start-ver=1.4 cd-journal=joma no-vol=1807 cd-vols= no-issue=3 article-no= start-page=319 end-page=325 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201103 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of PsbI and PsbM in photosystem II dimer formation and stability studied by deletion mutagenesis and X-ray crystallography en-subtitle= kn-subtitle= en-abstract= kn-abstract=PsbM and PsbI are two low molecular weight subunits of photosystem II (PSII), with PsbM being located in the center, and PsbI in the periphery, of the PSII dimer. In order to study the functions of these two subunits from a structural point of view, we crystallized and analyzed the crystal structure of PSII dimers from two mutants lacking either PsbM or PsbI. Our results confirmed the location of these two subunits in the current crystal structure, as well as their absence in the respective mutants. The relative contents of PSII dimers were found to be decreased in both mutants, with a concomitant increase in the amount of PSII monomers, suggesting a destabilization of PSII dimers in both of the mutants. On the other hand, the accumulation level of the overall PSII complexes in the two mutants was similar to that in the wild-type strain. Treatment of purified PSII dimers with lauryldimethylamine N-oxide at an elevated temperature preferentially disintegrated the dimers from the PsbM deletion mutant into monomers and CP43-less monomers, whereas no significant degradation of the dimers was observed from the PsbI deletion mutant. These results indicate that although both PsbM and PsbI are required for the efficient formation and stability of PSII dimers in vivo, they have different roles, namely, PsbM is required directly for the formation of dimers and its absence led to the instability of the dimers accumulated. On the other hand, PsbI is required in the assembly process of PSII dimers in vivo; once the dimers are formed, PsbI was no longer required for its stability. en-copyright= kn-copyright= en-aut-name=KawakamiKeisuke en-aut-sei=Kawakami en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwaiMasako en-aut-sei=Iwai en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawabataYousuke en-aut-sei=Kawabata en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkeuchiMasahiko en-aut-sei=Ikeuchi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KamiyaNobuo en-aut-sei=Kamiya en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University affil-num=3 en-affil= kn-affil=Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science affil-num=4 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University affil-num=5 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Arts and Science, The University of Tokyo affil-num=6 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University affil-num=7 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University en-keyword=Photosystem II kn-keyword=Photosystem II en-keyword=Mutant kn-keyword=Mutant en-keyword=Crystal structure kn-keyword=Crystal structure en-keyword=PsbM kn-keyword=PsbM en-keyword=PsbI kn-keyword=PsbI en-keyword=Oxygen evolution kn-keyword=Oxygen evolution END start-ver=1.4 cd-journal=joma no-vol=104 cd-vols= no-issue=1-2 article-no= start-page=9 end-page=18 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=2011 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 ? resolution en-subtitle= kn-subtitle= en-abstract= kn-abstract=The catalytic center for photosynthetic water-splitting consists of 4 Mn atoms and 1 Ca atom and is located near the lumenal surface of photosystem II. So far the structure of the Mn(4)Ca-cluster has been studied by a variety of techniques including X-ray spectroscopy and diffraction, and various structural models have been proposed. However, its exact structure is still unknown due to the limited resolution of crystal structures of PSII achieved so far, as well as possible radiation damages that might have occurred. Very recently, we have succeeded in solving the structure of photosystem II at 1.9 angstrom. which yielded a detailed picture of the Mn(4)CaO(5)-cluster for the first time. In the high resolution structure, the Mn(4)CaO(5)-cluster is arranged in a distorted chair form, with a cubane-like structure formed by 3 Mn and 1 Ca, 4 oxygen atoms as the distorted base of the chair, and 1 Mn and 1 oxygen atom outside of the cubane as the back of the chair. In addition, four water molecules were associated with the cluster, among which, two are associated with the terminal Mn atom and two are associated with the Ca atom. Some of these water molecules may therefore serve as the substrates for water-splitting. The high resolution structure of the catalytic center provided a solid basis for elucidation of the mechanism of photosynthetic water splitting. We review here the structural features of the Mn(4)CaO(5)-cluster analyzed at 1.9 angstrom resolution, and compare them with the structures reported previously. en-copyright= kn-copyright= en-aut-name=KawakamiKeisuke en-aut-sei=Kawakami en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KamiyaNobuo en-aut-sei=Kamiya en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, and The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University affil-num=2 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, and The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University affil-num=3 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, and The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University affil-num=4 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University en-keyword=Crystal structure kn-keyword=Crystal structure en-keyword=Membrane protein structure kn-keyword=Membrane protein structure en-keyword=Oxygen-evolving complex kn-keyword=Oxygen-evolving complex en-keyword=Photosystem II kn-keyword=Photosystem II en-keyword=Water-oxidation kn-keyword=Water-oxidation END start-ver=1.4 cd-journal=joma no-vol=473 cd-vols= no-issue=7345 article-no= start-page=55 end-page=60 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9?? en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II is the site of photosynthetic water oxidation and contains 20 subunits with a total molecular mass of 350 kDa. The structure of photosystem II has been reported at resolutions from 3.8 to 2.9 angstrom. These resolutions have provided much information on the arrangement of protein subunits and cofactors but are insufficient to reveal the detailed structure of the catalytic centre of water splitting. Here we report the crystal structure of photosystem II at a resolution of 1.9 angstrom. From our electron density map, we located all of the metal atoms of the Mn(4)CaO(5) cluster, together with all of their ligands. We found that five oxygen atoms served as oxo bridges linking the five metal atoms, and that four water molecules were bound to the Mn(4)CaO(5) cluster; some of them may therefore serve as substrates for dioxygen formation. We identified more than 1,300 water molecules in each photosystem II monomer. Some of them formed extensive hydrogen-bonding networks that may serve as channels for protons, water or oxygen molecules. The determination of the high-resolution structure of photosystem II will allow us to analyse and understand its functions in great detail. en-copyright= kn-copyright= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawakamiKeisuke en-aut-sei=Kawakami en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KamiyaNobuo en-aut-sei=Kamiya en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University affil-num=2 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=3 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=4 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=2 article-no= start-page=306 