cahn equation discretized in space and time are studied in a finite spatial interval. If a parameter is less than or equals to a critical value, the zero solution is the only stationary solution. If the parameter is larger than the critical value, one has a positive stationary solution and this positive stationary solution is asymptotically stable.
en-copyright=
kn-copyright=
en-aut-name=Amy Poh Ai Ling
en-aut-sei=Amy Poh Ai Ling
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TaniguchiMasaharu
en-aut-sei=Taniguchi
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Division of Mathematics and Physics, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Allen?Cahn equation
kn-keyword=Allen?Cahn equation
en-keyword=stationary solution
kn-keyword=stationary solution
en-keyword=comparison theorem
kn-keyword=comparison theorem
en-keyword=discretized
kn-keyword=discretized
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=1
article-no=
start-page=179
end-page=195
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202001
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Analytic extension of exceptional constant mean curvature one catenoids in de Sitter 3-space
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Catenoids in de Sitter 3-space S31 belong to a certain class of
space-like constant mean curvature one surfaces. In a previous work, the authors
classified such catenoids, and found that two different classes of countably many exceptional elliptic catenoids are not realized as closed subsets in S31 . Here we show that such exceptional catenoids have closed analytic extensions in S31 with interesting properties.
en-copyright=
kn-copyright=
en-aut-name=FujimoriShoichi
en-aut-sei=Fujimori
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawakamiYu
en-aut-sei=Kawakami
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KokubuMasatoshi
en-aut-sei=Kokubu
en-aut-mei=Masatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=RossmanWayne
en-aut-sei=Rossman
en-aut-mei=Wayne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UmeharaMasaaki
en-aut-sei=Umehara
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamadaKotaro
en-aut-sei=Yamada
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Mathematics, Hiroshima University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Kanazawa University
kn-affil=
affil-num=3
en-affil=Department of Mathematics, School of Engineering, Tokyo Denki University
kn-affil=
affil-num=4
en-affil=Department of Mathematics, Faculty of Science, Kobe University
kn-affil=
affil-num=5
en-affil=Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
kn-affil=
affil-num=6
en-affil=Department of Mathematics, Tokyo Institute of Technology
kn-affil=
en-keyword=constant mean curvature
kn-keyword=constant mean curvature
en-keyword=de Sitter space
kn-keyword=de Sitter space
en-keyword=analytic extension
kn-keyword=analytic extension
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=187
end-page=198
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Passage of property (Bw) from two operators to their tensor product
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= A Banach space operator satisfies property (Bw) if the complement of its B-Weyl spectrum in its the spectrum is the set of finite multiplicity isolated eigenvalues of the operator. Property (Bw) does not transfer from operators T and S to their tensor product T ? S. We give necessary and /or sufficient conditions ensuring the passage of property (Bw) from T and S to T ? S. Perturbations by Riesz operators are considered.
en-copyright=
kn-copyright=
en-aut-name=RashidM.H.M.
en-aut-sei=Rashid
en-aut-mei=M.H.M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics& Statistics Faculty of Science P.O.Box(7) Muftah University
kn-affil=
en-keyword=property (Bw)
kn-keyword=property (Bw)
en-keyword=SVEP
kn-keyword=SVEP
en-keyword=tensor product
kn-keyword=tensor product
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=99
end-page=128
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Complex interpolation of smoothness Triebel-Lizorkin-Morrey spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= This paper extends the result in [8] to Triebel-Lizorkin-Morrey spaces which contains 4 parameters p, q, r, s. This paper reinforces our earlier paper [8] by Nakamura, the first and the third authors in two different directions. First, we include the smoothness parameter s and the second smoothness parameter r. In [8] we assumed s = 0 and r = 2. Here we relax the conditions on s and r to s ¸ R and 1 < r ? ‡. Second, we apply a formula obtained by Bergh in 1978 to prove our main theorem without using the underlying sequence spaces.
en-copyright=
kn-copyright=
en-aut-name=HakimDenny Ivanal
en-aut-sei=Hakim
en-aut-mei=Denny Ivanal
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NogayamaToru
en-aut-sei=Nogayama
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SawanoYoshihiro
en-aut-sei=Sawano
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Mathematics and Information Sciences, Tokyo Metropolitan University
kn-affil=
affil-num=2
en-affil=Department of Mathematics and Information Sciences, Tokyo Metropolitan University
kn-affil=
affil-num=3
en-affil=Department of Mathematics and Information Sciences, Tokyo Metropolitan University
kn-affil=
en-keyword=smoothness Morrey spaces
kn-keyword=smoothness Morrey spaces
en-keyword=Triebel-Lizorkin-Morrey spaces
kn-keyword=Triebel-Lizorkin-Morrey spaces
en-keyword=complex interpolation
kn-keyword=complex interpolation
en-keyword=square function
kn-keyword=square function
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=37
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Reconstruction of inertia groups associated to log divisors from a configuration space group equipped with its collection of log-full subgroups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= In the present paper, we study configuration space groups. The goal of this paper is to reconstruct group-theoretically the inertia groups associated to various types of log divisors of a log configuration space of a smooth log curve from the associated configuration space group equipped with its collection of log-full subgroups.
en-copyright=
kn-copyright=
en-aut-name=HigashiyamaKazumi
en-aut-sei=Higashiyama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Research Institute for Mathematical Sciences Kyoto University
kn-affil=
en-keyword=anabelian geometry
kn-keyword=anabelian geometry
en-keyword=configuration space
kn-keyword=configuration space
en-keyword= log divisor
kn-keyword= log divisor
en-keyword= log-full subgroup
kn-keyword= log-full subgroup
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=85
end-page=98
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the structure of the profile of finite connected quandles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We verify some cases of a conjecture by C. Hayashi on the structure of the profile of a finite connected quandle.
en-copyright=
kn-copyright=
en-aut-name=WatanabeTaisuke
en-aut-sei=Watanabe
en-aut-mei=Taisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
en-keyword=connected quandle
kn-keyword=connected quandle
en-keyword=finite quandle
kn-keyword=finite quandle
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=141
end-page=158
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cesaro Orlicz sequence spaces and their Kothe-Toeplitz duals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The present paper focus on introducing certain classes of Ces?ro Orlicz sequences over n-normed spaces. We study some topological and algebraic properties of these spaces. Further, we examine relevant relations among the classes of these sequences. We show that these spaces are made n-BK-spaces under certain conditions. Finally, we compute the K?the-Toeplitz duals of these spaces.
en-copyright=
kn-copyright=
en-aut-name=RajKuldip
en-aut-sei=Raj
en-aut-mei=Kuldip
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AnandRenu
en-aut-sei=Anand
en-aut-mei=Renu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PandohSuruchi
en-aut-sei=Pandoh
en-aut-mei=Suruchi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=School of Mathematics Shri Mata Vaishno Devi University
kn-affil=
affil-num=2
en-affil=School of Mathematics Shri Mata Vaishno Devi University
kn-affil=
affil-num=3
en-affil=School of Mathematics Shri Mata Vaishno Devi University
kn-affil=
en-keyword=Orlicz function
kn-keyword=Orlicz function
en-keyword=Musielak-Orlicz function
kn-keyword=Musielak-Orlicz function
en-keyword=n-normed spaces
kn-keyword=n-normed spaces
en-keyword=difference sequence spaces
kn-keyword=difference sequence spaces
en-keyword=K?the-Toeplitz dual
kn-keyword=K?the-Toeplitz dual
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=18
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the existence of non-finite coverings of stable curves over complete discrete valuation rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let R be a complete discrete valuation ring with algebraically residue field of characteristic p > 0 and X a stable curve over R. In the present paper, we study the geometry of coverings of X. Under certain assumptions, we prove that, by replacing R by a finite extension of R, there exists a morphism of stable curves f : Y ¨ X over R such that the morphism fƒÅ : YƒÅ ¨ XƒÅ induced by f on generic fibers is finite ?tale and the morphism fs : Ys ¨ Xs induced by f on special fibers is non-finite.
en-copyright=
kn-copyright=
en-aut-name=YangYu
en-aut-sei=Yang
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Research Institute for Mathematical Sciences Kyoto University
kn-affil=
en-keyword=stable curve
kn-keyword=stable curve
en-keyword=stable covering
kn-keyword=stable covering
en-keyword=vertical point
kn-keyword=vertical point
en-keyword=admissible covering
kn-keyword=admissible covering
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=75
end-page=84
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the Diophantine equation in the form that a sum of cubes equals a sum of quintics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=IzadiFarzali
en-aut-sei=Izadi
en-aut-mei=Farzali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BaghalaghdamMehdi
en-aut-sei=Baghalaghdam
en-aut-mei=Mehdi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Mehdi Baghalaghdam Department of Mathematics Faculty of Science Azarbaijan Shahid Madani University
kn-affil=
affil-num=2
en-affil=Mehdi Baghalaghdam Department of Mathematics Faculty of Science Azarbaijan Shahid Madani University
kn-affil=
en-keyword=Diophantine equations
kn-keyword=Diophantine equations
en-keyword=Cubes
kn-keyword=Cubes
en-keyword=Quintics
kn-keyword=Quintics
en-keyword=Elliptic curves
kn-keyword=Elliptic curves
en-keyword=Rank
kn-keyword=Rank
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=35
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Berezin-Weyl quantization of Heisenberg motion groups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We introduce a SchrNodinger model for the generic representations of a Heisenberg motion group and we construct adapted Weyl correspondences for these representations by adapting the method introduced in [ B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177-190].
en-copyright=
kn-copyright=
en-aut-name=CahenBenjamin
en-aut-sei=Cahen
en-aut-mei=Benjamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=DLepartement de mathLematiques UniversitLe de Lorraine
kn-affil=
en-keyword=Weyl correspondence
kn-keyword=Weyl correspondence
en-keyword=Berezin quantization
kn-keyword=Berezin quantization
en-keyword=Heisenberg motion group
kn-keyword=Heisenberg motion group
en-keyword=SchrNodinger representation
kn-keyword=SchrNodinger representation
en-keyword=Bargmann-Fock representation
kn-keyword=Bargmann-Fock representation
en-keyword=Segal-Bargmann transform
kn-keyword=Segal-Bargmann transform
en-keyword=unitary representation
kn-keyword=unitary representation
en-keyword=coadjoint orbit
kn-keyword=coadjoint orbit
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=167
end-page=172
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Factorization of 2 and 3 in Cyclic Quartic Fields
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Due to a theorem of Dedekind, factoring ideals generated by prime numbers in number fields is easily done given that said prime number does not divide the index of the field. In this paper, we determine the prime ideal factorizations of both 2 and 3 in cyclic quartic fields whose index is divisible by one of or both of these primes.
en-copyright=
kn-copyright=
en-aut-name=BrownStephen C.
en-aut-sei=Brown
en-aut-mei=Stephen C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DavisChad T.
en-aut-sei=Davis
en-aut-mei=Chad T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Computer Science, Mathematics, Physics and Statistics I.K. Barber School of Arts and Sciences University of British Columbia
kn-affil=
affil-num=2
en-affil=Department of Computer Science, Mathematics, Physics and Statistics I.K. Barber School of Arts and Sciences University of British Columbia
kn-affil=
en-keyword=Cyclic quartic field
kn-keyword=Cyclic quartic field
en-keyword=Prime ideal factorization
kn-keyword=Prime ideal factorization
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=129
end-page=139
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A limit transition from the Heckman-Opdam hypergeometric functions to the Whittaker functions associated with root systems
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We prove that the radial part of the class one Whittaker function on a split semisimple Lie group can be obtained as an appropriate limit of the Heckman-Opdam hypergeometric function.
en-copyright=
kn-copyright=
en-aut-name=ShimenoNobukazu
en-aut-sei=Shimeno
en-aut-mei=Nobukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=School of Science and Technology Kwansei Gakuin University
kn-affil=
en-keyword=root system
kn-keyword=root system
en-keyword=hypergeometric function
kn-keyword=hypergeometric function
en-keyword=Whittaker function
kn-keyword=Whittaker function
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=199
end-page=204
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Terwilliger Algebras of Some Group Association Schemes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The Terwilliger algebra plays an important role in the theory of association schemes. The present paper gives the explicit structures of the Terwilliger algebras of the group association schemes of the finite groups PSL(2, 7), A6, and S6.
en-copyright=
kn-copyright=
en-aut-name=HamidNur
en-aut-sei=Hamid
en-aut-mei=Nur
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OuraManabu
en-aut-sei=Oura
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Mathematics and Physics, Kanazawa University
kn-affil=
affil-num=2
en-affil=Faculty of Mathematics and Physics, Kanazawa University
kn-affil=
en-keyword=Terwilliger algebragroup association scheme
kn-keyword=Terwilliger algebragroup association scheme
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=159
end-page=166
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The number of simple modules in a block with Klein four hyperfocal subgroup
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= A 2-block of a finite group having a Klein four hyperfocal subgroup has the same number of irreducible Brauer characters as the corresponding 2-block of the normalizer of the hyperfocal subgroup.
en-copyright=
kn-copyright=
en-aut-name=TasakaFuminori
en-aut-sei=Tasaka
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=National Institute of Technology Tsuruoka College
kn-affil=
en-keyword=group theory
kn-keyword=group theory
en-keyword=modular representation
kn-keyword=modular representation
en-keyword=hyperfocal subgroup
kn-keyword=hyperfocal subgroup
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=173
end-page=186
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=201901
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the classification of ruled minimal surfaces in pseudo-Euclidean space
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= This paper gives, in generic situations, a complete classification of ruled minimal surfaces in pseudo-Euclidean space with arbitrary index. In addition, we discuss the condition for ruled minimal surfaces to exist, and give a counter-example on the problem of Bernstein type.
en-copyright=
kn-copyright=
en-aut-name=SatoYuichiro
en-aut-sei=Sato
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematical Sciences Tokyo Metropolitan University
kn-affil=
en-keyword=minimal surface
kn-keyword=minimal surface
en-keyword=ruled surface
kn-keyword=ruled surface
en-keyword=pseudo-Euclidean space
kn-keyword=pseudo-Euclidean space
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=165
end-page=173
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An alternative proof of some results on the framed bordism classes of low rank simple Lie groups
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We present a uni?ed proof of some known results on the framed bordism classes of low rank simple Lie groups.
en-copyright=
kn-copyright=
en-aut-name=MinamiHaruo
en-aut-sei=Minami
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Nara University of Education
kn-affil=
en-keyword=framed manifolds
kn-keyword=framed manifolds
en-keyword=simple Lie groups
kn-keyword=simple Lie groups
en-keyword=stable homotopy groups
kn-keyword=stable homotopy groups
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=175
end-page=208
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Indecomposability of various profinite groups arising from hyperbolic curves
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we prove that the etale fundamental group of a hyperbolic curve over an arithmetic field [e.g., a finite extension field of Q or Qp] or an algebraically closed field is indecomposable [i.e., cannot be decomposed into the direct product of nontrivial profinite groups]. Moreover, in the case of characteristic zero, we also prove that the etale fundamental group of the configuration space of a curve of the above type is indecomposable. Finally, we consider the topic of indecomposability in the context of the comparison of the absolute Galois group of Q with the Grothendieck-Teichmuller group GT and pose the question: Is GT indecomposable? We give an affirmative answer to a pro-l version of this question
en-copyright=
kn-copyright=
en-aut-name=MinamideArata
en-aut-sei=Minamide
en-aut-mei=Arata
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Research Institute for Mathematical Sciences Kyoto University
kn-affil=
en-keyword=indecomposability
kn-keyword=indecomposability
en-keyword=etale fundamental group
kn-keyword=etale fundamental group
en-keyword=hyperbolic curve
kn-keyword=hyperbolic curve
en-keyword=con?guration space
kn-keyword=con?guration space
en-keyword=Grothendieck-Teichmuller group
kn-keyword=Grothendieck-Teichmuller group
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=233
end-page=240
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the profinite abelian Beckmann-Black problem
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The main topic of this paper is to generalize the problem of Beckmann-Black for pro?nite groups. We introduce the Beckmann-Black problem for complete systems of ?finite groups and for unramified extensions. We prove that every Galois extension of profi?nite abelian group over a ƒÕ-free fi?eld is the specialization of some tower of regular Galois extensions of the same group.
