start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=10 article-no= start-page=e0310962 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Examination of yield, bacteriolytic activity and cold storage of linker deletion mutants based on endolysin S6_ORF93 derived from Staphylococcus giant bacteriophage S6 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Methicillin-resistant Staphylococcus spp. present challenges in clinical and veterinary settings because effective antimicrobial agents are limited. Phage-encoded peptidoglycan-degrading enzyme, endolysin, is expected to be a novel antimicrobial agent. The enzymatic activity has recently been shown to be influenced by the linker between functional domains in the enzyme. S6_ORF93 (ORF93) is one of the endolysins derived from previously isolated Staphylococcus giant phage S6. The ORF93 was speculated to have a catalytic and peptidoglycan-binding domain with a long linker. In this study, we examined the influence of linker shortening on the characteristics of ORF93. We produce wild-type ORF93 and the linker deletion mutants using an Escherichia coli expression system. These mutants were designated as ORF93-Delta 05, ORF93-Delta 10, ORF93-Delta 15, and ORF93-Delta 20, from which 5, 10, 15, and 20 amino acids were removed from the linker, respectively. Except for the ORF93-Delta 20, ORF93 and its mutants were expressed as soluble proteins. Moreover, ORF93-Delta 15 showed the highest yield and bacteriolytic activity, while the antimicrobial spectrum was homologous. The cold storage experiment showed a slight effect by the linker deletion. According to our results and other studies, linker investigations are crucial in endolysin development. en-copyright= kn-copyright= en-aut-name=MunetomoSosuke en-aut-sei=Munetomo en-aut-mei=Sosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Takemura-UchiyamaIyo en-aut-sei=Takemura-Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WanganuttaraThamonwan en-aut-sei=Wanganuttara en-aut-mei=Thamonwan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoYumiko en-aut-sei=Yamamoto en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsukuiToshihiro en-aut-sei=Tsukui en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanamaruShuji en-aut-sei=Kanamaru en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsushitaOsamu en-aut-sei=Matsushita en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Public Health, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Nippon Zenyaku Kogyo Co. Ltd. kn-affil= affil-num=7 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=8 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=9 en-affil=Department of Public Health, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=1 article-no= start-page=31 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230916 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploratory study of volatile fatty acids and the rumen-and-gut microbiota of dairy cows in a single farm, with respect to subclinical infection with bovine leukemia virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Subclinical infection with bovine leukemia virus (BLV) in cows can cause economic losses in milk and meat production in many countries, as BLV-related negative effects. The volatile fatty acids (VFAs) and microbiota present in the digestive tracts of cows can contribute to cow health. Here, we exploratorily investigated the VFAs and microbiota in the rumen and gut with respect to subclinical BLV infection using cows housed at a single farm.
Results We analyzed a herd of 38 cows kept at one farm, which included 15 uninfected and 23 BLV-infected cows. First, the analysis of the VFAs in the rumen, gut, and blood revealed an absence of statistically significant differences between the uninfected and BLV-infected groups. Thus, BLV infection did not cause major changes in VFA levels in all tested specimens. Next, we analyzed the rumen and gut microbiota. The analysis of the microbial diversity revealed a modest difference between the uninfected and BLV-infected groups in the gut; by contrast, no differences were observed in the rumen. In addition, the investigation of the bacteria that were predominant in the uninfected and BLV-infected groups via a differential abundance analysis showed that no significant bacteria were present in either of the microbiota. Thus, BLV infection possibly affected the gut microbiota to a small extent. Moreover, bacterial associations were compared between the uninfected and BLV-infected groups. The results of this analysis suggested that BLV infection affected the equilibrium of the bacterial associations in both microbiota, which might be related to the BLV-related negative effects. Thus, BLV infection may negatively affect the equilibrium of bacterial associations in both microbiota.