end-page=308 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Palladium- and base-free synthesis of conjugated ynones by cross-coupling reactions of alkynylboronates with acid chlorides mediated by CuCl en-subtitle= kn-subtitle= en-abstract= kn-abstract=Alkynylboronates can be employed as a practical and versatile precursor for a variety of pi-conjugated organic compounds. In the presence of Cu(I) salt, cross-coupling reactions of acid chlorides with alkynylboronates giving rise to the corresponding conjugated ynones takes place readily in aprotic polar solvents such as DMI under neutral conditions. en-copyright= kn-copyright= en-aut-name=NishiharaYasushi en-aut-sei=Nishihara en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoDaisuke en-aut-sei=Saito en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InoueEiji en-aut-sei=Inoue en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkadaYoshiaki en-aut-sei=Okada en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyazakiMikihiro en-aut-sei=Miyazaki en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InoueYoshiaki en-aut-sei=Inoue en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakagiKentaro en-aut-sei=Takagi en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=102 cd-vols= no-issue=3-4 article-no= start-page=620 end-page=626 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Improvement in sulfur desorption of NOX storage and reduction catalysts using a Ba?Ti composite oxide en-subtitle= kn-subtitle= en-abstract= kn-abstract=A Ba-Ti composite oxide was formed on a NOx storage and reduction catalyst via impregnation of a Ba-Ti precursor solution composed of H(2)O(2) added to a complex prepared using the citric acid method. The structure of the Ba-Ti composite in solution was analyzed by chemical composition analysis and FT-Raman and UV-vis spectroscopy. MM2 calculations were performed to propose its chemical structure. Both Ba and Ti together were found to form a composite molecule in the solution. Furthermore, TEM-EDX and XRD analyses of the Ba-Ti composite oxide on the catalyst prepared by impregnation with the Ba-Ti composite aqueous solution revealed that Ba and Ti in the catalyst were highly dispersed at the nm scale. The formation of the Ba-Ti composite oxide on the NSR catalyst enhanced sulfur desorption efficiency and led to high-performance NO(X) conversion as a NO(X) storage and reduction activity catalyst after desulfation treatment. It was assumed that the existence of nano-scaled Ba compounds combined with Ti was efficient for the inhibition of the sintering of barium sulfate and its facile decomposition. It was found that dispersion of Ba compounds for NO(X) storage materials using a Ba-Ti complex solution is an efficient way to improve the durability of NSR catalysts. en-copyright= kn-copyright= en-aut-name=TanakaToshiyuki en-aut-sei=Tanaka en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TajimaIchirou en-aut-sei=Tajima en-aut-mei=Ichirou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatoYuichi en-aut-sei=Kato en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiharaYasushi en-aut-sei=Nishihara en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShinjohHirofumi en-aut-sei=Shinjoh en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Toyota Central Research and Development Labs., Inc. affil-num=2 en-affil= kn-affil=Toyota Central Research and Development Labs., Inc. affil-num=3 en-affil= kn-affil=Toyota Central Research and Development Labs., Inc. affil-num=4 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Toyota Central Research and Development Labs., Inc. END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=10 article-no= start-page=8815 end-page=8832 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20111020 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Studies on the Synthesis of DMAP Derivatives by Diastereoselective Ugi Reactions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diastereoselective Ugi reactions of DMAP-based aldehydes with ƒ¿-amino acids and tert-butyl isocyanide were examined. The reactions of 4-(dimethylamino)-2-pyridine-carboxaldehyde with various ƒ¿-amino acids afforded 2-substituted DMAP derivatives with low diastereoselectivity. On the contrary, reactions with 4-(dimethylamino)-3-pyridine-carboxaldehyde delivered 3-substituted DMAP derivatives with moderate to high diastereoselectivity. The combination of ƒ¿-amino acid and DMAP-based aldehyde is thus important to achieve high diastereoselectivity. Kinetic resolution of a secondary alcohol using a chiral DMAP derivative obtained through these reactions was also examined. en-copyright= kn-copyright= en-aut-name=MandaiHiroki en-aut-sei=Mandai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IrieShunsuke en-aut-sei=Irie en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University en-keyword=multicomponent reaction kn-keyword=multicomponent reaction en-keyword=Ugi reaction kn-keyword=Ugi reaction en-keyword=chiral DMAP kn-keyword=chiral DMAP en-keyword=kinetic resolution kn-keyword=kinetic resolution END start-ver=1.4 cd-journal=joma no-vol=46 cd-vols= no-issue=48 article-no= start-page=9256 end-page=9258 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=2010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrochemical generation of silver acetylides from terminal alkynes with a Ag anode and integration into sequential Pd-catalysed coupling with arylboronic acids en-subtitle= kn-subtitle= en-abstract= kn-abstract=An electro-oxidative method for generating silver acetylides from acetylenes with a Ag anode was developed. The reaction could be integrated into a Pd-catalysed electrochemical Sonogashira-type reaction. In the presence of the catalytic amount of Pd(OAc)(2) and 4-BzO-TEMPO, electro-generated silver acetylides reacted immediately with arylboronic acids to afford the corresponding coupling adducts in high yields. en-copyright= kn-copyright= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShiragaTakuya en-aut-sei=Shiraga en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizukawaJun-ichi en-aut-sei=Mizukawa en-aut-mei=Jun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaHideo en-aut-sei=Tanaka en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=373 end-page=389 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=2010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanisms of Acido-Tolerance and Characteristics of Photosystems in an Acidophilic and Thermophilic Red Alga, Cyanidium Caldarium en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this chapter, we describe the mechanisms of acido-tolerance in an acidophilic- and thermophilic red alga, Cyanidium caldarium. In spite of the extremely acidic environments it inhabits, the intracellular pH of Cyanidium cells is kept neutral by pumping out the protons previously leaked into the cells according to the steep pH gradient. The H+ pump is driven by the plasma membrane ATPase, utilizing intracellular ATP produced by both oxidative phosphorylation and cyclic photophosphorylation via photosystem I. We also describe the characteristics and function of the two photosystems, Photosystem I (PSI) and II (PSII), in Cyanidium caldarium in comparison with those of cyanobacteria, other eukaryotic algae, and higher plants, based on the crystal structures of the two complexes reported so far. en-copyright= kn-copyright= en-aut-name=EnamiIsao en-aut-sei=Enami en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AdachiHideyuki en-aut-sei=Adachi en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science affil-num=2 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=285 cd-vols= no-issue=38 article-no= start-page=29191 end-page=29199 