Published Date (desc)
FullText URL Namba, Ryuya| Recently, Ishiwata, Kawabi and Kotani [4] proved two kinds of central limit theorems for non-symmetric random walks on crystal lattices from the view point of discrete geometric analysis developed by Kotani and Sunada. In the present paper, we establish yet another kind of the central limit theorem for them. Our argument is based on a measure-change technique due to Alexopoulos [1]. crystal lattice central limit theorem non-symmetric random walk (modi ed) harmonic realization 2018-01 Mathematical Journal of Okayama University volume60 issue1 Department of Mathematics, Faculty of Science, Okayama University 109 135 0030-1566 AA00723502 Journal Article http://www.math.okayama-u.ac.jp/mjou/| 英語 Copyright©2018 by the Editorial Board of Mathematical Journal of Okayama University
FullText URL Shigekawa, Ichiro| We discuss a non-symmetric diffusion process on the Wiener space. The process we consider is generated by A = L + b, L being the Ornstein-Uhlenbeck operator and b being a vector eld. Under suitable integrability condition for b, we show the existence of associated diffusion process. We also investigate the domain of the generator. Further we consider a similar problem in the nite dimensional Euclidean space. non-symmetric Dirichlet form Wiener space logarithmic Sobolev inequality generator domain 2018-01 Mathematical Journal of Okayama University volume60 issue1 Department of Mathematics, Faculty of Science, Okayama University 137 153 0030-1566 AA00723502 Journal Article http://www.math.okayama-u.ac.jp/mjou/| 英語 Copyright©2018 by the Editorial Board of Mathematical Journal of Okayama University
FullText URL Shimizu, Kenichi| We study a class of integers called SP numbers (Sum Prime numbers). An SP number is by de nition a positive integer d that gives rise to a prime number (a + b)=gcd(4; 1 + d) from every factorization d = ab. We also discuss properties of SP numbers in relations with arithmetic of imaginary quadratic elds (least split primes, exponents of ideal class groups). Further we point out that special cases of SP numbers provide the problems of distribution of prime numbers (twin primes, Sophi-Germain primes, quadratic progressions). Finally, we consider the problem whether there exist in nitely many SP numbers. SP number prime number imaginary quadratic fi eld 2018-01 Mathematical Journal of Okayama University volume60 issue1 Department of Mathematics, Faculty of Science, Okayama University 155 164 0030-1566 AA00723502 Journal Article http://www.math.okayama-u.ac.jp/mjou/| 英語 Copyright©2018 by the Editorial Board of Mathematical Journal of Okayama University
FullText URL Hayata, Takahiro| Ishikawa, Masao| The aim of this paper is to answer the question in Remark 8.2 of Takahiro Hayata, Harutaka Koseki, and Takayuki Oda, Matrix coefficients of the middle discrete series of SU(2; 2), J. Funct. Anal. 185 (2001), 297{341, by giving an elementary proof of certain identities on binomials. binomial-coefficient identity middle discrete series real semi-simple Lie groups. 2018-01 Mathematical Journal of Okayama University volume60 issue1 Department of Mathematics, Faculty of Science, Okayama University 221 231 0030-1566 AA00723502 Journal Article http://www.math.okayama-u.ac.jp/mjou/| 英語 Copyright©2018 by the Editorial Board of Mathematical Journal of Okayama University
Author Dimassi, Mouez| Anh Tuan Duong| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54721
Author Hoshi, Yuichiro| Nakayama, Chikara| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54710
Author Kakehi, Tomoyuki| Oshita, Yoshihito| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54723
JaLCDOI 10.18926/mjou/54719 Hashimoto, Mitsuyasu| canonical module symmetric algebra Frobenius algebra quasi-Frobenius algebra n-canonical module 2017-01 Mathematical Journal of Okayama University volume59 issue1 Department of Mathematics, Faculty of Science, Okayama University 131 140 0030-1566 AA00723502 Journal Article 英語 岡山大学 Copyright©2017 by the Editorial Board of Mathematical Journal of Okayama University publisher https://arxiv.org/abs/1609.07613
Author Le Van An| Nguyen Thi Hai Anh| Ngo Sy Tung| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54720
Author Connor, Peter| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54718
Author Sakugawa, Kenji| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54713
Author Ramakrishhan, B.| Sahu, Brundaban| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54714
Author Shitanda, Yoshimi| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54712
Author Defant, Colin| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54715
Author Ogata, Yuta| Teramoto, Keisuke| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54716
Author Kim, Kwang-Seob| Kishi, Yasuhiro| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54717
Author Matsushita, Takahiro| 2017-01 Mathematical Journal of Okayama University volume59 issue1 Journal Article 10.18926/mjou/54711
Author Tamura, Hideo| 2016-01 Mathematical Journal of Okayama University volume58 issue1 Journal Article 10.18926/mjou/53918
Author Tamura, Hideo| 2016-01 Mathematical Journal of Okayama University volume58 issue1 Journal Article 10.18926/mjou/53917
Author Tamura, Hideo| 2016-01 Mathematical Journal of Okayama University volume58 issue1 Journal Article 10.18926/mjou/53916