Conclusions Subclinical BLV infection is likely to affect the rumen and gut microbiota, which may partly explain the BLV-related negative effects. en-copyright= kn-copyright= en-aut-name=SuzukiTakehito en-aut-sei=Suzuki en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurakamiHironobu en-aut-sei=Murakami en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoReiichiro en-aut-sei=Sato en-aut-mei=Reiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Takemura-UchiyamaIyo en-aut-sei=Takemura-Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OgataMasaya en-aut-sei=Ogata en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SogawaKazuyuki en-aut-sei=Sogawa en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshidaHiroho en-aut-sei=Ishida en-aut-mei=Hiroho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AtipairinApichart en-aut-sei=Atipairin en-aut-mei=Apichart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsushitaOsamu en-aut-sei=Matsushita en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagaiMakoto en-aut-sei=Nagai en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=2 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=3 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Agriculture, University of Miyazaki kn-affil= affil-num=5 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=7 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=8 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=9 en-affil=School of Pharmacy, Walailak University kn-affil= affil-num=10 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=School of Veterinary Medicine, Azabu University kn-affil= en-keyword=Bovine leukemia virus kn-keyword=Bovine leukemia virus en-keyword=Volatile fatty acids kn-keyword=Volatile fatty acids en-keyword=Rumen kn-keyword=Rumen en-keyword=Gut, Microbiota kn-keyword=Gut, Microbiota en-keyword=Cows kn-keyword=Cows END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=3 article-no= start-page=e04764-22 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230426 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Metataxonomic Analysis of the Uterine Microbiota Associated with Low Fertility in Dairy Cows Using Endometrial Tissues Prior to First Artificial Insemination en-subtitle= kn-subtitle= en-abstract= kn-abstract=The deterioration in reproductive performance in association with low fertility leads to significant economic losses on dairy farms. The uterine microbiota has begun to attract attention as a possible cause of unexplained low fertility. We analyzed the uterine microbiota associated with fertility by 16S rRNA gene amplicon sequencing in dairy cows. First, the alpha (Chao1 and Shannon) and beta (unweighted and weighted UniFrac) diversities of 69 cows at four dairy farms that had passed the voluntary waiting period before the first artificial insemination (AI) were analyzed with respect to factors including farm, housing style, feeding management, parity, and AI frequency to conception. Significant differences were observed in the farm, housing style, and feeding management, except parity and AI frequency to conception. The other diversity metrics did not show significant differences in the tested factors. Similar results were obtained for the predicted functional profile. Next, the microbial diversity analysis of 31 cows at a single farm using weighted UniFrac distance matrices revealed a correlation with AI frequency to conception but not with parity. In correlation with AI frequency to conception, the predicted function profile appeared to be slightly modified and a single bacterial taxon, Arcobacter, was detected. The bacterial associations related to fertility were estimated. Considering these, the uterine microbiota in dairy cows can be varied depending on the farm management practices and may become one of the measures for low fertility. en-copyright= kn-copyright= en-aut-name=YagisawaTakuya en-aut-sei=Yagisawa en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Takemura-UchiyamaIyo en-aut-sei=Takemura-Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AndoShun en-aut-sei=Ando en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IchiiOsamu en-aut-sei=Ichii en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MurakamiHironobu en-aut-sei=Murakami en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsushitaOsamu en-aut-sei=Matsushita en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatagiriSeiji en-aut-sei=Katagiri en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Hokkaido Agriculture Mutual Aid Association kn-affil= affil-num=2 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Hokkaido Agriculture Mutual Aid Association kn-affil= affil-num=5 en-affil=Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University kn-affil= affil-num=6 en-affil=Laboratory of Infectious Diseases, School of Veterinary Medicine, Azabu University kn-affil= affil-num=7 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University kn-affil= en-keyword=dairy cows kn-keyword=dairy cows en-keyword=low fertility kn-keyword=low fertility en-keyword=uterine microbiota kn-keyword=uterine microbiota en-keyword=microbial diversity kn-keyword=microbial diversity en-keyword=bacterial association kn-keyword=bacterial association END start-ver=1.4 cd-journal=joma no-vol=84 cd-vols= no-issue=7 article-no= start-page=1019 end-page=1022 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Screening of bacterial DNA in bile sampled from healthy dogs and dogs suffering from liver- or gallbladder-associated disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although the biliary system is generally aseptic, gallbladder microbiota has been reported in humans and some animals apart from dogs. We screened and analyzed the bacterial deoxyribonucleic acid in canine gallbladders using bile sampled from 7 healthy dogs and 52 dogs with liver- or gallbladder-associated disease. PCR screening detected bacteria in 17.3% of diseased dogs (9/52) and none in healthy dogs. Microbiota analysis of PCR-positive samples showed that the microbial diversity differed between liver- and gallbladder-associated disease groups. Thus, a