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100917 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Binding and Functional Properties of Five Extrinsic Proteins in Oxygen-evolving Photosystem II from a Marine Centric Diatom, Chaetoceros gracilis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oxygen-evolving photosystem II (PSII) isolated from a marine centric diatom, Chaetoceros gracilis, contains a novel extrinsic protein (Psb31) in addition to four red algal type extrinsic proteins of PsbO, PsbQŒ, PsbV, and PsbU. In this study, the five extrinsic proteins were purified from alkaline Tris extracts of the diatom PSII by anion and cation exchange chromatographic columns at different pH values. Reconstitution experiments in various combinations with the purified extrinsic proteins showed that PsbO, PsbQŒ, and Psb31 rebound directly to PSII in the absence of other extrinsic proteins, indicating that these extrinsic proteins have their own binding sites in PSII intrinsic proteins. On the other hand, PsbV and PsbU scarcely rebound to PSII alone, and their effective bindings required the presence of all of the other extrinsic proteins. Interestingly, PSII reconstituted with Psb31 alone considerably restored the oxygen evolving activity in the absence of PsbO, indicating that Psb31 serves as a substitute in part for PsbO in supporting oxygen evolution. A significant difference found between PSIIs reconstituted with Psb31 and with PsbO is that the oxygen evolving activity of the former is scarcely stimulated by Cl? and Ca2+ ions but that of the latter is largely stimulated by these ions, although rebinding of PsbV and PsbU activated oxygen evolution in the absence of Cl? and Ca2+ ions in both the former and latter PSIIs. Based on these results, we proposed a model for the association of the five extrinsic proteins with intrinsic proteins in diatom PSII and compared it with those in PSIIs from the other organisms. en-copyright= kn-copyright= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriguchiAkira en-aut-sei=Moriguchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomoTatsuya en-aut-sei=Tomo en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NiikuraAyako en-aut-sei=Niikura en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakajimaSaori en-aut-sei=Nakajima en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkumuraAkinori en-aut-sei=Okumura en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwaiMasako en-aut-sei=Iwai en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IkeuchiMasahiko en-aut-sei=Ikeuchi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EnamiIsao en-aut-sei=Enami en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo affil-num=2 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science affil-num=3 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science affil-num=4 en-affil= kn-affil=Division of Biosciences, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science affil-num=6 en-affil= kn-affil=Biomolecular Characterization Team, Discovery Research Institute, RIKEN affil-num=7 en-affil= kn-affil=Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University affil-num=8 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo affil-num=9 en-affil= kn-affil=Division of Biosciences, Graduate School of Natural Science and Technology, Okayama University affil-num=10 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo affil-num=11 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science END start-ver=1.4 cd-journal=joma no-vol=684 cd-vols= no-issue= article-no= start-page=41 end-page=51 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=2011 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Purification and Crystallization of Oxygen-Evolving Photosystem II Core Complex from Thermophilic Cyanobacteria en-subtitle= kn-subtitle= en-abstract= kn-abstract=This chapter describes the purification and crystallization of oxygen-evolving photosystem II core dimer complex from a thermophilic cyanobacterium Thermosynechococcus vulcanus. Procedures used for purification of photosystem II from the cyanobacterium involves cultivation of cells, isolation of thylakoid membranes, purification of crude and pure photosystem II core complexes by detergent solubilization, followed by differential centrifugation and column chromatography. The purified core dimer particles were successfully used for crystallization, and the methods and conditions used for crystallization are presented. These purification and crystallization procedures can be applied for another thermophilic cyanobacterium T. elongatus. en-copyright= kn-copyright= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawakamiKeisuke en-aut-sei=Kawakami en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoikeHiroyuki en-aut-sei=Koike en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Department of Biosciences, Faculty of Science and Engineering, Chuo University en-keyword=Photosystem II kn-keyword=Photosystem II en-keyword=Oxygen evolution kn-keyword=Oxygen evolution en-keyword=Crystallization kn-keyword=Crystallization en-keyword=Membrane proteins kn-keyword=Membrane proteins en-keyword=Ion-exchange chromatography kn-keyword=Ion-exchange chromatography END start-ver=1.4 cd-journal=joma no-vol=1797 cd-vols= no-issue=2 article-no= start-page=278 end-page=284 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201002 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural and functional studies on Ycf12 (Psb30) and PsbZ-deletion mutants from a thermophilic cyanobacterium en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ycf12 (Psb30) and PsbZ are two low molecular weight subunits of photosystem II (PSII), with one and two trans-membrane helices, respectively. In order to study the functions of these two subunits from a structural point of view, we constructed deletion mutants lacking either Ycf12 or PsbZ from Thermosynechococcus elongatus, and purified, crystallized and analyzed the structure of PSII dimer from the two mutants. Our results showed that Ycf12 is located in the periphery of PSII, close to PsbK, PsbZ and PsbJ, and corresponded to the unassigned helix X1 reported previously, in agreement with the recent structure at 2.9 ? resolution (A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Cyanobacterial photosystem II at 2.9 ? resolution: role of quinones, lipids, channels and chloride, Nat. Struct. Mol. Biol. 16 (2009) 334?342). On the other hand, crystals of PsbZ-deleted PSII showed a remarkably different unit cell constants from those of wild-type PSII, indicating a role of PsbZ in the interactions between PSII dimers within the crystal. This is the first example for a different arrangement of PSII dimers within the cyanobacterial PSII crystals. PSII dimers had a lower oxygen-evolving activity from both mutants than that from the wild type. In consistent with this, the relative content of PSII in the thylakoid membranes was lower in the two mutants than that in the wild type. These results suggested that deletion of both subunits affected the PSII activity, thereby destabilized PSII, leading to a decrease in the PSII content in vivo. While PsbZ was present in PSII purified from the Ycf12-deletion mutant, Ycf12 was present in crude PSII but absent in the finally purified PSII from the PsbZ-deletion mutant, indicating a preferential, stabilizing role of PsbZ for the binding of Ycf12 to PSII. These results were discussed in terms of the PSII crystal structure currently available en-copyright= kn-copyright= en-aut-name=TakasakaKenji en-aut-sei=Takasaka en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwaiMasako en-aut-sei=Iwai en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawakamiKeisuke en-aut-sei=Kawakami