en-copyright=
kn-copyright=
en-aut-name=GhaziNour
en-aut-sei=Ghazi
en-aut-mei=Nour
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=University of Damascus, Faculty of Sciences, Department of Mathematics
kn-affil=
en-keyword=Inverse Galois theory
kn-keyword=Inverse Galois theory
en-keyword=algebraic covers
kn-keyword=algebraic covers
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=109
end-page=135
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A remark on a central limit theorem for non-symmetric random walks on crystal lattices
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recently, Ishiwata, Kawabi and Kotani [4] proved two kinds of central limit theorems for non-symmetric random walks on crystal lattices from the view point of discrete geometric analysis developed by Kotani and Sunada. In the present paper, we establish yet another kind of the central limit theorem for them. Our argument is based on a measure-change technique due to Alexopoulos [1].
en-copyright=
kn-copyright=
en-aut-name=NambaRyuya
en-aut-sei=Namba
en-aut-mei=Ryuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Sciences, Okayama University
kn-affil=
en-keyword=crystal lattice
kn-keyword=crystal lattice
en-keyword=central limit theorem
kn-keyword=central limit theorem
en-keyword=non-symmetric random walk
kn-keyword=non-symmetric random walk
en-keyword=(modi?ed) harmonic realization
kn-keyword=(modi?ed) harmonic realization
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=155
end-page=164
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Arithmetic of positive integers having prime sums of complementary divisors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study a class of integers called SP numbers (Sum Prime numbers). An SP number is by de?nition a positive integer d that gives rise to a prime number (a + b)=gcd(4; 1 + d) from every factorization d = ab. We also discuss properties of SP numbers in relations with arithmetic of imaginary quadratic ?elds (least split primes, exponents of ideal class groups). Further we point out that special cases of SP numbers provide the problems of distribution of prime numbers (twin primes, Sophi-Germain primes, quadratic progressions). Finally, we consider the problem whether there exist in?nitely many SP numbers.
en-copyright=
kn-copyright=
en-aut-name=ShimizuKenichi
en-aut-sei=Shimizu
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
en-keyword=SP number
kn-keyword=SP number
en-keyword=prime number
kn-keyword=prime number
en-keyword= imaginary quadratic fi?eld
kn-keyword= imaginary quadratic fi?eld
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=59
end-page=72
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Absolute continuity of the representing measures of the transmutation operators attached to the root system of type BC2
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We prove in this paper the absolute continuity of the representing measures of the transmutation operators Vk, tVk and VkW, tVkW associated respectively to the Cherednik operators and the Heckman-Opdam theory attached to the root system of type BC2.
en-copyright=
kn-copyright=
en-aut-name=Trim?cheKhalifa
en-aut-sei=Trim?che
en-aut-mei=Khalifa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Faculty of sciences of Tunis University
kn-affil=
en-keyword=Transmutation operators
kn-keyword=Transmutation operators
en-keyword=Absolute continuity of the representing measures
kn-keyword=Absolute continuity of the representing measures
en-keyword=Cherednik operators
kn-keyword=Cherednik operators
en-keyword=Heckman-Opdam theory
kn-keyword=Heckman-Opdam theory
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=137
end-page=153
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A non-symmetric diffusion process on the Wiener space
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We discuss a non-symmetric diffusion process on the Wiener space. The process we consider is generated by A = L + b, L being the Ornstein-Uhlenbeck operator and b being a vector ?eld. Under suitable integrability condition for b, we show the existence of associated diffusion process. We also investigate the domain of the generator. Further we consider a similar problem in the ?nite dimensional Euclidean space.
en-copyright=
kn-copyright=
en-aut-name=ShigekawaIchiro
en-aut-sei=Shigekawa
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Graduate School of Science Kyoto University
kn-affil=
en-keyword=non-symmetric Dirichlet form
kn-keyword=non-symmetric Dirichlet form
en-keyword=Wiener space
kn-keyword=Wiener space
en-keyword=logarithmic Sobolev inequality
kn-keyword=logarithmic Sobolev inequality
en-keyword=generator domain
kn-keyword=generator domain
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=73
end-page=89
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Stable splittings of the complex connective K-theory of BSO(2n+1)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We give the stable splittings of the complex connective K-theory of the classifying space BSO(2n + 1), n?1.
en-copyright=
kn-copyright=
en-aut-name=WuTsung-Hsuan
en-aut-sei=Wu
en-aut-mei=Tsung-Hsuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics National Tsing Hua University
kn-affil=
en-keyword=stable splitting
kn-keyword=stable splitting
en-keyword=complex connective K-theory
kn-keyword=complex connective K-theory
en-keyword=classifying space
kn-keyword=classifying space
en-keyword=Adams spectral sequence
kn-keyword=Adams spectral sequence
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=91
end-page=108
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Primary decompositions in abelian R-categories
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We shall generalize the theory of primary decomposition and associated prime ideals of ?nitely generated modules over a noetherian ring to general objects in an abelian R-category where R is a noetherian commutative ring.
en-copyright=
kn-copyright=
en-aut-name=SatoKenichi
en-aut-sei=Sato
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshinoYuji
en-aut-sei=Yoshino
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=209
end-page=219
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Necessary and sufficient Tauberian conditions for the A^r method of summability
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=M?ricz and Rhoades determined the necessary and sufficient Tauberian conditions for certain weighted mean methods of summability in [Acta. Math. Hungar. 102(4) (2004), 279{285]. In the present paper, we deal with the necessary and sufficient Tauberian conditions for the Ar method which was introduced by Bas?ar in [F?rat ?niv. Fen & M?h. Bil. Dergisi 5(1)(1993), 113{117].
en-copyright=
kn-copyright=
en-aut-name=Talo?zer
en-aut-sei=Talo
en-aut-mei=?zer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Bas?arFeyzi
en-aut-sei=Bas?ar
en-aut-mei=Feyzi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics Faculty of Science and Letters Manisa Celal Bayar University
kn-affil=
affil-num=2
en-affil=?n?n? University
kn-affil=
en-keyword=Summability by Ar methods
kn-keyword=Summability by Ar methods
en-keyword=one-sided and two-sided Tauberian conditions
kn-keyword=one-sided and two-sided Tauberian conditions
en-keyword=slowly oscillating sequences
kn-keyword=slowly oscillating sequences
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=36
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Review on higher homotopies in the theory of H-spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Higher homotopy in the theory of H-spaces started from the works by Sugawara in the 1950th. In this paper we review the development of the theory of H-spaces associated with it. Mainly there are two types of higher homotopies, homotopy associativity and homotopy commutativity. We give explanations of the polytopes used as the parameter spaces of those higher forms.
en-copyright=
kn-copyright=
en-aut-name=HemmiYutaka
en-aut-sei=Hemmi
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Faculty of Science and Technology Kochi University
kn-affil=
en-keyword=H-space
kn-keyword=H-space
en-keyword=higher homotopy associativity
kn-keyword=higher homotopy associativity
en-keyword=An-form
kn-keyword=An-form
en-keyword=higher homotopy commutativity
kn-keyword=higher homotopy commutativity
en-keyword=associahedra
kn-keyword=associahedra
en-keyword=multiplihedra
kn-keyword=multiplihedra
en-keyword=permutohedra
kn-keyword=permutohedra
en-keyword=resultohedra
kn-keyword=resultohedra
en-keyword=permuto-associahedra
kn-keyword=permuto-associahedra
en-keyword=cyclohedra
kn-keyword=cyclohedra
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=221
end-page=231
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A binomial-coefficient identity arising from the middle discrete series of SU(2,2)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this paper is to answer the question in Remark 8.2 of Takahiro Hayata, Harutaka Koseki, and Takayuki Oda, Matrix coefficients of the middle discrete series of SU(2; 2), J. Funct. Anal. 185 (2001), 297{341, by giving an elementary proof of certain identities on binomials.
en-copyright=
kn-copyright=
en-aut-name=HayataTakahiro
en-aut-sei=Hayata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaMasao
en-aut-sei=Ishikawa
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Science and Engineering, Yamagata University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=binomial-coefficient identity
kn-keyword=binomial-coefficient identity
en-keyword=middle discrete series
kn-keyword=middle discrete series
en-keyword= real semi-simple Lie groups.
kn-keyword= real semi-simple Lie groups.
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=37
end-page=58
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2018
dt-pub=201801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tomita-Takesaki theory and its application to the structure theory of factors of type III
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We give a survey of Tomita-Takesaki theory and the development of analysis of structure of type III factors, which started from Tomita-Takesaki theory.
en-copyright=
kn-copyright=
en-aut-name=MasudaToshihiko
en-aut-sei=Masuda
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Mathematics, Kyushu University
kn-affil=
en-keyword=Tomita-Takesaki theory
kn-keyword=Tomita-Takesaki theory
en-keyword= type III factors
kn-keyword= type III factors
en-keyword= injective factors
kn-keyword= injective factors
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=131
end-page=140
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Higher-dimensional absolute versions of symmetric, Frobenius, and quasi-Frobenius algebras
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we define and discuss higher-dimensional and absolute versions of symmetric, Frobenius, and quasi-Frobenius algebras. In particular, we compare these with the relative notions defined by Scheja and Storch. We also prove the validity of codimension two-argument for modules over a coherent sheaf of algebras with a 2-canonical module, generalizing a result of the author.
en-copyright=
kn-copyright=
en-aut-name=HashimotoMitsuyasu
en-aut-sei=Hashimoto
en-aut-mei=Mitsuyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Faculty of Science, Okayama University
kn-affil=
en-keyword=canonical module
kn-keyword=canonical module
en-keyword=symmetric algebra
kn-keyword=symmetric algebra
en-keyword=Frobenius algebra
kn-keyword=Frobenius algebra
en-keyword=quasi-Frobenius algebra
kn-keyword=quasi-Frobenius algebra
en-keyword=n-canonical module
kn-keyword=n-canonical module
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=149
end-page=174
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Scattering and semi-classical asymptotics for periodic Schrödinger operators with oscillating decaying potential
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the semi-classical regime (i.e., h ↘ 0), we study the effect of an oscillating decaying potential V (hy, y) on the periodic Schrödinger operator H. The potential V (x, y) is assumed to be smooth, periodic with respect to y and tends to zero as |x| → ∞. We prove the existence of O(h?n) eigenvalues in each gap of the operator H + V (hy, y). We also establish a Weyl type asymptotics formula of the counting function of eigenvalues with optimal remainder estimate. We give a weak and pointwise asymptotic expansions in powers of h of the spectral shift function corresponding to the pair (H + V (hy, y),H). Finally, under some analytic assumption on the potential V we prove the existence of shape resonances, and we give their asymptotic expansions in powers of h1/2. All our results depend on the Floquet eigenvalues corresponding to the periodic Schrödinger operator H +V (x, y), (here x is a parameter).
en-copyright=
kn-copyright=
en-aut-name=DimassiMouez
en-aut-sei=Dimassi
en-aut-mei=Mouez
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Anh Tuan Duong
en-aut-sei=Anh Tuan Duong
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=UniversitLe Bordeaux I, Institut de MathLematiques de Bordeaux
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Hanoi National University of Education
kn-affil=
en-keyword=Periodic Schrödinger operator
kn-keyword=Periodic Schrödinger operator
en-keyword=oscillating potential
kn-keyword=oscillating potential
en-keyword=spectral shift function
kn-keyword=spectral shift function
en-keyword=asymptotic expansions
kn-keyword=asymptotic expansions
en-keyword=resonances
kn-keyword=resonances
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=117
end-page=130
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A note on balance equations for doubly periodic minimal surfaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Most known examples of doubly periodic minimal surfaces in R3 with parallel ends limit as a foliation of R3 by horizontal noded planes, with the location of the nodes satisfying a set of balance equations. Conversely, for each set of points providing a balanced configuration, there is a corresponding three-parameter family of doubly periodic minimal surfaces. In this note we derive a differential equation that is equivalent to the balance equations for doubly periodic minimal surfaces. This allows for the generation of many more solutions to the balance equations, enabling the construction of increasingly complicated surfaces.
en-copyright=
kn-copyright=
en-aut-name=ConnorPeter
en-aut-sei=Connor
en-aut-mei=Peter
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematical Sciences, Indiana University South Bend
kn-affil=
en-keyword=minimal surfaces
kn-keyword=minimal surfaces
en-keyword=doubly periodic
kn-keyword=doubly periodic
en-keyword=balance equations
kn-keyword=balance equations
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=21
end-page=25
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Some examples of non-tidy spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We construct a free Z2-space Xn for a positive integer n such that w1(Xn)n ≠ 0 but there is no Z2-map from S2 to Xn.
en-copyright=
kn-copyright=
en-aut-name=MatsushitaTakahiro
en-aut-sei=Matsushita
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Mathematical Sciences, The University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=113
end-page=116
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A remark on the Lavallee-Spearman-Williams-Yang family of quadratic fields
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In [4], M. J. Lavallee, B. K. Spearman, K. S. Williams and Q. Yang introduced a certain parametric D5-quintic polynomial and studied its splitting field. The present paper gives an infinite family of quadratic fields with class number divisible by 5 by using properties of its polynomial.
en-copyright=
kn-copyright=
en-aut-name=KimKwang-Seob
en-aut-sei=Kim
en-aut-mei=Kwang-Seob
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KishiYasuhiro
en-aut-sei=Kishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=School of Mathematics, Korea Institute for Advanced Study
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Aichi University of Education
kn-affil=
en-keyword=Class numbers
kn-keyword=Class numbers
en-keyword=Quadratic fields
kn-keyword=Quadratic fields
en-keyword=D5-polynomials
kn-keyword=D5-polynomials
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=27
end-page=40
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The degree of set-valued mappings from ANR spaces to homology spheres
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An admissible mapping is a set-valued mapping which has a selected pair of continuous mappings. In this paper, we study the degree of admissible mappings from ANR spaces to homology spheres and prove the uniqueness of the degree under some conditions.
en-copyright=
kn-copyright=
en-aut-name=ShitandaYoshimi
en-aut-sei=Shitanda
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=School of political science and economics, Meiji University
kn-affil=
en-keyword=Gysin-Smith sequence
kn-keyword=Gysin-Smith sequence
en-keyword=Vietoris-Begle mapping theorem
kn-keyword=Vietoris-Begle mapping theorem
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=41
end-page=70
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On a non-abelian generalization of the Bloch?Kato exponential map
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The present paper establishes a non-abelian generalization of the Bloch?Kato exponential map. Then, we relate p-adic polylogarithms introduced by Coleman to `-adic polylogarithms introduced by Wojtkowiak. This formula is another analog of the Coleman?Ihara formula obtained by Nakamura, Wojtkowiak, and the author.
