このエントリーをはてなブックマークに追加
ID 49099
FullText URL
Author
Keskin Tütüncü, Derya
Kuratomi, Yosuke
Abstract
In [5] and [6], we have introduced a couple of relative generalized epi-projectivities and given several properties of these projectivities. In this paper, we consider relative generalized injectivities that are dual to these relative projectivities and apply them to the study of direct sums of extending modules. Firstly we prove that for an extending module N, a module M is N-injective if and only if M is mono-Ninjective and essentially N-injective. Then we define a mono-ojectivity that plays an important role in the study of direct sums of extending modules. The structure of (mono-)ojectivity is complicated and hence it is difficult to determine whether these injectivities are inherited by finite direct sums and direct summands even in the case where each module is quasi-continuous. Finally we give several characterizations of these injectivities and find necessary and sufficient conditions for the direct sums of extending modules to be extending.
Keywords
(generalized) mono-injective module
(weakly) mono-ojective module
extending module
Published Date
2013-01
Publication Title
Mathematical Journal of Okayama University
Volume
volume55
Issue
issue1
Publisher
Department of Mathematics, Faculty of Science, Okayama University
Start Page
117
End Page
129
ISSN
0030-1566
NCID
AA00723502
Content Type
Journal Article
language
英語
Copyright Holders
Copyright©2013 by the Editorial Board of Mathematical Journal of Okayama University
File Version
publisher
Refereed
True
Submission Path
mjou/vol55/iss1/5
JaLCDOI