en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhmoriYukari en-aut-sei=Ohmori en-aut-mei=Yukari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkeuchiMasahiko en-aut-sei=Ikeuchi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiYuichiro en-aut-sei=Takahashi en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KamiyaNobuo en-aut-sei=Kamiya en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=2 en-affil= kn-affil=Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science affil-num=3 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University affil-num=4 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=5 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=6 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Arts and Science, The University of Tokyo affil-num=7 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=8 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University affil-num=9 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University en-keyword=Photosystem II kn-keyword=Photosystem II en-keyword=Mutant kn-keyword=Mutant en-keyword=Crystal structure kn-keyword=Crystal structure en-keyword=Ycf12 kn-keyword=Ycf12 en-keyword=PsbZ kn-keyword=PsbZ en-keyword=Oxygen evolution kn-keyword=Oxygen evolution END start-ver=1.4 cd-journal=joma no-vol=81 cd-vols= no-issue=18 article-no= start-page=180509-1 end-page=180509-4 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100517 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Angle-resolved photoemission observation of the superconducting-gap minimum and its relation to the nesting vector in the phonon-mediated superconductor YNi2B2C en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have performed ultrahigh-resolution angle-resolved photoemission spectroscopy to directly study the large superconducting (SC) gap anisotropy of YNi2B2C. We succeed in measuring momentum (k) dependence of SC gap for individual Fermi surface (FS) sheets, which demonstrates complexity of SC gap in a phonon-mediated superconductor. Within measured k regions on FS sheets, we find a pointlike minimum of SC gap, whose k positions can be connected by the known nesting vector. This shows close correlation between the nesting vector and node formation. en-copyright= kn-copyright= en-aut-name=BabaT en-aut-sei=Baba en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokoyaT en-aut-sei=Yokoya en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsudaS en-aut-sei=Tsuda en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeT en-aut-sei=Watanabe en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NoharaM en-aut-sei=Nohara en-aut-mei=M kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakagiH en-aut-sei=Takagi en-aut-mei=H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OguchiT en-aut-sei=Oguchi en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinS en-aut-sei=Shin en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Institute for Solid State Physics, University of Tokyo affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Institute for Solid State Physics, University of Tokyo affil-num=4 en-affil= kn-affil=Institute for Solid State Physics, University of Tokyo affil-num=5 en-affil= kn-affil=Department of Advanced Materials Science, University of Tokyo affil-num=6 en-affil= kn-affil=Department of Advanced Materials Science, University of Tokyo affil-num=7 en-affil= kn-affil=Department of Quantum Matter, Graduate school of Advanced Sciences of Matter (ADSM), Hiroshima University affil-num=8 en-affil= kn-affil=Institute for Solid State Physics, University of Tokyo END start-ver=1.4 cd-journal=joma no-vol=82 cd-vols= no-issue=19 article-no= start-page=195114-1 end-page=195114-5 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20101110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electronic structure of pristine and K-doped solid picene: Nonrigid band change and its implication for electron-intramolecular-vibration interaction en-subtitle= kn-subtitle= en-abstract= kn-abstract=We use photoemission spectroscopy to study electronic structures of pristine and K-doped solid picene. The valence band spectrum of pristine picene consists of three main features with no state at the Fermi level (EF) while that of K-doped picene has three structures similar to those of pristine picene with new states near EF, consistent with the semiconductor-metal transition. The K-induced change cannot be explained with a simple rigid-band model of pristine picene but can be interpreted by molecular-orbital calculations considering electron-intramolecular-vibration interaction. Excellent agreement of the K-doped spectrum with the calculations points to importance of electron-intramolecular-vibration interaction in K-doped picene. en-copyright= kn-copyright= en-aut-name=OkazakiH en-aut-sei=Okazaki en-aut-mei=H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WakitaT en-aut-sei=Wakita en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MuroT en-aut-sei=Muro en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KajiY en-aut-sei=Kaji en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeeX en-aut-sei=Lee en-aut-mei=X kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MitamuraH en-aut-sei=Mitamura en-aut-mei=H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawasakiN en-aut-sei=Kawasaki en-aut-mei=N kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubozonoY en-aut-sei=Kubozono en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamanariY en-aut-sei=Yamanari en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KambeT en-aut-sei=Kambe en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KatoT en-aut-sei=Kato en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HiraiM en-aut-sei=Hirai en-aut-mei=M kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MuraokaY en-aut-sei=Muraoka en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YokoyaT en-aut-sei=Yokoya en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=4 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=9 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=10 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=11 en-affil= kn-affil=Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science affil-num=12 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=13 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=14 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=82 cd-vols= no-issue=20 article-no= start-page=205108-1 end-page=205108-6 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20101108 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Signature of hidden order and evidence for periodicity modification in URu2Si2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The detail of electronic structures near the Fermi level in URu2Si2 has been investigated employing state-of-art laser angle-resolved photoemission spectroscopy. The observation of a narrow dispersive band near the Fermi level in the ordered state as well as its absence in a Rh-substituted sample strongly suggest that the emergence of the narrow band is a clear signature of the hidden-order transition. The temperature dependence of the narrow band, which appears at the onset of the hidden-order transition, invokes the occurrence of periodicity modification in the ordered state, which is shown for the first time by any spectroscopic probe. We compare our data to other previous studies and discuss possible implications. en-copyright= kn-copyright= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraYoshiaki en-aut-sei=Nakamura en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuiMasaki en-aut-sei=Fukui en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HagaYoshinori en-aut-sei=Haga en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoEtsuji en-aut-sei=Yamamoto en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OnukiYoshichika en-aut-sei=Onuki en-aut-mei=Yoshichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkawaMario en-aut-sei=Okawa en-aut-mei=Mario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinShik en-aut-sei=Shin en-aut-mei=Shik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=5 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=6 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=7 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=8 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=9 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=10 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=11 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=6 article-no= start-page=879 end-page=884 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of a soft X-ray angle-resolved photoemission system applicable to 100 ?m crystals en-subtitle= kn-subtitle= en-abstract= kn-abstract=A system for angle-resolved photoemission spectroscopy (ARPES) of small single crystals with sizes down to 100 ?m has been developed. Soft X-ray synchrotron radiation with a spot size of `40 ?m ~ 65 ?m at the sample position is used for the excitation. Using this system an ARPES measurement has been performed on a Si crystal of size 120 ?m ~ 100 ?m ~ 80 ?m. The crystal was properly oriented on a sample stage by measuring the Laue spots. The crystal was cleaved in situ with a microcleaver at 100 K. The cleaved surface was adjusted to the beam spot using an optical microscope. Consequently, clear band dispersions along the Γ-X direction reflecting the bulk electronic states were observed with a photon energy of 879 eV. en-copyright= kn-copyright= en-aut-name=MuroTakayuki en-aut-sei=Muro en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Katoyukako en-aut-sei=Kato en-aut-mei=yukako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsushitaTomohiro en-aut-sei=Matsushita en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaToyohiko en-aut-sei=Kinoshita en-aut-mei=Toyohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeYoshio en-aut-sei=Watanabe en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SekiyamaAkira en-aut-sei=Sekiyama en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Sugahigemasa en-aut-sei=Suga en-aut-mei=higemasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI) affil-num=2 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI) affil-num=3 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI) affil-num=4 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI) affil-num=5 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI) affil-num=6 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=Graduate School of Engineering Science, Osaka University affil-num=9 en-affil= kn-affil=Graduate School of Engineering Science, Osaka University en-keyword=angle-resolved photoemission spectroscopy (ARPES) kn-keyword=angle-resolved photoemission spectroscopy (ARPES) en-keyword=soft X-ray kn-keyword=soft X-ray en-keyword=small crystal kn-keyword=small crystal en-keyword=microcleaving kn-keyword=microcleaving en-keyword=micropositioning kn-keyword=micropositioning END start-ver=1.4 cd-journal=joma no-vol=181 cd-vols= no-issue=2-3 article-no= start-page=249 end-page=251 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201008 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Angle-resolved photoemission spectroscopy for VO2 thin films grown on TiO2 (0 0 1) substrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=We present the results of angle-resolved photoemission spectroscopy (ARPES) measurements of metallic VO2 thin films. The VO2 thin films have been grown on TiO2 (0 0 1) single crystal substrates using pulsed laser deposition. The films exhibit a first-order metal?insulator transition (MIT) at 305 K. In the ARPES spectra of the metallic phase for the films, the O 2p band shows highly dispersive feature in the binding energy range of 3?8 eV along the „C?Z direction. The periodicity of the dispersive band is found to be 2.2 ?-1 which is almost identical with the periodicity expected from the c-axis length of the VO2 thin films. The overall feature of the experimental band structure is similar to the band structure calculations, supporting that we have succeeded in observing the dispersive band of the O 2p state in the metallic VO2 thin film. The present work indicates that the ARPES measurements using epitaxial thin films are promising for determining the band structure of VO2. en-copyright= kn-copyright= en-aut-name=MuraokaY en-aut-sei=Muraoka en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaekiK en-aut-sei=Saeki en-aut-mei=K kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaoY en-aut-sei=Yao en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakitaT en-aut-sei=Wakita en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiraiM en-aut-sei=Hirai en-aut-mei=M kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YokoyaT en-aut-sei=Yokoya en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EguchiR en-aut-sei=Eguchi en-aut-mei=R kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinS en-aut-sei=Shin en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Faculty of Science, Research Laboratory for Surface Science, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=RIKEN/SPring-8 affil-num=8 en-affil= kn-affil=RIKEN/SPring-8 en-keyword=ARPES kn-keyword=ARPES en-keyword=VO2 kn-keyword=VO2 en-keyword=Thin film kn-keyword=Thin film END start-ver=1.4 cd-journal=joma no-vol=470 cd-vols= no-issue=S1 article-no= start-page=S641 end-page=S643 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Angle-resolved photoemission study of Si electronic structure: Boron concentration dependence en-subtitle= kn-subtitle= en-abstract= kn-abstract=The boron concentration dependence of the Si electronic structure of Si(100)2 ~ 1 surfaces were investigated by angle-resolved photoemission spectroscopy (ARPES). The ARPES spectra exhibit rigid shifts toward lower binding energy as the boron concentration increases. The band dispersion was obtained from fitting procedure, and it is found that the top of the valence band does not exceed the Fermi level even with a boron concentration 35 times larger than the critical concentration of the metal-insulator transition. en-copyright= kn-copyright= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakanoYoshihiko en-aut-sei=Takano en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Research Laboratory for Surface Science (RLSS), Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=National Institute for Material Science (NIMS) affil-num=4 en-affil= kn-affil=Research Laboratory for Surface Science (RLSS), Okayama University affil-num=5 en-affil= kn-affil=Research Laboratory for Surface Science (RLSS), Okayama University affil-num=6 en-affil= kn-affil=Research Laboratory for Surface Science (RLSS), Okayama University END start-ver=1.4 cd-journal=joma no-vol=470 cd-vols= no-issue=S1 article-no= start-page=S389 end-page=S390 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis on photoemission spectrum of superconducting FeSe en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we present the result of soft X-ray photoemission spectroscopy and its comparison with the density functional calculation. Although local density approximation seems to be a good starting point for describing the electronic structure of FeSe, the simulated spectrum poorly reproduced the structure around E(B) = 2 eV. This result suggests the necessity of theoretical treatment beyond local density approximation. en-copyright= kn-copyright= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizuguchiYoshikazu en-aut-sei=Mizuguchi