en-copyright=
kn-copyright=
en-aut-name=SakugawaKenji
en-aut-sei=Sakugawa
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics Graduate School of Science, Osaka University
kn-affil=
en-keyword=Bloch?Kato exponential map
kn-keyword=Bloch?Kato exponential map
en-keyword=Non-abelian p-adic Hodge theory
kn-keyword=Non-abelian p-adic Hodge theory
en-keyword=Coleman?Ihara formula
kn-keyword=Coleman?Ihara formula
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=71
end-page=79
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of convolution sums and some remarks on cusp forms of weight 4 and level 12
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this note, we evaluate certain convolution sums and make some remarks about the Fourier coefficients of cusp forms of weight 4 for Γ0(12). We express the normalized newform of weight 4 on Γ0(12) as a linear combination of the (quasimodular) Eisenstein series (of weight 2) E2(dz), d|12 and their derivatives. Now, by comparing the work of Alaca-Alaca-Williams [1] with our results, as a consequence, we express the coefficients c1,12(n) and c3,4(n) that appear in [1, Eqs.(2.7) and (2.12)] in terms of linear combination of the Fourier coefficients of newforms of weight 4 on Γ0(6) and Γ0(12). The properties of c1,12(n) and c3,4(n) that are derived in [1] now follow from the properties of the Fourier coefficients of the newforms mentioned above. We also express the newforms as a linear combination of certain eta-quotients and obtain an identity involving eta-quotients.
en-copyright=
kn-copyright=
en-aut-name=RamakrishhanB.
en-aut-sei=Ramakrishhan
en-aut-mei=B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SahuBrundaban
en-aut-sei=Sahu
en-aut-mei=Brundaban
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Harish-Chandra Research Institute
kn-affil=
affil-num=2
en-affil=School of Mathematical Sciences National Institute of Science Education and Research
kn-affil=
en-keyword=convolution sums of the divisor function
kn-keyword=convolution sums of the divisor function
en-keyword=Fourier coeffificients
kn-keyword=Fourier coeffificients
en-keyword=newforms of integral weight
kn-keyword=newforms of integral weight
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=19
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Categorical characterization of strict morphisms of fs log schemes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the present paper, we study a categorical characterization of strict morphisms of fs log schemes. In particular, we prove that strictness of morphisms of fs log schemes is preserved by an arbitrary equivalence of categories between suitable categories of fs log schemes. The main result of the present paper leads us to a relatively simple alternative proof of a result on a categorical representation of fs log schemes proved by S. Mochizuki.
en-copyright=
kn-copyright=
en-aut-name=HoshiYuichiro
en-aut-sei=Hoshi
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakayamaChikara
en-aut-sei=Nakayama
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Research Institute for Mathematical Sciences, Kyoto University
kn-affil=
affil-num=2
en-affil=Department of Economics, Hitotsubashi University
kn-affil=
en-keyword=fs log scheme
kn-keyword=fs log scheme
en-keyword=strict morphism
kn-keyword=strict morphism
en-keyword=fs log point
kn-keyword=fs log point
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=175
end-page=218
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Blowup and global existence of a solution to a semilinear reaction-diffusion system with the fractional Laplacian
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we deal with the semilinear reaction diffusion system with the fractional Laplacian.
where p,q > 1 and 0 < α < 1. We study the existence of a global in time solution, the blowup of a solution, and the life span of the blowup solution to the above reaction-diffusion system for sufficiently small initial data.
en-copyright=
kn-copyright=
en-aut-name=KakehiTomoyuki
en-aut-sei=Kakehi
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OshitaYoshihito
en-aut-sei=Oshita
en-aut-mei=Yoshihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Okayama University
kn-affil=
en-keyword=Reaction diffusion system
kn-keyword=Reaction diffusion system
en-keyword=fractional Laplacian
kn-keyword=fractional Laplacian
en-keyword=global existence
kn-keyword=global existence
en-keyword=blowup
kn-keyword=blowup
en-keyword=life span
kn-keyword=life span
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=93
end-page=111
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gauss maps of cuspidal edges in hyperbolic 3-space, with application to flat fronts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study singularities of de Sitter Gauss map images of cuspidal edges in hyperbolic 3-space. We show relations between singularities of de Sitter Gauss map images and differential geometric properties of cuspidal edges. Moreover, we apply this result to flat fronts in hyperbolic 3-space.
en-copyright=
kn-copyright=
en-aut-name=OgataYuta
en-aut-sei=Ogata
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TeramotoKeisuke
en-aut-sei=Teramoto
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Graduate School of Science, Kobe University
kn-affil=
affil-num=2
en-affil=Department of Mathematics, Graduate School of Science, Kobe University
kn-affil=
en-keyword=cuspidal edge
kn-keyword=cuspidal edge
en-keyword=swallowtail
kn-keyword=swallowtail
en-keyword=de Sitter Gauss map image
kn-keyword=de Sitter Gauss map image
en-keyword=singularity
kn-keyword=singularity
en-keyword=flat front
kn-keyword=flat front
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=81
end-page=92
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An arithmetic function arising from the Dedekind ψ function
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We define ψ‾ to be the multiplicative arithmetic function that satisfies
for all primes p and positive integers α. Let λ(n) be the number of iterations of the function ψ‾ needed for n to reach 2. It follows from a theorem due to White that λ is additive. Following Shapiro's work on the iterated φ function, we determine bounds for λ. We also use the function λ to partition the set of positive integers into three sets S1, S2, S3 and determine some properties of these sets.
en-copyright=
kn-copyright=
en-aut-name=DefantColin
en-aut-sei=Defant
en-aut-mei=Colin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, University of Florida
kn-affil=
en-keyword=Iterated function
kn-keyword=Iterated function
en-keyword=Dedekind function
kn-keyword=Dedekind function
en-keyword=additive function
kn-keyword=additive function
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=1
article-no=
start-page=141
end-page=147
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2017
dt-pub=201701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On the (1 ? C2) condition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we give some results on (1 ? C2)?modules and 1?continuous modules.
en-copyright=
kn-copyright=
en-aut-name=Le Van An
en-aut-sei=Le Van An
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Nguyen Thi Hai Anh
en-aut-sei=Nguyen Thi Hai Anh
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Ngo Sy Tung
en-aut-sei=Ngo Sy Tung
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Natural Education, Ha Tinh University
kn-affil=
affil-num=2
en-affil=Department of Natural Education, Ha Tinh University
kn-affil=
affil-num=3
en-affil=Department of Mathematics, Vinh University
kn-affil=
en-keyword=injective module
kn-keyword=injective module
en-keyword=continuous module
kn-keyword=continuous module
en-keyword=uniform module
kn-keyword=uniform module
en-keyword=UC module
kn-keyword=UC module
en-keyword=distributive module
kn-keyword=distributive module
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=159
end-page=167
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Restriction on Galois groups by prime inert condition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we study number fields K with the property that every prime factor of the degree of K remains prime in K. We determine all types of Galois groups of such K up to degree nine and find that Wang's non-existence in cyclic octic case is exceptionally undetermined by our group-theoretic criterion.
en-copyright=
kn-copyright=
en-aut-name=KomatsuToru
en-aut-sei=Komatsu
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Faculty of Science and Technology Tokyo University of Science
en-keyword=Inverse Galois theory
kn-keyword=Inverse Galois theory
en-keyword=prime factorization
kn-keyword=prime factorization
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=79
end-page=108
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Aharonov--Bohm effect in resonances of magnetic Schr?dinger operators in two dimensions III
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study the Aharonov?Bohm effect (AB effect) in quantum resonances for magnetic scattering in two dimensions. The system consists of four scatters, two obstacles and two scalar potentials with compact support, which are largely separated from one another. The obstacles by which the magnetic fields are completely shielded are vertically placed between the supports of the two potentials. The system yields a two dimensional model of a toroidal scattering system in three dimensions. The resonances are shown to be generated near the real axis by the trajectories trapped between two supports of the scalar potentials as the distances between the scatterers go to infinity. We analyze how the AB effect influences the location of resonances. The result heavily depends on the width between the two obstacles as well as on the magnetic fluxes. The critical case is that the width is comparable to the square root of the distance between the supports of the two potentials.
en-copyright=
kn-copyright=
en-aut-name=TamuraHideo
en-aut-sei=Tamura
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Okayama University
en-keyword=Aharonov?Bohm effect
kn-keyword=Aharonov?Bohm effect
en-keyword=magnetic Schr?dinger operator
kn-keyword=magnetic Schr?dinger operator
en-keyword=resonances
kn-keyword=resonances
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=169
end-page=182
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On weakly separable polynomials and weakly quasi-separable polynomials over rings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Separable extensions of noncommutative rings have already been studied extensively. Recently, N. Hamaguchi and A. Nakajima introduced the notions of weakly separable extensions and weakly quasiseparable extensions. They studied weakly separable polynomials and weakly quasi-separable polynomials in the case that the coefficient ring is commutative. The purpose of this paper is to give some improvements and generalizations of Hamaguchi and Nakajima's results. We shall characterize a weakly separable polynomial f(X) over a commutative ring by using its derivative fŒ(X) and its discriminant ƒÂ(f(X)). Further, we shall try to give necessary and sufficient conditions for weakly separable polynomials in skew polynomial rings in the case that the coefficient ring is noncommutative.
en-copyright=
kn-copyright=
en-aut-name=YamanakaSatoshi
en-aut-sei=Yamanaka
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Graduate School of Natural Science and Technology Okayama University
en-keyword=separable extension
kn-keyword=separable extension
en-keyword=quasi-separable extension
kn-keyword=quasi-separable extension
en-keyword=weakly separable extension
kn-keyword=weakly separable extension
en-keyword=weakly quasi-separable extension
kn-keyword=weakly quasi-separable extension
en-keyword=skew polynomial ring
kn-keyword=skew polynomial ring
en-keyword=derivation
kn-keyword=derivation
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=141
end-page=158
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Alternative approach for Siegel's lemma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this article, we present an alternative approach to show a generalization of Siegel's lemma which is an essential tool in Diophantine problems. Our main statement contains the so-called analytic Siegel's lemma as well as the Bombieri-Vaaler lemma. Our proof avoids relying on the ordinary geometry of numbers.
en-copyright=
kn-copyright=
en-aut-name=NagataMakoto
en-aut-sei=Nagata
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Osaka University of Pharmaceutical Sciences
en-keyword=Siegelfs lemma
kn-keyword=Siegelfs lemma
en-keyword=geometry of numbers
kn-keyword=geometry of numbers
en-keyword=height
kn-keyword=height
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=41
end-page=78
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Aharonov--Bohm effect in resonances of magnetic Schr?dinger operators in two dimensions II
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study the Aharonov?Bohm effect (AB effect) in quantum resonances for magnetic scattering in two dimensions. The system consists of four scatters, two obstacles and two scalar potentials with compact support, which are largely separated from one another. The obstacles by which the magnetic fields are completely shielded are horizontally placed between the supports of the two potentials. The fields do not influence particles from a classical mechanical point of view, but quantum particles are influenced by the corresponding vector potential which does not necessarily vanish outside the obstacle. This quantum phenomenon is called the AB effect. The resonances are shown to be generated near the real axis by the trajectories trapped between two supports of the scalar potentials as the distances between the scatterers go to infinity. We analyze how the AB effect influences the location of resonances. The result is described in terms of the backward amplitudes for scattering by each of the scalar potentials, and it depends heavily on the ratios of the distances between the four scatterers as well as on the magnetic fluxes of the fields.
en-copyright=
kn-copyright=
en-aut-name=TamuraHideo
en-aut-sei=Tamura
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Okayama University
en-keyword=Aharonov?Bohm effect
kn-keyword=Aharonov?Bohm effect
en-keyword=magnetic Schr?dinger operator
kn-keyword=magnetic Schr?dinger operator
en-keyword=resonances
kn-keyword=resonances
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=183
end-page=198
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The positivity of the transmutation operators associated to the Cherednik operators for the root system $BC_2$
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We consider the transmutation operators Vk, tVk and V W k , tV W k associated respectively with the Cherednik operators and the Heckman-Opdam theory attached to the root system BC2, called also in [8, 9, 10] the trigonometric Dunkl intertwining operators, and their dual. In this paper we prove that the operators Vk, tVk and VWk , tVWk are positivity preserving and allows positive integral representations. In particular we deduce that the Opdam-Cherednik and the Heckman-Opdam kernels are positive definite.
en-copyright=
kn-copyright=
en-aut-name=TRIM?CHEKhalifa
en-aut-sei=TRIM?CHE
en-aut-mei=Khalifa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Faculty of Science of Tunis University Tunis El-Manar
en-keyword=Cherednik operators-Root system of type BC2
kn-keyword=Cherednik operators-Root system of type BC2
en-keyword=Transmutation operators
kn-keyword=Transmutation operators
en-keyword=The trigonometric Dunkl intertwining operator and its dual
kn-keyword=The trigonometric Dunkl intertwining operator and its dual
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=39
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Asymptotic properties in forward directions of resolvent kernels of magnetic Schr?dinger operators in two dimensions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We study the asymptotic properties in forward directions of resolvent kernels with spectral parameters in the lower half plane (unphysical sheet) of the complex plane for magnetic Schr?dinger operators in two dimensions. The asymptotic formula obtained has an application to the problem of quantum resonances in magnetic scattering, and it is especially helpful in studying how the Aharonov?Bohm effect influences the location of resonances. Here we mention only the results without proofs.
en-copyright=
kn-copyright=
en-aut-name=TamuraHideo
en-aut-sei=Tamura
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Okayama University
en-keyword=Aharonov?Bohm effect
kn-keyword=Aharonov?Bohm effect
en-keyword=magnetic Schr?dinger operator
kn-keyword=magnetic Schr?dinger operator
en-keyword=resolvent kernel
kn-keyword=resolvent kernel
en-keyword=resonances
kn-keyword=resonances
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=109
end-page=123
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Another description of quasi tertiary composition
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We give another description of quasi tertiary composition in terms of horizontal and vertical compositions. As an application of the description and a modified result of Hardie-Kamps-Marcum-Oda, we see that any quasi tertiary composition has an indeterminacy.
en-copyright=
kn-copyright=
en-aut-name=?shimaHideaki
en-aut-sei=?shima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=?shimaKatsumi
en-aut-sei=?shima
en-aut-mei=Katsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Ibaraki University
affil-num=2
en-affil=
kn-affil=
en-keyword=Toda bracket
kn-keyword=Toda bracket
en-keyword=tertiary composition
kn-keyword=tertiary composition
en-keyword=quasi tertiary composition
kn-keyword=quasi tertiary composition
en-keyword=horizontal composition
kn-keyword=horizontal composition
en-keyword=vertical composition
kn-keyword=vertical composition
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=125
end-page=132
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On a duality of Gras between totally positive and primary cyclotomic units
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let K be a real abelian field of odd degree over Q, and C the group of cyclotomic units of K. We denote by C+ and C0 the totally positive and primary elements of C, respectively. G. Gras found a duality between the Galois modules C+/C2 and C0/C2 by some ingenious calculation on cyclotomic units. We give an alternative proof using a consequence (=gGras conjectureh) of the Iwasawa main conjecture and the standard reflection argument. We also give some related topics.
en-copyright=
kn-copyright=
en-aut-name=IchimuraHumio
en-aut-sei=Ichimura
en-aut-mei=Humio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Faculty of Science, Ibaraki University
en-keyword=cyclotomic units
kn-keyword=cyclotomic units
en-keyword=reflection argument
kn-keyword=reflection argument
en-keyword=ideal class group
kn-keyword=ideal class group
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=1
article-no=
start-page=133
end-page=140
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=On finite rings over which every free codes is splitting
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we study the structure of finite rings over which all free codes are splitting. In particular, we show that over the matrix rings over finite local rings all free codes are splitting.
en-copyright=
kn-copyright=
en-aut-name=HiranoYasuyuki
en-aut-sei=Hirano
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Naruto university of Education
en-keyword=finite rings
kn-keyword=finite rings
en-keyword=ring-linear codes
kn-keyword=ring-linear codes
en-keyword=free codes
kn-keyword=free codes
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=149
end-page=158
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON ∅-RECURRENT CONTACT METRIC MANIFOLDS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we prove that evry 3-dimensional manifold
M is a ∅-recurrent N(k)-contact metric manifold if and only if it is flat.