specific bacterial community appears to occur at a certain frequency in the bile of diseased dogs. en-copyright= kn-copyright= en-aut-name=NEOSakurako en-aut-sei=NEO en-aut-mei=Sakurako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TAKEMURA-UCHIYAMAIyo en-aut-sei=TAKEMURA-UCHIYAMA en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UCHIYAMAJumpei en-aut-sei=UCHIYAMA en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MURAKAMIHironobu en-aut-sei=MURAKAMI en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SHIMAAyaka en-aut-sei=SHIMA en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KAYANUMAHideki en-aut-sei=KAYANUMA en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YOKOYAMATaiki en-aut-sei=YOKOYAMA en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TAKAGISatoshi en-aut-sei=TAKAGI en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KANAIEiichi en-aut-sei=KANAI en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HISASUEMasaharu en-aut-sei=HISASUE en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=2 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=5 en-affil=Anicom Specialty Medical Institute Inc. kn-affil= affil-num=6 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=7 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=8 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=9 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=10 en-affil=School of Veterinary Medicine, Azabu University kn-affil= en-keyword=bile kn-keyword=bile en-keyword=bile microbiota kn-keyword=bile microbiota en-keyword=gallbladder kn-keyword=gallbladder en-keyword=hospitalized dog kn-keyword=hospitalized dog en-keyword=laboratory dog kn-keyword=laboratory dog END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=6 article-no= start-page=1607 end-page=1616 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of the oral and fecal microbiota associated with atopic dermatitis in dogs selected from a purebred Shiba Inu colony en-subtitle= kn-subtitle= en-abstract= kn-abstract=Atopic dermatitis (AD) is a chronic and relapsing multifactorial inflammatory skin disease that also affects dogs. The oral and gut microbiota are associated with many disorders, including allergy. Few studies have addressed the oral and gut microbiota in dogs, although the skin microbiota has been studied relatively well in these animals. Here, we studied the AD-associated oral and gut microbiota in 16 healthy and nine AD dogs from a purebred Shiba Inu colony. We found that the diversity of the oral microbiota was significantly different among the dogs, whereas no significant difference was observed in the gut microbiota. Moreover, a differential abundance analysis detected the Family_XIII_AD3011_group (Anaerovoracaceae) in the gut microbiota of AD dogs; however, no bacterial taxa were detected in the oral microbiota. Third, the comparison of the microbial co-occurrence patterns between AD and healthy dogs identified differential networks in which the bacteria in the oral microbiota that were most strongly associated with AD were related with human periodontitis, whereas those in the gut microbiota were related with dysbiosis and gut inflammation. These results suggest that AD can alter the oral and gut microbiota in dogs. en-copyright= kn-copyright= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OsumiTakafumi en-aut-sei=Osumi en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizukamiKeijiro en-aut-sei=Mizukami en-aut-mei=Keijiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukuyamaTomoki en-aut-sei=Fukuyama en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimaAyaka en-aut-sei=Shima en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UnnoAsaka en-aut-sei=Unno en-aut-mei=Asaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Takemura‐UchiyamaIyo en-aut-sei=Takemura‐Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UneYumi en-aut-sei=Une en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MurakamiHironobu en-aut-sei=Murakami en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SakaguchiMasahiro en-aut-sei=Sakaguchi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Laboratory of Veterinary Internal Medicine, Division of Animal Life Science, Graduate School, Tokyo University of Agriculture and Technology kn-affil= affil-num=3 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=4 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=5 en-affil=Anicom Specialty Medical Institute Inc. kn-affil= affil-num=6 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=7 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Faculty of Veterinary Medicine, Okayama University of Science kn-affil= affil-num=9 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=10 en-affil=School of Veterinary Medicine, Azabu University kn-affil= en-keyword=oral kn-keyword=oral en-keyword=gut kn-keyword=gut en-keyword=microbiota kn-keyword=microbiota en-keyword=atopic dermatitis kn-keyword=atopic dermatitis en-keyword=Shiba Inu kn-keyword=Shiba Inu en-keyword=dog colony kn-keyword=dog colony en-keyword=canine kn-keyword=canine END start-ver=1.4 cd-journal=joma no-vol=319 cd-vols= no-issue= article-no= start-page=198881 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221002 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phylogenic analysis of new viral cluster of large phages with unusual DNA genomes containing uracil in place of thymine in gene-sharing network, using phages S6 and PBS1 and relevant