en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsudaShunsuke en-aut-sei=Tsuda en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakanoYoshihiko en-aut-sei=Takano en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakeyaHiroyuki en-aut-sei=Takeya en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirataKazuto en-aut-sei=Hirata en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatoYukako en-aut-sei=Kato en-aut-mei=Yukako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MuroTakayuki en-aut-sei=Muro en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkawaMario en-aut-sei=Okawa en-aut-mei=Mario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IshizakaKyoko en-aut-sei=Ishizaka en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ShinShik en-aut-sei=Shin en-aut-mei=Shik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HarimaHisatomo en-aut-sei=Harima en-aut-mei=Hisatomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Research Laboratory for Surface Science (RLSS), Okayama University affil-num=3 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=JST, Transformative Research-Project on Iron Pnictides (TRIP) affil-num=5 en-affil= kn-affil=JST, Transformative Research-Project on Iron Pnictides (TRIP) affil-num=6 en-affil= kn-affil=JST, Transformative Research-Project on Iron Pnictides (TRIP) affil-num=7 en-affil= kn-affil=National Institute for Material Science affil-num=8 en-affil= kn-affil=National Institute for Material Science affil-num=9 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=10 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=11 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=12 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=13 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=14 en-affil= kn-affil=JST, Transformative Research-Project on Iron Pnictides (TRIP) affil-num=15 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=16 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=17 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University en-keyword=Iron chalcogenide superconductor kn-keyword=Iron chalcogenide superconductor en-keyword=FeSe kn-keyword=FeSe en-keyword=Photoemission spectroscopy kn-keyword=Photoemission spectroscopy en-keyword=Band calculation kn-keyword=Band calculation END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=5 article-no= start-page=580 end-page=581 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ultrahigh-resolution laser photoemission study of URu2Si2 across the hidden-order transition en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have studied the electronic structures of URu2Si2 employing ultrahigh-resolutionlaser angle-resolved photoemission spectroscopy. The change of photoemission spectra is investigated across the hidden-ordertransition, and the emergence of a narrow band is clearly observed near the Fermi level for both (ƒÎ,0) and (ƒÎ,ƒÎ) directions. In addition, it is shown that tuning of light's polarization allows the signal of a hole-like dispersive feature to enhance. These observations prove that laser angle-resolved photoemission spectroscopy is an effective tool for studying the evolution of electronic structures across the hidden-ordertransition in URu2Si2. en-copyright= kn-copyright= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraYoshiaki en-aut-sei=Nakamura en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuiMasaki en-aut-sei=Fukui en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HagaYoshinori en-aut-sei=Haga en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoEtsuji en-aut-sei=Yamamoto en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=?nukiYoshichika en-aut-sei=?nuki en-aut-mei=Yoshichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkawaMario en-aut-sei=Okawa en-aut-mei=Mario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinShik en-aut-sei=Shin en-aut-mei=Shik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=5 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=6 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=7 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=8 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=9 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=10 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=11 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University en-keyword=Electronic structure kn-keyword=Electronic structure en-keyword=Laser angle-resolved photoemission spectroscopy kn-keyword=Laser angle-resolved photoemission spectroscopy en-keyword=URu2Si2 kn-keyword=URu2Si2 en-keyword=Hidden order kn-keyword=Hidden order END start-ver=1.4 cd-journal=joma no-vol=86 cd-vols= no-issue=1 article-no= start-page=014521-1 end-page=014521-5 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=20120726 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative photoemission studies on the superconducting gap of the filled skutterudite superconductors LaPt4Ge12 and PrPt4Ge12 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We performed a comparative study of the superconducting gap in the new filled skutterudite superconductors LaPt4Ge12 and PrPt4Ge12 using high-resolution photoemission spectroscopy. We succeeded in observing spectral changes across Tc that reflect the opening of the superconducting gap in both compounds and also in observing a noticeable difference in their respective superconducting spectral shapes near the Fermi level, pointing toward a more complex superconducting gap structure in PrPt4Ge12. In addition, we found that the two-gap model is more suitable for describing the superconducting-state spectrum of PrPt4Ge12 than the single-isotropic-gap and single-anisotropic-gap models, which suggests an explanation that multiband effects may possibly induce the anomalous superconducting properties of PrPt4Ge12. en-copyright= kn-copyright= en-aut-name=NakamuraYoshiaki en-aut-sei=Nakamura en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakeyaHiroyuki en-aut-sei=Takeya en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirataKazuto en-aut-sei=Hirata en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=National Institute for Materials Science (NIMS) affil-num=6 en-affil= kn-affil=National Institute for Materials Science (NIMS) affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=9 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=12 article-no= start-page=124701-1 end-page=124701-4 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20101125 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electronic Structure of the Novel Filled Skutterudite PrPt4Ge12 Superconductor en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have performed soft x-ray photoemission spectroscopy (SXPES) and resonant photoemission spectroscopy (RPES) of the filled skutterudite superconductor PrPt4Ge12 in order to study the electronic structure of valence band and the character of Pr 4f. SXPES of PrPt4Ge12 measured with 1200 eV photon energy, where spectral contribution of Pr 4f is negligible, was found nearly identical with that of LaPt4Ge12, indicating similarity of Pt?Ge derived electronic states of the two compounds. Good correspondence with band calculations allows us to ascribe the dominant Ge 4p character of the density of states at the Fermi level (EF). Pr 3d ¨ 4f RPES shows that, although Pr 4f electrons in PrPt4Ge12 are not as strongly hybridized with conduction electrons near EF as in PrFe4P12, there are finite Pr 4f contribution to the states near EF in PrPt4Ge12. These PES results give the information of fundamental electronic structure for understanding the physical properties of the novel filled skutterudite superconductor PrPt4Ge12. en-copyright= kn-copyright= en-aut-name=NakamuraYoshiaki en-aut-sei=Nakamura