Then we classify the ∅-recurrent contact metric manifolds of constant
curvature. This implies that there exists no ∅-recurrent N(k)-contact
metric manifold, which is neither symmetric nor locally ∅-symmetric.
en-copyright=
kn-copyright=
en-aut-name=PeyghanEsmaeil
en-aut-sei=Peyghan
en-aut-mei=Esmaeil
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NasrabadiHassan
en-aut-sei=Nasrabadi
en-aut-mei=Hassan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TayebiAkbar
en-aut-sei=Tayebi
en-aut-mei=Akbar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Faculty of Science Arak University
affil-num=2
en-affil=
kn-affil=Department of Mathematics, Faculty of Science Arak University
affil-num=3
en-affil=
kn-affil=Department of Mathematics, Faculty of Science University of Qom
en-keyword=Constant curvature
kn-keyword=Constant curvature
en-keyword=Locally ∅-symmetric
kn-keyword=Locally ∅-symmetric
en-keyword=N(k)-contact metric manifold
kn-keyword=N(k)-contact metric manifold
en-keyword=∅-recurrent
kn-keyword=∅-recurrent
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=123
end-page=128
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=THE EQUIVARIANT SIMPLICIAL DE RHAM COMPLEX AND THE CLASSIFYING SPACE OF A SEMI-DIRECT PRODUCT GROUP
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We show that the cohomology group of the total complex
of the equivariant simplicial de Rham complex is isomorphic to the cohomology
group of the classifying space of a semi-direct product group.
en-copyright=
kn-copyright=
en-aut-name=SuzukiNaoya
en-aut-sei=Suzuki
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Graduate School of Mathematics, Nagoya University
en-keyword=simplicial de Rham complex
kn-keyword=simplicial de Rham complex
en-keyword=classifying space
kn-keyword=classifying space
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=159
end-page=172
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ENUMERATIVE COMBINATORICS ON DETERMINANTS AND SIGNED BIGRASSMANNIAN POLYNOMIALS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=As an application of linear algebra for enumerative combinatorics,
we introduce two new ideas, signed bigrassmannian polynomials
and bigrassmannian determinant. First, a signed bigrassmannian
polynomial is a variant of the statistic given by the number of bigrassmannian
permutations below a permutation in Bruhat order as Reading
suggested (2002) and afterward the author developed (2011). Second,
bigrassmannian determinant is a q-analog of the determinant with respect
to our statistic. It plays a key role for a determinantal expression
of those polynomials. We further show that bigrassmannian determinant
satisfies weighted condensation as a generalization of Dodgson,
Jacobi-Desnanot and Robbins-Rumsey (1986).
en-copyright=
kn-copyright=
en-aut-name=KobayashiMasato
en-aut-sei=Kobayashi
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Graduate School of Science and Engineering Department of Mathematics Saitama University
en-keyword=Bigrassmannian permutations
kn-keyword=Bigrassmannian permutations
en-keyword=Bruhat order
kn-keyword=Bruhat order
en-keyword=Permutation statistics
kn-keyword=Permutation statistics
en-keyword=Robbins-Rumsey determinant
kn-keyword=Robbins-Rumsey determinant
en-keyword=Symmetric Groups
kn-keyword=Symmetric Groups
en-keyword=Tournaments
kn-keyword=Tournaments
en-keyword=Vandermonde determinant
kn-keyword=Vandermonde determinant
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=173
end-page=200
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ZERO MEAN CURVATURE SURFACES IN LORENTZ-MINKOWSKI 3-SPACE AND 2-DIMENSIONAL FLUID MECHANICS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Space-like maximal surfaces and time-like minimal surfaces
in Lorentz-Minkowski 3-space R31 are both characterized as zero mean
curvature surfaces. We are interested in the case where the zero mean
curvature surface changes type from space-like to time-like at a given
non-degenerate null curve. We consider this phenomenon and its interesting connection to 2-dimensional fluid mechanics in this expository
article.
en-copyright=
kn-copyright=
en-aut-name=FujimoriShoichi
en-aut-sei=Fujimori
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimYoung Wook
en-aut-sei=Kim
en-aut-mei=Young Wook
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KohSung-Eun
en-aut-sei=Koh
en-aut-mei=Sung-Eun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=RossmanWayne
en-aut-sei=Rossman
en-aut-mei=Wayne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShinHeayong
en-aut-sei=Shin
en-aut-mei=Heayong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UmeharaMasaaki
en-aut-sei=Umehara
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamadaKotaro
en-aut-sei=Yamada
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YangSeong-Deog
en-aut-sei=Yang
en-aut-mei=Seong-Deog
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Faculty of Science, Okayama University
affil-num=2
en-affil=
kn-affil=Department of Mathematics, Korea University
affil-num=3
en-affil=
kn-affil=Department of Mathematics, Konkuk University
affil-num=4
en-affil=
kn-affil=Department of Mathematics, Faculty of Science, Kobe University
affil-num=5
en-affil=
kn-affil=Department of Mathematics, Chung-Ang University
affil-num=6
en-affil=
kn-affil=Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
affil-num=7
en-affil=
kn-affil=Department of Mathematics, Tokyo Institute of Technology
affil-num=8
en-affil=
kn-affil=Department of Mathematics, Korea University
en-keyword=maximal surface
kn-keyword=maximal surface
en-keyword=type change
kn-keyword=type change
en-keyword=zero mean curvature
kn-keyword=zero mean curvature
en-keyword=subsonic flow
kn-keyword=subsonic flow
en-keyword=supersonic flow
kn-keyword=supersonic flow
en-keyword=stream function
kn-keyword=stream function
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=12
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=MODULAR DIFFERENTIAL EQUATIONS WITH REGULAR SINGULARITIES AT ELLIPTIC POINTS FOR THE HECKE CONGRUENCE SUBGROUPS OF LOW-LEVELS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we give explicit expressions of modular differential equations with regular singularities at elliptic points for the Hecke
subgroups of level 2, 3, and 4, and their solutions expressed in terms of
the Gauss hypergeometric series. We also give quasimodular-form solutions for some modular differential equations.
en-copyright=
kn-copyright=
en-aut-name=SakaiYuichi
en-aut-sei=Sakai
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimizuKenichi
en-aut-sei=Shimizu
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=
kn-affil=
en-keyword=modular/quasimodular form
kn-keyword=modular/quasimodular form
en-keyword=differential equations
kn-keyword=differential equations
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=129
end-page=148
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=AN EXPLICIT EFFECT OF NON-SYMMETRY OF RANDOM WALKS ON THE TRIANGULAR LATTICE
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the present paper, we study an explicit effect of non-symmetry on asymptotics of the n-step transition probability as n ¨ ∞
for a class of non-symmetric random walks on the triangular lattice. Realizing the triangular lattice into R2 appropriately, we observe that the
Euclidean distance in R2 naturally appears in the asymptotics. We characterize this realization from a geometric view point of Kotani-Sunadafs
standard realization of crystal lattices. As a corollary of the main theorem, we obtain that the transition semigroup generated by the non-symmetric random walk approximates the heat semigroup generated by
the usual Brownian motion on R2.
en-copyright=
kn-copyright=
en-aut-name=IshiwataSatoshi
en-aut-sei=Ishiwata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawabiHiroshi
en-aut-sei=Kawabi
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeruyaTsubasa
en-aut-sei=Teruya
en-aut-mei=Tsubasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematical Sciences, Faculty of Science Yamagata University
affil-num=2
en-affil=
kn-affil=Department of Mathematics, Faculty of Science Okayama University
affil-num=3
en-affil=
kn-affil=The Okinawa Kaiho Bank, Ltd.
en-keyword=Non-symmetric random walk
kn-keyword=Non-symmetric random walk
en-keyword=asymptotic expansion
kn-keyword=asymptotic expansion
en-keyword=triangular lattice
kn-keyword=triangular lattice
en-keyword=standard realization
kn-keyword=standard realization
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=99
end-page=110
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=SUPPLEMENTED MORPHISMS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the present paper, left R-modules M and N are studied
under the assumptions that HomR(M,N) is supplemented. It is shown
that Hom(M,N) is (?, G*, amply)-supplemented if and only if N is
(?, G*, amply)-supplemented. Some applications to cosemisimple modules,
refinable modules and UCC-modules are presented. Finally, the
relationship between the Jacobson radical J[M,N] of HomR(M,N) and
HomR(M,N) is supplemented are investigated. Let M be a finitely generated,
self-projective left R-module and N ¸ Gen(M). We show that if
Hom(M,N) is supplemented and N has GD2 then Hom(M,N)/J(M,N)
is semisimple as a left EM-module.
en-copyright=
kn-copyright=
en-aut-name=K?rArda
en-aut-sei=K?r
en-aut-mei=Arda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=QuynhTruong Cong
en-aut-sei=Quynh
en-aut-mei=Truong Cong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=?ahinkayaSerap
en-aut-sei=?ahinkaya
en-aut-mei=Serap
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Ko?anMuhammet Tamer
en-aut-sei=Ko?an
en-aut-mei=Muhammet Tamer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics, Gebze Institute of Technology
affil-num=2
en-affil=
kn-affil=Department of Mathematics Danang University
affil-num=3
en-affil=
kn-affil=Department of Mathematics, Gebze Institute of Technology
affil-num=4
en-affil=
kn-affil=Department of Mathematics, Gebze Institute of Technology
en-keyword=regular module
kn-keyword=regular module
en-keyword=supplemented module
kn-keyword=supplemented module
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=111
end-page=122
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=THE CANONICAL LINE BUNDLES OVER EQUIVARIANT REAL PROJECTIVE SPACES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A generator of the reduced KO-group of the real projective space of dimension n is related to the canonical line bundle γ. In
the present paper, we will prove that for a finite group G of odd order and a real G-representation U of dimension 2n, in the reduced G-equivariant KO-group of the real projective space associated with the
G-representation R ? U, the element 2n+2[γ] is equal to zero.
en-copyright=
kn-copyright=
en-aut-name=QiYan
en-aut-sei=Qi
en-aut-mei=Yan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Mathematics Graduate School of Natural Science and Technology Okayama University
en-keyword=equivariant real vector bundle
kn-keyword=equivariant real vector bundle
en-keyword=group action
kn-keyword=group action
en-keyword=real projective space
kn-keyword=real projective space
en-keyword=canonical line bundle
kn-keyword=canonical line bundle
en-keyword=product bundle
kn-keyword=product bundle
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=13
end-page=78
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=QUASI TERTIARY COMPOSITIONS AND A TODA BRACKET IN HOMOTOPY GROUPS OF SU(3)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We revise the theories of tertiary compositions studied by
Ôguchi and Mimura. As a byproduct, we determine a Toda bracket
in homotopy groups of SU(3) which solves an ambiguity in a previous
paper of Maruyama and the first author.
en-copyright=
kn-copyright=
en-aut-name=?shimaHideaki
en-aut-sei=?shima
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=?shimaKatsumi
en-aut-sei=?shima
en-aut-mei=Katsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=Ibaraki University
affil-num=2
en-affil=
kn-affil=
en-keyword=Toda bracket
kn-keyword=Toda bracket
en-keyword=tertiary composition
kn-keyword=tertiary composition
en-keyword=quasi tertiary composition
kn-keyword=quasi tertiary composition
en-keyword=homotopy group
kn-keyword=homotopy group
en-keyword=special unitary group
kn-keyword=special unitary group
en-keyword=Samelson product
kn-keyword=Samelson product
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=79
end-page=84
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON MODEL STRUCTURE FOR COREFLECTIVE SUBCATEGORIES OF A MODEL CATEGORY
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HaraguchiTadayuki
en-aut-sei=Haraguchi
en-aut-mei=Tadayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of General Education Oita National College of Technology
en-keyword=model category
kn-keyword=model category
en-keyword=Quillen equivalence
kn-keyword=Quillen equivalence
en-keyword=numerically generated space
kn-keyword=numerically generated space
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=1
article-no=
start-page=85
end-page=98
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=STEENROD-?ECH HOMOLOGY-COHOMOLOGY THEORIES ASSOCIATED WITH BIVARIANT FUNCTORS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Let NG0 denote the category of all pointed numerically
generated spaces and continuous maps preserving base-points. In [SYH],
we described a passage from bivariant functors NG0op
~ NG0 ¨ NG0
to generalized homology and cohomology theories. In this paper, we
construct a bivariant functor such that the associated cohomology is
the ?ech cohomology and the homology is the Steenrod homology (at
least for compact metric spaces).
en-copyright=
kn-copyright=
en-aut-name=YoshidaKohei
en-aut-sei=Yoshida
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Kyoto Rakuhoku High School
en-keyword=?ech cohomologies
kn-keyword=?ech cohomologies
en-keyword=Steenrod homologies
kn-keyword=Steenrod homologies
en-keyword=bivariant functors
kn-keyword=bivariant functors
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=157
end-page=169
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=STUDY OF A PARABOLIC PROBLEM IN A CONICAL DOMAIN
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper we consider the heat equation with Dirichlet
boundary conditions in a conical domain. We look for a sufficient condition
on the lateral surface of the cone in order to have the optimal
regularity of the solution in an anisotropic Sobolev space when the right
hand side of the equation is in a Lebesgue space.
en-copyright=
kn-copyright=
en-aut-name=SadallahBoubaker-Khaled
en-aut-sei=Sadallah
en-aut-mei=Boubaker-Khaled
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Lab. PDE & Hist. Maths Ecole Normale Sup?rieure
en-keyword=Heat equation
kn-keyword=Heat equation
en-keyword=Parabolic equation
kn-keyword=Parabolic equation
en-keyword=Nonregular domain
kn-keyword=Nonregular domain
en-keyword=Cone
kn-keyword=Cone
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=16
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=MUTATING BRAUER TREES
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper we introduce mutation of Brauer trees. We
show that our mutation of Brauer trees explicitly describes the tilting
mutation of Brauer tree algebras introduced by Okuyama and Rickard.
en-copyright=
kn-copyright=
en-aut-name=AiharaTakuma
en-aut-sei=Aihara
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Division of Mathematical Science and Physics, Graduate School of Science and Technology, Chiba University
en-keyword=Brauer tree
kn-keyword=Brauer tree
en-keyword=Brauer tree algebra
kn-keyword=Brauer tree algebra
en-keyword=tilting mutation
kn-keyword=tilting mutation
en-keyword=mutation of Brauer tree
kn-keyword=mutation of Brauer tree
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=171
end-page=178
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CONVEXITY PROPERTIES OF A NEW GENERAL INTEGRAL OPERATOR OF p-VALENT FUNCTIONS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we introduce a new general integral operator
and obtain the order of convexity of this integral operator.
en-copyright=
kn-copyright=
en-aut-name=BulutSerap
en-aut-sei=Bulut
en-aut-mei=Serap
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Kocaeli University Civil Aviation College Arslanbey Campus
en-keyword=Analytic function
kn-keyword=Analytic function
en-keyword=Multivalent function
kn-keyword=Multivalent function
en-keyword=Starlike function
kn-keyword=Starlike function
en-keyword=Convex function
kn-keyword=Convex function
en-keyword=Integral operator
kn-keyword=Integral operator
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=1
article-no=
start-page=179
end-page=198
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ON THE SOLVABILITY OF CERTAIN (SSIE) WITH OPERATORS OF THE FORM B(r, s)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Given any sequence z = (zn)n?1 of positive real numbers
and any set E of complex sequences, we write Ez for the set of all
sequences y = (yn)n?1 such that y/z = (yn/zn)n?1 ¸ E; in particular,
sz(c)
denotes the set of all sequences y such that y/z converges. In this
paper we deal with sequence spaces inclusion equations (SSIE), which
are determined by an inclusion each term of which is a sum or a sum
of products of sets of sequences of the form Xa(T) and Xx(T) where
a is a given sequence, the sequence x is the unknown, T is a given
triangle, and Xa(T) and Xx(T) are the matrix domains of T in the set X
. Here we determine the set of all positive sequences x for which the
(SSIE) sx(c)
(B(r, s)) sx(c)¼
(B(r', s')) holds, where r, r', s' and s are real
numbers, and B(r, s) is the generalized operator of the first difference
defined by (B(r, s)y)n = ryn+syn?1 for all n ? 2 and (B(r, s)y)1 = ry1.