uncultured phages derived from sewage metagenomics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bacteriophages (phages) are the most diverse and abundant life-form on Earth. Jumbophages are phages with double-stranded DNA genomes longer than 200 kbp. Among these, some jumbophages with uracil in place of thymine as a nucleic acid base, which we have tentatively termed "dU jumbophages" in this study, have been reported. Because the dU jumbophages are considered to be a living fossil from the RNA world, the evolutionary traits of dU jumbophages are of interest. In this study, we examined the phylogeny of dU jumbophages. First, tBLASTx analysis of newly sequenced dU jumbophages such as Bacillus phage PBS1 and previously isolated Staphylococcus phage S6 showed similarity to the other dU jumbophages. Second, we detected the two partial genome sequences of uncultured phages possibly relevant to dU jumbophages, scaffold_002 and scaffold_007, from wastewater metagenomics. Third, according to the gene-sharing network analysis, the dU jumbophages, including phages PBS1 and S6, and uncultured phage scaffold_002 formed a cluster, which suggested a new viral subfamily/family. Finally, analyses of the phylogenetic relationship with other phages showed that the dU jumbophage cluster, which had two clades of phages infecting Gram-negative and Gram-positive bacteria, diverged from the single ancestral phage. These findings together with previous reports may imply that dU jumbophages evolved from the same origin before divergence of Gram-negative and Gram-positive bacteria. en-copyright= kn-copyright= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Takemura-UchiyamaIyo en-aut-sei=Takemura-Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GotohKazuyoshi en-aut-sei=Gotoh en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatoShin-ichiro en-aut-sei=Kato en-aut-mei=Shin-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakaguchiYoshihiko en-aut-sei=Sakaguchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MurakamiHironobu en-aut-sei=Murakami en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FukuyamaTomoki en-aut-sei=Fukuyama en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanekiMao en-aut-sei=Kaneki en-aut-mei=Mao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsushitaOsamu en-aut-sei=Matsushita en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsuzakiShigenobu en-aut-sei=Matsuzaki en-aut-mei=Shigenobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Research Institute of Molecular Genetics, Kochi University kn-affil= affil-num=5 en-affil=Department of Microbiology, Kitasato University School of Medicine kn-affil= affil-num=6 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=7 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=8 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=9 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University kn-affil= en-keyword=Environmental virus kn-keyword=Environmental virus en-keyword=Jumbophage kn-keyword=Jumbophage en-keyword=Metagenomics kn-keyword=Metagenomics en-keyword=Evolution kn-keyword=Evolution en-keyword=Uncultured phage kn-keyword=Uncultured phage END start-ver=1.4 cd-journal=joma no-vol=369 cd-vols= no-issue=1 article-no= start-page=fnac019 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heterogeneous IgE reactivities to Staphylococcus pseudintermedius strains in dogs with atopic dermatitis, and the identification of DM13-domain-containing protein as a bacterial IgE-reactive molecule en-subtitle= kn-subtitle= en-abstract= kn-abstract=Staphylococcus pseudintermedius is one of the major pathogens causing canine skin infection. In canine atopic dermatitis (AD), heterogeneous strains of S. pseudintermedius reside on the affected skin site. Because an increase in specific IgE to this bacterium has been reported, S. pseudintermedius is likely to exacerbate the severity of canine AD. In this study, the IgE reactivities to various S. pseudintermedius strains and the IgE-reactive molecules of S. pseudintermedius were investigated. First, examining the IgE reactivities to eight strains of S. pseudintermedius using 141 sera of AD dogs, strain variation of S. pseudintermedius showed 10–63% of the IgE reactivities. This is different from the expected result based on the concept of Staphylococcus aureus clonality in AD patients. Moreover, according to the western blot analysis, there were more than four proteins reactive to IgE. Subsequently, the analysis of the common IgE-reactive protein at ∼15 kDa confirmed that the DM13-domain-containing protein was reactive in AD dogs, which is not coincident with any S. aureus IgE-reactive molecules. Considering these, S. pseudintermedius is likely to exacerbate AD severity in dogs, slightly different from the case of S. aureus in human AD. en-copyright= kn-copyright= en-aut-name=Takemura-UchiyamaIyo en-aut-sei=Takemura-Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsuruiHiroki en-aut-sei=Tsurui en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimakuraHidekatsu en-aut-sei=Shimakura en-aut-mei=Hidekatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NasukawaTadahiro en-aut-sei=Nasukawa en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ImanishiIchiro en-aut-sei=Imanishi en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FukuyamaTomoki en-aut-sei=Fukuyama en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakamotoShuji en-aut-sei=Sakamoto