en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakeyaHiroyuki en-aut-sei=Takeya en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirataKazuto en-aut-sei=Hirata en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KumigashiraHiroshi en-aut-sei=Kumigashira en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OshimaMasaharu en-aut-sei=Oshima en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=The Graduate School of Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=The Graduate School of Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=The Graduate School of Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=The Graduate School of Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=National Institute for Materials Science (NIMS) affil-num=8 en-affil= kn-affil=National Institute for Materials Science (NIMS) affil-num=9 en-affil= kn-affil=CREST, Japan Science and Technology Corporation (JST) affil-num=10 en-affil= kn-affil=CREST, Japan Science and Technology Corporation (JST) affil-num=11 en-affil= kn-affil=The Graduate School of Science and Technology, Okayama University en-keyword=PrPt4Ge12 kn-keyword=PrPt4Ge12 en-keyword=filled skutterudite kn-keyword=filled skutterudite en-keyword=superconductor kn-keyword=superconductor en-keyword=soft x-ray photoemission spectroscopy kn-keyword=soft x-ray photoemission spectroscopy en-keyword=Pr 3d ¨ 4f resonant photoemission kn-keyword=Pr 3d ¨ 4f resonant photoemission en-keyword=electronic structure kn-keyword=electronic structure END start-ver=1.4 cd-journal=joma no-vol=470 cd-vols= no-issue=S1 article-no= start-page=S637 end-page=S638 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoemission study of Ca-intercalated graphite superconductor CaC6 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this work, we have performed resonant photoemission studies of Ca-intercalated graphite superconductor CaC6. Using photon energy of the Ca 2p-3d threshold, the photoemission intensity of the peak at Fermi energy (E-F) is resonantly enhanced. This result provides spectroscopic evidence for the existence of Ca 3d states at E-F, and strongly supports that Ca 3d state plays a crucial role for the superconductivity of this material with relatively high T-c. en-copyright= kn-copyright= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwaiKeisuke en-aut-sei=Iwai en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NoamiKengo en-aut-sei=Noami en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MuroTakayuki en-aut-sei=Muro en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraTetsuya en-aut-sei=Nakamura en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TomiokaFumiaki en-aut-sei=Tomioka en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakanoYoshihiko en-aut-sei=Takano en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakenakaAsami en-aut-sei=Takenaka en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ToyodaMasahiro en-aut-sei=Toyoda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OguchTamio en-aut-sei=Oguch en-aut-mei=Tamio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=6 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=7 en-affil= kn-affil=Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency affil-num=8 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=9 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=10 en-affil= kn-affil=National Institute for Materials Science (NIMS) affil-num=11 en-affil= kn-affil=National Institute for Materials Science (NIMS) affil-num=12 en-affil= kn-affil=Faculty of Engineering, Oita University affil-num=13 en-affil= kn-affil=Faculty of Engineering, Oita University affil-num=14 en-affil= kn-affil=Department of Quantum Matter, Graduate School of Advanced Sciences of Matter (ADSM) affil-num=15 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=5 article-no= start-page=582 end-page=584 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoemission study of electronic structure evolution across the metal-insulator transition of heavily B-doped diamond en-subtitle= kn-subtitle= en-abstract= kn-abstract=We studied the electronic structure evolution of heavily B-doped diamond films across the metal-insulator transition (MIT) using ultraviolet photoemission spectroscopy (UPS). From high-temperature UPS, through which electronic states near the Fermi level (E(F)) up to similar to 5k(B)T can be observed (k(B) is the Boltzmann constant and T the temperature), we observed the carrier concentration dependence of spectral shapes near E(F). Using another carrier concentration dependent UPS, we found that the change in energy position of sp-band of the diamond valence band, which corresponds to the shift of E(F), can be explained by the degenerate semiconductor model, indicating that the diamond valence band is responsible for the metallic states for samples with concentrations above MIT. We discuss a possible electronic structure evolution across MIT. en-copyright= kn-copyright= en-aut-name=OkazakiH. en-aut-sei=Okazaki en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ArakaneT. en-aut-sei=Arakane en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugawaraK. en-aut-sei=Sugawara en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoT. en-aut-sei=Sato en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiT. en-aut-sei=Takahashi en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiraiM. en-aut-sei=Hirai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakanoY. en-aut-sei=Takano en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshiiS. en-aut-sei=Ishii en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IriyamaS. en-aut-sei=Iriyama en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaradaH. en-aut-sei=Kawarada en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Department of Physics, Tohoku University affil-num=3 en-affil= kn-affil=WPI Research Center, Advanced Institute for Materials Research, Tohoku University affil-num=4 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=5 en-affil= kn-affil=Department of Physics, Tohoku University affil-num=6 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=9 en-affil= kn-affil=National Institute for Materials Science affil-num=10 en-affil= kn-affil=National Institute for Materials Science affil-num=11 en-affil= kn-affil=School of Science and Engineering, Waseda University affil-num=12 en-affil= kn-affil=School of Science and Engineering, Waseda University affil-num=13 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=107 cd-vols= no-issue=7 article-no= start-page=073910-1 end-page=073910-6 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Room temperature ferromagnetic behavior in the hollandite-type titanium oxide en-subtitle= kn-subtitle= en-abstract= kn-abstract=A hollandite-type K(x)Ti(8)O(16) polycrystalline sample has been prepared and studied by magnetization, resistivity and x-ray photoelectron spectroscopy (XPS). Room temperature ferromagnetic behavior is observed in the magnetic hysteresis measurement. The sample shows a semiconductive temperature dependence in the resistivity measurement. Analysis of the Ti 2p(3/2) core-level XPS spectrum indicates that the titanium ions have a mixed valence of Ti(4+) and Ti(3+). In addition, the valence band spectrum reveals that the 3d electrons tend to localize on Ti(3+) ions in the hollandite-type TiO(2) lattice. Also, analysis of the valence band spectrum shows that the prepared sample is a wide-gap oxide with a band gap of 3.6 eV. These results indicate that the present hollandite-type K(x)Ti(8)O(16) sample can be classified as a TiO(2)-based wide-gap semiconductor with Curie temperature above room temperature. Room temperature ferromagnetism (RTFM) decreases in the sample prepared under a strong