We also determine the set of all positive sequences x for which
ryn + syn?1 /xn
¨ l implies
r'yn + s'yn?1
/xn
¨ l (n ¨ ‡) for all y
and for some scalar l. Finally, for a given sequence a, we consider the
a?Tauberian problem which consists of determining the set of all x such
that sx(c) (B(r, s)) ¼ sa(c) .
en-copyright=
kn-copyright=
en-aut-name=MalafosseBruno de
en-aut-sei=Malafosse
en-aut-mei=Bruno de
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MalkowskyEberhard
en-aut-sei=Malkowsky
en-aut-mei=Eberhard
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=LMAH Universit? du Havre
affil-num=2
en-affil=
kn-affil=Fatih University
en-keyword=Matrix transformations
kn-keyword=Matrix transformations
en-keyword=BK space
kn-keyword=BK space
en-keyword=the spaces sa, s
We introduce the concept of serially coalescent classes of Lie algebras corresponding to those of coalescent classes and ascendantly coalescent classes. We show that the class of finite-dimensional and nilpotent, the class of finite-dimensional and the class of finite-dimensional and soluble Lie algebras, are serially coalescent classes for locally finite Lie algebras over any field of characteristic zero. We also introduce the concept of locally serially coalescent classes of Lie algebras and find some locally serially coalescent classes for locally finite Lie algebras.
en-copyright= kn-copyright= en-aut-name=HondaMasanobu en-aut-sei=Honda en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakamotoTakanori en-aut-sei=Sakamoto en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Faculty of Pharmaceutidal Sciences, Niigata University of Pharmacy and Applied Life Sciences affil-num=2 en-affil= kn-affil=Department of Mathematics, Fukuoka University of Education en-keyword=Lie algebra kn-keyword=Lie algebra en-keyword=serial subalgebra kn-keyword=serial subalgebra en-keyword=coalescent class kn-keyword=coalescent class END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=143 end-page=146 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON SELF MAPS OF HPn FOR n = 4 AND 5 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We determine the cardinality of the set of the homotopy classes of self maps of HP4 with degree 0. And we shall determine the nilpotency of HP5.
en-copyright= kn-copyright= en-aut-name=Kat?giKazuyoshi en-aut-sei=Kat?gi en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=133 end-page=142 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=EXPONENTIAL GENERALIZED DISTRIBUTIONS en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper we generalize the Fourier transform from the space of tempered distributions to a bigger space called exponential generalized distributions. For that purpose we replace the Schwartz space S by a smaller space X0 of smooth functions such that, among other properties, decay at infinity faster than any exponential. The construction of X0 is such that this space of test functions is closed for derivatives, for Fourier transform and for translations. We equip X0 with an appropriate locally convex topology and we study itfs dual X'0; we call X′0 the space of exponential generalized distributions. The space X′0 contains all the Schwartz tempered distributions, is closed for derivatives, and both, translations and Fourier transform, are vector and topological automorphisms in X′0. As non trivial examples of elements in X′0, we show that some multipole series appearing in physics are convergent in this space.
en-copyright= kn-copyright= en-aut-name=GordonM. en-aut-sei=Gordon en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LouraL. en-aut-sei=Loura en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Departamento de Matem?tica e Engenharias, Universidade da Madeira affil-num=2 en-affil= kn-affil=Departamento de Engenharia Electrot?cnica e Automa??o Sec??o de Matem?tica en-keyword=Distribution kn-keyword=Distribution en-keyword=Ultradistribution kn-keyword=Ultradistribution en-keyword=Multipole series kn-keyword=Multipole series en-keyword=Fourier transform kn-keyword=Fourier transform END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=133 end-page=142 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A GENERAL INEQUALITY FOR DOUBLY WARPED PRODUCT SUBMANIFOLDS en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we consider doubly warped product manifolds and we establish a general inequality for doubly warped products isometrically immersed in arbitrary Riemannian manifolds. Some aplications are derived.
en-copyright= kn-copyright= en-aut-name=OlteanuAndreea en-aut-sei=Olteanu en-aut-mei=Andreea kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Faculty of Mathematics and Computer Science, University of Bucharest en-keyword=Doubly warped product kn-keyword=Doubly warped product en-keyword=Laplacian kn-keyword=Laplacian en-keyword=mean curvature kn-keyword=mean curvature en-keyword=generalized Sasakian space form kn-keyword=generalized Sasakian space form en-keyword=Sasakian space form kn-keyword=Sasakian space form en-keyword=C-totally real submanifold kn-keyword=C-totally real submanifold END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=1 end-page=28 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ARITHMETIC ELLIPTIC CURVES IN GENERAL POSITION en-subtitle= kn-subtitle= en-abstract= kn-abstract=We combine various well-known techniques from the theory of heights, the theory of gnoncritical Belyi mapsh, and classical analytic number theory to conclude that the gABC Conjectureh, or, equivalently, the so-called gEffective Mordell Conjectureh, holds for arbitrary rational points of the projective line minus three points if and only if it holds for rational points which are in gsufficiently general positionh in the sense that the following properties are satisfied: (a) the rational point under consideration is bounded away from the three points at infinity at a given finite set of primes; (b) the Galois action on the l-power torsion points of the corresponding elliptic curve determines a surjection onto GL2(Zl), for some prime number l which is roughly of the order of the sum of the height of the elliptic curve and the logarithm of the discriminant of the minimal field of definition of the elliptic curve, but does not divide the conductor of the elliptic curve, the rational primes that are absolutely ramified in the minimal field of definition of the elliptic curve, or the local heights [i.e., the orders of the q-parameter at primes of [bad] multiplicative reduction] of the elliptic curve.
en-copyright= kn-copyright= en-aut-name=MochizukiShinichi en-aut-sei=Mochizuki en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Research Institute for Mathematical Sciences Kyoto University en-keyword=elliptic curve kn-keyword=elliptic curve en-keyword=number field kn-keyword=number field en-keyword=Belyi map kn-keyword=Belyi map en-keyword=ABC Conjecture kn-keyword=ABC Conjecture en-keyword=Mordell Conjecture kn-keyword=Mordell Conjecture en-keyword=Vojta Conjecture kn-keyword=Vojta Conjecture END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=179 end-page=198 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=INFINITE MATRICES ASSOCIATED WITH POWER SERIES AND APPLICATION TO OPTIMIZATION AND MATRIX TRANSFORMATIONS en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper we first recall some properties of triangle Toeplitz matrices of the Banach algebra Sr associated with power series. Then for boolean Toeplitz matrices M we explicitly calculate the product MN that gives the number of ways with N arcs associated with M. We compute the matrix BN (i, j), where B (i, j) is an infinite matrix whose the nonzero entries are on the diagonals m − n = i or m − n = j. Next among other things we consider the infinite boolean matrix B+∞ that have infinitely many diagonals with nonzero entries and we explicitly calculate (B+∞)N. Finally we give necessary and sufficient conditions for an infinite matrix M to map c (BN (i, 0)) to c.
en-copyright= kn-copyright= en-aut-name=MalafosseBruno de en-aut-sei=Malafosse en-aut-mei=Bruno de kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YassineAdnan en-aut-sei=Yassine en-aut-mei=Adnan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil= kn-affil=LMAH Universit? du Havre en-keyword=Matrix transformations kn-keyword=Matrix transformations en-keyword=Banach algebra kn-keyword=Banach algebra en-keyword=boolean infinite matrix kn-keyword=boolean infinite matrix en-keyword=optimization kn-keyword=optimization END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=89 end-page=95 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A NOTE ON QUASI-ARMENDARIZ RINGS en-subtitle= kn-subtitle= en-abstract= kn-abstract=A ring R is called a quasi-Armendariz ring if whenever elements α = a0+a1x+a2x2+? ? ?+anxn, β = b0+b1x+b2x2+? ? ?+bmxm ∈ R[x] satisfy αR[x]β = 0, then aiRbj = 0 for each i, j. In this note we consider quasi-Armendariz property of a special subring of the infinite upper triangular matrix ring over a ring R.
en-copyright= kn-copyright= en-aut-name=ZhongkuiLiu en-aut-sei=Zhongkui en-aut-mei=Liu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WenhuiZhang en-aut-sei=Wenhui en-aut-mei=Zhang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Northwest Normal University affil-num=2 en-affil= kn-affil=Department of Mathematics, Northwest Normal University en-keyword=Armendariz ring kn-keyword=Armendariz ring en-keyword=quasi-Armendariz ring kn-keyword=quasi-Armendariz ring en-keyword=left APP-ring kn-keyword=left APP-ring END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=29 end-page=43 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=TRADING DEGREE FOR DIMENSION IN THE SECTION CONJECTURE: THE NON-ABELIAN SHAPIRO LEMMA en-subtitle= kn-subtitle= en-abstract= kn-abstract=This note aims at providing evidence for the section conjecture of anabelian geometry by establishing its behaviour under Weil restriction of scalars. In particular, the ?tale fundamental group of the Weil restriction is determined by means of a Shapiro Lemma for nonabelian group cohomology.
en-copyright= kn-copyright= en-aut-name=StixJakob en-aut-sei=Stix en-aut-mei=Jakob kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Mathematisches Institut, Universit?t Heidelberg en-keyword=Section Conjecture kn-keyword=Section Conjecture en-keyword=Rational points kn-keyword=Rational points en-keyword=Anabelian Geometry kn-keyword=Anabelian Geometry en-keyword=Non-abelian Shapiro Lemma kn-keyword=Non-abelian Shapiro Lemma END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=123 end-page=131 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SOME PROPERTIES OF EF-EXTENDING RINGS en-subtitle= kn-subtitle= en-abstract= kn-abstract=In [16], Thuyet and Wisbauer considered the extending property for the class of (essentially) finitely generated submodules. A module M is called ef-extending if every closed submodule which contains essentially a finitely generated submodule is a direct summand of M. A ring R is called right ef-extending if RR is an ef-extending module. We show that a ring R is right ef-extending and the R-dual of every simple left R-module is simple if and only if R is semiperfect right continuous with Sl = Sl ≤e RR. We also prove that a ring R is a QF-ring if and only if R is left Kasch and RR(ω) is ef-extending if and only if R is right AGP-injective satisfying DCC on right (or left) annihilators and (R ⊕ R)R is ef-extending.
en-copyright= kn-copyright= en-aut-name=QuynhTruong Cong en-aut-sei=Quynh en-aut-mei=Truong Cong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ThuyetLe Van en-aut-sei=Thuyet en-aut-mei=Le Van kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Danang University affil-num=2 en-affil= kn-affil=Department of Mathematics, Hue University en-keyword=ef-extending rings kn-keyword=ef-extending rings en-keyword=extending (or CS) rings kn-keyword=extending (or CS) rings en-keyword=PF rings kn-keyword=PF rings en-keyword=QF rings kn-keyword=QF rings END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=97 end-page=109 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=TRIANGULAR MATRIX REPRESENTATIONS OF SKEW MONOID RINGS en-subtitle= kn-subtitle= en-abstract= kn-abstract=Let R be a ring and S a u.p.-monoid. Assume that there is a monoid homomorphism α : S → Aut (R). Suppose that α is weakly rigid and lR(Ra) is pure as a left ideal of R for every element a ∈ R. Then the skew monoid ring R*S induced by α has the same triangulating dimension as R. Furthermore, if R is a PWP ring, then so is R*S.
en-copyright= kn-copyright= en-aut-name=ZhongkuiLiu en-aut-sei=Zhongkui en-aut-mei=Liu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=XiaoyanYang en-aut-sei=Xiaoyan en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Northwest Normal University affil-num=2 en-affil= kn-affil=Department of Mathematics, Northwest Normal University en-keyword=generalized triangular matrix representation kn-keyword=generalized triangular matrix representation en-keyword=quasi-Baer ring kn-keyword=quasi-Baer ring en-keyword=PWP ring kn-keyword=PWP ring en-keyword=triangulating dimension kn-keyword=triangulating dimension END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=111 end-page=122 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON GENERALIZED EPI-PROJECTIVE MODULES en-subtitle= kn-subtitle= en-abstract= kn-abstract=A module M is said to be generalized N-projective (or N-dual ojective) if, for any epimorphism g : N → X and any homomorphism f : M → X, there exist decompositions M = M1 ⊕ M2, N = N1 ⊕ N2, a homomorphism h1 : M1 → N1 and an epimorphism h2 : N2 → M2 such that g ◦ h1 = f|M1 and f ◦ h2 = g|N2 . This relative projectivity is very useful for the study on direct sums of lifting modules (cf. [5], [7]). In the definition, it should be noted that we may often consider the case when f to be an epimorphism. By this reason, in this paper we define relative (strongly) generalized epi-projective modules and show several results on this generalized epi-projectivity. We apply our results to the known problem when finite direct sums M1⊕? ? ?⊕Mn of lifting modules Mi (i = 1, ? ? ? , n) is lifting.
en-copyright= kn-copyright= en-aut-name=T?t?nc?Derya Keskin en-aut-sei=T?t?nc? en-aut-mei=Derya Keskin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuratomiYosuke en-aut-sei=Kuratomi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Hacettepe University affil-num=2 en-affil= kn-affil=Kitakyushu National College of Technology en-keyword=(strongly) generalized epi-projective module kn-keyword=(strongly) generalized epi-projective module en-keyword=lifting module kn-keyword=lifting module END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=45 end-page=60 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=THE BELYI FUNCTIONS AND DESSIN DfENFANTS CORRESPONDING TO THE NON-NORMAL INCLUSIONS OF TRIANGLE GROUPS en-subtitle= kn-subtitle= en-abstract= kn-abstract=We present the Belyi functions, dessin dfenfants, and monodromy permutations corresponding to the non-normal inclusions of triangle groups.
en-copyright= kn-copyright= en-aut-name=HoshinoKenji en-aut-sei=Hoshino en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Faculty of Science, Okayama University END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=61 end-page=63 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=BELYI FUNCTION ON X0(49) OF DEGREE 7 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HoshinoKenji en-aut-sei=Hoshino en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraHiroaki en-aut-sei=Nakamura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Mathematics, Faculty of Science, Okayama University END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=65 end-page=75 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON FUCHSIAN GROUPS WITH THE SAME SET OF FIXED POINTS OF PARABOLIC ELEMENTS en-subtitle= kn-subtitle= en-abstract= kn-abstract=There is an open question whether Fuchsian groups having the same set of the axes of hyperbolic elements are commensurable or not. In this note, we consider an analogous question where the axes are replaced with the fixed points of parabolic elements.