en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorisawaKeiko en-aut-sei=Morisawa en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujimuraMasato en-aut-sei=Fujimura en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MurakamiHironobu en-aut-sei=Murakami en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KanamaruShuji en-aut-sei=Kanamaru en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KurokawaKenji en-aut-sei=Kurokawa en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawamotoKeiko en-aut-sei=Kawamoto en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IyoriKeita en-aut-sei=Iyori en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SakaguchiMasahiro en-aut-sei=Sakaguchi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71 kn-affil= affil-num=3 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=4 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=5 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=6 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama Universty kn-affil= affil-num=7 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=8 en-affil=Science Research Center, Kochi Medical School kn-affil= affil-num=9 en-affil=Science Research Center, Kochi Medical School kn-affil= affil-num=10 en-affil=Fujimura Animal Hospital kn-affil= affil-num=11 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=12 en-affil=Department of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=13 en-affil=Faculty of Pharmaceutical Sciences, Nagasaki International University kn-affil= affil-num=14 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=15 en-affil=Vet Derm Tokyo, Dermatological and Laboratory Service for Animals kn-affil= affil-num=16 en-affil=School of Veterinary Medicine, Azabu University kn-affil= en-keyword=Staphylococcus pseudintermedius kn-keyword=Staphylococcus pseudintermedius en-keyword=atopic dermatitis kn-keyword=atopic dermatitis en-keyword= IgE kn-keyword= IgE en-keyword=dogs kn-keyword=dogs en-keyword=DM13-domain-containing protein kn-keyword=DM13-domain-containing protein en-keyword=exacerbation factor kn-keyword=exacerbation factor END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=1 article-no= start-page=e00077-21 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202193 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Use of Recombinant Endolysin to Improve Accuracy of Group B Streptococcus Tests en-subtitle= kn-subtitle= en-abstract= kn-abstract=Group B Streptococcus (GBS) causes serious neonatal infection via vertical transmission. The prenatal GBS screening test is performed at the late stage of pregnancy to avoid risks of infection. In this test, enrichment culture is performed, followed by GBS identification. Selective medium is used for the enrichment; however, Enterococcus faecalis, which is a potential contaminant in swab samples, can interfere with the growth of GBS. Such bacterial contamination can lead to false-negative results. Endolysin, a bacteriophage-derived enzyme, degrades peptidoglycan in the bacterial cell wall; it is a promising antimicrobial agent for selectively eliminating specific bacterial genera/species. In this study, we used the recombinant endolysin EG-LYS, which is specific to E. faecalis; the endolysin potentially enriched GBS in the selective culture. First, in the false-negative model (coculture of GBS and E. faecalis, which disabled GBS detection in the subsequent GBS identification test), EG-LYS treatment at 0.1 mg/ml improved GBS detection. Next, we used 548 vaginal swabs to test the efficacy of EG-LYS treatment in improving GBS detection. EG-LYS treatment (0.1 mg/ml) increased the GBS-positive ratio to 17.9%, compared to 15.7% in the control (phosphate-buffered saline [PBS] treatment). In addition, there were an increased number of GBS colonies under EG-LYS treatment in some samples. The results were supported by the microbiota analysis of the enriched cultures. In conclusion, EG-LYS treatment of the enrichment culture potentially improves the accuracy of the prenatal GBS screening test. en-copyright= kn-copyright= en-aut-name=MatsuiHidehito en-aut-sei=Matsui en-aut-mei=Hidehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OgataMasaya en-aut-sei=Ogata en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NasukawaTadahiro en-aut-sei=Nasukawa en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Takemura-UchiyamaIyo en-aut-sei=Takemura-Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoShin-ichiro en-aut-sei=Kato en-aut-mei=Shin-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurakamiHironobu en-aut-sei=Murakami en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HigashideMasato en-aut-sei=Higashide en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HanakiHideaki en-aut-sei=Hanaki en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Ōmura Satoshi Memorial Institute, Kitasato University kn-affil= affil-num=2 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=School of Veterinary Medicine, Azabu University, Sagamihara kn-affil= affil-num=4 en-affil=School of Veterinary Medicine, Azabu University, Sagamihara kn-affil= affil-num=5 en-affil=School of Veterinary Medicine, Azabu University, Sagamihara kn-affil= affil-num=6 en-affil=Kochi University kn-affil= affil-num=7 en-affil=School of Veterinary Medicine, Azabu University, Sagamihara kn-affil= affil-num=8 en-affil=Kotobiken Medical Laboratories, Inc., Tsukuba kn-affil= affil-num=9 en-affil=Ōmura Satoshi Memorial Institute, Kitasato University kn-affil= END