reducing gas atmosphere, accompanied with the decrease in the resistivity. The results imply that the localized 3d electrons are responsible for the RTFM of the K(x)Ti(8)O(16) sample. en-copyright= kn-copyright= en-aut-name=NoamiK. en-aut-sei=Noami en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraiM. en-aut-sei=Hirai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoY. en-aut-sei=Kato en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MuroT. en-aut-sei=Muro en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TamenoriY. en-aut-sei=Tamenori en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Faculty of Science, Research Laboratory for Surface Science, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=6 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=7 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=8 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=108 cd-vols= no-issue=4 article-no= start-page=043916-1 end-page=043916-4 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100815 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bulk and surface physical properties of a CrO2 thin film prepared from a Cr8O21 precursor en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have prepared a CrO(2) thin film by chemical vapor deposition from a Cr(8)O(21) precursor and studied the bulk and surface physical properties. The CrO(2) thin film is grown on a TiO(2) (100) substrate by heating of a Cr(8)O(21) precursor and TiO(2) (100) substrate together in a sealed quartz tube. The prepared film is found from x-ray diffraction analysis to be an (100)-oriented single phase. The magnetization and resistivity measurements indicate that the film is a ferromagnetic metal with a Curie temperature of about 400 K. Cr 3s core-level and valence band photoelectron spectroscopy spectra reveal the presence of a metallic CrO(2) in the surface region of the film. Our work indicates that preparation from a Cr(8)O(21) precursor is promising for obtaining a CrO(2) thin film with the metallic surface. en-copyright= kn-copyright= en-aut-name=IwaiK. en-aut-sei=Iwai en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraiM. en-aut-sei=Hirai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoY. en-aut-sei=Kato en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MuroT. en-aut-sei=Muro en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TamenoriY. en-aut-sei=Tamenori en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Faculty of Science, Research Laboratory for Surface Science, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=7 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=8 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 END start-ver=1.4 cd-journal=joma no-vol=109 cd-vols= no-issue=4 article-no= start-page=043702-1 end-page=043702-6 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spectroscopic evidence of the formation of (V,Ti)O2 solid solution in VO2 thinner films grown on TiO2(001) substrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have prepared VO2 thin films epitaxially grown on TiO2(001) substrates with thickness systematically varied from 2.5 to 13 nm using a pulsed laser deposition method, and studied the transport property and electronic states of the films by means of resistivity and in situ synchrotron photoemission spectroscopy (SRPES). In resistivity measurements, the 13-nm-thick film exhibits a metal-insulator transition at around 290 K on cooling with change of three orders of magnitudes in resistivity. As the film thickness decreases, the metal-insulator transition broadens and the transition temperature increases. Below 4 nm, the films do not show the transition and become insulators. In situ SRPES measurements of near the Fermi level valence band find that the electronic state of the 2.5-nm-thick film is different than that of the temperature-induced insulator phase of VO2 itself although these two states are insulating. Ti 2p core-level photoemission measurements reveal that Ti ions exist near the interface between the films and TiO2 substrates, with a chemical state similar to that in (V,Ti)O-2 solid solution. These results indicate that insulating (V,Ti)O-2 solid solution is formed in the thinner films. We propose a simple growth model of a VO2 thin film on a TiO2(001) substrate. Near the interface, insulating (V,Ti) O-2 solid solution is formed due to the diffusion of Ti ions from the TiO2 substrate into the VO2 film. The concentration of Ti in (V,Ti) O-2 is relatively high near the interface and decreases toward the surface of the film. Beyond a certain film thickness (about 7 nm in the case of the present 13-nm-thick film), the VO2 thin film without any Ti ions starts to grow. Our work suggests that developing a technique for preparing the sharp interface between the VO2 thin films and TiO2 substrates is a key issue to study the physical property of an ultrathin film of "pure" VO2, especially to examine the presence of the novel electronic state called a semi-Dirac point phase predicted by calculations. en-copyright= kn-copyright= en-aut-name=MuraokaY. en-aut-sei=Muraoka en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaekiK. en-aut-sei=Saeki en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EguchiR. en-aut-sei=Eguchi en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakitaT. en-aut-sei=Wakita en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiraiM. en-aut-sei=Hirai en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YokoyaT. en-aut-sei=Yokoya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShinS. en-aut-sei=Shin en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=RIKEN/SPring-8 END start-ver=1.4 cd-journal=joma no-vol=98 cd-vols= no-issue=8 article-no= start-page=082107-1 end-page=082107-3 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110221 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multiple phosphorus chemical sites in heavily phosphorus-doped diamond en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have performed high-resolution core level photoemission spectroscopy on a heavily phosphorus (P)-doped diamond film in order to elucidate the chemical sites of doped-phosphorus atoms in diamond. P 2p core level study shows two bulk components, providing spectroscopic evidence for multiple chemical sites of doped-phosphorus atoms. This indicates that only a part of doped-phosphorus atoms contribute to the formation of carriers. From a comparison with band calculations, possible origins for the chemical sites are discussed. en-copyright= kn-copyright= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MuroTakayuki en-aut-sei=Muro en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraTetsuya en-aut-sei=Nakamura en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatoHiromitsu en-aut-sei=Kato en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamasakiSatoshi en-aut-sei=Yamasaki en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakanoYoshihiko en-aut-sei=Takano en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshiiSatoshi en-aut-sei=Ishii en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OguchiTamio en-aut-sei=Oguchi en-aut-mei=Tamio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=4 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=5 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) affil-num=9 en-affil= kn-affil=Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) affil-num=10 en-affil= kn-affil=National Institute for Materials Science (NIMS) affil-num=11 en-affil= kn-affil=National Institute for Materials Science (NIMS) affil-num=12 en-affil= kn-affil=Institute of Scientific and Industrial Research, Osaka University affil-num=13 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University END