en-copyright= kn-copyright= en-aut-name=MaedaTae en-aut-sei=Maeda en-aut-mei=Tae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Institute of Mathematics and Computer Science, Tsuda College en-keyword=Fuchsian group kn-keyword=Fuchsian group en-keyword=arithmetic kn-keyword=arithmetic en-keyword=commensurable kn-keyword=commensurable END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=147 end-page=158 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SOME APPLICATIONS OF DIFFERENTIAL SUBORDINATION FOR A GENERAL CLASS OF MULTIVALENTLY ANALYTIC FUNCTIONS INVOLVING A CONVOLUTION STRUCTURE en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the present paper we investigate a class of multivalently analytic functions which essentially involves a Hadamard product of two multivalent functions. We apply the techniques of differential subordination and derive some useful characteristics of this function class. The applications to generalized hypergeometric functions and various consequences of the main results exhibiting also relevant connections with some of the known (and new) results (including also an improved version of a known result) are also pointed out.
en-copyright= kn-copyright= en-aut-name=PrajapatJ. K. en-aut-sei=Prajapat en-aut-mei=J. K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RainaR. K. en-aut-sei=Raina en-aut-mei=R. K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Central University of Rajasthan affil-num=2 en-affil= kn-affil= en-keyword=Multivalently analytic functions kn-keyword=Multivalently analytic functions en-keyword=Hadamard product (or convolution) kn-keyword=Hadamard product (or convolution) en-keyword=Differential subordination kn-keyword=Differential subordination en-keyword=Hypergeometric functions kn-keyword=Hypergeometric functions en-keyword=Linear operators kn-keyword=Linear operators en-keyword=Wrightfs generalized hypergeometric function kn-keyword=Wrightfs generalized hypergeometric function END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=1 article-no= start-page=199 end-page=200 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=CORRECTION: RESULTS ON PRIME NEAR-RINGS WITH (ƒÐ,ƒÑ)-DERIVATION en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=G?lba?i?znur en-aut-sei=G?lba?i en-aut-mei=?znur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AydinNe?et en-aut-sei=Aydin en-aut-mei=Ne?et kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Cumhuriyet University affil-num=2 en-affil= kn-affil=?anakkale 18 Mart University en-keyword=Prime Near-Ring kn-keyword=Prime Near-Ring en-keyword=Derivation kn-keyword=Derivation en-keyword=(ƒÐ,ƒÑ)-Derivation kn-keyword=(ƒÐ,ƒÑ)-Derivation END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=149 end-page=157 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=THE SPACE Lq OF DOUBLE SEQUENCES en-subtitle= kn-subtitle= en-abstract= kn-abstract=The spaces BS, BS(t), CSp, CSbp, CSr and BV of double sequences have recently been studied by Altay and Ba?sar [J. Math. Anal. Appl. 309(1)(2005), 70?90]. In this work, following Altay and Ba?sar [1], we introduce the Banach space Lq of double sequences corresponding to the well-known space ℓq of single sequences and examine some properties of the space Lq. Furthermore, we determine the β(υ)-dual of the space and establish that the α- and γ-duals of the space Lq coincide with the β(υ)-dual; where 1 ≤ q < ∞ and υ 2 {p, bp, r}.
en-copyright= kn-copyright= en-aut-name=BasarFeyzi en-aut-sei=Basar en-aut-mei=Feyzi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SeverYurdal en-aut-sei=Sever en-aut-mei=Yurdal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Fatih ?niversitesi, Fen- Edebiyat Fak?ltesi, Matematik B?l?m? affil-num=2 en-affil= kn-affil=Fen Lisesi Matematik ?gretmeni END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=121 end-page=131 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SOME IDENTITIES RELATING MOCK THETA FUNCTIONS WHICH ARE DERIVED FROM DENOMINATOR IDENTITY en-subtitle= kn-subtitle= en-abstract= kn-abstract=We show that there exists a new connection between identities satisfied by mock theta functions and special case of denominator identities for affine Lie superalgebras.
en-copyright= kn-copyright= en-aut-name=SanadaYukari en-aut-sei=Sanada en-aut-mei=Yukari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Tsuda College END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=1 end-page=26 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON THE FUNDAMENTAL GROUPS OF LOG CONFIGURATION SCHEMES en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the present paper, we study the cuspidalization problem for the fundamental group of a curve by means of the log geometry of the log configuration scheme, which is a natural compactification of the usual configuration space of the curve. The goal of this paper is to show that the fundamental group of the configuration space is generated by the images from morphisms from a group extension of the fundamental groups of the configuration spaces of lower dimension, and that the fundamental group of the configuration space can be partially reconstructed from a collection of data concerning the fundamental groups of the configuration spaces of lower dimension.
en-copyright= kn-copyright= en-aut-name=HoshiYuichiro en-aut-sei=Hoshi en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Research Institute for Mathematical Sciences Kyoto University END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=83 end-page=100 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=NAKAYAMA ISOMORPHISMS FOR THE MAXIMAL QUOTIENT RING OF A LEFT HARADA RING en-subtitle= kn-subtitle= en-abstract= kn-abstract=From several results of Kado and Oshiro, we see that if the maximal quotient ring of a given left Harada ring R of type (*) has a Nakayama automorphism, then R has a Nakayama isomorphism. This result poses a question whether if the maximal quotient ring of a given left Harada ring R has a Nakayama isomorphism, then R has a Nakayama isomorphism. In this paper, we shall show that a basic ring of the maximal quotient ring of a given Harada ring has a Nakayama isomorphism if and only if its Harada ring has a Nakayama isomorphism.
en-copyright= kn-copyright= en-aut-name=NonomuraKazuaki en-aut-sei=Nonomura en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of General Science Tsuruoka National College of Technology END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=47 end-page=69 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON ι-ADIC ITERATED INTEGRALS, IV -Ramification and generators of Galois actions on fundamental groups and torsors of paths en-subtitle= kn-subtitle= en-abstract= kn-abstract=We are studying Galois representations on fundamental groups and on torsors of paths of a projective line minus a finite number of points. We reprove by explicit calculations some known results about ramification properties of such representations. We calculate the number of generators in degree 1 of the images of these Galois representations. We show also that the number of linearly independent generators in degree greater than 1 is equal &franc12 φ(n) for the action of GQ(μ5) on the fundamental group of P1?Q \ ({0,∞} ∪ μn). Finally we show that the graded Lie algebra associated with the action of GQ(μ5) on the fundamental group of P1?Q \ ({0,∞} ∪ μ5) is not free.
en-copyright= kn-copyright= en-aut-name=WojtkowiakZdzislaw en-aut-sei=Wojtkowiak en-aut-mei=Zdzislaw kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Universit? des Sciences et Technologies de Lille END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=71 end-page=81 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LINKAGE AND DUALITY OF MODULES en-subtitle= kn-subtitle= en-abstract= kn-abstract=Martsinkovsky and Strooker [13] recently introduced module theoretic linkage using syzygy and transpose. This generalization brings possibility of much application of linkage, especially, to homological theory of modules. In the present paper, we connect linkage of modules to certain duality of modules. We deal with Gorenstein dimension, Cohen-Macaulay modules over a Gorenstein local ring using linkage and generalize the results to non-commutative algebras.
en-copyright= kn-copyright= en-aut-name=NishidaKenji en-aut-sei=Nishida en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematical Sciences, Shinshu University END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=179 end-page=192 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=COMMUTATIVE GROUP ALGEBRAS OF ABELIAN GROUPS WITH UNCOUNTABLE POWERS AND LENGTHS en-subtitle= kn-subtitle= en-abstract= kn-abstract=Let F be a field of char(F) = p > 0 and G an abelian group with p-component Gp of cardinality at most ℵ1 and length at most ω1. The main affirmation on the Direct Factor Problem is that S(FG)/Gp is totally projective whenever F is perfect. This extends results due to May (Contemp. Math., 1989) and Hill-Ullery (Proc. Amer. Math. Soc., 1990). As applications to the Isomorphism Problem, suppose that for any group H the F-isomorphism FH ≅ FG holds. Then if Gp is totally projective, Hp ≅ Gp. This partially solves a problem posed by May (Proc. Amer. Math. Soc., 1988). In particular, H ≅ G provided G is p-mixed of torsion-free rank one so that Gp is totally projective. The same isomorphism H ≅ G is fulfilled when G is p-local algebraically compact too. Besides if Fp is the simple field with p-elements and Gp FpH is a coproduct of torsion complete groups, FpH ≅ FpG as Fp Fp-algebras implies Hp ≅ Gp. This expands the central theorem obtained by us in (Rend. Sem. Mat. Univ. Padova, 1999) and partly settles the generalized version of a question raised by May (Proc. Amer. Math. Soc.,1979) as well. As a consequence, when Gp is torsion complete and G is p-mixed of torsion-free rank one, H ≅ G. Moreover, if G is a coproduct of p-local algebraically compact groups then H ≅ G. The last attainment enlarges an assertion of Beers-Richman-Walker (Rend. Sem. Mat. Univ. Padova, 1983). Each of the reported achievements strengthens our statements in this direction (Southeast Asian Bull. Math., 2001-2002) and also continues own studies in this aspect (Hokkaido Math. J., 2000) and (Kyungpook Math. J., 2004).
en-copyright= kn-copyright= en-aut-name=DanchevPeter en-aut-sei=Danchev en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Mathematical Department, Plovdiv State University END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=101 end-page=109 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A NOTE ON ALMOST INJECTIVE MODULES en-subtitle= kn-subtitle= en-abstract= kn-abstract=We give some new properties of almost injective modules and their endomorphism rings, and also provide conditions as to when a direct sum of almost injective (or CS) modules is again almost injective (or CS) in some special cases..
en-copyright= kn-copyright= en-aut-name=AlahmadiAdel en-aut-sei=Alahmadi en-aut-mei=Adel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JainSurender K. en-aut-sei=Jain en-aut-mei=Surender K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Ohio University affil-num=2 en-affil= kn-affil=Department of Mathematics, Ohio University END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=193 end-page=201 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A NOTE ON CERTAIN METRICS ON R4+ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OtsukiTominosuke en-aut-sei=Otsuki en-aut-mei=Tominosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=159 end-page=176 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LOCALLY AND COLOCALLY FACTORABLE BANACH SPACES en-subtitle= kn-subtitle= en-abstract= kn-abstract=We generalize the concept of locality (resp. colocality) to the concept of locally factorable (resp. colocally factorable) such that Theorem 2 of [2] and Theorems 1.7 and 1.16 of [11] are still valid for the new concepts. In addition we show that locally factorable and colocally factorable are inherited by complemented subspace, then we present some examples and establish relations between locally factorable and colocally factorable. We prove some relations between being finitely (resp. cofinitely) represented in a Banach space and being locally factorable (resp. colocally factorable) some family of finite dimensional Banach spaces.
en-copyright= kn-copyright= en-aut-name=JamjoomF. B.H. en-aut-sei=Jamjoom en-aut-mei=F. B.H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=JebreenH. M. en-aut-sei=Jebreen en-aut-mei=H. M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Faculty of Science, King Saud University affil-num=2 en-affil= kn-affil=Department of Mathematics, Faculty of Science, King Saud University END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=111 end-page=119 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON LIE IDEALS AND LEFT JORDAN ƒÐ-CENTRALIZERS OF 2-TORSION-FREE RINGS en-subtitle= kn-subtitle= en-abstract= kn-abstract=B. Zalar proved that any left (resp. right) Jordan centralizer on a 2-torsion-free semiprime ring is a left (resp. right) centralizer. We prove this question changing the semiprimality condition on R. The main result of this paper is the following. Let R be a 2-torsionfree ring which has a commutator right (resp. left) nonzero divisor and let G: R → R be left (resp. right) Jordan σ-centralizer mapping of , where σ is an automorphism of R. Then G is a left (resp. right) -centralizer mapping of R.
en-copyright= kn-copyright= en-aut-name=CortesWagner en-aut-sei=Cortes en-aut-mei=Wagner kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaetingerClaus en-aut-sei=Haetinger en-aut-mei=Claus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=INSTITUTO DE MATEM?TICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL affil-num=2 en-affil= kn-affil=CENTRO DE CI?NCIAS EXATAS E TECNOL?GICAS END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=27 end-page=46 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=RADIAL HEAT OPERATORS ON JACOBI-LIKE FORMS en-subtitle= kn-subtitle= en-abstract= kn-abstract=We consider a differential operator DX λ associated to an integer λ acting on the space of formal power series, which may be regarded as the heat operator with respect to the radial coordinate in the 2λ-dimensional space for λ > 0. We show that DX λ carries Jacobilike forms of weight λ to ones of weight λ+2 and obtain the formula for the m-fold composite (DX λ )[m] of such operators. We then determine the corresponding operators on modular series and as well as on automorphic pseudodifferential operators.
en-copyright= kn-copyright= en-aut-name=LEEMin Ho en-aut-sei=LEE en-aut-mei=Min Ho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, University of Northern Iowa END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=177 end-page=178 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=MULTIPLE POISSON KERNELS en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SpreaficoMauro en-aut-sei=Spreafico en-aut-mei=Mauro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=ICMC, Universidade de Sāo Paulo, Sāo Carlos END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=133 end-page=148 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ON THE JORDAN DECOMPOSITION OF TENSORED MATRICES OF JORDAN CANONICAL FORMS en-subtitle= kn-subtitle= en-abstract= kn-abstract=Let κ be an algebraically closed field of characteristic p ≥ 0. We shall consider the problem of finding out a Jordan canonical form of J(α , s)⊗κJ(β , t), where J(α, s) means the Jordan block with eigenvalue α ∈ κ and size s.
en-copyright= kn-copyright= en-aut-name=IimaKei-ichiro en-aut-sei=Iima en-aut-mei=Kei-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwamatsuRyo en-aut-sei=Iwamatsu en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=113 end-page=125 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Strong Convergence Theorems for Nonexpansive Mappings by Viscosity Approximation Methods in Banach Spaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we introduce a modified Ishikawa iterative process for a pair of nonexpansive mappings and obtain a strong convergence theorem in the framework of uniformly Banach spaces. Our results improve and extend the recent ones announced by Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51-60], Xu [H.K. Xu, Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298 (2004) 279-291] and some others.
en-copyright= kn-copyright= en-aut-name=QinXiaolong en-aut-sei=Qin en-aut-mei=Xiaolong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuYongfu en-aut-sei=Su en-aut-mei=Yongfu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WuChangqun en-aut-sei=Wu en-aut-mei=Changqun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Tianjin Polytechnic University affil-num=2 en-affil= kn-affil=Tianjin Polytechnic University affil-num=3 en-affil= kn-affil=Henan University en-keyword=Nonexpansive map; Iteration scheme; Sunny and nonexpansive retraction; viscosity method kn-keyword=Nonexpansive map; Iteration scheme; Sunny and nonexpansive retraction; viscosity method END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=201 end-page=203 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Lower Bound for the Rational LS-category of a Coformal Elliptic Space en-subtitle= kn-subtitle= en-abstract= kn-abstract=We give a lower bound for the rational LS-category of certain spaces, including the coformal elliptic ones, in terms of the dimension of its total rational cohomology.
