FullText URL mjou_060_221_231.pdf
Author Hayata, Takahiro| Ishikawa, Masao|
Abstract The aim of this paper is to answer the question in Remark 8.2 of Takahiro Hayata, Harutaka Koseki, and Takayuki Oda, Matrix coefficients of the middle discrete series of SU(2; 2), J. Funct. Anal. 185 (2001), 297{341, by giving an elementary proof of certain identities on binomials.
Keywords binomial-coefficient identity middle discrete series real semi-simple Lie groups.
Published Date 2018-01
Publication Title Mathematical Journal of Okayama University
Volume volume60
Issue issue1
Publisher Department of Mathematics, Faculty of Science, Okayama University
Start Page 221
End Page 231
ISSN 0030-1566
NCID AA00723502
Content Type Journal Article
Official Url http://www.math.okayama-u.ac.jp/mjou/|
language 英語
Copyright Holders Copyright©2018 by the Editorial Board of Mathematical Journal of Okayama University
FullText URL mjou_060_233_240.pdf
Author Ghazi, Nour|
Abstract The main topic of this paper is to generalize the problem of Beckmann-Black for pro nite groups. We introduce the Beckmann-Black problem for complete systems of finite groups and for unramified extensions. We prove that every Galois extension of profi nite abelian group over a ψ-free fi eld is the specialization of some tower of regular Galois extensions of the same group.
Keywords Inverse Galois theory algebraic covers
Published Date 2018-01
Publication Title Mathematical Journal of Okayama University
Volume volume60
Issue issue1
Publisher Department of Mathematics, Faculty of Science, Okayama University
Start Page 233
End Page 240
ISSN 0030-1566
NCID AA00723502
Content Type Journal Article
Official Url http://www.math.okayama-u.ac.jp/mjou/|
language 英語
Copyright Holders Copyright©2018 by the Editorial Board of Mathematical Journal of Okayama University
Author Hoshi, Yuichiro| Nakayama, Chikara|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54710
Author Matsushita, Takahiro|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54711
Author Shitanda, Yoshimi|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54712
Author Sakugawa, Kenji|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54713
Author Ramakrishhan, B.| Sahu, Brundaban|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54714
Author Defant, Colin|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54715
Author Ogata, Yuta| Teramoto, Keisuke|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54716
Author Kim, Kwang-Seob| Kishi, Yasuhiro|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54717
Author Connor, Peter|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54718
JaLCDOI 10.18926/mjou/54719
FullText URL mjou_059_131_140.pdf
Author Hashimoto, Mitsuyasu|
Keywords canonical module symmetric algebra Frobenius algebra quasi-Frobenius algebra n-canonical module
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Publisher Department of Mathematics, Faculty of Science, Okayama University
Start Page 131
End Page 140
ISSN 0030-1566
NCID AA00723502
Content Type Journal Article
language 英語
OAI-PMH Set 岡山大学
Copyright Holders Copyright©2017 by the Editorial Board of Mathematical Journal of Okayama University
File Version publisher
Related Url https://arxiv.org/abs/1609.07613
Author Le Van An| Nguyen Thi Hai Anh| Ngo Sy Tung|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54720
Author Dimassi, Mouez| Anh Tuan Duong|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54721
Author Kakehi, Tomoyuki| Oshita, Yoshihito|
Published Date 2017-01
Publication Title Mathematical Journal of Okayama University
Volume volume59
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/54723
FullText URL mjou_063_015_052.pdf
Author da Silva, Luiz C. B.|
Abstract We study invariant surfaces generated by one-parameter subgroups of simply and pseudo isotropic rigid motions. Basically, the simply and pseudo isotropic geometries are the study of a three-dimensional space equipped with a rank 2 metric of index zero and one, respectively. We show that the one-parameter subgroups of isotropic rigid motions lead to seven types of invariant surfaces, which then generalizes the study of revolution and helicoidal surfaces in Euclidean and Lorentzian spaces to the context of singular metrics. After computing the two fundamental forms of these surfaces and their Gaussian and mean curvatures, we solve the corresponding problem of prescribed curvature for invariant surfaces whose generating curves lie on a plane containing the degenerated direction.
Keywords Simply isotropic space pseudo-isotropic space singular metric invariant surface prescribed Gaussian curvature prescribed mean curvature
Published Date 2021-01
Publication Title Mathematical Journal of Okayama University
Volume volume63
Issue issue1
Publisher Department of Mathematics, Faculty of Science, Okayama University
Start Page 15
End Page 52
ISSN 0030-1566
NCID AA00723502
Content Type Journal Article
language 英語
Copyright Holders Copyright©2021 by the Editorial Board of Mathematical Journal of Okayama University
FullText URL mjou_063_053_060.pdf
Author Iokibe, Gaku|
Abstract In this paper, we refine the method introduced by Izadi and Baghalaghdam to search integer solutions to the Diophantine equation<img src="http://www.lib.okayama-u.ac.jp/www/mjou/mjou_63_53.png">. We show that the Diophantine equation has infinitely many positive solutions.
Keywords Diophantine equations Elliptic Curves
Published Date 2021-01
Publication Title Mathematical Journal of Okayama University
Volume volume63
Issue issue1
Publisher Department of Mathematics, Faculty of Science, Okayama University
Start Page 53
End Page 60
ISSN 0030-1566
NCID AA00723502
Content Type Journal Article
language 英語
Copyright Holders Copyright©2021 by the Editorial Board of Mathematical Journal of Okayama University
Author Tamura, Hideo|
Published Date 2016-01
Publication Title Mathematical Journal of Okayama University
Volume volume58
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/53916
Author Tamura, Hideo|
Published Date 2016-01
Publication Title Mathematical Journal of Okayama University
Volume volume58
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/53917
Author Tamura, Hideo|
Published Date 2016-01
Publication Title Mathematical Journal of Okayama University
Volume volume58
Issue issue1
Content Type Journal Article
JaLCDOI 10.18926/mjou/53918