en-copyright= kn-copyright= en-aut-name=YamaguchiToshihiro en-aut-sei=Yamaguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Kochi University en-keyword=rational LS-category kn-keyword=rational LS-category en-keyword=elliptic space kn-keyword=elliptic space en-keyword=coformal space kn-keyword=coformal space en-keyword=minimal model kn-keyword=minimal model en-keyword=Toomer invariant kn-keyword=Toomer invariant END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=177 end-page=199 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=K-semimetrizabilities and C-stratifiabilities of Spaces en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YoshiokaIwao en-aut-sei=Yoshioka en-aut-mei=Iwao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=135 end-page=147 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Fine Spectra of the Ces?ro Operator C 1 over the Sequence Space bvp, (1 ≤ p ∞) en-subtitle= kn-subtitle= en-abstract= kn-abstract=The sequence space bvp consisting of all sequences (xk) such that (xk - xk-1) in the sequence space lp has recently been introduced by Basar and Altay [Ukrainian Math. J. 55(1)(2003), 136-147]; where 1 ≤ p ≤ ∞. In the present paper, the norm of the Cesàro operator C1 acting on the sequence space bvp has been found and the fine spectrum of the Cesàro operator C1 over the sequence space bvp has been determined, where 1 ≤ p < ∞.
en-copyright= kn-copyright= en-aut-name=AkhmedovAli M. en-aut-sei=Akhmedov en-aut-mei=Ali M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BasarFeyzi en-aut-sei=Basar en-aut-mei=Feyzi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Baku State University affil-num=2 en-affil= kn-affil=Inonu University en-keyword=Spectrum of an operator kn-keyword=Spectrum of an operator en-keyword=Cesaro operator and the sequence space bvp kn-keyword=Cesaro operator and the sequence space bvp END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=149 end-page=160 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Unit Groups of Completely Primary Finite Rings en-subtitle= kn-subtitle= en-abstract= kn-abstract=Let R be a commutative completely primary finite ring with the unique maximal ideal J such that J3 = (0) and J2 ≠ (0): Then R⁄J ≅ GF(pr) and the characteristic of R is pk, where 1 ≤ k ≤ 3, for some prime p and positive integers k, r. Let Ro = GR (pkr,pk) be a galois subring of R so that R = Ro ⊕ U ⊕ V ⊕ W, where U, V and W are finitely generated Ro-modules. Let non-negative integers s, t and be numbers of elements in the generating sets for U, V and W, respectively. In this work, we determine the structure of the subgroup 1+W of the unit group R* in general, and the structure of the unit group R* of R when s = 3, t = 1; ≥ 1 and characteristic of R is p. We then generalize the solution of the cases when s = 2, t = 1; t = s(s +1)⁄2 for a fixed s; for all the characteristics of R ; and when s = 2, t = 2, and characteristic of R is p to the case when the annihilator ann(J ) = J2 + W, so that ≥ 1. This complements the author's earlier solution of the problem in the case when the annihilator of the radical coincides with the square of the radical.
en-copyright= kn-copyright= en-aut-name=ChikunjiChiteng'a John en-aut-sei=Chikunji en-aut-mei=Chiteng'a John kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Botswana College en-keyword=unit groups kn-keyword=unit groups en-keyword=completely primary finite rings kn-keyword=completely primary finite rings en-keyword=galois rings kn-keyword=galois rings END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=161 end-page=176 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Fox Spaces and Jacobi Identities en-subtitle= kn-subtitle= en-abstract= kn-abstract=In 1945, R. Fox introduced the so-called Fox torus homo- topy groups in which the usual homotopy groups are embedded and their Whitehead products are expressed as commutators. A modern treatment of Fox torus homotopy groups and their generalization has been given and studied. In this note, we further explore these groups and their properties. We discuss co-multiplications on Fox spaces and Jacobi identities for the generalized Whitehead products and the T- Whitehead products.
en-copyright= kn-copyright= en-aut-name=GolasinskiMarek en-aut-sei=Golasinski en-aut-mei=Marek kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Gon?alvesDaciberg Lima en-aut-sei=Gon?alves en-aut-mei=Daciberg Lima kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WongPeter en-aut-sei=Wong en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Nicolaus Copernicus University affil-num=2 en-affil= kn-affil=Departamento De Matem?tica affil-num=3 en-affil= kn-affil=Bates College en-keyword=Fox torus homotopy groups kn-keyword=Fox torus homotopy groups en-keyword=generalized Whitehead products kn-keyword=generalized Whitehead products en-keyword=Jacobi identity kn-keyword=Jacobi identity END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=85 end-page=99 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Imaginary Quadratic Fields whose Exponents are Less Than or Equal To Two en-subtitle= kn-subtitle= en-abstract= kn-abstract=We give a necessary condition for an imaginary quadratic field to have exponent less than or equal to two. Further we discuss relations of this condition with other necessary conditions studied by Möller and Mollin, and conjecture that these conditions are equivalent.
en-copyright= kn-copyright= en-aut-name=ShimizuKenichi en-aut-sei=Shimizu en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Senior High School en-keyword=imaginary quadratic field kn-keyword=imaginary quadratic field en-keyword=class number kn-keyword=class number en-keyword=exponent kn-keyword=exponent en-keyword=split prime kn-keyword=split prime END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=101 end-page=112 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On ƒ³-recurrent N(k)-contact Metric Manifolds en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper we prove that a Φ-recurrent N(k)-contact metric manifold is an η-Einstein manifold with constant coefficients. Next, we prove that a 3-dimensional Φ-recurrent N(k)-contact metric manifold is of constant curvature. The existence of a Φ-recurrent N(k)-contact metric manifold is also proved.
en-copyright= kn-copyright= en-aut-name=DeUday Chand en-aut-sei=De en-aut-mei=Uday Chand kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GaziAboul Kalam en-aut-sei=Gazi en-aut-mei=Aboul Kalam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Mathematics University affil-num=2 en-affil= kn-affil=Mathematics University en-keyword=N(k)-contact metric manifolds kn-keyword=N(k)-contact metric manifolds en-keyword=eta-Einstein manifold kn-keyword=eta-Einstein manifold en-keyword=Phi-recurrent N(k)-contact metric manifolds kn-keyword=Phi-recurrent N(k)-contact metric manifolds END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=63 end-page=84 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Central Gap Numbers of Symmetric Groups en-subtitle= kn-subtitle= en-abstract= kn-abstract=g(G) denotes the central gap number of a group G. We show that for n ≥ 8, g(Sn) ≥ n and g(An) ≥ n-2. We give exact values of g(Sn) and g(An) for small n's. In particular, g(S9) = 9 and g(A9) = 7. Therefore, for any positive integer n ≠ 1, 3, 5 there is a group G such that n = g(G). G can be finite or infinite.
en-copyright= kn-copyright= en-aut-name=KikyoHirotaka en-aut-sei=Kikyo en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Kobe University en-keyword=central gap number kn-keyword=central gap number en-keyword=symmetric group kn-keyword=symmetric group en-keyword=alternating group kn-keyword=alternating group END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=1 end-page=61 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A New Class of Quasicyclic Complex Vector Functional Equations en-subtitle= kn-subtitle= en-abstract= kn-abstract=For the first time in the literature a quasicyclic complex vector functional equation is introduced in the present paper. By a matrix method the general quasicyclic complex vector functional equation is solved, as well as its particular case for n = 3. This case is completely solved in an explicit form, and for every step of the solution examples are provided. Using a simple spectral property of compound matrices, a necessary and sufficient condition for stability of the quasicyclic complex vector functional equation considered is proved.
en-copyright= kn-copyright= en-aut-name=RisteskiIce B. en-aut-sei=Risteski en-aut-mei=Ice B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= en-keyword=Quasicyclic complex vector functional equation kn-keyword=Quasicyclic complex vector functional equation END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=127 end-page=133 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inverse Limits of Spaces with the Weak B-Property en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=BinZhao en-aut-sei=Bin en-aut-mei=Zhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Kashgar Teachers College en-keyword=inverse system kn-keyword=inverse system en-keyword=inverse limit space kn-keyword=inverse limit space en-keyword=weak B-property kn-keyword=weak B-property en-keyword=hereditarily weak B-property kn-keyword=hereditarily weak B-property END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=149 end-page=161 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Higher Weights of Codes from Projective Planes and Biplanes en-subtitle= kn-subtitle= en-abstract= kn-abstract=We study the higher weights of codes formed from planes and biplanes. We relate the higher weights of the Hull and the code of a plane and biplane. We determine all higher weight enumerators of planes and biplanes of order less or equal to 4.
en-copyright= kn-copyright= en-aut-name=DoughertySteven T. en-aut-sei=Dougherty en-aut-mei=Steven T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RamaduraiReshma en-aut-sei=Ramadurai en-aut-mei=Reshma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=University of Scranton affil-num=2 en-affil= kn-affil=University of Illinois at Chicago en-keyword=Projective plane kn-keyword=Projective plane en-keyword=biplane kn-keyword=biplane en-keyword=codes of designs kn-keyword=codes of designs en-keyword=higher weights kn-keyword=higher weights END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=53 end-page=58 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Ideals and Orthogonal Generalized Derivations of Semiprime Rings en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, some results concerning orthogonal generalized derivations are generalized for a nonzero ideal of a semiprime ring. These results are a generalization of results of M. Bre?ar and J. Vukman in [3], which are related to a theorem of E. Posner for the product of derivations on a prime ring.
en-copyright= kn-copyright= en-aut-name=AlbasEmine en-aut-sei=Albas en-aut-mei=Emine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Ege University en-keyword=derivation kn-keyword=derivation en-keyword=generalized derivation kn-keyword=generalized derivation en-keyword=orthogonal generalized derivations kn-keyword=orthogonal generalized derivations en-keyword=semiprime ring kn-keyword=semiprime ring en-keyword=ideal kn-keyword=ideal END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=59 end-page=64 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Some Results on (ƒÐ,ƒÑ)-Lie Ideals en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this note we give some basic results on one sided(σ,τ)-Lie ideals of prime rings with characteristic not 2.
en-copyright= kn-copyright= en-aut-name=G?venEvrim en-aut-sei=G?ven en-aut-mei=Evrim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KayaKazim en-aut-sei=Kaya en-aut-mei=Kazim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Soyt?rkMuharrem en-aut-sei=Soyt?rk en-aut-mei=Muharrem kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Kocaeli University affil-num=2 en-affil= kn-affil=?anakkale Onsekiz Mart University affil-num=3 en-affil= kn-affil=Kocaeli University en-keyword=Prime ring kn-keyword=Prime ring en-keyword= (sigma kn-keyword= (sigma en-keyword=tau)-LIe ideal kn-keyword=tau)-LIe ideal en-keyword= (sigma kn-keyword= (sigma en-keyword=tau)-derivation kn-keyword=tau)-derivation END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=37 end-page=52 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sums and Partial Sums of Double Power Series associated with the Generalized Zeta Function and Their N-fractional CalculusSums and Partial Sums of Double Power Series associated with the Generalized Zeta Function and Their N-fractional Calculus en-subtitle= kn-subtitle= en-abstract= kn-abstract=An attempt is made here to introduce and study a pair of double power series associated with the generalized zeta function due to Erd?lyi Φ(x; z; a) together with related sums, integral representations, generating relations and N-fractional calculus. A number of (known and new) results shown to follow as special cases of our theorems.
en-copyright= kn-copyright= en-aut-name=Bin-SaadMaged G. en-aut-sei=Bin-Saad en-aut-mei=Maged G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Aden University END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=197 end-page=200 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Characterization of ƒÂ-quasi-Baer Rings en-subtitle= kn-subtitle= en-abstract= kn-abstract=Let δ be a derivation on R. A ring R is called δ-quasi-Baer (resp. quasi-Baer) if the right annihilator of every δ-ideal (resp. ideal) of R is generated by an idempotent of R. In this note first we give a positive answer to the question posed in Han et al. [7], then we show that R is δ-quasi-Baer iff the differential polynomial ring S = R[x; δ] is quasi-Baer iff S is δ‾-quasi-Baer for every extended derivation δ‾ on S of δ. This results is a generalization of Han et al. [7], to the case where R is not assumed to be δ-semiprime.
en-copyright= kn-copyright= en-aut-name=HashemiEbrahim en-aut-sei=Hashemi en-aut-mei=Ebrahim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Shahrood University of Thechnology END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=171 end-page=181 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Generalized Primitive Element Theorem en-subtitle= kn-subtitle= en-abstract= kn-abstract=We deal with the following variant of the primitive element theorem: any commutative strongly separable extension of a commutative ring can be embedded in another one having primitive element. This statement holds for connected strongly separable extension of commutative rings which are either local or connected semilocal. We show that it holds for a more general family of rings, that is, for connected commutative rings whose quotient ring by the corresponding Jacobson radical is von Neumann regular and locally uniform. Some properties of the (connected) separable closure of such rings are also given as an application of this result.
en-copyright= kn-copyright= en-aut-name=BagioDirceu en-aut-sei=Bagio en-aut-mei=Dirceu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PaquesAntonio en-aut-sei=Paques en-aut-mei=Antonio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Universidade Federal de Santa Maria affil-num=2 en-affil= kn-affil=Universidade Federal do Rio Grande do Sul en-keyword=primitive element kn-keyword=primitive element en-keyword=von Neumann regular ring kn-keyword=von Neumann regular ring en-keyword=locally uniform ring kn-keyword=locally uniform ring en-keyword=strongly separable extension kn-keyword=strongly separable extension en-keyword=separable closure kn-keyword=separable closure END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=185 end-page=196 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Some Questions on the Ideal Class Group of Imaginary Abelian Fields en-subtitle= kn-subtitle= en-abstract= kn-abstract=Let k be an imaginary quadratic field. Assume that the class number of k is exactly an odd prime number p, and p splits into two distinct primes in k. Then it is known that a prime ideal lying above p is not principal. In the present paper, we shall consider a question whether a similar result holds when the class number of k is 2p. We also consider an analogous question for the case that k is an imaginary quartic abelian field.
en-copyright= kn-copyright= en-aut-name=ItohTsuyoshi en-aut-sei=Itoh en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Ritsumeikan University en-keyword=Ideal class group kn-keyword=Ideal class group END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=113 end-page=138 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Galois Covers of Degree p and Semi-stable Reduction of Curves in Equal Characteristic p>0 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper we study the semi-stable reduction of Galois covers of degree p above curves over a complete discrete valuation ring of equal characteristic p.
en-copyright= kn-copyright= en-aut-name=Sa?diMohamed en-aut-sei=Sa?di en-aut-mei=Mohamed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=University of Exeter END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=65 end-page=92 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cut Loci and Distance Functions en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ItohJin-ichi en-aut-sei=Itoh en-aut-mei=Jin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaiTakashi en-aut-sei=Sakai en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Kumamoto University affil-num=2 en-affil= kn-affil=Okayama University END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=93 end-page=111 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of the Convolution Sums ‡” l+24m=n ƒÐ(l) ƒÐ(m) and ‡”3l+8m=n ƒÐ(l) ƒÐ(m) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=AlacaAyse en-aut-sei=Alaca en-aut-mei=Ayse kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AlacaSaban en-aut-sei=Alaca en-aut-mei=Saban kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WilliamsKenneth S. en-aut-sei=Williams en-aut-mei=Kenneth S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Carleton University affil-num=2 en-affil= kn-affil=Carleton University affil-num=3 en-affil= kn-affil=Carleton University en-keyword=sum of divisors function kn-keyword=sum of divisors function en-keyword=convolution sums kn-keyword=convolution sums en-keyword=Eisenstein series kn-keyword=Eisenstein series END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=1 end-page=36 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Character Values and Dade's Conjecture en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NarasakiRyo en-aut-sei=Narasaki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Osaka University END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=163 end-page=169 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Privalov Space on the Upper Half Plane en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we shall consider Privalov space Np 0 (D) (p > 1) which consists of holomorphic functions f on the upper half plane D := {z ∈ C|Imz > 0} such that (log+ |f(z)|)p has a harmonic majorant on D. We shall give some properties of Np 0 (D).
en-copyright= kn-copyright= en-aut-name=IidaYasuo en-aut-sei=Iida en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Iwate Medical University en-keyword=Privalov space kn-keyword=Privalov space en-keyword=Nevanlinna-type spaces kn-keyword=Nevanlinna-type spaces en-keyword=Hardy-Orlicz class kn-keyword=Hardy-Orlicz class END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=139 end-page=147 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Generalized Derivations with Commutativity and Anti-commutativity Conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Let R be a prime ring with 1, with char(R) ≠ 2; and let F : R → R be a generalized derivation. We determine when one of the following holds for all x,y ∈ R: (i) [F(x); F(y)] = 0; (ii) F(x)ΟF(y) = 0; (iii) F(x) Ο F(y) = x Ο y .
en-copyright= kn-copyright= en-aut-name=BellHoward E. en-aut-sei=Bell en-aut-mei=Howard E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RehmanNadeem-ur en-aut-sei=Rehman en-aut-mei=Nadeem-ur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Brock University affil-num=2 en-affil= kn-affil=Aligarh Muslim University END start-ver=1.4 cd-journal=joma no-vol=49 cd-vols= no-issue=1 article-no= start-page=183 end-page=184 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elliptic Curves y?=x?-px of Rank Two en-subtitle= kn-subtitle= en-abstract= kn-abstract=A class of prime numbers p is given for which the elliptic curve y? =x?-px has rank two. This extends a theorem of Kudo and Motose.
en-copyright= kn-copyright= en-aut-name=SpearmanBlair K. en-aut-sei=Spearman en-aut-mei=Blair K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=University of British Columbia Okanagan en-keyword=Elliptic curve kn-keyword=Elliptic curve en-keyword=rank kn-keyword=rank END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=43 end-page=46 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Prime Ideal Factorization of 2 in Pure Quartic Fields with Index 2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The prime ideal decomposition of 2 in a pure quartic field with field index 2 is determined explicitly.
en-copyright= kn-copyright= en-aut-name=SpearmanBlair K. en-aut-sei=Spearman en-aut-mei=Blair K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WilliamsKenneth S. en-aut-sei=Williams en-aut-mei=Kenneth S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Statistics University affil-num=2 en-affil= kn-affil=Statistics Carleton University en-keyword=pure quartic field kn-keyword=pure quartic field en-keyword=discriminant kn-keyword=discriminant en-keyword=prime decomposition kn-keyword=prime decomposition END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=73 end-page=76 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of Frobenius Groups of Special Type en-subtitle= kn-subtitle= en-abstract= kn-abstract=We define a Con-Cos group G to be one having a proper normal subgroup N whose cosets other than N itself are conjugacy classes. It follows easily that N = Gf, the derived group of G. Most of the paper is devoted to trying to classify finite Con-Cos groups satisfying the additional requirement that N has just two conjugacy classes. We show that for such groups the center Z(G) has order at most 2, and if Z(G) = {1}, then G is a Frobenius group of a rather special type.
en-copyright= kn-copyright= en-aut-name=MuktibodhArun S. en-aut-sei=Muktibodh en-aut-mei=Arun S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Mohota Science College en-keyword=Con-Cos group kn-keyword=Con-Cos group en-keyword=2-Con-Cos group kn-keyword=2-Con-Cos group END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=181 end-page=195 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Geometry and Topology on Grassmann Manifolds en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper shows that the Grassmann Manifolds GF(n,N) can all be imbedded in an Euclidean space MF(N) naturally and the imbedding can be realized by the eigenfunctions of Laplacian Δ on GF(n,N). They are all minimal submanifolds in some spheres of MF(N) respectively. Using these imbeddings, we construct some degenerate Morse functions on Grassmann Manifolds, show that the homology of the complex and quaternion Grassmann Manifolds can be computed easily.
en-copyright= kn-copyright= en-aut-name=JianweiZhou en-aut-sei=Jianwei en-aut-mei=Zhou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Suzhou University en-keyword=Grassmann manifold kn-keyword=Grassmann manifold en-keyword=moving frame kn-keyword=moving frame en-keyword=minimal immersion kn-keyword=minimal immersion en-keyword=critical submanifold kn-keyword=critical submanifold en-keyword=Morse function kn-keyword=Morse function en-keyword=homology kn-keyword=homology END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=1 end-page=8 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Euclidean Algorithm en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MotoseKaoru en-aut-sei=Motose en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Hirosaki University END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=159 end-page=180 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=New Ultimate Boundedness and Periodicity Results for Certain Third-order Nonlinear Vector Differential Equations en-subtitle= kn-subtitle= en-abstract= kn-abstract=The principle aim of this paper is to present some new results related to the ultimate boundedness and existence of periodic of solutions a certain non-linear ordinary vector differential equation of third order. Our results improve some well-known results in the literature.
en-copyright= kn-copyright= en-aut-name=TuncCemil en-aut-sei=Tunc en-aut-mei=Cemil kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TuncErcan en-aut-sei=Tunc en-aut-mei=Ercan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Yuzuncu Yil University affil-num=2 en-affil= kn-affil=Gaziosman Pasa University en-keyword=Nonlinear differential equations kn-keyword=Nonlinear differential equations en-keyword=third order kn-keyword=third order en-keyword=ultimate boundedness kn-keyword=ultimate boundedness en-keyword=existence of periodic solutions kn-keyword=existence of periodic solutions END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=125 end-page=134 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Note on the Vector-valued Cohomology Equation f=ho T-h en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HasegawaShigeru en-aut-sei=Hasegawa en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoRyotaro en-aut-sei=Sato en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Shibaura Institute Of Technology affil-num=2 en-affil= kn-affil=Okayama University en-keyword=Reflexive Banach space with a countable (Schauder) basis kn-keyword=Reflexive Banach space with a countable (Schauder) basis en-keyword=probability measure space kn-keyword=probability measure space en-keyword=endomorphism kn-keyword=endomorphism en-keyword=automorphism kn-keyword=automorphism en-keyword=ergodic kn-keyword=ergodic en-keyword=vector-valued cohomology equation kn-keyword=vector-valued cohomology equation en-keyword=coboundary cocycle kn-keyword=coboundary cocycle END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=87 end-page=102 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quaternionic Line Bundles over Quaternionic Projective Spaces en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Gon?alvesDaciberg L. en-aut-sei=Gon?alves en-aut-mei=Daciberg L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SpreaficoMauro en-aut-sei=Spreafico en-aut-mei=Mauro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Departamento De Matematica affil-num=2 en-affil= kn-affil=Departamento De Matematica END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=57 end-page=72 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Global Solvably Closed Anabelian Geometry en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we study the pro-Σ anabelian geometry of hyperbolic curves, where Σ is a nonempty set of prime numbers, over Galois groups of gsolvably closed extensionsh of number fields ? i.e., infinite extensions of number fields which have no nontrivial abelian extensions. The main results of this paper are, in essence, immediate corollaries of the following three ingredients: (a) classical results concerning the structure of Galois groups of number fields; (b) an anabelian result of Uchida concerning Galois groups of solvably closed extensions of number fields; (c) a previous result of the author concerning the pro-Σ anabelian geometry of hyperbolic curves over nonarchimedean local fields.
en-copyright= kn-copyright= en-aut-name=MochizukiShinichi en-aut-sei=Mochizuki en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Kyoto University en-keyword=solvably closed kn-keyword=solvably closed en-keyword=number field kn-keyword=number field en-keyword=Galois group kn-keyword=Galois group en-keyword=anabelian geometry kn-keyword=anabelian geometry en-keyword=hyperbolic curve kn-keyword=hyperbolic curve END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=47 end-page=56 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Higher Syzygies of Projective Toric Varieties en-subtitle= kn-subtitle= en-abstract= kn-abstract=Let A be an ample line bundle on a projective toric variety X of dimension n (≥ 2). It is known that the d-th tensor power A⊗d embedds X as a projectively normal variety in Pr := P(H0(X,L⊗d)) if d ≥ n − 1. In this paper first we show that when dimX = 2 the line bundle A⊗d satisfies the property Np for p ≤ 3d − 3. Second we show that when dimX = n ≥ 3 the bundle A⊗d satisfies the property Np for p ≤ d − n + 2 and d ≥ n − 1.
en-copyright= kn-copyright= en-aut-name=OgataShoetsu en-aut-sei=Ogata en-aut-mei=Shoetsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Tohoku University en-keyword=toric variety kn-keyword=toric variety en-keyword=syzygy kn-keyword=syzygy END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=113 end-page=124 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bott's Theorem on Samelson Products en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SugataKei en-aut-sei=Sugata en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Okayama University END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=9 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stickelberger Ideals and Normal Bases of Rings of p-integers en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=IchimuraHumio en-aut-sei=Ichimura en-aut-mei=Humio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Ibaraki University END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=145 end-page=158 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Almost Periodic Solutions of C-well-posed Evolution Equations en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper is concerned with the existence and uniqueness of almost periodic mild solutions of evolution equations of the form u(t) = Au(t) + ?(t) where A is the generator of a holomorphic Csemigroup on a Banach space and ? is an almost periodic function. A sufficient condition in terms of spectral properties of A and ? is obtained that extends a well known result in this subject.
en-copyright= kn-copyright= en-aut-name=MinhNguyen Van en-aut-sei=Minh en-aut-mei=Nguyen Van kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Mathematics University en-keyword=Holomorphic C-semigroup kn-keyword=Holomorphic C-semigroup en-keyword=almost periodic solution kn-keyword=almost periodic solution en-keyword=sums of commuting operators kn-keyword=sums of commuting operators END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=77 end-page=86 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Self-homotopy of the Double Suspension of the Real 7-projective Space en-subtitle= kn-subtitle= en-abstract= kn-abstract=We determine the group structure of the self-homotopy set of the double suspension of the real 7-dimensionnal projective space.
en-copyright= kn-copyright= en-aut-name=MiyauchiToshiyuki en-aut-sei=Miyauchi en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=kyushu University en-keyword=self-homotopy kn-keyword=self-homotopy en-keyword=real projective space kn-keyword=real projective space END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=103 end-page=112 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Some Homotopy Groups of Homogeneous Spaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=The symplectic group is embedded in the rotation group and the quotient set equipped with the identification topology is a homogeneous space. The purpose of this paper is to determine some homotopy groups of the homogeneous space. Exact sequences induced from fibrations are frequently used, and homotopy groups of Lie groups and other homogeneous spaces which are obtained by several authors are referred heavily.
en-copyright= kn-copyright= en-aut-name=InoueTomohisa en-aut-sei=Inoue en-aut-mei=Tomohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Shinsyu University en-keyword=homogeneous space kn-keyword=homogeneous space en-keyword=homotopy group kn-keyword=homotopy group END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=135 end-page=144 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multipliers and Cyclic Vectors on the Weighted Bloch Space en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YeShanli en-aut-sei=Ye en-aut-mei=Shanli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Fujian Normal University en-keyword=pointwise multipliers kn-keyword=pointwise multipliers en-keyword=cyclic vectors kn-keyword=cyclic vectors en-keyword=weighted Bloch space kn-keyword=weighted Bloch space END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=173 end-page=180 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A New Generalization of the Poisson Kernel en-subtitle= kn-subtitle= en-abstract= kn-abstract=The purpose of this paper is to give a new generalization of the Poisson Kernel in two dimensions and discuss an integral formula for this.
en-copyright= kn-copyright= en-aut-name=BulutSerap en-aut-sei=Bulut en-aut-mei=Serap kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Balikesir University en-keyword=Poisson Kernel kn-keyword=Poisson Kernel en-keyword=Integral Formula kn-keyword=Integral Formula END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=21 end-page=32 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mutually Orthogonal Latin Squares and Self-complementary Designs en-subtitle= kn-subtitle= en-abstract= kn-abstract=Suppose that n is even and a set of n/2 -1 mutually orthogonal Latin squares of order n exists. Then we can construct a strongly regular graph with parameters (n?, n/2 (n-1), n/2 ( n/2-1), n/2 ( n/2 -1)), which is called a Latin square graph. In this paper, we give a sufficient condition of the Latin square graph for the existence of a projective plane of order n. For the existence of a Latin square graph under the condition, we will introduce and consider a self-complementary 2-design (allowing repeated blocks) with parameters (n, n/2 , n/2 ( n/2 -1)). For n ≡ 2 (mod 4), we give a proof of the non-existence of the design.
en-copyright= kn-copyright= en-aut-name=NakasoraHiroyuki en-aut-sei=Nakasora en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Okayama University en-keyword=Mutually orthogonal Latin squares kn-keyword=Mutually orthogonal Latin squares en-keyword=Transversal designs kn-keyword=Transversal designs en-keyword=Latin square graphs kn-keyword=Latin square graphs en-keyword=Self-complementary designs kn-keyword=Self-complementary designs END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue=1 article-no= start-page=33 end-page=42 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Regular Rings Satisfying Weak Chain Condition en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we shall study regular rings satisfying weak chain condition. As main results, we show that regular rings satisfying weak chain condition are unit-regular, and show that these rings have the unperforation and power cancellation properties for the family of finitely generated projective modules.
en-copyright= kn-copyright= en-aut-name=KutamiMamoru en-aut-sei=Kutami en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Yamaguchi University en-keyword=Von Neumann regular rings kn-keyword=Von Neumann regular rings en-keyword=Weak chain condition kn-keyword=Weak chain condition en-keyword=Unitregularity kn-keyword=Unitregularity en-keyword=Unperforation property kn-keyword=Unperforation property END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=1 article-no= start-page=81 end-page=84 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=200501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Group Structures of Some Special Elliptic Curves en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KudoTakehiro en-aut-sei=Kudo en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MotoseKaoru en-aut-sei=Motose en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Hirosaki University affil-num=2 en-affil= kn-affil=Hirosaki University en-keyword=Elliptic Curves Group Structures Mersenne Prime kn-keyword=Elliptic Curves Group Structures Mersenne Prime en-keyword=Abelian Groups kn-keyword=Abelian Groups END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=1 article-no= start-page=75 end-page=80 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=200501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dihedral Quintic Fields with a Power Basis en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is shown that there exist infinitely many dihedral quintic fields with a power basis.
en-copyright= kn-copyright= en-aut-name=LavalleeMelissa J. en-aut-sei=Lavallee en-aut-mei=Melissa J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SpearmanBlair K. en-aut-sei=Spearman en-aut-mei=Blair K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WilliamsKenneth S. en-aut-sei=Williams en-aut-mei=Kenneth S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YangQiduan en-aut-sei=Yang en-aut-mei=Qiduan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=Okanagan University College affil-num=2 en-affil= kn-affil=Okanagan University College affil-num=3 en-affil= kn-affil=Carleton University affil-num=4 en-affil= kn-affil=Okanagan University College en-keyword=Dihedral quintic field kn-keyword=Dihedral quintic field en-keyword=power basis kn-keyword=power basis en-keyword=monogenic kn-keyword=monogenic END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=1 article-no= start-page=141 end-page=146 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=200501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Lower Bound for the LS Category of a Formal Elliptic Space en-subtitle= kn-subtitle= en-abstract= kn-abstract=We give a lower bound for the LS category of a formal elliptic space in terms of its rational cohomology.
en-copyright= kn-copyright= en-aut-name=KotaniYasusuke en-aut-sei=Kotani en-aut-mei=Yasusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamaguchiToshihiro en-aut-sei=Yamaguchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Kochi University affil-num=2 en-affil= kn-affil=Kochi University en-keyword=LS category kn-keyword=LS category en-keyword=rationally elliptic space kn-keyword=rationally elliptic space en-keyword=F0-space kn-keyword=F0-space en-keyword= formal. kn-keyword= formal. END